
ADATSZERKEZETEK ÉS
ALGORITMUSOK

LIFO, FIFO
„LIFO, FIFO, Szekvenciális adatszerkezetek”

Verem, Stack, LIFO

24/E/01/3 LIFO, FIFO

Verem fogalma
• LIFO: last-in, first-out

• Köznapi fogalma

24/E/01/3 LIFO, FIFO

Mókus Borz Nyuszi Sün

Sorrend miután az összes elem kikerült:

Sorrend az elemek betétele előtt:

Mókus Borz Nyuszi Sün

A verem műveletei
• Műveletek

• empty

• isempty

• push

• pop

• top

• Fontos:
• pop és top művelet nem hajtható

végre üres vermen

• Műveletek jelentése
• Üres verem létrehozása

• Üres a verem?

• Elem betétele a verembe

• Elem kivétele a veremből

• Felső elem lekérdezése

• Figyelem!
• A műveletek között nem szerepel

„isfull” művelet!

24/E/01/3 LIFO, FIFO

Verem szerkezete
• Lineáris adatszerkezet

24/E/01/3 LIFO, FIFO

elemek

Elemek száma
• Felépített adatszerkezet

• Az adatszerkezet elemeinek száma a feldolgozás során rögzített vagy
változtatható

• A rögzített nem jelenti, hogy a tárolt adatok nem megváltoztathatók

• Adatelemek száma
• Fix

• A tárolható adatelemek számának felső korlátja a létrehozáskor (esetleg fordítási időben)
rögzített.

• Változó
• A memória mérete (illetve kapcsolódó technikai korlátok) szab határt az adatelemek

számának

24/E/01/3 LIFO, FIFO

Reprezentáció
• Aritmetikai ábrázolás:

• egy max hosszú vektor
(ez az elemek tömbje)
elements[1..max]

• a verem tetejének mutatója
head  [0, max]
head=0  üres a verem

• Választási lehetőség, hogy hova
mutat a head

• Az első szabad helyre

• Az utolsó elfoglalt helyre

24/E/01/3 LIFO, FIFO

9

2

6

15

max

1

elements

head =4

v.push(17) után v.pop() után

24/E/01/3 LIFO, FIFO

Reprezentáció

17

9

2

6

15

max

1

elements

head

max

1

elements

head =4=5

Egyenlő a két verem?

17

9

2

6

15

Implementáció
• Műveletek pszeudokódja/struktogramja:

• v.empty
-- üresre állítja a vermet

v.head  0

• v.isempty
-- Üres a verem? – Logikai értéket ad vissza

return (v.head=0)

• v.isfull
-- Tele van a verem? – Logikai értéket ad vissza

return (v.head=max)

24/E/01/3 LIFO, FIFO

Implementáció
• v.push(e)
-- e-t beteszi a v verem tetejére
if v.isfull
 then error "túlcsordulás"
 else v.head  v.head +1
 v.elements[v.head]  e
end if

24/E/01/3 LIFO, FIFO

v.push(e)

I v.isfull ? N

error „túlcsordulás” v.head ← v.head+1

v.elements[v.head] ← e

Implementáció
• v.pop
-- kiveszi a legfelső elemet és visszaadja
if v.isempty
 then error "alulcsordulás"
 else v.head v.head -1
 return v.elements[v.head+1]
end if

24/E/01/3 LIFO, FIFO

Implementáció
• v.top
-- lekérdezi a legfelső elemet
if v.isempty
 then error "alulcsordulás"
 else return v.elements[v.head]
end if

24/E/01/3 LIFO, FIFO

Sor, Queue, FIFO

24/E/01/3 LIFO, FIFO

Sor (Queue)
• FIFO: First-in, First-out

• Köznapi fogalma

Zoltán
PiroskaLászlóÁgnes

24/E/01/3 LIFO, FIFO

A sor műveletei
• Műveletek

• empty

• isempty

• in

• out

• first

• Fontos:
• out és first nem működnek üres sor

esetén

• Műveletek jelentése
• Üres sor létrehozása

• Üres a sor?

• Elem betétele a sorba

• Elem kivétele a sorból

• Első elem lekérdezése

• Figyelem!
• A műveletek között nem szerepel

„isfull” művelet!

24/E/01/3 LIFO, FIFO

Sor szerkezete
• Lineáris adatszerkezet

elemek

24/E/01/3 LIFO, FIFO

Reprezentáció
• Aritmetikai ábrázolás:

• egy max hosszú vektor
• ez az elemek tömbje

• elements[1. . max]

• és a sor első elemének mutatója
• head  [1, max]

• és a sor első üres (utolsó) helyének mutatója
• tail  [1, max]

• Vegyük észre, hogy az aritmetikai ábrázolás három részből áll!

24/E/01/3 LIFO, FIFO

head=1 tail=1

1 … max

Reprezentáció
• Ciklikus ábrázolással

• Kezdetben

Üres a sor

24/E/01/3 LIFO, FIFO

head=1 tail=5

1 … max

Reprezentáció
• 2, 5, 9, 11 betétele után:

24/E/01/3 LIFO, FIFO

2 5 9 11

2 5 9 11

head=3 tail=5

1 … max

Reprezentáció
• 2, 5 kivétele után:

24/E/01/3 LIFO, FIFO

8 5 9 11 7 3

head=3 tail=2

1 … max

Reprezentáció
• 7, 3, 8 betétele után:

24/E/01/3 LIFO, FIFO

8 21 9 11 7 3

head=3 tail=3

1 … max

Reprezentáció
• 21 betétele után:

Tele a sor

24/E/01/3 LIFO, FIFO

8 21 9 11 7 3

head=3 tail=3

1 … max

Reprezentáció
• 9, 11, 7, 3, 8, 21 kivétele után:

Üres a sor

24/E/01/3 LIFO, FIFO

Reprezentáció
• Mit tegyünk? – Milyen lehetőségek vannak:

• Vezessünk be még egy jelzőt a reprezentációba, ami mutatja, hogy a sor
üres-e

• empt

• kezdetben igaz, később vizsgáljuk, és megfelelően állítjuk

• Vezessünk be még egy attribútumot a reprezentációba, ami mutatja, hogy hány
elem van a sorban

• count

24/E/01/3 LIFO, FIFO

Implementáció
• Műveletek pszeudokódja:

• s.empty
-- üresre állítja a sort
s.head  1; s.tail  1; s.empt true

• s.isempty
-- üres a sor? - logikai értéket ad vissza
return s.empt

• s.isfull
-- tele van a sor?
return ((not s.empt) and (s.head = s.tail))

24/E/01/3 LIFO, FIFO

Implementáció
• s.In(e)
-- e-t beteszi az s sor végére
-- s.tail-t ciklikusan növeli

if s.IsFull
 then error "túlcsordulás"
 else s.empt  false
 s. elements[s.tail]  e
 if s.tail=max
 then s.tail  1
 else s.tail  s.tail+1
 end if
end if

24/E/01/3 LIFO, FIFO

Implementáció
• s.Out
-- kiveszi és visszaadja az s sor első elemét
-- s.head-et ciklikusan növeli
-- figyeli, hogy nem üres-e a sor
if s.empt
 then error "alulcsordulás";
 else e  s.elements[s.head]
 if s.head=max
 then s.head  1
 else s.head  s.head+1
 end if
 if s.head=s.tail then s.empt  true end if
 return e
end if

24/E/01/3 LIFO, FIFO

Implementáció
• s.First
-- visszaadja az s sor első elemét,
-- figyeli, hogy nem üres-e a sor
if s.empt
 then error "alulcsordulás"
 else return s. elements[s.head]
end if

• Lehetne az is, hogy a darabszámot tároljuk
• Házi feladat: átgondolni

24/E/01/3 LIFO, FIFO

Implementáció
• Vigyázni kell, amikor a programokat a választott programnyelven

megvalósítjuk!
• Például

• C++ nyelv esetén a vektorok indexelése nullával kezdődik!

• Értékadás jele

• Egyenlőség vizsgálat jele

24/E/01/3 LIFO, FIFO

Verem – fix méretű megvalósítás
• A verem egy max hosszú tömb

és a head (int) direkt szorzata
• A tömb elemei [0…max-1] között

indexeltek)

• A head az első szabad pozíciót
jelzi a tömbben, ahova
beszúrhatunk értéket

0 ≤ head ≤ max

24/E/01/3 LIFO, FIFO

adat 1

adat 2

head=5

adat 5

adat 4

adat 3

Stack

max-1

0

Verem – fix méretű megvalósítás
• Megvalósítás osztály segítségével:

class Stack{
 static const int max = 7;
 private:
 int tomb[max];
 int head;
 public:
 Stack();
 ~Stack();
 void push(int new_item);
 int pop();
 int top() const;
 bool isEmpty() const;
};

24/E/01/3 LIFO, FIFO

adat 1

adat 2

head=5

adat 5

adat 4

adat 3

Stack

max-1

0

Sor – fix méretű megvalósítás
• A sor elemeit egy statikusan létrehozott max méretű tömbbel, a head és
tail mutatókkal, empty paraméterrel reprezentáljuk.

• elemei: array[0...max-1]

• A veremmel ellentétben a sornál a tömbnek mind a két végére
szükségünk van, ezért azok helyét két változó, a head, és a tail
fogják megadni.

• A megvalósításhoz ciklikus ábrázolást használunk

Head = 0 Tail = 0

0 … max-1

24/E/01/3 LIFO, FIFO

Sor – fix méretű megvalósítás
• Kezdetben a head és a tail a tömb ugyanazon elemének indexei.

• head: a tömb első elemének indexe

• tail: a tömb első szabad helyének indexe

• Mikor üres a sor?
• Ha a head és a tail ugyanoda mutat, akkor a sor vagy üres, vagy tele van.

• Ha üres, akkor az utolsó művelet szükségszerűen kivétel volt.
• Ha az utolsó művelet betétel volt, akkor a sor most tele van.

• Tartsunk karban egy változót, amellyel ezt követni tudjuk!

24/E/01/3 LIFO, FIFO

Sor – fix méretű megvalósítás
class FixedQueue {
 public:
 FixedQueue();
 ~FixedQueue();
 void in(int new_item);
 int out();
 int first() const;
 bool isEmpty() const;
 bool isFull() const;
 private:
 static const int CAPACITY = 10;
 int array[CAPACITY];
 int head, tail;
 bool empty;
};

24/E/01/3 LIFO, FIFO

Head = 0 Tail = 0

0 … max-1

	1. dia: Adatszerkezetek és algoritmusok
	2. dia: Verem, Stack, LIFO
	3. dia: Verem fogalma
	4. dia: A verem műveletei
	5. dia: Verem szerkezete
	6. dia: Elemek száma
	7. dia: Reprezentáció
	8. dia: Reprezentáció
	9. dia: Implementáció
	10. dia: Implementáció
	11. dia: Implementáció
	12. dia: Implementáció
	13. dia: Sor, Queue, FIFO
	14. dia: Sor (Queue)
	15. dia: A sor műveletei
	16. dia: Sor szerkezete
	17. dia: Reprezentáció
	18. dia: Reprezentáció
	19. dia: Reprezentáció
	20. dia: Reprezentáció
	21. dia: Reprezentáció
	22. dia: Reprezentáció
	23. dia: Reprezentáció
	24. dia: Reprezentáció
	25. dia: Implementáció
	26. dia: Implementáció
	27. dia: Implementáció
	28. dia: Implementáció
	29. dia: Implementáció
	30. dia: Verem – fix méretű megvalósítás
	31. dia: Verem – fix méretű megvalósítás
	32. dia: Sor – fix méretű megvalósítás
	33. dia: Sor – fix méretű megvalósítás
	34. dia: Sor – fix méretű megvalósítás

