ADATSZERKEZETEK ES
ALGORITMUSOK

LIFO, FIFO

LIFO, FIFO, Szekvencialis adatszerkezetek”

Verem, Stack, LIFO

Verem fogalma

e LIFO: last-in, first-out
« Koznapi fogalma

Sorrend az elemek betétele elbtt:

Sorrend miutan az osszes elem kikerult:

24/E/01/3

A verem muveletel

* MUveletek * MUveletek jelentese
* empty » Ures verem létrehozasa
* isempty » Ures a verem?
e push * Elem betétele a verembe
* pop * Elem kivétele a verembdl
 top * Felsd elem lekérdezése
* Fontos: * Figyelem!
* pop és top miuvelet nem hajthato * A mlveletek kozott nem szerepel
vegre ures vermen Jsfull” mavelet!

24/E/01/3

LIFO, FIFO

Verem szerkezete

e Linearis adatszerkezet

elemek

24/E/01/3

LIFO, FIFO

Elemek szama

* Felépitett adatszerkezet

» Az adatszerkezet elemeinek szama a feldolgozas soran rogzitett vagy
valtoztathato

« Arogzitett nem jelenti, hogy a tarolt adatok nem megvaltoztathatok

» Adatelemek szama
* Fix
« Atarolhato adatelemek szamanak fels6 korlatja a lIétrenozaskor (esetleg forditasi id6ben)
rogzitett.

e Valtozo

* A memoria mérete (illetve kapcsolddo technikai korlatok) szab hatart az adatelemek
szamanak

24/E/01/3

LIFO, FIFO

Reprezentacio

* Aritmetikai abrazolas:
* egy max hosszu vektor

(ez az elemek tombije)
elements[1..max]

e a verem tetejenek mutatdja
head < [0, max]
head=0 < Ures a verem

» Valasztasi lehetéseg, hogy hova
mutat a head 9

* Az elsd szabad helyre
« Az utolso elfoglalt helyre

elements

Mmax

head =4 | 19 |1

24/E/01/3

LIFO, FIFO

Reprezentacio

v.push(17) utan

head =5

24/E/01/3

elements

15

MmaXx

v.pop()

Egyenl6 a két verem?

head =4

LIFO, FIFO

utan

elements

17

Mmax

Implementacio

* Mlveletek pszeudokddija/struktogramja:

e v.empty
-- Uresre allitja a vermet
v.head < ©

e v.isempty
-- Ures a verem? - Logikai értéket ad vissza
return (v.head=0)

e v.isfull
-- Tele van a verem? - Logikal értéket ad vissza
return (v.head=max)

LIFO, FIFO

24/E/01/3

Implementacio

*v.push(e)
-- e-t beteszi a v verem tetejére
if v.isfull
then error "tulcsordulas”
else v.head <« v.head +1

v.elements[v.head] « e
end 1if

v.push(e)

[v.isfull ?

error ,tulcsordulas” v.head «— v.head+1
v.elements|v.head] — e

24/E/01/3

LIFO, FIFO

Implementacio

*V.pop
-- kiveszi a legfelsO elemet és visszaadja
if v.isempty

then error "alulcsordulas”
else v.head <«v.head -1
return v.elements[v.head+1]

end 1if

24/E/01/3

LIFO, FIFO

Implementacio

*v.top
-- lekérdezi a legfelsO elemet
if v.isempty
then error "alulcsordulas”

else return v.elements[v.head]
end 1if

24/E/01/3

LIFO, FIFO

Sor, Queue, FIFO

Sor (Queue)

 FIFO: First-in, First-out
« Koznapi fogalma

24/E/01/3

A sor muveletel

* MUveletek * MUveletek jelentese
* empty » Ures sor létrehozasa
* isempty » Ures a sor?
*in * Elem betétele a sorba
 out » Elem kivétele a sorbdl
o first EIs6 elem lekérdezése
* Fontos: * Figyelem!
* out és first nem mikodnek ures sor * A muveletek kozott nem szerepel
eseten Jsfull” mavelet!

24/E/01/3

LIFO, FIFO

Sor szerkezete

e Linearis adatszerkezet

elemek

24/E/01/3

LIFO, FIFO

Reprezentacio

* Aritmetikai abrazolas:
* egy max hosszu vektor

« ez az elemek tombje
* elements[1.. max]

* €s a sor els6 elemének mutatoja
* head € [1, max]

« €s a sor elsd ures (utolso) helyének mutatoja
* tail € [1, max]

* Vegyuk észre, hogy az aritmetikai abrazolas harom reszbdl all!

24/E/01/3

LIFO, FIFO

Reprezentacio

e Ciklikus abrazolassal
 Kezdetben

head=1 tail=1
1 max |

Ures a sor

24/E/01/3

LIFO, FIFO

Reprezentacio

2.5 9 11 betétele utan:

head=1

24/E/01/3

\

tail=5

2

11

max

LIFO, FIFO

Reprezentacio

« 2, 5 kivétele utan:

head=3

tail=5

11

24/E/01/3

max

LIFO, FIFO

Reprezentacio

o 7, 3, 8 betétele utan:

head=3

tail=2

11

24/E/01/3

max

LIFO, FIFO

Reprezentacio

e 21 betétele utan:

head=3

24/E/01/3

tail=3

N

8

21

11

/|3

max

LIFO, FIFO

Tele a sor

Reprezentacio

«9 11,7, 3, 8, 21 kivétele utan:

head=3

11

24/E/01/3

max

LIFO, FIFO

Ures a sor

Reprezentacio

« Mit tegyunk? — Milyen lehetésegek vannak:

* Vezessunk be még egy jelz6t a reprezentacioba, ami mutatja, hogy a sor
ures-e
e empt
« kezdetben igaz, késdbb vizsgaljuk, és megfelel6en allitjuk
* Vezessunk be még egy attributumot a reprezentacioba, ami mutatja, hogy hany
elem van a sorban
e count

24/E/01/3

LIFO, FIFO

Implementacio

* MUveletek pszeudokodia:
e s.empty
-- Uresre allitja a sort
s.head « 1; s.tail « 1; s.empt «true
e s.isempty
-- Ures a sor? - logikai értéket ad vissza
return s.empt

e s.isfull
-- tele van a sor?
return ((not s.empt) and (s.head = s.tail))

LIFO, FIFO

24/E/01/3

Implementacio
*s.In(e)

-- e-t beteszi az s sor végére
- s.tail-t ciklikusan noveli

if s.IsFull
then error "tulcsordulas”
else s.empt « false
s. elements[s.tail] « e
if s.tail=max
then s.tail « 1

else s.tall « s.tail+l
end 1if

end 1if

24/E/01/3

LIFO, FIFO

Implementacio
* s.0Out

-- kiveszi és visszaadja az s sor elsO elemét
-- s.head-et ciklikusan noveli
-- figyeli, hogy nem uUres-e a sor

if s.empt
then error "alulcsordulas";
else e < s.elements[s.head]
if s.head=max
then s.head « 1
else s.head « s.head+1l
end if
if s.head=s.tail then s.empt « true end if
return e
end if

24/E/01/3

LIFO, FIFO

Implementacio

*s.First
-- visszaadja az s sor elso elemét,
-- figyeli, hogy nem Ures-e a sor
if s.empt
then error "alulcsordulas”

else return s. elements[s.head]
end 1if

* Lehetne az is, hogy a darabszamot taroljuk
« Hazi feladat: atgondolni

24/E/01/3

LIFO, FIFO

Implementacio

* Vigyazni kell, amikor a programokat a valasztott programnyelven
megvalositjuk!
« Példaul
« C++ nyelv esetén a vektorok indexelése nullaval kezd6dik!
- Ertékadas jele
« EgyenlBség vizsgalat jele

24/E/01/3

LIFO, FIFO

Verem - fix méretl megvalositas

* A verem egy max hosszu tomb
és a head (int) direkt szorzata

 Atomb elemei [0...max-1] kozott
indexeltek)

* A head az els6 szabad poziciot
jelzi a tombben, ahova
beszurhatunk értéket

0 < head £ max

Stack

max-1

24/E/01/3

LIFO, FIFO

Verem - fix méretl megvalositas

« Megvalositas osztaly segitsegevel:

class Stack{

static const int max = 7;

private:
int tomb[max]; Stack
int head;

public:
Stack();
~Stack();
void push(int new_item);
int pop();
int top() const;
bool isEmpty() const;

max-1

s

24/E/01/3

LIFO, FIFO

Sor - fix meretu megvalositas

» A sor elemeit egy statikusan letrehozott max méretld tombbel, a head és
tail mutatokkal, empty paraméterrel reprezentaljuk.

e elemel: array[0...max-1]

* A veremmel ellentetben a sornal a tombnek mind a ket vegére
szukségunk van, ezert azok helyet ket valtozo, a head, és a tail

fogjak megadni.
* A megvalositashoz ciklikus abrazolast hasznalunk

LIFO, FIFO

24/E/01/3

Sor - fix meretu megvalositas

» Kezdetben a head és a tail a tomb ugyanazon elemeének indexel.
* head: a tomb els0 elemének indexe
« tail: a tomb elsO szabad helyének indexe

* Mikor Ures a sor?
 Ha a head és a tail ugyanoda mutat, akkor a sor vagy ures, vagy tele van.

* Ha ures, akkor az utols6 mlvelet szuksegszerien kivétel volt.
 Ha az utolsdé miuvelet betétel volt, akkor a sor most tele van.

» Tartsunk karban egy valtozot, amellyel ezt kovetni tudjuk!

24/E/01/3

LIFO, FIFO

Sor - fix meretu megvalositas

class FixedQueue {
public:
FixedQueue();
~FixedQueue();
void in(int new_item);
int out();
int first() const;
bool isEmpty() const;
bool isFull() const;
private:
static const int CAPACITY = 10;
int array[CAPACITY];
int head, tail;
\ bool empty;

24/E/01/3

LIFO, FIFO

	1. dia: Adatszerkezetek és algoritmusok
	2. dia: Verem, Stack, LIFO
	3. dia: Verem fogalma
	4. dia: A verem műveletei
	5. dia: Verem szerkezete
	6. dia: Elemek száma
	7. dia: Reprezentáció
	8. dia: Reprezentáció
	9. dia: Implementáció
	10. dia: Implementáció
	11. dia: Implementáció
	12. dia: Implementáció
	13. dia: Sor, Queue, FIFO
	14. dia: Sor (Queue)
	15. dia: A sor műveletei
	16. dia: Sor szerkezete
	17. dia: Reprezentáció
	18. dia: Reprezentáció
	19. dia: Reprezentáció
	20. dia: Reprezentáció
	21. dia: Reprezentáció
	22. dia: Reprezentáció
	23. dia: Reprezentáció
	24. dia: Reprezentáció
	25. dia: Implementáció
	26. dia: Implementáció
	27. dia: Implementáció
	28. dia: Implementáció
	29. dia: Implementáció
	30. dia: Verem – fix méretű megvalósítás
	31. dia: Verem – fix méretű megvalósítás
	32. dia: Sor – fix méretű megvalósítás
	33. dia: Sor – fix méretű megvalósítás
	34. dia: Sor – fix méretű megvalósítás

