
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör 

Teljes gráf: 

Páros gráf, teljes páros gráf és Hamilton kör/út 

Hamilton kör: Minden csúcson áthaladó kör 

      

 

Hamilton kör  

 

Forrás: (http://www.math.klte.hur/~tujanyi/Komb_j/K_Win_Doc/g0603.doc) 

 

 

Sir William Rovan Hamilton (1805-1865) 1859-ben egy olyan játékot hozott 

forgalomba, melynek a lényege az volt, hogy egy előre megadott gráf csúcspontjait kellett 

bejárni, oly módon, hogy bármely csúcsban pontosan egyszer kellett járni. Állítólag a játéknak 

nem volt átütő sikere Hamilton kortársai között. //(25 !) 

Sir William Rovan Hamilton (1805-1865) Dublinban született, családja Skóciából 

származik. Nyelvi és matematika tehetsége nagyon korán megmutatkozott. 15 éves korában 

már Newton és Laplace írásait olvasta.Saját maga a kvaterniók felfedezését tartotta 

legfontosabb eredményének. Ma e véleményével kevesen értenek egyet.  

 

Definíció: A  G E V , ,  gráf H útját (              e v v e v v e v vn n n1 0 1 2 1 2 1   , , , ,..., , )-t 

Hamilton-útnak mondjuk, ha v v vn0 1, ,...,  csúcsok mind különbözők és e csúcspontokon kívül 

más csúcspontja nincs G-nek. 

Definíció: A  G E V , ,  gráf K körét Hamilton-körnek mondjuk, ha K tartalmazza G minden 

csúcspontját is. 

Látszólag nagyon hasonló probléma, hogy valamely gráfnak az éleit járjuk be pontosan 

egyszer, vagy a csúcspontjait. Az utóbbi azonban jóval nehezebb. S az általános esetben 

Hamilton-utak illetve Hamilton-körök keresésére ma sem ismert igazán jó algoritmus.  

http://www.math.klte.hu/~turjanyi/Komb_j/K_Win_Doc/g0603.doc


Operációkutatás területéhez tartozik az utazó ügynök problémája. Az utazó ügynök 

problémája azt jelenti, hogy a kereskedelmi utazónak adott városokat kell bejárnia, oly módon, 

hogy minden városba csak egyszer megy el, és végül visszatér a cégének a székhelyére. Ez 

esetben a gráf csúcspontjai az utazó által meglátogatandó városok, az élek pedig a városokat 

összekötő útvonalak. Természetesen egy-egy útnak jól meghatározott útiköltsége is van, s több 

út esetén célszerű azt az utat választani, melynek a költsége minimális. Ha valamely G gráf 

éleihez valós számokat rendelünk, akkor hálózatokról, folyamokról beszélünk. S nagyon 

természetesen vetődik fel minimális költségű ill. maximális nyereségű utak esetleg körök 

keresése. Az előbb említett feladatok a kombinatorikus optimalizálás tárgykörébe tartoznak. A 

következő tétel megfogalmazása előtt említjük meg, hogy egy kör ill. út hosszán a bennük 

szereplő élek számát értjük.  

III.4. Tétel: Ha a G egyszerű gráfban bármely csúcspont foka legalább k (k  2), 

akkor van a gráfban egy legalább k+1 hosszúságú kör. (ez a tétel nem szerepelt az előadáson, 

csak k=2-re, ld. alább) 

 

1. ábra 

Bizonyítás: Legyen a G gráfnak az L út a leghosszabb útja. S ezen út csúcspontjait a 

kezdő ponttól indulva jelölje rendre v v v v vk k n0 1 1, ,..., , ,...,
. Az, hogy v0 foka legalább k azt 

jelenti, hogy a v0-t v1-el összekötő e1 élen kívül még legalább k-1 él indul ki v0-ból. Ezen élek 

másik végpontjai szükségszerűen szerepelnek L csúcspontjai között, mert ellenkező esetben 

összeütközésbe kerülnénk azzal, hogy az L út a leghosszabb. Legyen e2' másik végpontja 

mondjuk v2, e3' végpontja v3 és végül ek' végpontja vk. Ekkor az L útnak a v0-tól vk-ig tartó 

rész útjának két végpontját köti össze ek' , ezért egy kört kapunk, melyben legalább k+1 él van, 

s ezzel a bizonyítás kész.  

 

 

III.5. Tétel: Ha a  G E V , ,  egyszerű gráf bármely v csúcsának fokára teljesül, 

hogy   v
V n

 
2 2

, akkor G összefügg.(Hamilton köre is van, ld.Dirac tételét!) 

Bizonyítás: Legyen u és v két különböző csúcsa G-nek. A feltétel szerint u-val és v-

vel is legalább n/2, n/2 pont van összekötve az u-ból illetve v-ből induló élek által, a fokszám 

feltétel miatt. Az előbb említett u-val, illetve v-vel közvetlenül összekötött pontok között van 

olyan, mely u-val is v-vel is össze van kötve, (ha nem lenne ilyen akkor G csúcsainak a száma 

nagyobb egyenlő volna, mint [n/2+n/2+2]) azaz u és v között vezet út. 
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Ha adott a  G E V , ,  gráf, a csúcsainak a számát V n  szokás G rendjének mondani, s 

éleinek számát E q  a G gráf méretének mondani. Ha az u-t az e él összeköti a v csúccsal, 

akkor u-t ill. v-t az e él vég pontjainak nevezzük és u-t ill. v-t szomszédosnak mondjuk.  

 

III.6.Tétel(O.Ore1 (1960.)): Ha a G gráfra teljesül, hogy rendje n3 és bármely két nem 

szomszédos u,v csúcspont fokának az összege nagyobb egyenlő G rendjénél (     u v n  ), 

akkor G-nek van Hamilton-köre. 

1 1899.X.7. Kristiania-ban a ( a mai Oslo-ban Norvégiában ) született és ott is halt meg 

1968.VIII:13. Fiatal korában algebrai számelmélettel foglalkozott, később 
hálóelmélettel,gráfelmélettel.1927.-ben professori kinevezést kapott a Yale egyetemre, 1931.-ben a 
Yale egyetem kítűnő professzora címet kapta, s 37 évvel később 1968.-ban onnan is ment nyugdíjba. 
Több könyvet írt különböző a matematika különböző területeiről, számelméletről, négyszínsejtésről, 
gráfelméletről. 

 

Bizonyítás: Indirekt bizonyítunk. Azon gráfok közül, melyekre a tétel feltételei 

teljesülnek, de az állítás nem, tekintsük valamelyiket azon G' gráfok közül, melyben az élek a 

száma maximális abban az értelemben, hogy ha G'-hez hozzá veszünk egy olyan e élt, mely a 

nem szomszédos u és v éleket köti össze, akkor az így kapott G gráf már tartalmazni fog 

Hamilton-kört.  

(Megjegyzés: Ilyen gráfot könnyű konstruálni egy adott, a feltételeknek megfelelő 

gráfbók élek hozzáadásával(törlésével), hiszen amikor élek hozzáadásával elérjük a G’ teljes 

gráfot, ennek van Hamilton köre. Az utolsónak hozzáadott él törlésével pedig Hamilton utat 

kapunk. ) 

G' minden Hamilton köre tartalmazza az e élt, ezért van olyan L Hamilton-útja G'-nek, 

mely u-t és v-t összeköti. Legyen ez a következő csúcsokat valamely éleken át összekötő út:  

L: vvlvvvvvu kk ,,...,,...,,, 1321  . Az az állítás, hogy e Hamilton útban, ha egy csúcs 

szomszédja u-nak,  pl. az ábrán vk+1 , akkor ennek szomszédja, pl. v
k
 nem lehet szomszédja v-

nek. Az ábra ezt a nem megengedett helyzetet szemlélteti:  

 

2. ábra 
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http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Ore.html


Ugyanis, ha ez az eset előfordulna, akkor az vvvvvvvu kkknkk ,..,,,,,...,,, 2121   

Hamilton-köre volna G'-nek, pedig ez nem lehetséges,  hiszen pontosan az uv él hiányzott a 

Hamiton körhöz. Tehát a V-{v} pontok közül az u-val szomszédos pontok nem  szomszédosak 

v-vel (ezek nincsenek u-val összekötve). Vagyis:   ( ) ( )u n v  1 , átrendezve: 

  )1()(  nvu    s ez utóbbi egyenlőtlenség ellentmond a tétel feltételeinek.  

 

Ore tételének speciális esete Dirac tétele. 

Következmény(G.A. Dirac (1952)): Ha az n=2k csúcspontú egyszerű G gráf bármely 

pontjának a foka legalább k, akkor van G-nek Hamilton-köre.  

Valóban G-ben létezik Hamilton-kör, mivel a következmény feltételei lényegében 

szigorúbbak, mint az Ore tétel feltételei. 

 

Néhány eredmény: 

 Az időrendben való jobb tájékozódás végett egységes jelölés mellett felsoroljuk a 

Hamilton-körökre vonatkozó érdekesebb eredményeket. Jelölje a G(E,,V) gráf 

csúcspontjainak fokszámait rendre d d dn1 2  ...  ( V=n). 

III.7. Tétel: Ha a G(E,,V) egyszerű gráfra (2<n) a következő feltételek valamelyike 

teljesedik, akkor van G.-nek Hamilton-köre: 

1; G.A. Dirac (1952) ndnk k 2

11  , 

2; O.Ore (1961)      u v V de u v E u v n, , ,      , 

3; Pósa Lajos(1962) kdnk k 
2

1
1 , 

4; J.A.Bondy (1969) j<k, nddkdd kjkj  1,  

5;V. Chvátal (1972) d kk  < 1
2

n d n kn k   . 

 

 


