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Gráfelmélet 
 

(Bércesné Novák Ágnes, Hosszú Ferenc, Rudas Imre: Matematika II,OE- BDMF, 2000 jegyzet alapján átdolgozta: 

Bércesné Novák Ágnes) 

 

 

A gráfelmélet a kombinatorikának az elmúlt száz évben jelentős fejlődést elért ága, bár 

komoly eredmények már a XVIII. században is születtek. Az első ismert publikáció 

Eulertől származik (1736), amelyben megoldást adott az ú.n. königsbergi hidak 

problémájára. 

 

A probléma, amelyet a város polgárai vetettek fel, a következő: 

 

 

Lehet-e olyan sétát tenni a városban, hogy a várost átszelő Pregel folyó mindegyik hídján 

( 21. ábra ) egyszer és csak egyszer haladjanak át? 

 

 
 

 

A feladat szempontjából lényegtelen, hogy a parton, ill. a szigeteken hogyan 

közlekedünk, csak a hidakon való áthaladásra kell figyelnünk. Íly módon a megoldás 

szempontjából csak arra kell koncentrálnunk, hogy hány szárazföld ( part, vagy sziget ) 

van, és ezeket hány híd és míly módon köti össze. Ennek megfelelően készült a következő 

ábra: 
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  

 

 
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Egyszerűbben is felrajzolva: 

 

 
 

 

 

A königsbergi probléma íly módon a következőképpen fogalmazható meg: 

 

Be lehet-e járni a fenti, gráfnak nevezett, ábra éleit oly módon, hogy minden élen 

pontosan egyszer megyünk végig? (A feladatot Euler általánosan megoldotta, a 

megoldásra az anyag tárgyalása során visszatérünk. ) 

 

 

A gráfelmélet következő jelentős állomásának Kirchoff 1847-ben publikált eredményei 

tekinthetők, melyben gráfelméleti módszereket alkalmazott villamos hálózatok 

analízisére. Kirchoff ezen eredményei tekinthetők a gráfelmélet első műszaki 

alkalmazásainak is. 

 

A gráfelmélet iránti érdeklődés felkeltésében nagyobb szerepe volt azonban a térképek 

négy színnel való kiszínezhetőségére vonatkozó sejtésnek. A négyszín-sejtés azt mondja 

ki, hogy ha egy térképet sík lapra felrajzolunk, akkor az egyes országok kiszínezhetők 

úgy, hogy a szomszédos országok színei különbözők legyenek. Ha a térképen látható 

valamennyi ország egy-egy pontját megjelöljük, és két pontot akkor és csak akkor kötünk 

össze, ha az ezeket tartalmazó országok szomszédosak, akkor egy ú.n. síkba rajzolható 

gráfhoz jutunk. 

 

A négyszín-sejtés ezek után a következőképpen fogalmazható meg: 

 

A síkba rajzolható gráfok kiszínethetők négy színnel úgy, hogy az éllel összekötött 

pontok eltérő színűek legyenek.  

  

 

 
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A sejtést először Francis Guthrie fogalmazta meg a metemetika nyelvén, bizonyítását 

valószínűleg előszür Möbius kísérelte meg 1840 körül és azóta is a matematikai kutatások 

homlokterében állt, de bizonyítani egészen a legutóbbi időkig nem sikerült. 1976-ban 

azonban Kenneth Appel és Wolfgang Halken egy - a matematikában rendkívülinek 

számító - bizonyítást adtak a sejtésre, ugyanis a bizonyítás egy lényeges része 

számítógépes futtatásokból állt. A bizonyítás elfogadhatóságáról azóta is viták folynak, 

azonban a matematikusok zöme ma már teljes értékűnek fogadja el. 

 

Ezzel a téma az ún. gráf színezéshez tartozik. 

 

Alapfogalmak. 

 

Definíció. Egy  fEVG  , ,  gráf 

   - pontok/csúcsok egy V halmazából, 

   - élek egy E halmazából és 

   - egy f függvényből áll, amely 

  minden egyes a E  élnek egy    u v v u, ,    rendezetlen párt feleltet meg, ahol  

  u v V,   szögpontok, amelyeket az a él végpontjainak nevezünk. 

 

  Azokat a pontokat, amelyekhez nem illeszkedik él, izolált pontoknak, az  u v,  élt  

  pedig hurokélnek nevezzük. Ha egy gráfban két pontot több él is összeköt, akkor  

  azt mondjuk, hogy a gráf többszörös éleket tartalmaz. 

 

 

Definíció. Ha az a E  élnek egy  u v,  rendezett pár felel meg, akkor az élt irányított  

  élnek, míg különben irányítatlannak nevezzük. 

 

 

Definíció. Ha egy gráf minden éle irányított, akkor irányított gráfnak, ha minden éle  

  irányítatlan, akkor irányítatlan gráfnak nevezzük. 

 

 

 Jelölések: 

 

  - A szögpontokat kis körökkel jelőljük. A szögpont nevét vagy a kör mellé, vagy  

   a kör belsejébe írjuk. 
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  - Az irányítatlan éleket olyan görbékkel jelőljük, amelyek az él két végpontja  

   között haladnak. 

  - Az irányított éleket nyíllal ellátott görbével jelőljük. 

 

 

A továbbiakban gráfon mindíg irányítatlan gráfot fogunk érteni, míg ha irányított gráfról  

beszélünk, akkor ezt külön hangsúlyozzuk. 

 

 

Definíció. Két gráf izomorf, ha egyikük pontjai és élei kölcsönösen egyértelmű és  

  illeszkedéstartó módon megfeleltethetők a másikuk pontjainak, ill. éleinek. 

 

 

Szemléletesen ezt úgy lehet elképzelni, hogy a gráf pontjai merev karikák, élei pedig 

ezekhez rögzített nyújtható gumizsinórok. Ezt a gráfot most akárhogyan mozgatjuk, 

nyújtjuk, zsugorítjuk, mindíg izomorf gráfot kapunk. Általában izomorf gráfok között 

nem teszünk különbséget.  

 
 

 

Definíció. A gráf v pontjához illeszkedő élvégek számát v fokszámának vagy röviden  

  v fokának nevezzük, és   v -vel jelőljük. Ha a v foka n, akkor azt is mondjuk,  

  hogy v n-edfokú. 

 

 

Példa:  

  A 26. ábrán látható gráfnak 4 pontja van, 7 éle, ebből egy hurokél. 

  A pontok fokszámai:           a a a a1 2 3 44 5 1   , ,      . 
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A szögpontok fokszáma és az élek száma közötti összefüggésre mutat rá a következő  

tétel. 

 

 

Tétel. (Handshaking-kézfogási tétel) Minden gráfban a fokszámok összege az élek 

számának kétszeresével egyenlő. 

 

Bizonyítás. Tegyük fel, hogy az e él az u és v szögpontokhoz illeszkedik, azaz u és v  

  az e él két végpontja. 

  Ekkor, ha u v , akkor az e élt   u -nál és   v -nél is beszámoltuk. 

  Ha pedig u v , akkor az e él hurokél, és így   u -nál számoltuk kétszer. 

  Tehát a gráf összes szögpontjainak a fokszámát összeadva éppen az élek számának  

  kétszeresét kapjuk. 

 

 

A tétel nyilvánvaló következménye, hogy minden gráfban a fokszámok összege páros 

szám. 

 

Definíció.  

Az adott gráf csúcsaiak fokszámait monoton növekvő sorrendben leírva kapjuk  

a gráf fokszásorozatát.  

Példákat ld. gyakorlatok anyaga. 

 

Példa. 

  Egy körmérkőzéses bajnokságon bizonyos csapatok már játszottak egymással.  

  Bizonyítsuk be, hogy páros azoknak a csapatoknak a száma, akik páratlan sok  

  csapattal játszottak! 

 

Megoldás. 

  Jelőljék a gráf szögpontjai a csapatokat, két szögpont közötti él pedig azt, hogy a  

  két csapat már játszott egymással. Így egy csapat annyi más csapattal játszott,  

  ahány él illeszkedik az adott szögponthoz.  

 

  Azt kell tehát bizonyítani, hogy a páratlan fokszámú szögpontok száma páros.  

 

  Mint láttuk minden gráfban a fokszámok összege páros, amely a páros és páratlan  

  fokszámok összegéből tevődik össze. A páros fokszámok összege nyilván páros,  

  hiszen páros számok összege páros. Így a páratlan fokszámok összegének is  

  párosnak kell lenni. A páratlan fokszámok összeke pedig csak úgy lehet páros,  

  hogy páros sopkat adunk össze. 

 

 

A példa során igazoltuk a következő tételt. 

 

 

Tétel. Minden gráfban a páratlan fokszámú pontok száma páros. 
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Definíció. Egy gráfot egyszerűnek nevezünk, ha sem hurokélt, sem pedig többszörös élt  

  nem tartalmaz. 

 

 

Definíció. Egy gráfot teljes gráfnak nevezünk, ha bármely két pontját pontosan egy él  

  köti össze. 

 

 

Tétel. Az n szögpontú teljes gráf éleinek száma:
 n n 1

2
. 

 

Bizonyítás. A teljes n-gráf bármely két pontját pontosan egy él köti össze, így minden  

  egyes szögpont fokszáma n - 1, tehát a fokszámok összege  n n 1 . Tudjuk, hogy  

  bármely gráf esetén a fokszámok összege az élek számának kétszerese, amiből az  

  állítás adódik. 

 

 

Definíció. Egy G  gráfot a G gráf részgráfjának nevezzük, ha G  csak G-beli  

  szögpontokat és éleket tartalmaz. Ha a G  nem azonos G-vel, akkor a G gráf  

  valódi részgráfjának nevezzük. 

 

 

 

Utak és körök. 

 

 

Definíció. Élsorozatnak, vagy útnak az élek olyan rendezett halmazát nevezzük, amely a 

következő  

  tulajdonságokkal rendelkezik: 

 

  - a sorozat első és utolsó élétől eltekintve bármely él egyik végpontja az előző  

   élhez, másik végpontja a következő élhez illeszkedik, 

 

  - az első él egyik végpontja a következő élhez illeszkedik, másik végpontja az  

   élsorozat kezdőpntja, 

 

  - az utolsó él egyik végpontja az előző élhez illeszkedik, másik végpontja az  

   élsorozat végpontja, 

 

  - minden él pontosan egyszer fordul elő. 

 

 

Definíció. Zárt élsorozat vagy kör, ha az élsorozat kezdőpontja és végpontja ugyanaz 

 

Tétel: Az olyan összefüggő gráfok, melyekben minden pont foka 2, körök.  

  nevezzük. 
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Definíció. Egy élsorozathoz tartozó gráf az a gráf, amelyet az élsorozat élei alkotnak. 

 

 

 

 

Definíció. Ha egy gráfban bármely két pont úttal elérhető, akkor a gráfot összefüggőnek  

  nevezzük. 

 

 

 

Definíció. Út, ill. kör hosszán a benne lévő élek számát értjük. 

 

 

Tétel. Az n szögpontú összefüggő gráfnak legalább n - 1 éle van. 

Bizonyítás. A bizonyítás teljes inducióval történik. 

 

  Az állítás n = 1 esetén nyilvánvalóan igaz. 

  Tegyük fel, hogy valamely n  1  esetén minden n szögpontú gráfnbak van  

  n - 1 éle. 

  Belátjuk, hogy akkor minden n + 1-pontú összefüggő gráfnak van n éle. 

  Legyen G egy n + 1 szögpontú összefüggő gráf. 

  Ha G-nek kevesebb éle van, mint n + 1, akkor van elsőfokú pontja. Ugyanis mivel  

  G összefüggő, így izolált pontja nincs. Ha nem lenne elsőfokú pontja sem, akkor  

  minden pont foka legalább 2 lenne, és így a fokszámok összege minimum  

          2(n+1) > n. 

 

  Vegyük G egy elsőfokú pontját és a hozzátartozó éllel együtt töröljük a gráfból.  

  Nyilván n szögpontú összefüggő gráfot kapunk, melyre érvényes az indukciós  

  feltétel, azaz minimum n - 1 éle van. A törölt élt hozzávéve adódik, hogy G-nek  

  minimum n éle van. 

 

 

 

Euler-gráf. 

 

 

A königsbergi hidak problémájának megoldásához akor jutnánk el, ha találnánk a gráfban 

egy olyan élsorozatot, amely a gráf minden élét tartalmazza. Ezt az élsorozatot bejárva 

minden hídon pontosan egyszer haladnánk át, és végül a kiindulási pontba érnénk vissza. 

A probléma megoldásához vizsgáljuk meg, hogy mely gráfoknak van ilyen zárt 

élsorozata. 

 

 

Definíció. A G gráf egy zárt élsorozatát Euler-vonalnak nevezzük, ha abban a G  

  valamennyi éle szerepel.  

Ezt történelmi okokból Euler körnek szokás nevezni. Azokat a gráfokat hívjuk Euler 

gráfoknak, amelyekben Euler kör van. 
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Definíció. A G gráf egy nyílt élsorozatát nyílt Euler-vonalnak nevezzük, ha abban a G  

  valamennyi éle szerepel. 

Ezt történelmi okokból Euler útnak szokás nevezni. 

 

 

 

Tétel. Ha egy gráf Euler-gráf, akkor minden pontjának foka páros. 

  Ha egy izolált pontot nem tartalmazó gráfnak van nyílt Euler-vonala(Euler útja), 

akkor két pontjának foka páratlan, a többié pedig páros. 

 

Bizonyítás. Tegyük fel, hogy a G gráf Euler-gráf. Ekkor létezik G-ben olyan élsorozat,  

  amelyben G valamennyi éle szerepel. Ha a gráf pontjait bejárjuk az Euler-vonal  

  mentén, akkor a kezdőpontba érkezünk vissza, és a bejárás során valahányszor egy  

  szögpontba érünk onnan ki is kell lépni, azaz két illeszkedő élvéget járunk be. Ha  

  ezeket párosítottnak tekintjük, és figyelembe vesszük, hogy  a kezdőpontba  

  érkeztünk vissza, akkor nyilván minden pont foka páros kell legyen. 

 

  Ha egy izolált pontot nem tartalmazó gráfnak van nyílt Euler-vonala, és bejárjuk a  

  gráf éleit, akkor minden szögpont foka az előző szerint páros lesz, kivéve a kezdő  

  és a végpontot, hiszen az elsőnek és utolsónak bejárt élvégek pár nélkül maradnak.  

  Így a gráf két pontjának foka páratlan, a többié pedig páros. 

 

 

Példa A königsbergi probléma. 

 

  Tekintsük a probléma átfogalmazásával nyert gráfot.  

 
 

  A probléma tehát az, hogy bejárható-e az ábrán látható gráf oly módon, hogy a gráf  

  élein pontosan egyszer haladunk végig. Az előző tétel szerint, ha egy gráf éleit be  

  tudjuk járni úgy, hogy minden élen pontosan egyszer haladunk át, akkor a gráf két  

  pontjának foka páratlan, a többié páros, vagy valamennyi pontjának foka páros.  

  Mint láthatő az ábrán lévő gráf három pontjának foka három, egy pontjának pedig  

  öt, azaz négy páratlan fokszámú pontja van. Így a gráf nem járható be. 

 

 

Tétel. Ha egy gráfban minden pont foka legalább 2, akkor a gráfban van  

    kör. 

 

  Bizonyítás. Alkalmazzuk az un. leghosszabb út módszerét! Legyen az 1  

    hosszúságú L út a G gráf egy leghosszabb útja, és ennek egy végpontja v.  

    Tekintsük most G-nek v-hez illeszkedő éleit! Ezek közül bármelyiknek a  
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    végpontja L-hez tartozik, ugyanis ellenkező esetben L hossza 1-nél nagyobb  

    lenne, ami ellentmond annak, hogy L a leghosszabb út. 

 

 

  Ha G minden pontjának foka legalább 2, akkor illeszkedik v-hez egy e él is. Ha e  

  hurokél, akkor ez G egy körét kijelöli. Ha e nem hurokél, akkor u-nak v-től  

  különböző w végpontja L-ben van, tehát L-nek a v és w pontokat összekötő része  

  e-vel együtt G egy körét alkotja. 

 

 

Tétel. Ha egy n pontú gráfnak legalább n éle van, akkor van benne kör. 

 

Bizonyítás. A bizonyítást n-re vonatkozó teljes indukcióval végezzük. 

  Az állítás n = 1 esetén nyilvánvalóan igaz. 

  Tegyük fel, hogy valamely n  1-re minden n pontú és legalább n élű gráfban  

  van kör. 

  Legyen G egy n + 1 pontú gráf, amelynek legalább n + 1 éle van. 

Ha van elsőfokú éle, töröljük a rá illeszkedő éllel együtt. A maradék gráfban az indukciós 

feltétel szerint van kör. Visszavéve az elsőfokő pontot és a rá illeszkedő élet, az előző 

kört uu.  tartalmazza a kapott gráf.  

 

Ha nincs elsőfokú pontja, akkor minden pont legalább másodfokú.  Ekkor a az előző tétel 

szertint van a gráfban kör.     

 

Definíció. Ha egy gráf összefüggő és nem tartalmaz kört, akkor fagráfnak vagy röviden  

  fának nevezzük. 

 

Tétel. Az n szögpontú fagráf éleinek száma n - 1. 

 

Bizonyítás. Tudjuk, hogy minden n szögpontú összefüggő gráfnak legalább n - 1 éle  

  van. Az előző tétel szerint, ha egy n pontú gráfnak legalább n éle van, akkor a  

  gráfban van kör. Eszerint minden n pontú körmentes összefüggő gráfnak pontosan  

  n - 1 éle van, ami az állítást igazolja. 

 

Tétel. Az n szögpontú és n - 1 élű összefüggő gráfok fák. 

 

Bizonyítás. Tegyük fel ugyanis, hogy a G gráf nem fa, azaz tartalmaz kört. Ha a kör  

  egy élét töröljük, akkor n szögpontú, n - 2 élű összefüggő gráfot kapunk, ami  

  ellentmond annak, hogy egy n szögpontú összefüggő gráfnak legalább n - 1 éle  

  van. 

  Be kell még látnunk, hogy ha egy összefüggő gráf valamely körének egy  

  tetszőleges élét töröljük, akkor ismét összefüggő gráfot kapunk. 

  Tegyük fel ehhez, hogy a törölt él nem hurokél, hiszen hurokél törlése nem szünteti  

  meg az összefüggőséget. Töröljük a G gráf K körének  u v,  élét. A G gráfban az  

  u-ból a v-be most is el tudunk jutni a K kör megmaradt élein keresztül, azaz az  

   u v,  törlése után is eljuthatunk bármelyik pontból bármelyik pontba, tehát a  

  kapott gráf is összefüggő. 
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Az előzőek alapján a fák a következő tulajdonságokkal rendelkeznek: 

  

Fa definíciói: 

 

Tétel: egy összefüggő gráf akkor és csak akkor fa, ha bármely két pontja között pontosan 

egyy út van. 

 

Tétel: az n pontú, n-1 élú összefüggő gráf fa. 

 

Prüfer kód: 

 

A fák tárolására használjuk.  (Prüfer kód és a fák közötti bijekció) 

 

A Prüfer kód előállítása: 

 

1. a fa csúcsait sorszámozzuk meg 1-től n-ig (tetszőleges) 

2. keressük meg a legkisebb sorszámú levelet 

3. ezt a levelet hagyjuk el a hozzá illeszkedő éllel együtt, az él másik csúcsát pedig a 

Prüfer kód végére írjuk 

4. az előző két lépést addig ismételjük, amíg csak 2 csúcsunk marad 

 

Az így kapott kód n-2 hosszú lesz n db. csúcs esetén, továbbá az eredeti fa leveleinek 

sorszáma nem lesz benne a kódban. 

 

Feladatok 

Írjuk fej az alábbi gráfok Prüfer kódját, majd a kódok alapján írjuk rajzoljuk fel a gráfot. 

  

 
Megoldások: 

1) 5,3,5,3,5      2) 3,3,5,5,6,7,6,6,10,11    3) 1,1,1,1,6,5    4) 5,1,6,6     5) 3,3,3,6 
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Fa visszaállítása a Prüfer kódjából: 

 

Az n-2 jegyű kódból tudjuk, hogy a gráfnak n csúcsa van ( Prüfer-kód végére írhatunk még 

egy n-et).  A törölt csúcsokat pl. úgy határozhatjuk meg, hogy az első száma fölé írjuk azt a 

legkisebb számot, amely nem szerepel a kódban.  Utána töröljük a kód első számát, majd a 

követező szám fölé írjuk azt a legkisebb számot, amely nem szerepel sem a maradék Prüfer 

kódban, sem a kód fölé írt számok között, és így tovább. Az egymás alá írt két szám a fa 

éleit adják. Az utolsónak megrtalált éltől kezdve a felrajzolást, mindig összefüggő részfákat 

kapunk, és az élek sem fogják egymást keresztezni.  

 

Példa: a Prüfer-kód: 53535. 5 db számból áll, tehát a fának 7 csúcsa van.  Az utolsó 

csúccsal kiegészítjük a kódot. Az 1, 2, 3, 4, 5, 6, 7 számok közül a legkisebb, amely nem 

szerepel a kódban, az 1, ezt az első ötös fölé írjuk. 

 

Törölt csúcs 1      

Kód 5 3 5 3 5 7 

   

Töröljük a kód első elemét, és az új első elem fölé beírjuk a 2,3,4,5,6,7 számok közül a 

legkisebbet, ami nincs a kódban, ez a 2.  

Törölt csúcs 2     

Kód 3 5 3 5 7 

 
Töröljük a kód első elemét, és az új első elem fölé beírjuk a 3,4,5,6,7 számok közül a 

legkisebbet, ami nincs a kódban, ez a 4.  

 

Törölt csúcs 4    

Kód 5 3 5 7 

 
Töröljük a kód első elemét, és az új első elem fölé beírjuk a 3, 4,5,6,7 számok közül a 

legkisebbet, ami nincs a kódban, ez a 6.  

 

Törölt csúcs 6   

Kód 3 5 7 

 
Töröljük a kód első elemét, és az új első elem fölé beírjuk a 3,5,7 számok közül a 

legkisebbet, ami nincs a kódban, ez a 3.  

 

Törölt csúcs 3  

Kód 5 7 

 
Töröljük a kód első elemét, és az új első elem fölé beírjuk a 5,7 számok közül a legkisebbet, 

ami nincs a kódban, ez az 5.  

 

Törölt csúcs 5 

Kód 7 

A fa élei ezek szerint: 5-7, 3-5, 6-3, 4-5, 2-3, 1-5 
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Heinz Prüfer      Arthur Cayley 

(német, 1896-1934)    (brit, 1821-1895)                        

      

 (a képek forrása: Wikimedia) 

 

Feszítőfák 

  

Definíció:  A gráf azon részgráfjai, melyek minden csúcsát tartalmazzák, összefüggők és 

körmentesek, a gráf feszítőfáinak nevezzük (régebbi szakirodalomban faváz elnevezés is 

használatos). 

 

Tétel (Cayley): Az n csúcsú gráf feszítőfáinak száma nn-2 

 

Bizonyítás: A Prüfer-kód n-2 helyére n számból az ismétléses variációnál tanultak alapján 

nn-2 különböző kitöltés lehetséges. 

 

Irányított gráfok 

 
Handshaking tétel ir. gráfokra: 

 

 befok+kifok=2*élek száma, illetve:  

 

Euler bejárási tétele irányított gráfokra:  befok=kifok körre,  

Útra: kezdőcsúcsra: 

 befok-=kifok+1 utolsó csúcsra:  befok+1=kifok, többi csúcsra:  befok=kifok 

 

 

DAG (directed acyclic graphs) – fontos pl. tranzakciókezelésben, minden ütemezési 

problémában, ahol  egymás utáni sorrendet kell megállapítani. 

 

Topologikus (sorba) rendezés: ha nincsen az irányított gráfban kör 
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Súlyozott (élű) gráfok 

 

Definíció. Súlyozott gráfnak nevezzük azokat a gráfokat,  amelyekben az élekhez 

egyértelműen egy számot rendelünk. 

 

Például, ha úthálózatot reprezentálunk egy gráffal, ez a szám jelölheti azt, hogy mekkora 

egy adott útszakasz építési költsége.  

 

A súlyozott gráfoknál különös jelntősége van a feszítőfáknak: fontos feladat lehet a 

minimális/maximális összsúlyú, röviden minimális/maximális feszítőfa keresése.  

 

Például, ha az úthálózat éleit most a hosszuknak megfelelő számokkal számozzuk, és a 

téli nagy havazáskor a legrövidebb idő alatt szeretnénk minden települést elérhetővé 

tenni, akkor minimális feszítőfa alapján kell az utakat megtisztítani.  

 

Az alábbi két algoritmus segítségével ezek a feszítőfák könnyen megkaphatók. 

 

Példa minimális feszítőfára: öszsúly:22 
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Prim algoritmusa minimális feszítőfa keresésére: 

 

VÁLASZTUNK egy csúcsot. Az erre illeszkedő legkisebb súlyú él másik végpontja a 

következő csúcs. Itt is kiválasztjuk a rá illeszkedő élek közül a legkisebb súlyút. EZt 

folytatjuk úgy, hogy egyrészt a keletkező részgráf mindig összefüggő fa legyen (ha a 

kiválasztott legkisebb súlyú él a már kiválasztottak élekkel kört alkotna, akkor más 

csúcsot/élet választunk) Az eljárást addig folytatjuk, míg minden csúcs szerepel.  

 

Az alábbi két példa itt található: 

https://gyires.inf.unideb.hu/KMITT/b14/ch07s03.html 

 

Példa:  

 

 
 

 

https://gyires.inf.unideb.hu/KMITT/b14/ch07s03.html
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Kruskal algoritmusa minimális feszítőfa keresésére: 

Kiindulunk a legkisebb súlyú élből. Mindig a követező legkisebb súlyú élet vlasztjuk, 

kivéve, ha a már kiválasztott élekkel együtt kört alkotna, ekkor a következő legkisebb súlyú 

éllel próbálkozunk. Az algoritmus véget ér, ha az élek száma n-1.  

Példa:  

 

 

 

 
 

 

KÖR! 
KÖR! 

KÖR! 
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Gráfbejárások 

 

Ha a gráf súlyozatlan (vagy azonos súlyú minde él) élű, akkor pl. az ún. szélességi 

bejárással/kereséssel lehet meghatározni egy feszítőfáját. Bejárás, ha az egész gráfot fel 

akarjuk térképezni, keresés, ha egy adott tulajdonságú csúcsot keresünk. Ha megtaláltuk, 

akkor nem is vizsgálódunk tovább.  

 

A kereséseknél/bejárásoknál egy adott gráf reprezentációban (pl.mátrix, láncolt lista) a 

megadott kiindulási csúcstól adott szabély szerint bejárjuk a gráfot. 

 

Szélességi keresésnél úgy járunk el, hogy a kiválasztott csúcs szomszédjait “látogatjuk 

meg”, ha elfogytak, továbbmegyünk az egyik, már megnézett  szomszédos csúcsra, az lesz a 

kiválasztott csúcs, és így tovább.  Hogy melyik már meglátogatott szomszédot választjuk, 

azt egyrészt az szabja meg,hogy nem keletkezik-e kör, másrészt, valamilyen stratégia 

szerint el kell dönteni (pl. ábécé sorrendben, nagyságrendi sorrendben).  Ezt folytatjuk, 

amíg lehetséges (amíg az összes csúcsnál nem jártunk.)  Megjegyezzük az utakat.  

Amennyiben nem fa keresése a cél, nem kell figyelni a köröket. Az alábbiakban csak az 

elvet illusztráljuk. 

 

Példa: Az alsó ábrán a csúcsok címkéi mutatják a kiválasztási sorrendet. Először az A majd 

(utolsó ábra) a D csúcs a kiindulási csúcs. 

 

Feladat: Rajzolja le a keletkezett, más színnel színezett feszítőfákat külön ábrákon! 

A második sorban a baloldali ábrán a D, a jobboldalin az A a kezdő csúcs. 

 

 

 

 

   

 

 

 

 



BNÁ -139 - 

Mélységi keresésnél úgy járunk el, hogy a kiválasztott csúcsnak egy szomszédjához 

megyünk, annak is egy szomszédjához mindaddig, amíg erre lehetőség van. Hogy a(z 

egyetlen) szomszédot miként választjuk meg, előre el kell dönteni. Ha már nincs az 

utolsónak látogatott csúcsnak szomszédja, vagy olyan szomszédja van csak, ahol már 

jártunk, vagy kör keletkezne, akkor visszamegyünk (backtrack) a már bejárt úton addig a 

csúcsig, amelynek van még olyan szomszédja, amelynél még nem jártunk.  Ezt folytatjuk, 

amíg lehetséges (amíg az összes csúcsnál nem jártunk.) Megjegyezzük az utakat.  

Amennyiben nem fa kersése a cél, nem kell figyelni a köröket. 

 

 

Példa: A  csúcsok címkéi mutatják a kiválasztási sorrendet. A második sorban a baloldali 

ábrán a D, a jobboldalin az A a kezdő csúcs. 

 

Feladat: Rajzolja le a keletkezett, más színnel színezett feszítőfákat külön ábrán! 

Figyelje meg, hol vanak visszalépések (backtrack)! 
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DIJSKTRA  ALGORITMUS 

 

Probléma: 

Adott egy nem negatív élsúlyokkal rendelkező egyszerű, összefüggő gráf. Egy adott 

csúcsból szeretnénk eljutni a lehető legrövidebb úton egy másik adott csúcsba. (A 

legrövidebb út azt jelenti, hogy a legkisebb élsúlyösszegű út.) 

Megoldás: Dijkstra algoritmus. 

1. Inicializáció: a kezdő csúcs címkéjét 0-ra , a többi csúcs címkéjét végtelenre 

állítjuk. 

2. Minden lépésben vegyük az ideiglenes címkével rendelkező csúcsok közül a 

lehető legkisebb címkéjűt (jelöljök ezt a csúcsot most v-vel). Ez a v csúcs 

ekkor már állandó címkéjű, ismerjük a hozzá vezető legrövidebb utat.v 

szomszédjaira kiszámítjuk a v-be vezető és onnan meghosszabbított útnak 

a hosszát. Ha ez kisebb lesz mint az eddigi címkéje, akkor ezzel az 

értékkel újracímkézzük. 

 

Az alábbi példa itt található: 

https://gyires.inf.unideb.hu/KMITT/b14/ch07s03.html 

 

Példa: 

 
 

 

https://gyires.inf.unideb.hu/KMITT/b14/ch07s03.html
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Gráfok mátrix reprezentációja 
 

 

 

Definíció. Jelöljék a gráf pontjait u u un1 2, , ,   K , az ui  és u j
 pontokat összekötő élek  

  számát pedig aij . Az  A  aij  n n -es mátrixot a gráf csúcsmátrixának (vagy  

  adjacenciamátrixának)  nevezzük. 

 

 

 Irányított gráf esetén az  csúcsmátrix aij
 eleme az ui  kezdőpontú és u j

  

 végpontú irányított élek számát jelenti. 

 

 

Példa. 

  Tekintsük a 29. ábrán látható gráfokat. 

 
 29 ábra 

 

 

A gráfok csúcsmátrixai: 

 

   A1

0 2 0 1

2 0 1 2

1 1 0 1

0 2 1 0





















   A 2

0 2 1 1

2 0 2 0

1 2 1 0

1 0 0 0





















 

 

 

 

Definíció. Jelöljék a gráf pontjait u u un1 2, , ,   K  éleit pedig e e em1 2, , ,   K . 

  Az  A  aij  n m -es mátrixot illeszkedési (vagy incidencia)-mátrixnak nevezzük,  

  ha 

   a
ha e nem hurok l s illeszkedik az u ponthoz

ha e hurok l nem illeszkedik az u ponthozij

j i

j i






1, ,

.

    é ,  é            

0,    é ,  vagy        
 

 

  Irányított gráfok esetén az  A  aij incidenciamátrixnak elemei a következők: 
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   a

ha e nem huroké lé skezd pontja az u pont

ha e nem huroké lé své gpontjaaz u pont

ha e huroké l vagy nem illeszkedik az u ponthoz

ij

j i

j i

j i

 









      õ           

                  

 0,         

1

1

, , ,

, , ,

, .

 

 

 

Példa.  Tekintsük a 31. ábrán látható G és 
r

G  gráfokat. 

 

     
31. ábra 

 

  A gráfok illeszkedési-mátrixai: 

 

   





















100000

111010

010100

001110

1A ,        





























100000

111010

010100

001110

2A . 

 

Megjegyzés. 

 

  Ha a gráf egyszerű, akkor nyilván aij  értéke 0, vagy 1 lehet, aszerint, hogy az  

  ui  és u j  pontok között halad-e él, vagy sem. 

 

 Ha a gráf egyszerű és súlyozott élű, akkor a súlyok is szerepelhetnek a mátrixban.  

 

Olvasmány: 

 

 

Legyen G egy egyszerű gráf, és emeljük négyzetre az  A  aij  adjacenciamátrixát.  

Az 
  A

2 2
 aij  elemei ekkor 

    
 

a a aij ik kj

k

n
2

1

 


 . 

Az aik  azt mutatja meg, hogy hány 1 hosszúságú út vezet az ui  csúcsból az uk  csúcsba, 

az akj  pedig azt, hogy hány él megy az uk  pontból az u j  pontba. Nyilvánvaló így, hogy 

az a aik kj  szorzat azoknak az ui  pontból az u j   pontba vezető kettő hosszúságú utaknak 
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a számát adja meg, melyek középső pontja uk
. Az 

 
aij

2
 tehát az összes ui  pontból az u j

  

pontba vezető kettő hosszúságú utak számát adja meg. 

 

Ezek alapján teljes indukcióval  igazolható a következő tétel. 

 

 

Tétel. Legyen G egyszerű gráf, és jelölje adjacenciamátrixát  A  aij . Az A mátrix 

  k-adik hatványának 
 

aij

k
 eleme megegyezik az ui  csúcsból az u j  csúcsba vezető 

  k hosszúságú utak számával. 

 

 

Definíció. Jelölje az ui  pontból az u j   pontba vezető legrövidebb út hosszát   u ui j, . 

  A fentiek alapján az adjacenciamátrix ismeretében bármely gráfban   u ui j,   

  értéke a következőképpen határozható meg: 

   hatványozzuk az A mátrixot addig a k hatványig, amíg 
 

aij

k
 elem először  

   nullától különböző nem lesz. Ekkor   u u ki j,  . 

 

 


