
LinAlgDM II. 9-11. gyakorlat: Komplex számok I.

2024. április 04-05.

1 Gyorstalpaló tippek

A tippek önmagukban nem elegendő defińıciók/tételek, a megértést és emlékezést seǵıtik, és a feladatmegoldáshoz
mutatnak utat!

1. Hint. Komplex szám fogalma

A valós számok halmazán a gyökvonás NEM zárt művelet. Azaz a gyök alatti negat́ıv számok esetén nincsen értelmezett
valós értékünk. Ezért ki kell terjesztenünk a valós számok halmazát egy olyan számhalmazra, amelyben minden gyök
alatt szereplő negat́ıv számnak is értelmet tulajdońıtunk. Ez lesz a komplex számok halmaza.
Elképzelhetjük úgy, hogy a számegyenes már megtelt, ı́gy a számśıkra kell kibőv́ıtenünk azt. Könnyen megfoghatjuk úgy
(nem matematikai megfogalmazás, csak intúıció!), hogy az 1-es szám és a

√
−1 lineáris kombinációjával feĺırjuk, hogy az

adott számban hányszor szerepel a
√
−1.

Például:
√
−9 =

√
9
√
−1 = 3

√
−1︸ ︷︷ ︸
?

Később látni fogjuk, hogy egy komplex számnak pontosan két négyzetgyöke lesz a komplex számok halmazán. Ezért
valódi feĺırásban a fentieket ”ford́ıtva” definiáljuk: bevezetjük az i képzetes egységet, amelyre igaz, hogy i2 = −1.
Az előző példánk megoldása pl. a 3i, mert ezt négyzetre emelve −9-et kapunk eredményül. Itt is láthatjuk, hogy igazából
két megoldásunk is van: a 3i és a −3i, vagyis a −9-nek két komplex négyzetgyöke lesz.

A valós számokat úgy terjesztjük ki a komplex számokra, hogy a valós összeadás és szorzás jó tulajdonságait megtartsuk.

2 Elméleti összefoglaló

Definition 2. Komplex számok három alakja

A komplex számokat ábrázolhatjuk a śıkon. A v́ızszintes tengely, az ún. valós tengely - jelölése: Re(z) - a valós számoknak
felel meg, mı́g a függőleges tengely az ún. képzetes tengely - jelölése: Im(z) -, melyen az i képzetes egység is van.

A komplex számoknak három alakját használjuk:

1. Algebrai alak:
z = a︸︷︷︸

valós rész

· 1 + b︸︷︷︸
képzetes rész

· i

Ezt értelmezhetjük úgy, hogy az 1 és az i ”lineáris kombinációja” maga a komplex szám, ı́gy tekinthető kétdimenziós
vektornak is, amelynek koordinátái rendre a és b. Persze a komplex számok jóval többet ”tudnak”, mint a śıkbéli
vektorok, hiszen ezek is számtestet alkotnak az összeadás és szorzás műveletekkel, csakúgy, mint a valós számok.

A fenti képletben az a ∈ R számot a z komplex szám valós részének, a b ∈ R számot a z képzetes részének h́ıvjuk,
és a következőképpen jelöljük:

Re(z) = a, Im(z) = b
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2. Trigonometrikus alak: z = r · (cos(ϕ) + i sin(ϕ))

Ahol r a komplex abszolút értéke (hossza), ϕ pedig a komplex szám argumentuma (valós (Re) tengely pozit́ıv felével
bezárt szöge).

3. Exponenciális alak: z = r · ei·ϕ

Ez az alak szintén a fent léırt hosszal és szöggel dolgozik.

Megjegyzés 1. Az utóbbi két alak (a trigonometrikus és az exponenciális) valójában a komplex számśık vektorának
polárkoordinátás feĺırása, azaz hossza és szöge van. Mérnöki jelöléssel: r∠ϕ

Megjegyzés 2. Az exponenciális alak és a trigonometrikus alak egymásból származtatható az Euler-formulával:

ei·ϕ = cos(ϕ) + i · sin(ϕ).

Definition 3. Átváltás a koordináták között

• Polárkoordinátákból algebrai alakba, (r, ϕ) → (a, b):

a = r · cos(ϕ)
b = r · sin(ϕ)

• Algebrai alakból polárkoordinátákba, (a, b) → (r, ϕ):

r =
√

a2 + b2, ϕ =



arctg(
b

a
) (I. śıknegyed)

arctg(
b

a
) + π (II-III. śıkn.)

arctg(
b

a
) + 2π (IV. śıknegyed)

π

2
vagy

3π

2
ha a = 0

Megjegyzés 3. A negyedik śıknegyedben nem kötelező hozzáadni a +2π-t a szöghöz, ekkor negat́ıv szöget kapunk (pl.
7π

4
= 315◦ helyett −π

4
= −45◦ ). Így elég annyit megjegyeznünk, hogy a II-III. śıknegyedben π-t hozzá kell adnunk az

arctg(
b

a
)-hoz, mı́g a másik két śıknegyedben nem.

Megjegyzés 4. Nevezetes szögek: tg(0◦) = 0, tg(±30◦) = ± 1√
3
= ±

√
3

3
, tg(±45◦) = ±1, tg(±60◦) = ±

√
3

Megjegyzés 5. Átváltáskor mindig ábrázoljunk!
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Theorem 4. Komplex számok összege

Összeadni algebrai alakban érdemes, mert itt pontosan úgy számolunk, ahogy a valós számoknál megszoktuk:

z1 = a1 + b1i, z2 = a2 + b2i

z1 + z2 = (a1 + b1i) + (a2 + b2i) = a1 + b1i+ a2 + b2i = (a1 + a2) + (b1 + b2)i

Theorem 5. Komplex számok szorzata

1. Algebrai alakban
z1 = a1 + b1i, z2 = a2 + b2i

z1z2 = (a1 + b1i)(a2 + b2i) = a1a2 + a1b2i+ a2b1i+ b1b2 i2︸︷︷︸
−1

= (a1a2 − b1b2) + (a1b2 + a2b1)i

Mindenkit mindenkivel összeszorzunk.

2. Trigonometrikus alakban:

z1 = r1(cos(ϕ1) + i sin(ϕ1)), z2 = r2(cos(ϕ2) + i sin(ϕ2))

z1z2 = r1r2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))

Hosszak szorzódnak, argumentumok (szögek) összeadódnak.

3. Exponenciális alakban:
z1 = r1e

iϕ1 z2 = r2e
iϕ2

z1z2 = r1e
iϕ1r2e

iϕ2 = r1r2e
i(ϕ1+ϕ2)

Hosszak szorzódnak, argumentumok (szögek) összeadódnak.

Theorem 6. Komplex számok hatványa

1. Trigonometrikus alakban:
z = r(cos(ϕ) + i sin(ϕ))

zn = rn(cos(nϕ) + i sin(nϕ))

Hossz hatványozódik, argumentum (szög) n-szeres lesz.

2. Exponenciális alakban:
z = reiϕ

zn = rneinϕ

Hossz hatványozódik, argumentum (szög) n-szeres lesz.

Theorem 7. Komplex számok n. gyöke

Egy komplex számnak pontosan n db n. gyöke van a komplex számok halmazán.

1. Trigonometrikus alakban:
z = r · (cos(ϕ) + i sin(ϕ))

n
√
z = n

√
r ·

(
cos

(
ϕ+ k2π

n

)
+ i sin

(
ϕ+ k2π

n

))
, k = 0, ..., n− 1

A hosszból n. gyököt vonunk (valós számokon értelmezett gyökvonással!), az argumentumot (szöget) n-nel osztjuk és
figyelembe vesszük a szögek periódusát, azaz k-szor elforgatjuk.

2. Exponenciális alakban:
z = r · eiϕ

n
√
z = n

√
r · ei

ϕ+k2π
n , k = 0, ..., n− 1

Az n. gyökök hossza az eredeti hossz n. (valós) gyöke lesz, az argumentum (szög) n-nel osztódik és figyelembe vesszük
a szögek periódusát, azaz k-szor elforgatjuk.
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Theorem 8. Az i képzetes egység hatványai

i0 = 1
i1 = i
i2 = − 1
i3 = i2 · i = −i
i4 = i3 · i = −i2 = 1 = i0

i5 = i4 · i = i = i1

...

=⇒

i4k = 1

i4k+1 = i

i4k+2 = − 1

i4k+3 = −i

, k ∈ Z

i4k+1 = i

Re

Im

π
2

i4k+2 = −1

i4k+3 = −i

π
2

i4k = 1

Definition 9. Komplex szám konjugáltja

z = a+ bi = a− bi

z

z

Re

Im

r

r

ϕ

a

b

−b

Megjegyzés 6. Egy komplex szám konjugálása tulajdonképpen a valós (Re) tengelyre való tükrözése.

Megjegyzés 7. Tulajdonságai:

z1 + z2 = z1 + z2

z1 · z2 = z1 · z2(z1
z2

)
=

z1
z2

z = z

|z| = |z|
z = z ⇔ Im(z) = 0

z · z = |z|2 , mert z · z = (a+ bi)(a− bi) = a2 − b2i2 = a2 + b2 = r2 = |z|2

Theorem 10. Algebra alaptétele

Minden n-edfokú polinomnak n db gyöke van a komplex számok halmazán. (Ez már tartalmazza a valós gyököket is:
ezek azok a komplex gyökök, melyek képzetes része 0.)
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3 Feladatok

Feladat 1. Határozzuk meg a következő kifejezések értékét:

(a) z1 = (3− 4i)(7 + 8i)

Megoldás.
(3− 4i)(7 + 8i) = 21 + 24i− 28i︸ ︷︷ ︸

−4i

−32 i2︸︷︷︸
−1

= 21 + 32− 4i = 53− 4i

(a2) z1 = (3 + 4i)(7− 8i)

Megoldás.
(3 + 4i)(7− 8i) = (3 + 4i) · (7− 8i) = (3− 4i)(7 + 8i) = 53− 4i

Felhasználtuk az (a) feladat megoldását.

(b) z2 =
3− 4i

2− i

Megoldás.

z2 =
3− 4i

2− i
· 2 + i

2 + i
=

6 + 3i− 8i− 4i2

22 − i2
=

10− 5i

4 + 1
= 2− i

A gyökteleńıtéshez hasonlóan i-tleńıtjük a nevezőt.

(c) z3 =
3− i

1 + i
− 8− i

2 + 3i

Megoldás.

z3 =
3− i

1 + i
− 8− i

2 + 3i
=

(3− i)(2 + 3i)− (8− i)(1 + i)

(1 + i)(2 + 3i)
=

=
6 + 9i− 2i− 3i2 − (8 + 8i− i− i2)

(1 + i)(2 + 3i)
=

9 + 7i− (9 + 7i)

(1 + i)(2 + 3i)
=

0

(1 + i)(2 + 3i)
= 0

Vagyis a két tört, amit kivontunk egymásból, ugyanaz volt!

Valós törtek esetén általában könnyű észrevenni, hogy két tört ugyanaz, mert valós számmal bőv́ıtve az
egyik törtet, eljutunk a másikhoz. Itt az első törtet komplex számmal, ( 52 +

1
2 i)-vel bőv́ıtve kapjuk a második

törtet:
3− i

1 + i
·

5
2 + 1

2 i
5
2 + 1

2 i
=

8− i

2 + 3i

Miután itt komplex számmal szorozzuk a számlálót és a nevezőt is, az eredményből nem látszik a kapcsolat
az eredeti és a bőv́ıtett tört között.

(d) z4 = i2023

Megoldás.
z4 = i2023 = i3 · i2020 = i3 · (i4)505 = i3 · 1505 = i3 = −i

Az i-vel való szorzás tulajdonképpen a 90 fokos forgatásnak felel meg. Mivel négy forgatással visszajutunk
oda, ahonnan elindultunk, ha 2023-szor forgatunk, ugyanoda jutunk, mintha csak 3-szor forgattunk volna.

(e) z5 = (1 + i)4 , z5 =? |z5| =?

5



Megoldás.

z5 = (1 + i)4 = ((1 + i)2)2 = (1 + 2i− 1)2 = (2i)2 = 4i2 = −4 , z5 = −4 , |z5| = 4

(f) z6 = (1 + i)9 , Re(z6) =? Im(z6) =?

Megoldás. Itt felhasználjuk az előző feladat megoldását:

z6 = (1 + i)9 = (1 + i)4(1 + i)4(1 + i) = (−4)2(1 + i) = 16 + 16i , Re(z6) = 16 , Im(z6) = 16

(g) z7 =
(1 + 2023i)2023

(1− 2023i)2023
, |z7| =?

Megoldás.

|z7| =
∣∣∣∣ (1 + 2023i)2023

(1− 2023i)2023

∣∣∣∣ = |(1 + 2023i)2023|
|(1− 2023i)2023|

=

(
|1 + 2023i|
|1− 2023i|

)2023

= 12023 = 1

Felhasználtuk, hogy |1 + 2023i| = |1− 2023i|, mert a konjugálás a hosszon nem változtat.

(h) z8 = (2 + i)5 , z8 =? |z8| =?

Megoldás.

z8 = (2 + i)5 =

(
5

0

)
25i0 +

(
5

1

)
24i1 +

(
5

2

)
23i2 +

(
5

3

)
22i3 +

(
5

4

)
21i4 +

(
5

5

)
20i5 =

=
5!

0! · 5!
· 25i0 + 5!

1! · 4!
· 24i1 + 5!

2! · 3!
· 23i2 + 5!

3! · 2!
· 22i3 + 5!

4! · 1!
· 21i4 + 5!

5! · 0!
· 20i5 =

= A5 · A4 · A3 · A2 · 1
1 · A5 · A4 · A3 · A2 · 1

· 25i0 + 5 · A4 · A3 · A2 · 1
1 · A4 · A3 · A2 · 1

· 24i1 + 5 · 4 · A3 · A2 · 1
2 · 1 · A3 · A2 · 1!

· 23i2 +

+
5 · 4 · A3 · A2 · 1
A3 · A2 · 1 · 2 · 1

· 22i3 + 5 · A4 · A3 · A2 · 1
A4 · A3 · A2 · 1 · 1

· 21i4 + A5 · A4 · A3 · A2 · 1
A5 · A4 · A3 · A2 · 1 · 1

· 20i5 =

= 25i0 + 5 · 24i1 + 10 · 23i2 + 10 · 22i3 + 5 · 21i4 + 20i5 =

= 32 + 80i+ 80i2 + 40i3 + 10i4 + i5 = 32 + 80i− 80− 40i+ 10 + i = −38 + 41i

z8 = −38− 41i , |z8| =
√
382 + 412 = 25

√
5 = (

√
5)5 =

(√
22 + 12

)5
= |2 + i|5

Vegyük észre, hogy hatványozásnál a hosszak hatványozódnak!

Feladat 2. Oldjuk meg az alábbi egyenletrendszereket a komplex számok körében:

(a)
(3− i)x+ (4 + 2i)y = 2 + 6i

(4 + 2i)x− (2 + 3i)y = 5 + 4i

Megoldás. (
3− i 4 + 2i 2 + 6i
4 + 2i −2− 3i 5 + 4i

)
∼
(

1 1 + i 2i
4 + 2i −2− 3i 5 + 4i

)
∼

∼
(
1 1 + i 2i
0 −4− 9i 9− 4i

)
∼
(
1 1 + i 2i
0 1 i

)
∼
(
1 0 1 + i
0 1 i

)
=⇒

(
x
y

)
=

(
1 + i
i

)

(b)
(2 + i)x+ (2− i)y = 6

(3 + 2i)x+ (3− 2i)y = 8
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Megoldás. (
2 + i 2− i 6
3 + 2i 3− 2i 8

)
∼
(

1 3−4i
5

12−6i
5

3 + 2i 3− 2i 8

)
∼

(
1 3−4i

5
12−6i

5

0 −2−4i
5

−8−6i
5

)
∼

∼
(
1 3−4i

5
12−6i

5
0 1 2− i

)
∼
(
1 0 2 + i
0 1 2− i

)
=⇒

(
x
y

)
=

(
2 + i
2− i

)
Feladat 3. Határozzuk meg azokat a komplex számokat, amelyekre teljesül, hogy a szám konjugáltja egyenlő az
eredeti szám négyzetével!

Megoldás. Az alábbi egyenlet z ∈ C megoldásait keressük:

z = z2

Írjuk fel a z-t algebrai alakban:
z = x+ yi,

ahol x, y ∈ R. Ekkor az egyenlet az alábbi:

x+ yi = (x+ yi)
2

Ha ezt rendezzük, a következő összefüggést kapjuk:

x−yi
:::

= x2 − y2+2xyi
:::::

Két komplex szám egyenlő, ha a valós és a képzetes részeik egyenlőek. Emiatt a fenti egyenletben egyenlőnek
kell lennie a duplán aláhúzott részek bal és jobb oldalának (valós rész); illetve a hullámossal aláhúzott részek
bal- és jobb oldalának (képzetes rész i-szerese). Vagyis a fenti komplex egyenlet az alábbi két valós egyenlettel
egyenértékű:

x = x2 − y2

−y = 2xy

}
Ezt tovább rendezzük:

x = x2 − y2

(2x+ 1)y = 0

}
A második egyenletet megoldva a következőket kapjuk:

(2x+ 1)y = 0 ⇒ y1,2 = 0 VAGY x3,4 = −1

2

Ezeket az első egyenletbe visszahelyetteśıtjük:
Ha y1,2 = 0, akkor:

x = x2 ⇒ x1 = 0 VAGY x2 = 1

Ha x3,4 = −1

2
, akkor:

−1

2
=

(
−1

2

)2

− y2

Ezt rendezzük:

y2 =
3

4
⇒ y3,4 = ±

√
3

2
.

Tehát az eredeti egyenletrendszernek négy megoldása van a komplex számok halmazán:

z1 = 0 , z2 = 1 , z3 = −1

2
+

√
3

2
i , z4 = −1

2
−

√
3

2
i

Feladat 4. Írjuk át algebrai alakba a következő komplex számokat:

(a) z1 =
1

2
(cos(300◦) + i sin(300◦))
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Megoldás. Ha nincs számológépünk, felhasználhatjuk, hogy a 300◦ és a −60◦ ugyanaz, továbbá a cos
páros, a sin páratlan függvény:

z1 =
1

2
(cos(−60◦) + i sin(−60◦)) =

1

2
(cos(60◦)− i sin(60◦)) =

1

2

(
1

2
−

√
3

2
i

)
=

1

4
−

√
3

4
i

z = 1
2e

i300◦

Re

Im

1
2

300◦

1
2 cos(300

◦)

1
2 sin(300

◦)

(b) z2 =
√
2

(
cos

(
5π

4

)
+ i sin

(
5π

4

))
Megoldás.

z2 =
√
2
(
cos

(
5π

4

)
+ i sin

(
5π

4

))
=

√
2
(
cos(225◦) + i sin(225◦)

)
=

√
2

(
−
√
2

2
− i

√
2

2

)
= −1− i

z =
√
2ei

5π
4

Re

Im

√
2

5π
4

√
2 cos

(
5π
4

)

√
2 sin

(
5π
4

)

Feladat 5. Írjuk fel trigonometrikus alakban a következő számokat:

(a) z1 = −1− i

Megoldás. Kiszámoljuk z1 hosszát:

r =
√

(−1)2 + (−1)2 =
√
2.

Megadjuk a szögét:

ϕ = arctg(
−1

−1
) + eltolás a śıknegyeddel

Az ábra alapján látjuk, hogy a harmadik śıknegyedben vagyunk, ezért az eltolás +180 fok:

ϕ = 45◦ + 180◦ = 225◦ =
5π

4
.
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Tehát z1 trigonometrikus alakja

z1 =
√
2

(
cos

(
5π

4

)
+ i sin

(
5π

4

))
.

z =
√
2ei

5π
4

Re

Im

√
2

5π
4

arctan
(

−1
−1

)
= π

4

4π
4

−1

−1

Figyeljük meg, hogy ha nem nevezetes szögről van szó és ı́gy muszáj a tangens seǵıtségével számolnunk,
figyelembe kell vennünk a śıknegyedeket!

(b) z2 = −3i

Megoldás. Az ábráról a vektor hossza rögtön leolvasható: r = 3, ahogyan a szög is: ϕ = 270◦. Tehát

z2 = 3

(
cos

(
3π

2

)
+ i sin

(
3π

2

))

z = 3ei
3π
2

Re

Im

3

3π
2

−3

(c) z3 = −1

Megoldás. Az ábráról látszik, hogy a vektor egységnyi hosszú, és ϕ = 180◦-os szöget zár be a valós tengely
pozit́ıv felével:

z3 = 1 (cos(π) + i sin(π))

z = eiπ
Re

Im

1

π

−1

9



(d) z4 = −3 +
√
3i

Megoldás. A hossz könnyen kiszámolható:

r =

√
(−3)2 + (

√
3)2 =

√
9 + 3 =

√
12 = 2

√
3.

Az ábrán látszik, hogy a második śıknegyedben vagyunk, ezért

ϕ = arctg(

√
3

−3
) + 180◦ = arctg(−

√
3

3
) + 180◦ = −30◦ + 180◦ = 150◦ =

5π

6
.

Így:

z4 = 2
√
3

(
cos

(
5π

6

)
+ i sin

(
5π

6

))

z = 2
√
3ei

5π
6

Re

Im

2
√
3

5π
6

−3

√
3

(e) z5 =
10√
3− i

Megoldás. Az átváltáshoz először algebrai alakra hozzuk z5-öt:

z5 =
10√
3− i

·
√
3 + i√
3 + i

=
10
(√

3 + i
)(√

3
)2 − i2

=
10
(√

3 + i
)

4
=

5

2

√
3 +

5

2
i

Kiszámoljuk z5 hosszát:

r =

√(5
2

√
3
)2

+
(5
2

)2
= 5.

Az ábrán látható, hogy az első śıknegyedben vagyunk, ı́gy

ϕ = arctg

(
5
2

5
2

√
3

)
= arctg

(
1√
3

)
= 30◦ =

π

6
.

Tehát
z5 = 5

(
cos
(π
6

)
+ i sin

(π
6

))
.

z = 5ei
π
6

Re

Im

5
π
6

5
2

√
3

5
2
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