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1 Elméleti összefoglaló

Definition 1. Algebrai multiplicitás

Legyen az A ∈ Rn×n mátrix egy sajátértéke λ. Azt mondjuk, hogy a λ sajátérték algebrai multiplicitása (AM) k, ha λ
k-szoros gyöke A karakterisztikus polinomjának.

Megjegyzés 1. Az algebra alaptétele szerint egy n-ed fokú polinomnak a komplex számok halmazán pontosan n db gyöke
van, ha a többszörös gyököket külön-külön számoljuk. (Ugyanennek a polinomnak a valós számok halmazán maximum n
db gyöke van, de mi egyenlőre olyan mátrixokkal foglalkozunk, amelyek sajátértékei mind valósak, ı́gy n db valós gyökünk
lesz).

Definition 2. Geometriai multiplicitás

Legyen az A ∈ Rn×n mátrix egy sajátértéke λ. A λ sajátérték geometriai multiplicitása (GM) alatt a hozzá tartozó
sajátaltér dimenzióját értjük.

Megjegyzés 2. Egy sajátérték geometriai multiplicitása mindig kisebb vagy egyenlő, mint az algebrai multiplicitása
(GM ≤ AM)!

Proposition 3.

Az A ∈ Rn×n mátrix különböző sajátértékekhez tartozó sajátvektorai lineárisan függetlenek.

Theorem 4.

Tegyük fel, hogy az A ∈ Rn×n mátrix sajátvektorai bázist alkotnak Rn-ben. Ekkor az A mátrix feĺırható sajátvektorainak
bázisában. A sajátvektorainak bázisában feĺırt mátrix (D-vel jelöljük) diagonális lesz, melynek főátlójában a sajátértékei
szerepelnek.

Megjegyzés 3. Az A-t diagonalizálhatónak nevezzük, ha létezik a sajátvektoraiból álló bázis Rn-ben.

Megjegyzés 4. Ehhez az szükséges, hogy minden sajátértékének algebrai és geometriai multiplicitása megegyezzen.

Megjegyzés 5. Az A mátrix diagonalizálását az S transzformációs mátrixszal végezzük, melynek oszlopai a
sajátvektorokból álló bázis vektorai. Ekkor:

D = S−1 ·A · S =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn



2 Feladatok: Diagonalizálás

Feladat 1. Legyen azA =

[
1 2
3 −4

]
mátrix egy lineáris leképezés mátrixa. Adjuk meg a sajátértékeit, sajátvektorait,

sajátaltereit! Hány dimenziósak a sajátalterek? Adjuk meg az egyes sajátértékek algebrai multiplicitását (AM) és
geometriai multiplicitását (GM)! Van-e sajátvektorokból álló bázis R2-en? Ha igen, ı́rjuk fel ebben a bázisban a
lineáris leképezés mátrixát! Adjuk meg a transzformációs mátrixot is!

1



Megoldás. Számoljuk ki a sajátértékeket először:

det
([1− λ 2

3 −4− λ

])
= (1− λ)(−4− λ)− 2 · 3 = λ2 + 3λ− 10 = 0 ⇒ λ1 = −5 és λ2 = 2

Ezután számoljuk ki az egyes sajátértékekhez tartozó sajátvektorokat:

I. A λ1 = −5 sajátértékhez tartozó sajátvektorok kiszámolása:[
1− (−5) 2

3 −4− (−5)

](
v1
v2

)
=

[
6 2
3 1

](
v1
v2

)
=

(
0
0

)
⇒ 6v1 + 2v2 = 0

3v1 + v2 = 0
⇒ v2 = −3v1 = −3p

v1 = p ∈ R \ {0}

Innen a λ1 = −5-höz tartozó sajátvektorok:

v =

(
1
−3

)
· p , p ∈ R \ {0}

A λ1 = −5-höz tartozó sajátaltér:{(
1
−3

)
· p

∣∣∣∣∣ p ∈ R

}
= span{

(
1
−3

)
}

Ez az altér egy origón átmenő egyenes, melyet 1 vektor fesźıt ki, ezért dimenziója 1.

II. A λ2 = 2-höz tartozó sajátvektorok kiszámolása:[
1− 2 2
3 −4− 2

](
w1

w2

)
=

[
−1 2
3 −6

](
w1

w2

)
⇒ −w1 + 2w2 = 0

3w1 − 6v2 = 0
⇒ w1 = 2w2 = 2q

w2 = q ∈ R \ {0}

Tehát a λ = 2-höz tartozó sajátvektorok:

w =

(
2
1

)
· q , q ∈ R \ {0}

A λ1 = 2-höz tartozó sajátaltér: {(
2
1

)
· q

∣∣∣∣∣ q ∈ R

}
= span{

(
2
1

)
}

Ez az altér is egy origón átmenő egyenes, melyet 1 vektor fesźıt ki, ezért dimenziója 1.

Fontos megjegyezni, hogy a sajátvektor defińıciójában szerepel, hogy nem lehet nullvektor, viszont mikor
sajátalteret adunk meg, ott a nullvektort is belevesszük a sajátvektorok mellé, hogy ténylegesen alteret (vektorteret)
alkossanak! Tehát az adott sajátértékhez tartozó sajátvektorok halmaza és a sajátaltér között az a különbség, hogy
tartalmazza-e a nullvektort.

A λ1 = −5 sajátérték algebrai multiplicitása 1, mert egyszeres gyöke a karakterisztikus polinomnak, geometriai
multiplicitása 1, mert a hozzá tartozó sajátaltér dimenziója 1. Vagyis itt AM = GM = 1. A λ2 = 2 is egyszeres
gyök, ı́gy algebrai multiplicitása 1, továbbá geometriai multiplicitása szintén 1, mert a hozzá tartozó sajátaltér
egydimenziós. Tehát itt is igaz, hogy AM = GM = 1

Az összes sajátértékre igaz, hogy AM = GM , ezért létezik a sajátvektorokból álló bázis Rn-ben.

Ezt onnan is láthatjuk, hogy ha kiválasztunk 1-1 vektort a sajátalterekből (pl. v∗ =

(
1
−3

)
és w∗ =

(
2
1

)
),

akkor azt láthatjuk, hogy ezek nem lesznek párhuzamosak, tehát lineárisan függetlenek, és két lineárisan független
vektor bázist alkot R2-en.
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A leképezés mátrixa a sajátvektorok bázisában feĺırva egy olyan diagonális mátrix lesz, amelynek főátlójában
a sajátértékek szerepelnek:

D = S−1AS =

[
−5 0
0 2

]
,

ahol

S =
[
v∗ w∗] = [ 1 2

−3 1

]
.

Feladat 2. Legyen egy lineáris leképezés mátrixa A =

 1 3 3
−3 −5 −3
3 3 1

. Adjuk meg ennek a mátrixnak a

sajátértékeit, sajátvektorait, sajátaltereit! Állaṕıtsuk meg a sajátalterek dimenzióját! Döntsük el, hogy van-e
sajátvektorokból álló bázis R3-ban! Ha van, ebben a bázisban ı́rjuk fel a leképezés mátrixát!

Megoldás. Először kiszámoljuk a sajátértékeket:∣∣∣∣∣∣
1− λ 3 3
−3 −5− λ −3
3 3 1− λ

∣∣∣∣∣∣ = (1− λ)
(
(−5− λ)(1− λ) + 9

)
− 3
(
(−3)(1− λ) + 9

)
+ 3
(
− 9− 3(−5− λ)

)
=

= (1− λ)(λ2 + 4λ+ 4)− 3(3λ+ 6) + 3(3λ+ 6) = (1− λ) (λ2 + 4λ+ 4)︸ ︷︷ ︸
(λ+2)2

= 0

A karakterisztikus polinom gyökei: λ1 = 1, λ2,3 = −2.

I. Keressük meg a λ1 = 1-hez tartozó sajátvektorokat:1− 1 3 3
−3 −5− 1 −3
3 3 1− 1

u1

u2

u3

 =

 0 3 3
−3 −6 −3
3 3 0

u1

u2

u3

 =

0
0
0


Ezt az egyenletrendszert megoldhatjuk pl. Gauss-Jordan eliminációval: 0 3 3 0

−3 −6 −3 0
3 3 0 0

 ∼ . . . ∼
(

1 0 −1 0
0 1 1 0

)
⇒ u1 − u3 = 0

u2 + u3 = 0

Három változónk van, de csak két valódi összefüggésünk, ezért egy változó értéke szabadon megválasztható:

u1 = u3 = t
u2 = −u3 = −t

u3 = t
, t ∈ R \ {0}.

Innen a λ1 = 1-hez tartozó sajátvektorok:

u =

 1
−1
1

 · t , t ∈ R \ {0}.

A λ1 = 1-hez tartozó sajátaltér: 
 1
−1
1

 · t, t ∈ R

 = span{

 1
−1
1

}.

Ez a sajátaltér egydimenziós, vagyis a sajátérték geometriai multiplicitása 1. A λ1 = 1 egyszeres gyöke a
karakterisztikus polinomnak, ezért az algebrai multiplicitása 1. Így teljesül, hogy AM = GM = 1.
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II. Keressük meg a λ2,3 = −2 sajátértékhez tartozó sajátvektorokat:1− (−2) 3 3
−3 −5− (−2) −3
3 3 1− (−2)

v1
v2
v3

 =

 3 3 3
−3 −3 −3
3 3 3

v1
v2
v3

 =

0
0
0


Ezt egyenletrendszer formára át́ırva tulajdonképpen ugyanazt kapjuk meg háromszor, vagyis mindössze egy
valódi összefüggésünk van, ezért a 3 változónk közül 2 szabadon megválasztható:

3v1 + 3v2 + 3v3 = 0
−3v1 − 3v2 − 3v3 = 0
3v1 + 3v2 + 3v3 = 0

⇒
v1 = −v2 − v3 = −p− q

v2 = p ∈ R
v3 = q ∈ R

, ahol

(
p
q

)
̸=
(
0
0

)
.

Innen a λ2,3 = −2-höz tartozó sajátvektorok:

v =

−p− q
p
q

 =

−1
1
0

 · p+

−1
0
1

 · q, p, q ∈ R,
(
p
q

)
̸=
(
0
0

)

A λ2,3 = −2-höz tartozó sajátaltér:
−1

1
0

 · p+

−1
0
1

 · q , p, q ∈ R

 = span{

−1
1
0

 ,

−1
0
1

}

Ez a sajátaltér kétdimenziós, tehát a sajátérték geometriai multiplicitása 2. A λ2,3 = −2 kétszeres gyöke a

karakterisztikus polinomnak, ezért az algebrai multiplicitása 2. Így AM = GM = 2.

Mivel az összes sajátértékre igaz, hogy AM = GM , ezért létezik sajátvektorokból álló bázis R3-ban. Másképpen
fogalmazva, mivel a λ1 = 1 sajátértékhez tartozó sajátaltér egy dimenziós, a λ2,3 = −2 sajátértékhez tartozó pedig
kettő; továbbá a különböző sajátértékekhez tartozó sajátvektorok lineáris függetlenek, ezért ki tudunk választani
három darab független sajátvektort, tehát létezik sajátvektorokból álló bázis R3-ban. A λ1 = 1 -hez tartozó
sajátaltérből kiválaszthatjuk például az

u∗ =

 1
−1
1


vektort, a λ2,3 = −2-höz tartozó sajátaltérből kiválaszthatjuk például a

v∗1 =

−1
1
0

 , v∗2 =

−1
0
1


vektorokat. Így a kiválasztott sajátvektorok bázist alkotnak R3-ban:

[s] =


 1
−1
1

 ,

−1
1
0

 ,

−1
0
1

.

A transzformáció mátrixa pont ezeket tartalmazza oszlopvektorként:

S =

 1 −1 −1
−1 1 0
1 0 1


Az eredeti A mátrix feĺırása ebben a bázisban megadható a sajátértékekből álló diagonális mátrix seǵıtségével:

D = S−1AS =

1 0 0
0 −2 0
0 0 −2

 .
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A transzformációs mátrixhoz más-más sajátvektorokat is felhasználhatunk, az eredményül kapott D mátrix ugyanúgy
diagonális lesz. Azonban, ha az S mátrixban a sajátvektorok sorrendjét felcseréljük, a D mátrixban a kapc-
solódó sajátértékek is felcserélődnek. Például, ha az S mátrix első-második oszlopába λ2,3 = −2-höz tar-
tozó sajátvektorokat helyezünk, harmadik oszlopába λ3 = 1-hez tartozó sajátvektort, akkor a D mátrixban is
felcserélődik a sorrend: a főátló első és második eleme a −2 lesz, a harmadik pedig az 1. Tehát a D-beli
sajátértékek sorrendje megegyezik a hozzájuk kapcsolódó sajátvektorok S-beli sorrendjével!

Fontos megjegyezni, hogy ha eleve tudjuk, hogy létezik a sajátvektorokból álló bázis (pl. csak egyszeres
sajátértékeink vannak), vagyis A diagonalizálható, akkor a D mátrix meghatározásához nincs szükségünk a tran-
szformációs mátrix (vagyis a sajátvektorok) kiszámolására.

Feladat 3. Legyen az A =

0 1 2
2 3 0
0 4 5

 mátrix egy lineáris leképezés mátrixa. Adjuk meg ennek a mátrixnak a

sajátértékeit, sajátvektorait, sajátaltereit! Hány dimenziósak lesznek a sajátalterek? Létezik-e sajátvektorokból
álló bázis R3-ban? Ha igen, ı́rjuk fel ebben a bázisban a lineáris leképezés mátrixát!

Megoldás. Először számı́tsuk ki az A mátrix sajátértékeit:∣∣∣∣∣∣
0− λ 1 2
2 3− λ 0
0 4 5− λ

∣∣∣∣∣∣ = (−λ)
(
(3− λ)(5− λ)− 0

)
− 1
(
2(5− λ)− 0

)
+ 2
(
8− 0

)
= (−λ)(λ2 − 8λ+ 15)− (10− 2λ) + 16 = −λ3 + 8λ2 − 13λ+ 6 = 0.

Ennek a polinomnak a gyökeit meghatározhatjuk pl. MATLAB seǵıtségével: λ1 = 6, illetve λ2,3 = 1.

I. Keressük meg a λ1 = 6-hoz sajátvektorokat:0− 6 1 2
2 3− 6 0
0 4 5− 6

u1

u2

u3

 =

−6 1 2
2 −3 0
0 4 −1

u1

u2

u3

 =

0
0
0


Gauss-Jordan eliminációt alkalmazva megoldjuk az egyenletrendszert: −6 1 2 0

2 −3 0 0
0 4 −1 0

 ∼ . . . ∼

(
1 0 − 3

8 0

0 1 − 2
8 0

)
⇒

u1 −
3

8
u3 = 0

u2 −
2

8
u3 = 0

Három változónk van, de csak két valódi összefüggésünk, ezért egy változó értéke szabadon megválasztható.
Hogy ne legyenek törtek a megoldásban, ezt okosan választjuk meg: u3 = 8q, q ∈ R

u1 =
3

8
u3 =

3

8
· 8q = 3q

u2 =
2

8
u3 =

2

8
· 8q = 2q

u3 = 8q

, q ∈ R \ {0}.

Innen a λ1 = 6-hoz tartozó sajátvektorok:

u =

3
2
8

 · q , q ∈ R \ {0}.

A λ1 = 6-hoz tartozó sajátaltér: 
3
2
8

 · q , q ∈ R

 = span{

3
2
8

}.
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Ez a sajátaltér egydimenziós, vagyis a λ1 = 6 geometriai multiplicitása 1. Ugyanakkor a λ1 = 6 egysz-
eres gyöke a karakterisztikus polinomnak, ı́gy a sajátérték geometriai multiplicitása megegyezik az algebrai
multiplicitásával: AM = GM = 1.

II. Keressük meg a λ2,3 = 1 sajátértékhez tartozó sajátvektorokat:0− 1 1 2
2 3− 1 0
0 4 5− 1

v1
v2
v3

 =

−1 1 2
2 2 0
0 4 4

v1
v2
v3

 =

0
0
0


 −1 1 2 0

2 2 0 0
0 4 4 0

 ∼ . . . ∼
(

1 0 −1 0
0 1 1 0

)
⇒ v1 − v3 = 0

v2 + v3 = 0

Három változónk van, de csak két valódi összefüggésünk, ezért egy változó értéke szabadon megválasztható:

v1 = v3 = p
v2 = −v3 = −p

v3 = p
, p ∈ R \ {0}.

Innen a λ2,3 = 1-hez tartozó sajátvektorok:

v =

 1
−1
1

 · p , p ∈ R \ {0}.

A λ2,3 = 1-hez tartozó sajátaltér:
 1
−1
1

 · p , p ∈ R

 = span{

 1
−1
1

}.

Ez a sajátaltér egydimenziós, vagyis a sajátérték geometriai multiplicitása 1, ugyanakkor λ2,3 = 1 kétszeres

gyöke a karakterisztikus polinomnak, ezért az algebrai multiplicitása 2. Így AM = 2 > 1 = GM .

Mivel a λ2,3 = 1 sajátértéknél AM = 2 ̸= 1 = GM , vagyis az algebrai és geometriai multiplicitás nem egyezik
meg, ezért nem ı́rható fel bázis a sajátvektorok seǵıtségével. Másként fogalmazva: a két sajátaltérből összesen két
lineárisan független sajátvektor választható ki, pl:

u∗ =

3
2
8

 , v∗ =

 1
−1
1

 .

Ugyanakkor ahhoz, hogy ezek bázist alkossanak R3-ban, háromra lenne szükség.
Tehát A NEM diagonalizálható, mert nincs sajátvektorokból álló bázisa R3-ban!

6


	Elméleti összefoglaló
	Feladatok: Diagonalizálás

