
LinAlgDM II. 4-5. gyakorlat: lineáris leképezés mátrixa; magtér-képtér,

sajátérték-sajátvektor kiszámı́tása

2024. március 14.

1 Gyorstalpaló tippek

A tippek önmagukban nem elegendő defińıciók/tételek, a megértést és emlékezést seǵıtik, és a feladatmegoldáshoz
mutatnak utat!

1. Hint. Leképezés mátrixának megadása

A leképezés mátrixa a bázisvektorok képét tartalmazza a megfelelő sorrendben. (A kiindulási tér bázisvektorainak képeit
oszlopvektorként egymás mellé pakoljuk.)

2. Hint. Képtér kiszámı́tása

A leképezés mátrixának oszlopvektorai által generált alteret kell megadni. ⇒ Gauss-Jordan elimináció után azon eredeti
oszlopvektorok fesźıtik ki a képteret, melyekben van vezéregyes. (Mert ezek lesznek a független oszlopvektorok.) jelölése:
Im(A).

3. Hint. Magtér kiszámı́tása

Zérushely. Az Ax = 0 homogén egyenletrendszert kell megoldani. Jelölése: Ker(A)

4. Hint. Sajátérték kiszámı́tása

Karakterisztikus polinom gyökei. det(A− λE) = 0

5. Hint. Sajátaltér kiszámı́tása

(A− λiE)x = 0 homogén egyenletrendszer megoldása. (Ker(A− λiE))

2 Elméleti összefoglaló

Definition 6. Leképezés mátrixa

Legyenek V és W vektorterek, dim(V ) = n, dim(W ) = k, és legyen [b] = {b1, b2, . . . bn} a V egy bázisa. Az L : V → W
lineáris leképezés mátrixa:

A[b],[c] =
[
L(b1)[c]

∣∣∣L(b2)[c]∣∣∣ . . . ∣∣∣L(bn)[c]]
A leképezés mátrixa a [b] bázis vektorainak képvektorait tartalmazza a képtér egy [c] bázisára vonatkozó koordinátákban
feĺırva.

Megjegyzés 1. Az L(bi) oszlopvektor koordinátáit a k elemű [c] bázisban ı́rjuk fel, ı́gy ez egy k elemból álló vektor,
aminek következtében A sorainak száma k. Tudjuk azt is, hogy a [b] bázis n db bázisvektorból áll, vagyis n db oszlopvektor
szerepel az A-ban. Így a leképezés mátrixa (k × n)-es.

Megjegyzés 2. A leképezés mátrixának alsó indexében először a kiindulási térbeli, majd a képtérbeli bázist tüntetjük
fel. A leképezés mátrixa nem csak attól függ, hogy mit csinál az adott leképezés, hanem ettől a két bázistól is - hiszen más
bázisban mások a koordináták is. Nagyon fontos az is, hogy a kiindulási tér bázsivektorainak sorrendje rögźıtett legyen!

Megjegyzés 3. Lineáris transzformáció mátrixa esetén, ha a kiindulási és a képtérben ugyanazt a [b] bázist használjuk,
ezt az alsó indexben elég egyszer feltüntetnünk:

A[b]
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Megjegyzés 4. Ha lineáris leképezés mátrixának feĺırásakor a kiindulási és a képtérben is a kanonikus bázist használjuk,
ezt az alsó indexben nem kell feltüntetnünk!

Theorem 7. Hozzárendelési szabály és a leképezés mátrixa

Ha A ∈ Rk×n az L : V → W lineáris leképezés mátrixa, x ∈ V , y ∈ W és y = L(x), akkor a leképezés hozzárendelési
szabálya feĺırható a leképezés mátrixának és a változóvektornak a szorzatával:

y = A · x

Definition 8. Képtér

Legyenek V és W vektorterek, L : V → W lineáris leképezés. Azon W -beli vektorok összességét, amelyek valamely V -beli
vektor (L melletti) képei, az L leképezés képterének nevezzük. Jelölése: Im(L). Vagyis:

Im(L) =
{
y ∈ W

∣∣ ∃x ∈ V, y = L(x)
}
.

Megjegyzés 5. A defińıcióból adódóan az L leképezés képtere pontosan az L leképezés értékkészlete.

Megjegyzés 6. Im(L) egy W -beli altér.

Theorem 9. Képtér kiszámı́tása

Ha A az L : V → W lineáris leképezés (adott bázispárra vonatkozó) mátrixa, akkor a leképezés képtere (Im(A)) mege-
gyezik az A oszlopvektorai által generált altérrel:

Im(A) =< ai, . . . an >= span{a1, . . . an}

ahol A =
[
a1| . . . |an

]
Megjegyzés 7. Kiszámı́tása: Gauss elmininációt alkalmazunk, ugyanis nem feltétlenül szükséges az A összes oszlopvek-
torát felhasználni a generátumban, hanem elég csak a lineárisan függetleneket. Az eredeti mátrix azon oszlopai, amelyekben
a Gauss elimináció után van vezérelem, lineárisan függetlenek lesznek, és ezek kifesźıtik (generálják) Im(A)-t.
A kiszámı́tásnál alkalmazhatunk Gauss-Jordan eliminációt is: ekkor a vezéregyeseket tartalmazó oszlopok eredetijét kell
figyelembe venni.

Definition 10. Magtér

Legyenek V és W vektorterek, L : V → W lineáris leképezés. Azon V -beli vektorok összességét, amelyek (L melletti)
képe a W vektortér nullvektora, az L leképezés magterének nevezzük. Jelölése: Ker(L). Vagyis:

Ker(L) =
{
x ∈ V

∣∣L(x) = 0W
}
.

Megjegyzés 8. Ker(L) egy V -beli altér, amely az L zérushelyeit tartalmazza.

Definition 11. Mátrix magtere

Az A ∈ Rk×n mátrix magtere az A · x = 0 homogén lineáris egyenletrendszer megoldáshalmaza. Jelölése: Ker(A)

Megjegyzés 9. A fenti megoldáshalmaz alteret alkot Rn-ben.

Theorem 12. A két magtérfogalom kapcsolata

Legyen A az L lineáris leképezés mátrixa. Ekkor az A mátrix magtere és az L leképezés magtere megegyezik: mivel a
hozzárendelési szabály L(x) = Ax, ezért az L(x) = 0 és az Ax = 0 ugyanazt az egyenletrendszert definiálják.

Theorem 13. Dimenziótétel

Legyenek V és W vektorterek, L : V → W (homogén) lineáris leképezés. Ekkor

dim(ker(L)) + dim(im(L)) = dim(V )

Megjegyzés 10. Ismétlés: Adott vektortér dimenziója a vektortér valamely bázisának az elemszáma. (Adott vektortérben
minden bázis ugyanannyi vektorból áll).

Megjegyzés 11. dim(V ) a kiindulási tér dimenziója, dim(im(L)) mutatja meg, hogy a leképezés ebből hány dimenziót
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”tart meg” (vagyis mennyit sikerül ”átvinni” a képtérbe), mı́g dim(ker(L)) a leképezés során ”elvesztett” dimenziók
száma.

Megjegyzés 12. Ha dim(V ) = dim(im(L)) (vagy másképpen: dim(ker(L)) = 0), akkor a lineáris leképezés kölcsönösen
egyértelmű (azaz minden képtérbeli vektorhoz pontosan egy kiindulási térbeli vektor tartozik).

Definition 14. Sajátértékek kiszámı́tása

A sajátértékek-sajátvektorok az alábbi egyenletrendszert teljeśıtik:

L(v) = A · v = λv, v ̸= 0

Ezt alaḱıtjuk:
A · v = (λE) · v,

majd egy oldalra rendezzük:
(A− λE) · v = 0. (1)

Ez egy homogén lineáris egyenletrendszer a v ∈ Rn változóvektorral, amelynek a nemtriviális (v ̸= 0) megoldásait keressük.
Tudjuk, hogy ennek az egyenletrendszernek pontosan akkor van v = 0-tól különböző megoldása, ha

det(A− λE) = 0 .

Ez a v-től független, csak λ-tól függő skalár egyenlet az ún. karakterisztikus egyenlet. melynek bal oldalán a karak-
terisztikus polinom áll, ami n-edfokú polinomja a λ-nak. Az egyenlet megoldásával megkaphatjuk a karakterisztikus
polinom n db gyökét, vagyis az A sajátértékeit: λ1, . . . , λn.

Definition 15. Adott sajátértékhez tartozó sajátvektorok és sajátaltér kiszámı́tása

Adott λi sajátértékhez tartozó sajátvektorok halmazát meghatározhatjuk úgy, hogy az (1) egyenletbe visszahelyetteśıtjük
a λ = λi sajátértéket. Ez a homogén lineáris egyenletrendszer már csak v-től függ, megoldása pedig megadja a λi

sajátértékhez tartozó sajátvektorokat. (Arra figyeljünk, hogy defińıció szerint a sajátvektor nem lehet nullvektor!)

Megjegyzés 13. A λi-hez tartozó sajátvektorok - a nullvektorral kiegészülve - alteret alkotnak V -ben. Ezt nevezzük a
λi-hez tartozó sajátaltérnek.

Megjegyzés 14. A λi-hez tartozó sajátaltér tulajdonképpen az (A− λiE) mátrix magtere: Ker(A− λiE).

Megjegyzés 15. Mivel különböző sajátértékekhez különböző sajátvektorok tartoznak, az (1) egyenletet minden λi, i =
1, . . . , n esetén külön-külön meg kell oldani.

3 Feladatok

Feladat 1. Vet́ıtsük a tér vektorait a k vektorral párhuzamosan az i, j bázisvektorok śıkjára (= xy-śıkra történő
merőleges vet́ıtés).

(a) Tekintsük a képvektorokat térbelinek, ekkor ez a lineáris leképezés R3 → R3 t́ıpusú lineáris transzformáció.
Adjuk meg a transzformáció mátrixát!

Megoldás. Érdemes mindig rajzolni és elképzelni a problémát. Vajon a bázisvektorok hogyan változnak
ebben az esetben?

x

y

z

v

L(v)
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Az i, j bázisvektorok rajta vannak a śıkon, amire vet́ıtünk, ı́gy nem változnak, a k viszont a nullvektorba
képez:

i =

1
0
0

→ i =

1
0
0


j =

0
1
0

→ j =

0
1
0


k =

0
0
1

→ 0 =

0
0
0


Ezeket az oszlopvektorokat sorrendben egymás mellé helyezve megkapjuk a vet́ıtés mátrixát:

A =

1 0 0
0 1 0
0 0 0


Mivel a transzformáció mátrixát a kanonikus bázisban adtuk meg, ı́gy az alsó indexben ezt nem kellett külön
jelölnünk.

(b) Most értelmezzük a feladatot úgy, hogy a térből a śıkba ”visszük” a vektorokat - ekkor a lineáris leképezés
R3 → R2 t́ıpusú, vagyis ez már nem transzformáció. Adjuk meg a leképezés mátrixát!

Megoldás. Ebben az esetben a térbeli {i, j, k} kanonikus bázis képvektorait két dimenzióban kell megad-
nunk, az {i, j} śıkbéli kanonikus bázisban:

i =

1
0
0

→ i =

(
1
0

)

j =

0
1
0

→ j =

(
0
1

)

k =

0
0
0

→ 0 =

(
0
0

)

Ezeket sorrendben egymás mellé helyezve megkapjuk a leképezés mátrixát:

A =

[
1 0 0
0 1 0

]
Mivel mind a kiindulási térben, mind a képtérben a kanonikus bázist használtuk, az alsó indexes bázisjelölést
itt is elhagyhattuk.

(c) Oldjuk meg a (b) feladatot úgy is, hogy a képtérben a [b] = {b1, b2} bázist használjuk, ahol b1 =

(
1
1

)
,

b2 =

(
0
−1

)
!

Megoldás. A bázisvektorok képeit már ismerjük, már csak fel kell ı́rnunk ezeket az képtér új bázisában.
Kezdjük az első bázisvektor (i) képével:

α

(
1
1

)
+ β

(
0
−1

)
=

(
1
0

)
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Ebből az egyenletrendszerből az együtthatók egyértelműen megkaphatók (hiszen a bal oldalon a bázisvektorok
lineáris kombinációja szerepel): α = 1, β = 1.

Tehát

L(i) =

(
1
0

)
{i,j}

=

(
1
1

)
{b1,b2}

.

Ugyanezt elvégezve a második bázisvektor (j) képére, az egyenletrendszer megoldása az alábbi együtthatókat
adja:

L(j) =

(
0
1

)
{i,j}

= 0

(
1
1

)
+ (−1)

(
0
−1

)
=

(
0
−1

)
{b1,b2}

A k képe a nullvektor, amelynek a koordinátái minden bázisban nullák:

L(k) =

(
0
0

)
{i,j}

=

(
0
0

)
{b1,b2}

Tehát a leképezés mátrixa, ha a képtérben áttérünk a [b] bázisra (a kiindulási térben a bázis változatlan
maradt):

A =

[
1 0 0
1 −1 0

]
{i,j,k},{b1,b2}

Feladat 2. Forgassuk el a śık vektorait pozit́ıv irányban, rögźıtett ϕ szöggel! Írjuk fel a transzformáció mátrixát
a kanonikus bázisban!

Megoldás. A leképezés mátrixához meg kell adnunk a bázisvektorok képeit. Forgassuk el az i és j vektorokat
ϕ szöggel! Mivel a bázisvektorok egységevektorok, az elforgatással kapott képvektorok is egységvektorok. Ezek
koordinátái a tengelyekre eső előjeles vetületek, melyeket barna sźınnel jelöltünk az ábrán. (Ezen vetületek
kiszámolhatók a szögfüggvények középiskolában tanult defińıciójából, és abból, hogy itt a derékszögű háromszög
átfogója egységnyi hosszúságú.)

i

L(i) =

(
cos(ϕ)
sin(ϕ)

)
j

L(j) =

(
− sin(ϕ)
cos(ϕ)

)

x

y

ϕ
ϕ

cos(ϕ)− sin(ϕ)

sin(ϕ)

cos(ϕ)
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Az ábrán megadtuk az L(i) és L(j) képvektorokat is, amelyekből a transzformáció mátrixa adódik:

A =
[
L(i)

∣∣L(j)] = [cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
Mivel itt is a kanonikus bázisban dolgoztunk, ezt nem kellett külön jelölnünk az indexben.

Feladat 3. Forgassunk el térbeli vektorokat a z tengely körül rögźıtett ϕ szöggel! Mi lesz a lineáris transzformáció
mátrixa a kanonikus bázisban?

Megoldás. Tengely körüli forgatás esetén érdemes mindig az adott tengely irányából rátekinteni a térre ahhoz,
hogy a bázisvektorok képét megkapjuk. Értelemszerűen az adott tengely képe, amely körül forgatunk, nem változik.

Így az előző feladatban szereplő śıkbéli forgatáshoz hasonlóan kezelhető a probléma. Figyeljünk arra, hogy a
koordináták most 3D-sek!
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i

L(i) =

cos(ϕ)
sin(ϕ)

0

j

L(j) =

− sin(ϕ)
cos(ϕ)

0



x

y

ϕ
ϕ

cos(ϕ)− sin(ϕ)

sin(ϕ)

cos(ϕ)

A z tengely csúcsáról letekintve láthatjuk, hogy a forgatás az xy-śıkon, vagyis az első két koordinátában
történik, mı́g a harmadik koordináta értékét a transzformáció nem változtatja meg. Az L(i) és L(j) képvektorokat
az ábrán feltüntettük, mı́g a harmadik bázisvektor képe: L(k) = k.

Innen a z tengely körüli forgatás mátrixa:

A =
[
L(i)

∣∣L(j)∣∣L(k)] =
cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


Itt is a kanonikus bázisban dolgoztunk, ı́gy a bázist nem kellett külön jelölnünk az indexben.

Feladat 4. Legyen az L śıkbéli transzformáció a śık vektorainak az y = x egye-
nesre való tengelyes tükrözése. Adjuk meg a lineáris transzformáció mátrixát a
kanonikus bázisban! Adjuk meg a hozzárendelési szabályt is!

Megoldás. Az ábrán látható, hogy a kanonikus bázis vektorai (lila és zöld) egymás képei: L(i) = j, L(j) = i.
Innen a transzformáció mátrixa:

A =
[
L(i)

∣∣L(j)] = [j∣∣i] = [0 1
1 0

]
Itt is a kanonikus bázisban ı́rtuk fel az A oszlopait, ı́gy a bázist nem kell jelölni. A hozzárendelési szabály:

w = A · v ⇒
(
w1

w2

)
=

[
0 1
1 0

](
v1
v2

)
⇒ w1 = v2

w2 = v1
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Feladat 5. Tekintsük a legfeljebb harmadfokú polinomokon értelmezett ”deriválás” leképezést! Értelmezzük ezt
most lineáris transzformációként, azaz képezzen a legfeljebb harmadfokú polinomok teréből a legfeljebb harmadfokú
polinomok terébe:

D : P3 → P3, D(p) = p′, ahol p′(x) =
dp

dx
.

Adjuk meg P3 egy bázisát, majd a transzformáció mátrixát ebben a bázisban úgy, hogy a kiindulási térben és
a képtérben is ugyanazt a bázist használjuk! Adjuk meg a q(x) = 5x3 + 6x2 − 4x + 9 polinom deriváltját a
hozzárendelési szabály alkalmazásával!

Megoldás. P3 egy bázisa például: [b] =
{
1, x, x2, x3

}
. A leképezés mátrixához sorrendben meg kell adnunk a

kiindulási tér bázisvektorai képeinek koordinátáit a képtér bázisában, ami most szintén a [b]:

1
L−→ 0 = 0 · 1 + 0 · x+ 0 · x2 + 0 · x3 =


0
0
0
0


[b]

x
L−→ 1 = 1 · 1 + 0 · x+ 0 · x2 + 0 · x3 =


1
0
0
0


[b]

x2 L−→ 2x = 0 · 1 + 2 · x+ 0 · x2 + 0 · x3 =


0
2
0
0


[b]

x3 L−→ 3x2 = 0 · 1 + 0 · x+ 3 · x2 + 0 · x3 =


0
0
3
0


[b]

Ezeket, mint oszlopvektorokat sorrendben egymás mellé helyezve megkapjuk a transzformáció mátrixát:

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


[b]

A mátrix bal alsó indexében jelöltük a [b] bázist, amely egyben a kiindulási és a képtér bázisa is (ha a két bázis
azonos, elég egyszer kíırni).

A leképezés mátrixának meghatározásával megkapjuk a hozzárendelési szabályt is:

w = D(v) = Av

ahol v a deriválandó polinom [b] bázisra vonatkozó koordinátáit tartalmazza, mı́g w-ben a derivált polinom [b]
bázisra vonatkozó koordinátái szerepelnek. A deriválandó polinom: q(x) = 5x3 + 6x2 − 4x + 9. Feĺırjuk a q(x)
koordinátáit a [b] bázisban, és beletesszük a v vektorba, miközben nagyon odafigyelünk a bázisvektorok sorrendjére:

q(x) = 9 + (−4) · x+ 6 · x2 + 5 · x3 =⇒ v =


9
−4
6
5


[b]

A leképezés végrehajtásával megkapjuk a w vektorban a derivált koordinátáit:

w =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


[b]

·


9
−4
6
5


[b]

=


−4
12
15
0


[b]
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A leképezés során kapott ”deriváltvektor” koordinátáiból megkapjuk q′(x)-et:

w =


−4
12
15
0


[b]

=⇒ q′(x) = −4 · 1 + 12 · x+ 15 · x2 + 0 · x3 = −4 + 12x+ 15x2

Feladat 6. Adjuk meg annak az R2 → R2 t́ıpusú transzformációnak a magterét és képterét, melynek mátrixa

A =

[
6 −1
2 3

]
! Illusztráljuk a dimenziótételt! Igaz-e, hogy kölcsönösen egyértelmű a transzformáció?

Megoldás. Az A · x = 0 egyenlet kibőv́ıtett együtthatómátrixát feĺırjuk, majd Gauss-Jordan eliminációt hajtunk
végre rajta: [

6 −1 0
2 3 0

]
∼ . . . ∼

[
1 0 0
0 1 0

]
Innen látható, hogy az A · x = 0 egyenlet egyetlen megoldása az x1 = x2 = 0, vagyis a śık nullvektora, ı́gy
Ker(A) = {0}. Más szavakkal: Nincs vezéregyessel NEM rendelkező oszlopvektor, ezért Ker(A) = {0}.

A fenti Gauss-Jordan elimináció egyúttal megadja A azon oszlopvektorait is, amelyek kifesźıtik a képteret.
Az eredményül kapott együtthatómátrix bal oldalán mindkét oszlopban van vezéregyes, ezért az eredeti mátrix
mindkét oszlopa szükséges a képtér kifesźıtéséhez:

Im(A) = span

{(
6
2

)
,

(
−1
3

)}
Mivel ez két lineárisan független śıkbéli vektor, ezért a generátumuk maga a śık lesz: Im(A) = R2

A dimenziótétel teljesülése:

dim(Ker(A)) + dim(Im(A)) = dim(V )
0 + 2 = 2

Ez a lineáris transzformáció kölcsönösen egyértelmű, mert a kiindulási tér dimenziója és a képtér dimenziója
megegyezik, vagyis minden kiindulási vektorhoz egy és csakis egy képtérbeli vektor tartozik.

Feladat 7. Tekintsük a következő lineáris transzformációt:

L : R4 → R4, L(x) = A · x, ahol A =


1 −1 0 22
0 1 −2 5
−3 2 5 −65
−2 6 4 0

 .

Adjuk meg az L magterét, képterét! Illusztráljuk a dimenzió tételt! Igaz-e hogy kölcsönösen egyértelmű a transz-
formáció?

Megoldás. Az Ax = 0 egyenletet feĺırjuk kibőv́ıtett együtthatómátrix formájában, majd Gauss-Jordan eliminációt
hajtunk végre rajta:

A =


1 −1 0 22 0
0 1 −2 5 0
−3 2 5 −65 0
−2 6 4 0 0

 ∼ . . . ∼


1 0 0 31 0
0 1 0 9 0
0 0 1 2 0
0 0 0 0 0


1. Az A mely oszlopvektorai fesźıtik ki (generálják) a képteret? Az első három oszlopban van vezéregyes

(pirossal jelölve), ı́gy az első három eredeti oszlopvektor által kifesźıtett altér a képtér:

Im(A) = span




1
0
−3
−2

 ,


−1
1
2
6

 ,


0
−2
5
4



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2. A magtér az Ax = 0 homogén lineáris egyenletrendszer megoldáshalmaza. A negyedik oszlopvektorban
nincs vezérelem, ı́gy x4 értéke szabadon megválasztható: x4 = t ∈ R.
Az egyenletek átrendezve:

x4 =t

x3 =− 2x4 = −2t

x2 =− 9x4 = −9t

x1 =− 31x4 = −31t

Innen a megoldás:

Ker(A) =



−31
−9
−2
1

 · t , t ∈ R

 = span



−31
−9
−2
1




A magtér nem egyelemű, vagyis a nullvektorhoz több ős is tartozik. A transzformáció Ker(L) összes
(végtelen sok) vektorához a nullvektort rendeli, ezért nem lehet kölcsönösen egyértelmű.

A dimenziótétel teljesülése:

dim(Ker(A)) + dim(Im(A)) = dim(V )
1 + 3 = 4

Feladat 8. Számı́tsuk ki az alábbi mátrix sajátértékeit, és az egyes sajátértékekhez tartozó sajátvektorokat és
sajátalteret! Ellenőrizzük, hogy valóban jó sajátértékeket-sajátvektorokat kaptunk!

A =

[
6 −1
2 3

]

Megoldás. 1. A sajátértékek kiszámı́tásához a karakterisztikus polinom gyökeit kell megadni, vagyis a

det(A− λE) = 0

egyenletet kell megoldani λ-ra:

det

([
6 −1
2 3

]
−
[
λ 0
0 λ

])
= det

([
6− λ −1
2 3− λ

])
= (6− λ)(3− λ)− 2(−1) = λ2 − 9λ+ 20 = 0

Megoldva a másodfokú egyenletet, λ1 = 4, λ2 = 5 adódik.

2. Kiszámı́tjuk mindkét sajátérték esetén a hozzá tartozó sajátvektorokat és sajátalteret:

(a) λ1 = 4: behelyetteśıtjük a λ1-et az (1) egyenletbe:

(A− 4E)u = 0 ⇒

([
6 −1
2 3

]
− 4 ·

[
1 0
0 1

])(
u1

u2

)
=

[
2 −1
2 −1

](
u1

u2

)
=

(
0
0

)
⇒ 2u1 − u2 = 0

2u1 − u2 = 0

Látható, hogy két egyenlet helyett valójában csak egy van. A változók száma 2, ı́gy a szabadsági fok
(vagyis a megoldásban szereplő szabad paraméterek száma) 2− 1 = 1:

u2 = 2u1 =⇒ u1 = t
u2 = 2u1 = 2t

=⇒ u =

(
u1

u2

)
=

(
t
2t

)
=

(
1
2

)
· t , t ∈ R

Tehát a λ1 = 4-hez tartozó sajátvektorok az alábbiak lesznek:

u =

(
1
2

)
· t , t ∈ R\{0}

Vegyük észre, hogy az u = 0 vektort kivettük a megoldásból, mert a nullvektor nem lehet sajátvektor.
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Ezzel szemben, a λ1 = 4-hez tartozó sajátaltér a nullvektort is tartalmazza:{(
1
2

)
· t , t ∈ R

}
= span

{(1
2

)}
(b) λ2 = 5: behelyetteśıtjük a λ2-t az (1) egyenletbe:

(A− 5E)v = 0 ⇒

([
6 −1
2 3

]
− 5 ·

[
1 0
0 1

])(
v1
v2

)
=

[
1 −1
2 −2

](
v1
v2

)
=

(
0
0

)
⇒ v1 − v2 = 0

2v1 − 2v2 = 0

A két egyenlet helyett valójában itt is csak egy van. A változók száma 2, ı́gy a szabadsági fok (vagyis
a megoldásban szereplő szabad paraméterek száma) 2− 1 = 1:

v2 = v1 =⇒ v1 = t
v2 = t

=⇒ v =

(
v1
v2

)
=

(
t
t

)
=

(
1
1

)
· t , t ∈ R

Tehát a λ2 = 5-höz tartozó sajátvektorok az alábbiak lesznek:

v =

(
1
1

)
· t , t ∈ R\{0}

A v = 0 vektort itt is kivettük a megoldásból, mert a nullvektor nem lehet sajátvektor.

Ezzel szemben, a λ2 = 5-hez tartozó sajátaltér a nullvektort is tartalmazza:{(
1
1

)
· t , t ∈ R

}
= span

{(1
1

)}
Az ábrán látható az A mátrix sajátértékeihez tartozó sajátvektorainak halmaza, illetve sajátalterei. Itt is
jól látszik, hogy a különbség a két halmaz között mindkét esetben a nullvektor.

Vegyünk a λ1-hez tartozó sajátvektorok közül egyet, és ellenőrizzük, hogy valóban sajátvektor-e!

λ1 = 4 , s1 =

(
1
2

)
⇒ A · s1 =

[
6 −1
2 3

]
·
(
1
2

)
=

(
4
8

)
= 4 ·

(
1
2

)
= λ1 · s1

Láthatjuk, hogy s1 valóban a λ1-hez tartozó sajátvektor.
Most vegyünk a λ2-hez tartozó sajátvektorok közül egyet, és ellenőrizzük ezt is, hogy valóban sajátvektor-e!

λ2 = 5 , s2 =

(
1
1

)
⇒ A · s2 =

[
6 −1
2 3

]
·
(
1
1

)
=

(
5
5

)
= 5 ·

(
1
1

)
= λ2 · s2

Láthatjuk, hogy s2 valóban a λ2-hez tartozó sajátvektor.

Feladat 9. Számı́tsuk ki az alábbi mátrix sajátértékeit, és az egyes sajátértékekhez tartozó sajátvektorokat és
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sajátalteret! Adjuk meg a mátrix magterét is!

A =

 1 2 1
6 −1 0
−1 −2 −1



Megoldás. 1. A sajátértékek kiszámı́tásához a karakterisztikus polinom gyökeit kell megadni, azaz a

det(A− λE) = 0

egyenletet kell megoldani λ-ra:

det

( 1 2 1
6 −1 0
−1 −2 −1

−

λ 0 0
0 λ 0
0 0 λ

) = det
(1− λ 2 1

6 −1− λ 0
−1 −2 −1− λ

) =

= 1 ·
∣∣∣∣ 6 −1− λ
−1 −2

∣∣∣∣︸ ︷︷ ︸
−13−λ

−0 + (−1− λ)

∣∣∣∣1− λ 2
6 −1− λ

∣∣∣∣︸ ︷︷ ︸
−(1−λ)(1+λ)−12

=

= −13− λ− (1 + λ)[−(1− λ)(1 + λ)− 12] = −13− λ+ (1 + λ)[(1− λ)(1 + λ) + 12] =

= −13− λ+ 12 + 12λ︸ ︷︷ ︸
−1+11λ

+(1 + λ)(1− λ)(1 + λ) = −1 + 11λ− λ3 − λ2 + λ+ 1 = −λ3 − λ2 + 12λ = 0

A karakterisztikus polinom harmadfokú, ı́gy most egy harmadfokú egyenletet kell megoldanunk. Szerencsére
látszik, hogy nincs konstans tag az egyenletben. ezért a λ kiemelhető:

−λ3 − λ2 + 12λ = −λ(λ2 + λ− 12) = 0

Ebből a félig gyöktényezős alakból látható, hogy az egyik gyök a λ1 = 0, a másik két gyököt pedig a másodfokú
egyenlet megoldásaiből kapjuk: λ2 = −4, λ3 = 3

2. Sajátvektorok és sajátalterek kiszámı́tása:

(a) λ1 = 0: a kapcsolódó sajátaltér az
(A− 0E) · u = 0

egyenletrendszer megoldáshalmaza lesz. A fenti kifejezés által megadott altér tulajdonképpen az (A−
0 ·E) magtere, azaz Ker(A−0E) = Ker(A). Vegyük észre, hogy a nulla sajátértékhez tartozó
sajátaltér az eredeti mátrix magtere! Gauss-eliminációval megoldjuk az egyenletrendszert:

(A− 0E)u = 0 ⇒

 1 2 1 0
6 −1 0 0
−1 −2 −1 0

 ∼ . . . ∼

 1 2 1 0
0 13 6 0
0 0 0 0


A harmadik oszlopban nincs vezérelem ⇒ u3 = t ∈ R.
Az egyenletek átrendezve:

u3 = t

u2 = − 6

13
u3 = − 6

13
t

u1 = −2

(
− 6

13
t

)
− t = − 1

13
t

Innen a λ1 = 0-hoz tartozó sajátaltér - amely egyben az A magtere is:

Ker(A− 0E) = Ker(A) =


− 1

13 t

− 6
13 t

t

 ∣∣∣∣∣ t ∈ R

 =


− 1

13

− 6
13

1

 · t

∣∣∣∣∣ t ∈ R

 = span


− 1

13

− 6
13

1



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A λ1 = 0-hoz tartozó sajátvektorok a fenti sajátaltér vektorai, kivéve a nullvektort (amit kizártunk a
sajátvektorok közül).

(b) λ2 = −4-hez tartozó sajátalteret az előzőhöz hasonlóan számolhatjuk ki: Ker(A− (−4)E) =?

(A+ 4E)v = 0 ⇒

 5 2 1 0
6 3 0 0
−1 −2 3 0

 ∼ . . . ∼

5 2 1 0
0 3 −6 0
0 0 0 0


A harmadik oszlopban nincs vezérelem ⇒ v3 = s ∈ R.
Az egyenletek átrendezve:

v3 = s

v2 = 2v3 = 2s

v1 = −2

5
v2 −

1

5
v3 = −2

5
(2v3)−

1

5
v3 = −v3 = −s

Innen a λ2 = −4-hez tartozó sajátaltér:

Ker(A+ 4E) =


−s

2s
s

 ∣∣∣∣∣ s ∈ R

 =


−1

2
1

 · s

∣∣∣∣∣ s ∈ R

 = span


−1

2
1


A λ2 = −4-hez tartozó sajátvektorok a fenti sajátaltér vektorai, kivéve a nullvektort (amit defińıció
szerint kizártunk a sajátvektorok közül).

(c) A λ3 = 3-hoz tartozó sajátalteret is kiszámoljuk:

(A− 3E)w = 0 ⇒

−2 2 1 0
6 −4 0 0
−1 −2 −4 0

 ∼ . . . ∼

−2 2 1 0
0 2 3 0
0 0 0 0


A harmadik oszlopban nincs vezérelem ⇒ w3 = r ∈ R.
Az egyenletek átrendezve:

w3 = r

w2 = −3

2
w3 = −3

2
r

w1 = − 2

−2
w2 −

1

−2
w3 = − 2

−2
(−3

2
w3)−

1

−2
w3 = −w3 = −r

Innen a λ3 = 3-hoz tartozó sajátaltér:

Ker(A− 3E) =


 −r
− 3

2r
r

 ∣∣∣∣∣ r ∈ R

 =


−1
− 3

2
1

 · r

∣∣∣∣∣ r ∈ R

 = span


−1
− 3

2
1


A λ3 = 3-hoz tartozó sajátvektorok a fenti sajátaltér vektorai, kivéve a nullvektort (ami nem lehet
sajátvektor).

Mindhárom sajátaltérnél megfigyelhető, hogy egy-egy vektor fesźıti ki. Így mindegyik sajátaltér egy-egy
egyenes lesz, amely az origón megy át, és irányvektora az őt kifesźıtő vektor.
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