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1 Elméleti összefoglaló

Definition 1. Skaláris szorzat

Legyen V egy R feletti vektortér. Az < ·, · >: V × V → R kétváltozós függvényt skaláris szorzatnak nevezzük, ha

1. ∀x ∈ V esetén < x, x >≥ 0; továbbá < x, x >= 0 pontosan akkor, ha x = 0 (pozit́ıv definit);

2. ∀x, y ∈ V esetén < x, y >=< y, x > (szimmetrikus);

3. ∀x, y ∈ V és λ ∈ R esetén < λx, y >= λ < x, y > (homogén);

4. ∀x, y, z ∈ V esetén < x+ y, z >=< x, z > + < y, z > (lineáris).

A skaláris szorzattal ellátott tereket skaláris szorzatos tereknek, más néven Euklidészi tereknek nevezzük.

Megjegyzés 1. A fenti 3. és 4. kritériumot (homogenitás és linearitás) a skaláris szorzat első változójára ı́rtuk fel, de
ugyańıgy teljesül a második változóra is. Ennek oka a skaláris szorzat 2. tulajdonsága (szimmetria).

Definition 2. Norma

Legyen V egy R feletti vektortér. Az ∥·∥ : V → R függvényt normának nevezzük, ha

1. ∀x ∈ V esetén ∥x∥ ≥ 0; továbbá ∥x∥ = 0 pontosan akkor, ha x = 0 (pozit́ıv definit);

2. ∀x ∈ V és c ∈ R esetén ∥c · x∥ = |c| · ∥x∥ (skálázható);

3. ∀x, y ∈ V esetén
∥∥x+ y

∥∥ ≤ ∥x∥+
∥∥y∥∥ (háromszög-egyenlőtlenség).

Megjegyzés 2. A norma az abszolút érték függvénynek (nullától való távolság, vektor hossza) az általánośıtása.

Definition 3. Skaláris szorzatból származtatott norma

Legyen V egy euklidészi tér (skaláris szorzatos tér) a < ·, · > skaláris szorzattal. A skaláris szorzatból származtatott
norma:

∥·∥ : V → R, ∥x∥ = (< x, x >)
1
2

Megjegyzés 3. Az R2-en illetve R3-ban eddig használt ”szokásos” skaláris szorzattal pont ı́gy számoltuk ki a śıkbéli és
a térbeli vektorok hosszát.

Definition 4. p-norma

Legyen V egy n dimenziós valós vektortér. Az alábbi normát:

∥·∥ : V → R, ∥x∥p =
( n∑

k=1

|xk|p
) 1

p

p-normának nevezzük, ahol p ∈ Z+.

Megjegyzés 4. Nevezetes p-normák az 1-es norma, a 2-es norma és a ∞-norma:

∥x∥1 =

n∑
k=1

|xk| , ∥x∥2 =
( n∑

k=1

|xk|2
) 1

2
, ∥x∥∞ =

n
max
k=1

|xk|
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Theorem 5. Szimmetrikus mátrix tulajdonságai

Legyen az A ∈ Rn×n mátrix szimmetrikus, azaz A = AT . Ekkor az A mátrix

• sajátértékei valósak;

• különböző sajátértékekhez tartozó sajátvektorai merőlegesek;

• diagonalizálható (vagyis létezik a sajátvektoraiból álló bázis).

2 Feladatok

2.1 Skaláris szorzat

Feladat 1. Legyen V = R4, és

< ·, · >: V × V → R, < x, y >=

4∑
k=1

xk · yk

a ”szokásos” skaláris szorzat, amelyet ezúttal egy négydimenziós térben értelmeztünk.

(a) Adjuk meg az alábbi vektorok által bezárt szöget:

u =


2
1
5
−3

 , v =


4
0
−2
1



Megoldás.

cos(ϕ) =
2 · 4 + 1 · 0 + 5 · (−2) + (−3) · 1√

22 + 12 + 52 + (−3)2 ·
√
42 + 02 + (−2)2 + 12

=
−5√

39 ·
√
21

= −0.1747 ⇒ ϕ = 100, 06◦

(b) Legyen

w =


1
p
2
−2


Adjuk meg a p ∈ R értékét úgy, hogy u és w merőlegesek legyenek!

Megoldás.

2 · 1 + 1 · p+ 5 · 2 + (−3) · (−2) = 0 ⇒ 18 + p = 0 ⇒ p = −18

Feladat 2. A V = R4 térben adott a következő függvény:

s : V × V → R, s(x, y) =

4∑
k=1

k · xk · yk

(a) Mutassuk meg, hogy s skaláris szorzatot definiál V -n!

Megoldás.

1. s(x, x) = x2
1 + 2x2

2 + 3x2
3 + 4x2

4 ≥ 0, mert csupa pozit́ıv együtthatójú négyzetes tag összege. Ahhoz
pedig, hogy s értéke 0 legyen, minden négyzetes tagnak 0-nak kell lennie, ami pontosan akkor teljesül,
ha xk = 0, k = 1, . . . , 4. Így s(x, x) = 0 ⇔ x = 0.

2. s(y, x) =
∑4

k=1 k · yk · xk =
∑4

k=1 k · xk · yk = s(x, y)

3. s(λ · x, y) =
∑4

k1
k · λ · xk · yk = λ ·

∑4
k=1 k · xk · yk = λ · s(x, y)

4. s(x+ y, z) =
∑4

k=1 k · (xk + yk) · zk =
∑4

k=1 k ·xk · zk +k · yk · zk =
∑4

k=1 k ·xk · zk +
∑4

k=1 k · yk · zk =
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= s(x, z) + s(y, z)

A szükséges tulajdonságok teljesülnek, ezért s skaláris szorzat V = R4-ben.

(b) Tekintsük az előző feladat u és v vektorait:

u =


2
1
5
−3

 , v =


4
0
−2
1


Adjuk meg az általuk bezárt szöget!

Megoldás.

cos(ϕ) =
1 · 2 · 4 + 2 · 1 · 0 + 3 · 5 · (−2) + 4 · (−3) · 1√

1 · 22 + 2 · 12 + 3 · 52 + 4 · (−3)2 ·
√

1 · 42 + 2 · 02 + 3 · (−2)2 + 4 · 12
=

−34√
117 ·

√
32

= −0.5557

Innen ϕ = 123, 76◦.

(c) Tekintsük az előző feladatban szereplő w vektort:

w =


1
p
2
−2


Adjuk meg p ∈ R értékét úgy, hogy u és w merőlegesek legyenek!

Megoldás.

1 · 2 · 1 + 2 · 1 · p+ 3 · 5 · 2 + 4 · (−3) · (−2) = 0 ⇒ 56 + 2p = 0 ⇒ p = −28

(d) Milyen tanulságot vonhatunk le az előzőekből?

Megoldás. Két vektor merőlegessége, valamint az általuk bezárt szög is függ attól, hogy milyen a skaláris
szorzat.

(e) Feĺırható-e az s skaláris szorzat az alábbi mátrix-vektor szorzat formájában?

s(x, y) = xT ·A · y =
(
x1 x2 x3 x4

)
·A ·


y1
y2
y3
y4


Ha igen, adjuk meg A-t!

Megoldás. Legyen

A =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 ,
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ekkor

xT ·A · y =
(
x1 x2 x3 x4

)
·


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 ·


y1
y2
y3
y4

 =
(
x1 x2 x3 x4

)
·


y1
2y2
3y3
4y4

 =

= x1y1 + 2x2y2 + 3x3y3 + 4x4y4 =

4∑
k=1

k · xk · yk = s(x, y)

Feladat 3. Legyen V = C[0, 1], vagyis a [0, 1] intervallumon értelmezett folytonos, valós értékű függvények tere.

(a) Mutassuk meg, hogy az alábbi integrál létezik, és skaláris szorzatot definiál-e a V vektortéren!

< f, g >=

∫ 1

0

f(x) · g(x)dx

Megoldás. Ha f, g ∈ C[0, 1] akkor f · g ∈ C[0, 1], vagyis létezik
∫ 1

0
f(x) · g(x)dx =< f, g >.

1. < f, f >=
∫ 1

0
(f(x))2dx ≥ 0, mert f2 sehol nem vehet fel negat́ıv értéket. Így a [0, 1] intervallumon

a görbe alatti (előjeles) terület is egy nemnegat́ıv szám lesz. Ez a terület akkor és csak akkor lehet
nulla, ha az azonosan nulla függvényt - ami a C[0, 1] vektortér nullvektora - integráljuk: < f, f >=
0 ⇔ f = 0[a,b]

2. < g, f >=
∫ 1

0
g(x) · f(x)dx =

∫ 1

0
f(x) · g(x)dx =< f, g >

3. < f + g, h >=
∫ 1

0
(f(x) + g(x)) · h(x)dx =

∫ 1

0
f(x) · h(x) + g(x) · h(x)dx =

∫ 1

0
f(x) · h(x)dx+

∫ 1

0
g(x) ·

h(x)dx =< f, h > + < g, h >

4. < λf, g >=
∫ 1

0
λf(x) · g(x)dx = λ

∫ 1

0
f(x) · g(x)dx = λ < f, g >

Vagyis a fenti integrál valóban skaláris szorzat a V vektortéren.

(b) Legyenek f, g : [0, 1] → R, f(x) = x, g(x) = 6x − 4. Igaz-e, hogy az f és g ”vektorok” merőlegesek
egymásra?

Megoldás. Adjuk meg f és g skaláris szorzatát, és ellenőrizzük, hogy nulla-e:

< f, g >=

∫ 1

0

f(x) · g(x)dx =

∫ 1

0

x(6x− 4)dx =

∫ 1

0

6x2 − 4x dx =
[6x3

3
− 4x2

2

]x=1

x=0
=

[
2x3 − 2x2

]x=1

x=0
=

=
(
2 · 13 − 2 · 12

)
−
(
2 · 03 − 2 · 02

)
= 2− 2− (0− 0) = 0

Mivel a skaláris szorzatuk nulla, f és g merőlegesek egymásra.

(c) Adjuk meg az f és g ”vektorok” normáját (hosszát) a származtatott norma seǵıtségével!

Megoldás.

∥f∥ =
√
< f, f > =

√∫ 1

0

x2dx =

√[x3

3

]x=1

x=0
=

√
1

3
− 0 =

1√
3

∥g∥ =
√
< g, g > =

√∫ 1

0

(6x− 4)(6x− 4)dx =

√∫ 1

0

36x2 − 48x+ 16dx =

√[
12x3 − 24x2 + 16x

]x=1

x=0
=

=
√

12− 24 + 16− (0− 0 + 0) = 2

Feladat 4. Legyen v =


1
−4
3
−2

 ∈ R4. Adjuk meg a v vektor 1-es, 2-es és ∞−normáját!
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Megoldás.

∥v∥1 =

4∑
k=1

|vk| = |1|+ |−4|+ |3|+ |−2| = 1 + 4 + 3 + 2 = 10

∥v∥2 =
( 4∑

k=1

|vk|2
) 1

2

=
√
12 + (−4)2 + 32 + (−2)2 =

√
1 + 16 + 9 + 4 =

√
30

∥v∥∞ =
4

max
k=1

|vk| = max{|1|, |−4|, |3|, |−2|} = 4

2.2 Szimmetrikus mátrixok

Feladat 5. Legyen A =

[
1 4
4 7

]
. Adjuk meg a sajátértékeit, sajátvektorait, sajátaltereit! Ellenőrizzük, hogy

teljesülnek A-ra a szimmetrikus mátrixok tulajdonságai, vagyis a sajátértékei valósak, a különböző sajátértékekhez
tartozó sajátvektorai merőlegesek, valamint A diagonalizálható mátrix!

Megoldás. Számoljuk ki a sajátértékeket először:

det
([

1− λ 4
4 7− λ

])
= (1− λ)(7− λ)− 4 · 4 = λ2 − 8λ− 9 = 0 ⇒ λ1 = −1 és λ2 = 9

Ezután számoljuk ki az egyes sajátértékekhez tartozó sajátvektorokat:

• λ1 = −1:[
1− (−1) 4

4 7− (−1)

](
v1
v2

)
=

[
2 4
4 8

](
v1
v2

)
=

(
0
0

)
⇒ 2v1 + 4v2 = 0

4v1 + 8v2 = 0
⇒ v1 = −2v2 = −2p

v2 = p ∈ R \ {0}

Innen a λ1 = −1-hez tartozó sajátvektorok:

v =

(
−2
1

)
· p , p ∈ R \ {0}

A λ1 = −1-hez tartozó sajátaltér:{(
−2
1

)
· p

∣∣∣∣∣ p ∈ R

}
= span{

(
−2
1

)
}

• λ2 = 9:[
1− 9 4
4 7− 9

](
w1

w2

)
=

[
−8 4
4 −2

](
w1

w2

)
⇒ −8w1 + 4w2 = 0

4w1 − 2w2 = 0
⇒ w2 = 2w1 = 2q

w1 = q ∈ R \ {0}

Tehát a λ = 2-höz tartozó sajátvektorok:

w =

(
1
2

)
· q , q ∈ R \ {0}

A λ1 = 2-höz tartozó sajátaltér: {(
1
2

)
· q

∣∣∣∣∣ q ∈ R

}
= span{

(
1
2

)
}

Látható, hogy A mindkét sajátértéke valós. Számoljuk ki a különböző sajátértékhez tartozó sajátvektorok skaláris
szorzatát:

< v,w >=<

(
−2
1

)
· p ,

(
1
2

)
· q >= −2pq + 2pq = 0
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Mivel ez nulla, az A különböző sajátértékekhez tartozó sajátvektorai merőlegesek.
Mindkét sajátértékre igaz, hogy egyszeres gyöke a karakterisztikus polinomnak, azaz az algebrai munliplicitása:

AM = 1. Mindkét sajátértékre teljesül az is, hogy a hozzá tartozó sajátalterek egydimenziósak, vagyis a geometriai
multiplicitása: GM = 1. Ez pedig azt jelenti, hogy λ1-re és λ2-re is igaz, hogy AM = GM , ı́gy A diagonalizálható.

Feladat 6. Adott egy skaláris szorzat R4-ben:

< x, y >= −2x1y3 − 2x3y1 − 2x2y2 + 3x3y3 + 4x4y4

Ez a skaláris szorzat feĺırható mátrix-vektor szorzat alakban:

< x, y >= xT ·A · y =
(
x1 x2 x3 x4

)
·A ·


y1
y2
y3
y4

 , A ∈ R4×4

(a) Adjuk meg az A mátrixot!

Megoldás. Az A mátrix i-edik sorában és j-edik oszlopában szereplő elem, vagyis aij pont az xixj

együtthatója lesz. Így a13 = −2, a31 = −2, a22 = −2, a33 = 3 és a44 = 4, az A többi eleme 0:∣∣∣∣∣∣∣∣
0 0 −2 0
0 −2 0 0
−2 0 3 0
0 0 0 4

∣∣∣∣∣∣∣∣
(b) Adjuk meg az A sajátértékeit és sajátvektorait!

Megoldás. Először kiszámoljuk a sajátértékeket:

det
( ∣∣∣∣∣∣∣∣

−λ 0 −2 0
0 −2− λ 0 0
−2 0 3− λ 0
0 0 0 4− λ

∣∣∣∣∣∣∣∣
)
= (4− λ) · det

( ∣∣∣∣∣∣
−λ 0 −2
0 −2− λ 0
−2 0 3− λ

∣∣∣∣∣∣
)
=

= (4− λ)(−2− λ)

[
−λ −2
−2 3− λ

]
= (4− λ)(−2− λ)(−λ(3− λ)− 4) =

= (λ+ 2)(λ+ 1)(λ− 4)2 = 0

A karakterisztikus polinom gyökei tehát: x1 = −2, x2 = −1, x3,4 = 4. Keressük meg a λ1 = −2-höz
tartozó sajátvektorokat:

−(−2) 0 −2 0
0 −2− (−2) 0 0
−2 0 3− (−2) 0
0 0 0 4− (−2)



u1

u2

u3

u4

 =


2 0 −2 0
0 0 0 0
−2 0 5 0
0 0 0 6



u1

u2

u3

u4

 =


0
0
0
0


Ezt az egyenletrendszert megoldhatjuk pl. Gauss-Jordan eliminációval:

2 0 −2 0 0
0 0 0 0 0
−2 0 5 0 0
0 0 0 6 0

 ∼ . . . ∼

 1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 ⇒
u1 = 0
u3 = 0
u4 = 0

Három változónk értéke adott, a negyedik - az u2 - értéke szabadon megválasztható:

u1 = 0
u2 = t
u3 = 0
u4 = 0

, t ∈ R \ {0}.
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Innen a λ1 = −2-höz tartozó sajátvektorok:

u =


0
1
0
0

 · t , t ∈ R \ {0}.

A többi sajátértékhez tartozó sajátvektorokat is hasonló módon kiszámolhatjuk. A λ2 = −1-hez tartozó
sajátvektorok:

v =


2
0
1
0

 · s , s ∈ R \ {0}.

A λ3,4 = 4-hez tartozó sajátvektorok:

w =


1
0
−2
0

 · p+


0
0
0
1

 · q , ahol

(
p
q

)
∈ R2 \ {

(
0
0

)
}.

(c) Mutassuk meg, hogy teljesülnek A sajátértékeire és sajátvektoraira a szimmetrikus mátrixokra vonatkozó
tulajdonságok!

Megoldás.

• Láthatjuk, hogy mindegyik sajátérték valós szám;

• Ha a különböző sajátértékhez tartozó sajátvektorokat a ”szokásos” skaláris szorzatot használva összeszorozzuk,
nullát kapunk eredményül:

u · v = 0, u · w = 0, v · w = 0

• A λ1 = −2 és a λ2 = −1 sajátértékek esetén AM = GM = 1, mı́g a λ3,4 = 4 sajátértéknél AM =
GM = 2. Mivel az összes sajátértékre igaz, hogy AM = GM , ezért létezik sajátvektorokból álló bázis
R4-ben, ı́gy A diagonalizálható.

2.3 Komplex sajátérték-sajátvektor számı́tás

Feladat 7. Tekintsük a śıkbéli vektorok pozit́ıv irányú ϕ = 45◦-os elforgatását, mint lineáris transzformációt! Mik
lesznek ennek a transzformációnak a sajátértékei, sajátvektorai, sajátalterei?

Megoldás. Tudjuk azt, hogy nincs olyan śıkbéli vektor (a nullvektoron ḱıvül), amit 45◦-kal elforgatva önmagának
számszorosát kapjuk. Bőv́ıtsük ki a problémát úgy, hogy komplex sajátértékeket/sajátvektorokat is megengedünk!

A transzformáció mátrixa:

A =

[
cos (45◦) − sin (45◦)
sin (45◦) cos (45◦)

]
=

[√
2
2 −

√
2
2

√
2
2

√
2
2

]

Számoljuk ki a sajátértékeit:

det
([√

2
2 − λ −

√
2
2

√
2
2

√
2
2 − λ

])
= (

√
2

2
− λ)2 + (

√
2

2
)2 = λ2 −

√
2λ+ 1 = 0

Innen a megoldás:

λ1,2 =

√
2 +±

√
2− 4

2
=

√
2±

√
−2

2
=

√
2±

√
2i

2

Számoljuk ki az egyes sajátértékekhez tartozó sajátvektorokat is:
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• λ1 =

√
2 +

√
2i

2
:


√
2

2
− (

√
2 +

√
2i

2
) −

√
2

2√
2

2

√
2

2
− (

√
2 +

√
2i

2
)


v1

v2

 =

−
√
2

2
i −

√
2

2√
2

2
−
√
2

2
i


v1

v2

 =

0

0



Ha beszorozzuk mindkét egyenletet
√
2-vel, a zavaró gyökös-törtes kifejezések eltűnnek, és az egyenletrend-

szerünk a következő lesz: [
−i −1
1 −i

](
v1
v2

)
=

(
0
0

)
ahol v1, v2 ∈ C, vagyis a komplex számok halmazán keressük a megoldásokat! Feĺırjuk az egyenletrendszer
kibőv́ıtett együtthatómátrixát, és Gauss eliminációval megoldjuk:(

−i −1 0
1 −i 0

)
∼

(
1 −i 0
−i −1 0

)
∼

(
1 −i 0
0 0 0

)
∼

(
1 −i 0

)
Innen

v1 − i · v2 = 0 ⇒ v1 = i · v2
Két változónk van, de csak egy valódi összefüggés, ezért az egyik változó értéke tetszőleges lehet:

v2 = z, v1 = i · z , z ∈ C \ {0}

Innen a λ1-hez tartozó sajátvektorok:

v =

(
i
1

)
· z , z ∈ C \ {0}

A λ1-hez tartozó sajátaltér: {(
i
1

)
· z

∣∣∣∣∣ z ∈ C

}
= span{

(
i
1

)
}

• λ2 =

√
2−

√
2i

2
: Az előzőhöz hasonlóan számolva megkaphatjuk a λ2-höz tartozó sajátvektorokat:

u =

(
−i
1

)
· w , w ∈ C \ {0}

valamint a kapcsolódó sajátalteret is:{(
−i
1

)
· w

∣∣∣∣∣ w ∈ C

}
= span{

(
−i
1

)
}

Fontos különbség a komplex sajátérték-sajátvektor számı́tásnál (a valós esethez képest), hogy a komplex sajátvektorok
szabad paraméterei (lásd z és w ebben a feladatban) tetszőleges komplex számok lehetnek.

Feladat 8. Adjuk meg az A =

[
4 1− 3i

1 + 3i 7

]
mátrix sajátértékeit, sajátvektorait!

Megoldás. Az előző feladathoz hasonlóan számolva a sajátértékek és sajátvektorok az alábbiak lesznek:

λ1 = 2 , v =

(
1− 3i
−2

)
· z , z ∈ C \ {0}

λ2 = 9 , u =

(
1− 3i

5

)
· w , w ∈ C \ {0}

Az utóbbi két feladat tanulsága, hogy valós mátrixoknak lehetnek komplex sajátértékei is, nemc-
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sak valósak, ugyanakkor komplex mátrixok sajátértékei sem feltétlenül komplex számok, hanem
lehetnek valósak is.
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