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1 Elméleti összefoglaló

Definition 1. Komplex számok három alakja

A komplex számokat ábrázolhatjuk a śıkon. A v́ızszintes tengely, az ún. valós tengely - jelölése: Re(z) - a valós számoknak
felel meg, mı́g a függőleges tengely az ún. képzetes tengely - jelölése: Im(z) -, melyen az i képzetes egység is van.

A komplex számoknak három alakját használjuk:

1. Algebrai alak:
z = a︸︷︷︸

valós rész

· 1 + b︸︷︷︸
képzetes rész

· i

Ezt értelmezhetjük úgy, hogy az 1 és az i ”lineáris kombinációja” maga a komplex szám, ı́gy tekinthető kétdimenziós
vektornak is, amelynek koordinátái rendre a és b. Persze a komplex számok jóval többet ”tudnak”, mint a śıkbéli
vektorok, hiszen ezek is számtestet alkotnak az összeadás és szorzás műveletekkel, csakúgy, mint a valós számok.

A fenti képletben az a ∈ R számot a z komplex szám valós részének, a b ∈ R számot a z képzetes részének h́ıvjuk,
és a következőképpen jelöljük:

Re(z) = a, Im(z) = b

2. Trigonometrikus alak:
z = r · (cos(ϕ) + i sin(ϕ))

Ahol r a komplex szám abszolút értéke (hossz), ϕ pedig a komplex szám argumentuma (valós Re tengely pozit́ıv
felével bezárt szög).

3. Exponenciális alak:
z = r · ei·ϕ

Ez az alak szintén a fent léırt hosszal és szöggel dolgozik.

Megjegyzés 1. Az utóbbi két alak (a trigonometrikus és az exponenciális) valójában a komplex számśık vektorának
polárkoordinátás feĺırása, azaz hossza és szöge van. Mérnöki jelöléssel: r∠ϕ

Megjegyzés 2. Az exponenciális alak és a trigonometrikus alak egymásból származtatható az Euler-formulával:

ei·ϕ = cos(ϕ) + i · sin(ϕ).

Theorem 2. Komplex számok összege

Összeadni algebrai alakban érdemes, mert itt pontosan úgy számolunk, ahogy a valós számoknál megszoktuk:

z1 = a1 + b1i, z2 = a2 + b2i

z1 + z2 = (a1 + b1i) + (a2 + b2i) = a1 + b1i+ a2 + b2i = (a1 + a2) + (b1 + b2)i
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Theorem 3. Komplex számok szorzata

1. Algebrai alakban
z1 = a1 + b1i, z2 = a2 + b2i

z1z2 = (a1 + b1i)(a2 + b2i) = a1a2 + a1b2i+ a2b1i+ b1b2 i2︸︷︷︸
−1

= (a1a2 − b1b2) + (a1b2 + a2b1)i

Mindenkit mindenkivel összeszorzunk.

2. Trigonometrikus alakban:

z1 = r1(cos(ϕ1) + i sin(ϕ1)), z2 = r2(cos(ϕ2) + i sin(ϕ2))

z1z2 = r1r2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))

Hosszak szorzódnak, szögek összeadódnak.

3. Exponenciális alakban:
z1 = r1e

iϕ1 z2 = r2e
iϕ2

z1z2 = r1e
iϕ1r2e

iϕ2 = r1r2e
i(ϕ1+ϕ2)

Hosszak szorzódnak, szögek összeadódnak.

Theorem 4. Komplex számok hatványa

1. Trigonometrikus alakban:
z = r(cos(ϕ) + i sin(ϕ))

zn = rn(cos(nϕ) + i sin(nϕ))

Hossz hatványozódik, szög n-szeres lesz.

2. Exponenciális alakban:
z = reiϕ

zn = rneinϕ

Hossz hatványozódik, szög n-szeres lesz.

Theorem 5. Komplex számok n. gyöke

Egy komplex számnak pontosan n db n. gyöke van a komplex számok halmazán.

1. Trigonometrikus alakban:
z = r · (cos(ϕ) + i sin(ϕ))

n
√
z = n

√
r ·

(
cos

(
ϕ+ k2π

n

)
+ i sin

(
ϕ+ k2π

n

))
, k = 0, ..., n− 1

A hosszból n. gyököt vonunk (valós számokon értelmezett gyökvonással!), a szöget n-nel osztjuk és figyelembe vesszük
a szögek periódusát, azaz k-szor elforgatjuk.

2. Exponenciális alakban:
z = r · eiϕ

n
√
z = n

√
r · ei

ϕ+k2π
n , k = 0, ..., n− 1

Az n. gyökök hossza az eredeti hossz n. (valós) gyöke lesz, a szög n-nel osztódik és figyelembe vesszük a szögek
periódusát, azaz k-szor elforgatjuk.

Definition 6. Egységgyökök

A zn − 1 = 0 egyenlet megoldásait az n-edik komplex egységgyököknek nevezzük. Alakjuk a következő:

εk =
n
√
1 = cos

(
2kπ

n

)
+ i · sin

(
2kπ

n

)
, k = 0, 1, ..., n-1

Megjegyzés 3. Láthatjuk, hogy n-edik egységgyökből pontosan n db van.

Definition 7. Primit́ıv egységgyökök

Azon εk n-edik komplex egységgyököket, melyek 0, 1., ..., n − 1. hatványai előálĺıtják a többi egységggyököt, primit́ıv
egységgyököknek h́ıvjuk.

Megjegyzés 4. Egy εk egységgyök akkor és csak akkor primit́ıv egységgyök, ha k és n relat́ıv pŕımek, vagyis (k, n) = 1.
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Megjegyzés 5. Az előző megjegyzésben szereplő feltétel, vagyis, hogy k és n relat́ıv pŕımek azt is jelenti, hogy εnk = 1
ahol n a legkisebb pozit́ıv hatvány, amire ez igaz lesz!

Theorem 8. Algebra alaptétele

Minden n-edfokú polinomnak n db gyöke van a komplex számok halmazán. (Ez már tartalmazza a valós gyököket is:
ezek azok a komplex gyökök, melyek képzetes része 0.)

Proposition 9. Valós együtthatós egyenletek gyökei

Adott egy p(x) =
n∑

k=0

akx
k polinom, mely valós együtthatós, azaz ∀k : ak ∈ R. Ekkor a p(x) gyökei vagy valósak, vagy ha

nem valósak, akkor a komplex konjugáltjuk is gyöke a polinomnak.

Megjegyzés 6. Egy n = 2m+1-edfokú (m ∈ N) valós együtthatós polinomnak legalább egy valós gyöke mindenféleképpen
kell legyen!

Megjegyzés 7. Egy másodfokú valós együtthatós polinom gyökeire igazak a következők:

D = b2 − 4ac > 0 → x1, x2 ∈ R

D = b2 − 4ac = 0 → x1 = x2 és x1 ∈ R

D = b2 − 4ac < 0 → x1, x2 ∈ C és x̄1 = x2.
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2 Feladatok

Feladat 1. Adott z1 = 2
(
cos(120◦) + i · sin(120◦)

)
és z2 = 2

(
cos(330◦) + i · sin(330◦)

)
. Adjuk meg az alábbi

műveletek eredményét trigonometrikus és algebrai alakban is!

a) z1 · z2

Megoldás. Szorzásnál a hosszakat összeszorozzuk, a szögeket összeadjuk:

z1 · z2 = 2
(
cos(120◦) + i · sin(120◦)

)
· 2
(
cos(330◦) + i · sin(330◦)

)
=

= 2 · 2
(
cos(120 + 330◦) + i · sin(120 + 330◦)

)
=

= 4
(
cos(450◦) + i · sin(450◦)

)
=

= 4
(
cos(90◦) + i · sin(90◦)

)
=

= 4i

b)
z1
z2

Megoldás. Osztásnál a hosszak hányadosát vesszük, a szögeket kivonjuk:

z1
z2

=
2
(
cos(120◦) + i · sin(120◦)

)
2
(
cos(330◦) + i · sin(330◦)

) =

= cos(−210◦) + i · sin(−210◦) =

= cos(150◦) + i · sin(150◦) =

= −
√
3

2
+ i

1

2
.

c) z51

Megoldás. Hatványozásnál a hosszat hatványozzuk, a szöget a hatvánnyal szorozzuk:

z5 =
(
2
(
cos(120◦) + i · sin(120◦)

))5
=

= 25
(
cos(5 · 120◦) + i · sin(5 · 120◦)

)
=

= 32
(
cos(600◦) + i · sin(600◦)

)
=

= 32
(
cos(240◦) + i · sin(240◦)

)
=

= 32
(
− 1

2
− i

√
3

2

)
=

= −16− 16
√
3 · i.

Az alábbi ábrán látható mind az 5 hatványa z1-nek. Észrevehető, hogy ha folytonosan ábrázolnánk a
hatványokat, akkor egy spirált kapnánk. (Kössük össze egy görbével z1-et z2-vel, majd z2-t z3-mal és ı́gy
tovább.)
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Feladat 2. Adjuk meg az alábbi, exponenciális alakban megadott komplex számok trigonometrikus és algebrai
alakjait: ei

π
2 , ei

π
4 , ei

π
6 , ei

π
3 !

Megoldás. Az Euler formulát használjuk:

z1 = ei
π
2 = cos

(π
2

)
+ i · sin

(π
2

)
= i

z2 = ei
π
4 = cos

(π
4

)
+ i · sin

(π
4

)
=

√
2

2
+

√
2

2
i

z3 = ei
π
6 = cos

(π
6

)
+ i · sin

(π
6

)
=

√
3

2
+

1

2
i

z4 = ei
π
3 = cos

(π
3

)
+ i · sin

(π
3

)
=

1

2
+

√
3

2
i

A fenti komplex számok a komplex számśıkon a következőképpen néznek ki:

−1

−i

1

i z1 = i

z2 =
√
2
2 (1 + i)

z3 = 1
2 (
√
3 + i)

z4 = 1
2 (1 + i ·

√
3)

Re

Im

Feladat 3. Végezzük el az alábbi műveleteket exponenciális alakban, ha z1 =
√
2 · eiπ

4 és z2 = ei
π
2 ! Adjuk meg az
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eredményeket trigonometrikus és algebrai alakban is!

a) z1 · z2

Megoldás.

z3 = z1 · z2 =
√
2ei

π
4 · eiπ

2 =
√
2ei

π
4 +iπ

2 =
√
2ei

3π
4 =

=
√
2

(
cos

(
3π

4

)
+ i · sin

(
3π

4

))
=

=
√
2(− 1√

2
+

1√
2
i) = −1 + i.

b)
z2
z1

Megoldás.

z4 =
z2
z1

=
ei

π
2

√
2ei

π
4

=
1√
2
ei

π
2 −iπ

4 =
1√
2
ei

π
4 =

=
1√
2

(
cos
(π
4

)
+ i · sin

(π
4

))
=

=
1√
2

(
1√
2
+

1√
2
i

)
=

1

2
+

1

2
i

A komplex számśıkon ábrázoljuk a z1, z2, z3 és z4 számokat:

−1 −0.5 0.5 1

0.5

1 z1z2z3

z4

Re

Im

6



Feladat 4. Írjuk fel a z = 2i− 2 komplex szám exponenciális és trigonometrikus alakját!

Megoldás.

z = 2i− 2 = −2 + 2i → r =
√
(−2)2 + 22 = 2

√
2 , ϕ = arctg(

2

−2
) + π = arctg(−1) + π = −π

4
+ π =

3π

4

z = 2
√
2

(
cos

(
3π

4

)
+ i · sin

(
3π

4

))
= 2

√
2 · ei 3π

4

Feladat 5. Adjuk meg a z = 2.5 · ei 4π
3 szám trigonometrikus és algebrai alakját!

Megoldás.

z = 2.5 · ei 4π
3 = 2.5

(
cos

(
4π

3

)
+ i · sin

(
4π

3

))
=

= 2.5
(
− 1

2
− i ·

√
3

2

)
= −1.25− 1.25

√
3 · i

Feladat 6. Adjuk meg a z = 2 + 2i komplex szám 3. gyökeit trigonometrikus alakban!

Megoldás. Először át́ırjuk a komplex számot algebrai alakból trigonometrikus alakba:

z = 2 + 2i =
√
8
(
cos(45◦) + i · sin(45◦)

)
Egy komplex számnak pontosan n db n-edik gyöke van, melyeket az alábbiak szerint adhatunk meg:

z = r

(
cos(φ) + i · sin(φ)

)
→ wk = n

√
z = n

√
r

(
cos

(
φ+ 2kπ

n

)
+ i · sin

(
φ+ 2kπ

n

))
, k = 0, . . . , n-1.

Ebből megadhatjuk a komplex számunk 3. gyökeit:

w0 =
√
2
(
cos(15◦) + i · sin(15◦)

)
w1 =

√
2
(
cos(135◦) + i · sin(135◦)

)
w2 =

√
2
(
cos(255◦) + i · sin(255◦)

)
Ellenőrzésképpen, a kapott gyököket harmadik hatványra emelve valóban visszakapjuk z-t:

w3
0 =

√
23
(
cos(3 · 15◦) + i · sin(3 · 15◦)

)
=

√
8
(
cos(45◦) + i · sin(45◦)

)
=

√
8
(
cos(45◦) + i · sin(45◦)

)
= z

w3
1 =

√
23
(
cos(3 · 135◦) + i · sin(3 · 135◦)

)
=

√
8
(
cos(405◦) + i · sin(405◦)

)
=

√
8
(
cos(45◦) + i · sin(45◦)

)
= z

w3
2 =

√
23
(
cos(3 · 255◦) + i · sin(3 · 255◦)

)
=

√
8
(
cos(765◦) + i · sin(765◦)

)
=

√
8
(
cos(45◦) + i · sin(45◦)

)
= z

Az alábbi ábra mutatja a harmadik gyökök struktúráját:
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Feladat 7. Adjuk meg a z = −1 komplex szám ötödik gyökeit!

Megoldás.

z = cos(π) + i · sin(π) → wk = 5
√
z =

5
√
1

(
cos

(
π + 2kπ

5

)
+ i · sin

(
π + 2kπ

5

))
, k = 0, 1, 2, 3, 4

w0 = cos
(π
5

)
+ i · sin

(π
5

)
w1 = cos

(
3π

5

)
+ i · sin

(
3π

5

)
w2 = cos

(
5π

5

)
+ i · sin

(
5π

5

)
w3 = cos

(
7π

5

)
+ i · sin

(
7π

5

)
w4 = cos

(
9π

5

)
+ i · sin

(
9π

5

)

Ezen gyökök ábrázolása a komplex számśıkon:
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Feladat 8. Adjuk meg a z = 8i komplex szám exponenciális alakját és vonjunk 3. gyököt ebben az alakban!
Ábrázoljuk a megoldásokat!

Megoldás. Először nézzük az exponenciális alakot:

z = 8i = 8ei
π
2 .

Ezután vonjunk gyököt az alábbi formula szerint:

z = reiφ → wk = n
√
z = n

√
re

i

(
φ+2kπ

n

)
, k = 0, 1, 2, ..., n-1

Az eredmény tehát:

z = 8ei
π
2 → wk = 3

√
z =

3
√
8e

i

(
π
2

+2kπ

3

)
, k = 0, 1, 2

w0 = 2ei
π
2
3 = 2ei

π
6

w1 = 2ei
π
2

+2π

3 = 2ei
5π
6

w2 = 2ei
π
2

+4π

3 = 2ei
9π
6

Ezen gyökök ábrázolása pedig a következő ábrán található:
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Feladat 9. Vonjunk negyedik gyököt a z = i−1 komplex számból exponenciális alakban! Ábrázoljuk a megoldásokat!

Megoldás.

wk = 4
√
i− 1 = 4

√√√√√
2

(
cos

(
3π

4

)
+ i · sin

(
3π

4

))
=

4

√√
2e

3π
4·4+k 2π

4 , k = 0, 1, 2, 3.

w0 =
8
√
2e

3π
16

w1 =
8
√
2e

3π
16 +π

2

w2 =
8
√
2e

3π
16 +π

w3 =
8
√
2e

3π
16 + 3π

2

A fenti gyökök ábrázolása a komplex számśıkon:

−1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

1.5

w0

w1

w2

w3

Re

Im

Tipp a rajzoláshoz: A w0 felrajzolása után csak meg kell nézni, hogy a k index mekkora szöget ad hozzá

pluszban az egyes gyökökhöz, és annyival elforgatni w0-t. Ez jelen esetben
π

2
vagy 90◦.

Feladat 10. Adjuk meg a 12. egységgyököket és primit́ıv 12. egységgyököket exponenciális alakban!

Megoldás.

εk =
12
√
1 · ei0 = eik

2π
12 = eik

π
6 , k = 0, 1, 2, ..., 11

Ezekből azon εk-k lesznek primit́ıv egységgyökök, melyekre (k, 12) = 1, azaz k és 12 relat́ıv pŕımek, vagyis a
k és 12 legnagyobb közös osztója 1:

εk = eik
2π
12 = eik

π
6 , k = 1, 5, 7, 11.

Feladat 11. Adjuk meg a primit́ıv 9. egységgyökök exponenciális alakját!
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Megoldás. Előzőekhez hasonlóan a k. egységgyök megadható a következőképp:

εk = eik
2π
9 , k = 0, 1, 2, ..., 8

Ezekből kiválasztjuk azon k-kat, melyekre (k, 9) = 1, vagyis k = 1, 2, 4, 5, 7, 8.
A 9-edik egységgyökök ábrázolása a komplex számśıkon (csak azokhoz húztunk egyenest, amelyek primit́ıvek):
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ε8
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Feladat 12. Vázoljuk fel az f(t) = e1+i2πt, t ∈ [0,∞) görbét a komplex śıkon!

Megoldás. Előszöris nézzük a kifejezést:

f(t) = e1+i2πt = e1ei2πt = e

(
cos(2πt) + i · sin(2πt)

)

Jól látható, hogy ez egy e sugarú kör lesz, amin a t függvényében ”körbejárunk”. t = 0 esetén e + 0i-ből
indulunk, majd minden egyes egész t-re visszaérkezünk ugyanide.
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Feladat 13. Számoljuk ki az alábbi komplex kifejezés értékét:

(
√
3 + i)4

(
cos
(π
2

)
+ i · sin

(π
2

))
ei150

◦ − 4(eiπ)6 + i9

2 + 5i

Megoldás. A számláló első tagja három komplex szám szorzatából áll. Alaḱıtsuk át mindegyiket exponenciális
alakba, és ahol szükséges, végezzük el a fok-radián átváltást is! Az első komplex számot átváltjuk exponenciális
alakba:

(
√
3 + i)4 =

(
2

(
cos
(π
6

)
+ i · sin

(π
6

)))4

= 16

(
cos

(
4π

6

)
+ i · sin

(
4π

6

))
= 16ei

4π
6 = 16ei

2π
3 .

A másodikat is:
cos
(π
2

)
+ i · sin

(π
2

)
= ei

π
2

A harmadiknál a fokot átváltjuk radiánba:
ei150

◦
= ei

5π
6 .

Ezeket összeszorozzuk:

16ei
2π
3 · eiπ

2 · ei 5π
6 = 16ei

2π
3 +iπ

2 +i 5π
6 = 16ei

12π
6 = 16ei2π = 16ei0 = 16 · 1 = 16

Újra feĺırjuk a törtet, és mivel a számlálóban szereplő tagokat össze szeretnénk adni, ezeket algebrai alakra hozzuk,
majd elvégezzük az összeadást:

16− 4(eiπ)6 + i9

2 + 5i
=

16− 4 · (−1)6 + i8 · i
2 + 5i

=
16− 4 + 1 · i

2 + 5i
=

12 + i

2 + 5i

Végül bőv́ıtjük a törtet a nevező konjugáltjával, ezzel eltüntetjük az i-t a nevezőből:

12 + i

2 + 5i
=

12 + i

2 + 5i
· 2− 5i

2− 5i
=

(12 + i)(2− 5i)

22 − (5i)2
=

24− 60i+ 2i− 5i2

4 + 25
=

24− 60i+ 2i+ 5

29
=

29− 58i

29
= 1− 2i.

Feladat 14. Oldjuk meg az alábbi másodfokú egyenleteket és ellenőrizzük a megoldásunkat helyetteśıtéssel!

a) z2 + 4z + 3 = 0

12



Megoldás.

z1,2 =
−4±

√
16− 12

2
=

−4± 2

2
= −2± 1

Ellenőrzés:

z1 = −3 → (−3)2 + 4(−3) + 3 = 0

z2 = −1 → (−1)2 + 4(−1) + 3 = 0 .

Megjegyzés: Mivel valós együtthatós a másodfokú polinom, és D = 16− 12 = 4 > 0, ezért két valós gyöke
van.

b) z2 + 4z + 4 = 0

Megoldás.

z1,2 =
−4±

√
16− 16

2
=

−4± 0

2
= −2

Ellenőrzés:

z1,2 = −2 → (−2)2 + 4(−2) + 4 = 0

Megjegyzés: Mivel valós együtthatós a másodfokú polinom, és D = 16 − 16 = 0, ezért egy db kétszeres
valós gyöke van.

c) z2 + 4z + 5 = 0

Megoldás.

z1,2 =
−4±

√
16− 20

2
=

−4± 2i

2
= −2± i

Ellenőrzés:

z1 = −2 + i → (−2 + i)2 + 4(−2 + i) + 5 = 4− 4i− 1− 8 + 4i+ 5 = 0

z2 = −2− i → (−2− i)2 + 4(−2− i) + 5 = 4 + 4i− 1− 8− 4i+ 5 = 0

Megjegyzés: Mivel valós együtthatós a másodfokú polinom, és D = 16 − 20 = −4 < 0, ezért a két gyöke
egy komplex konjugált gyökpár.

d) z2 + (−3− i)z + 2 + 2i = 0

Megoldás.

z1,2 =
−(−3− i)±

√
(−3− i)2 − 4(2 + 2i)

2
=

3 + i±
√
9 + 6i− 1− 8− 8i

2
=

3 + i±
√
−2i

2
.

Mielőtt továbbmennénk, nézzük meg, hogy mennyi a w0,1 =
√
−2i =

√√√√2

(
cos
(
3π
2

)
+ i · sin

(
3π
2

))
! Ezt

kétféleképpen is megtehetjük.
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Az egyik út, hogy trigonometrikus alakban 2. gyököt vonunk:

w0,1 =
√
2

(
cos

( 3π
2 + 2kπ

2

)
+ i · sin

( 3π
2 + 2kπ

2

))
=

√
2

(
cos

(
3π

4
+ kπ

)
+ i · sin

(
3π

4
+ kπ

))

w0 =
√
2

(
cos

(
3π

4

)
+ i · sin

(
3π

4

))
= −1 + i

w1 =
√
2

(
cos

(
7π

4

)
+ i · sin

(
7π

4

))
= 1− i.

A másik módszer, hogy algebrai alakban számolunk. Legyen w = x + yi a −2i második gyöke. Ekkor egy
komplex egyenletet kapunk:

(x+ yi)2 = −2i, x, y ∈ R

Hajtsuk végre a négyzetre emelést:
x2 + 2xyi+ y2i2 = −2i

Felhasználva, hogy i2 = −1, az egyenlet mindkét oldalán külöńıtsük el a valós és a képzetes részeket:

x2 − y2 + 2xy · i = 0− 2 · i

Két komplex szám akkor egyenlő, ha mind a valós, mind a képzetes részeik megegyeznek, ezért a komplex
egyenletünk két valós egyenletre ”esik szét”:

x2 − y2 = 0

2xy = −2

Innen
I. x2 = y2

II. xy = −1
⇒ y = ±x

y = − 1
x

⇒ ±x = − 1

x
⇒ x = ± 1

x

Ezt beszorozva x-szel, az alábbi egyenletet kapjuk:

x2 = ±1 .

Mivel x ∈ R, ezért a jobb oldalon csak a +1-nek van értelme:

x2 = 1 ⇒ x = ±1

Visszahelyetteśıtve a II. egyenletbe (xy = −1), a két lehetséges megoldás pontosan ugyanaz lesz, mint amit
az előző módszerrel kaptunk:

x = 1 , y = −1
x = −1 , y = 1

⇒ w0 = −1 + i
w1 = 1− i

Ha ezzel a módszerrel számolunk, érdemes ellenőriznünk a megoldásokat, hogy az esetleges hamis gyököket
kiszűrjük:

w2
0 = (−1 + i)2 = (−1)2 − 2i− i2 = −2i

w2
1 = (1− i)2 = 12 − 2i+ (−i)2 = −2i

Tehát mindkét megoldás jó.

Ezután pedig befejezhetjük a z1,2 számolását:

z1 =
3 + i+ 1− i

2
=

4

2
= 2

z2 =
3 + i− 1 + i

2
=

2 + 2i

2
= 1 + i.
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Ellenőrzés:

z1 = 2 → 22 + (−3− i) · 2 + 2 + 2i = 4− 6− 2i+ 2 + 2i = 0

z2 = 1 + i → (1 + i)2 + (−3− i)(1 + i) + 2 + 2i = 1 + 2i− 1− 3− 3i− i+ 1 + 2 + 2i = 0

Feladat 15. Írjuk fel azt a harmadfokú, valós együtthatós polinomot, melynek két gyöke −4 és 2 + 3i!

Megoldás. Az algebra alaptétele szerint egy harmadfokú polinomnak három gyöke van a komplex számok hal-
mazán. Továbbá, ha valósak az együtthatók, akkor tudjuk, hogy egy gyök vagy valós szám, vagy ha komplex szám,
akkor a komplex szám konjugált párja is gyöke lesz a polinomnak.

Tehát, ha a 2+3i gyök, akkor biztos, hogy a 2−3i is gyök lesz. Ezzel megvan a három gyökünk, és feĺırhatjuk
a gyöktényezős alakot:

p(x) =
(
x− (−4)

)(
x− (2 + 3i)

)(
x− (2− 3i)

)
= (x+ 4)(x− 2− 3i)(x− 2 + 3i)

Ezután már csak fel kell bontanunk a zárójeleket:

p(x) = (x+ 4)(x− 2− 3i)(x− 2 + 3i) = (x+ 4)
(
(x− 2)− 3i

)(
(x− 2) + 3i

)
= (x+ 4)

(
(x− 2)2 − (3i)2

)
=

= (x+ 4)(x2 − 4x+ 4 + 9) = (x+ 4)(x2 − 4x+ 13) = x3 − 4x2 + 13x+ 4x2 − 16x+ 52 =

= x3 − 3x+ 52

Feladat 16. Adott a p(x) = x7 + 4x3 + 5x+ 10 polinom.

a) Hány gyöke van a p(x) polinomnak a komplex számok halmazán, ha a többszörös gyököket többszörösen
számoljuk?

Megoldás. Az algebra alaptétele szerint pontosan 7 gyöke van a p(x) polinomnak.

b) Legalább hány valós gyöke van a fenti p(x) polinomnak, ha a többszörös gyököket többszörösen számoljuk?

Megoldás. Láthatjuk, hogy p(x) minden együtthatója valós, tehát, ha egy komplex szám a gyöke a poli-
nomnak, akkor annak a komplex számnak a komplex konjugált párja is. Tehát, ha páratlan fokú polinomunk
van, akkor minimum egy valós gyöke biztos, hogy lesz!

c) Pontosan hány valós gyöke van a fenti p(x) polinomnak, ha a többszörös gyököket többszörösen számoljuk?

Megoldás. Nézzük a p(x) polinom x szerinti deriváltját:

dp(x)

dx
= 7x6 + 12x2 + 5 > 0, ∀x ∈ R

Mivel minden valós számra a p(x) polinom deriváltja pozit́ıv, ezért p(x) szigorúan monoton növő. Ebből
kifolyólag csupán egy valós gyöke van a polinomnak.

Egy kis szerencsével egyébként, ha kipróbáljuk a (−1)-et, mint gyököt, arra jutunk, hogy az valóban gyöke
a polinomnak: p(−1) = (−1)7 + 4(−1)3 + 5(−1) + 10 = 0.

Feladat 17. Hány valós gyöke van a p(x) = (2x − 1)(x2 − 2)(5x2 + 1) polinomnak? Keressük meg az összes
gyököt!

Megoldás. Ha felbontjuk a zárójeleket, akkor a legmagasabb fokú tag az ötödik hatványon szerepel, vagyis
ötödfokú a polinom, ı́gy a komplex számok halmazán 5 db gyöke van. Mivel valós együtthatós, a gyökei komplex
konjugált gyökpárok, valamint valós számok lehetnek. Ennek következtében az öt gyöke közül legalább egynek
mindenképpen valósnak kell lennie.

Látható, hogy p(x) három tényező szorzata, melyek mindegyike egy-egy polinom, ezért p(x) gyökei ennek a
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három polinomnak a gyökei lesznek:

p1(x) = 2x− 1 = 0 → x1 =
1

2

p2(x) = x2 − 2 = 0 → x2,3 = ±
√
2

p3(x) = 5x2 + 1 = 0 → x4,5 = ± 1√
5
· i.

A fentiek alapján három darab egyszeres valós gyöke van p(x)-nek.

Feladat 18. Írjuk fel azt a legalacsonyabb fokú, valós együtthatós polinomot, amelynek gyökei x1 = 5 és x2 =
−2 + 2i!

Megoldás. Valós együtthatós polinomot keresünk, ı́gy ha x2 gyöke a polinomnak, akkor x3 = x2 = −2 − 2i
is (komplex konjugált gyökpár). Ahhoz, hogy a lehető legkisebb fokú legyen a polinom, mindegyiknek egysz-
eres gyöknek kell lennie, tehát harmadfokú polinomot keresünk, melynek a gyökeit már ismerjük. Írjuk fel a
gyöktényezős alakot, majd bontsuk fel a zárójeleket:

p(x) = (x− 5)
(
x− (−2 + 2i)

)(
x− (−2− 2i)

)
= (x− 5)

(
x+ 2− 2i

)(
x+ 2 + 2i

)
=

= (x− 5)
(
(x+ 2)− 2i

)(
(x+ 2) + 2i

)
= (x− 5)

(
(x+ 2)2 − (2i)2

)
=

= (x− 5)(x2 + 4x+ 4 + 4) = (x− 5)(x2 + 4x+ 8) = x3 + 4x2 + 8x− 5x2 − 20x− 40 =

= x3 − x2 − 12x− 40.

Feladat 19. Hány nem valós gyöke van a p(x) = x5 − 2x4 + 2x3 polinomnak?

Megoldás. Az x3 kiemelhető: p(x) = x3(x2 − 2x + 2). Az x = 0 háromszoros valós gyöke p(x)-nek. Mivel az
x2 − 2x + 2 diszkriminánsa negat́ıv (D = −4), ı́gy itt komplex konjugált gyökpárt kapunk. Ezért p(x)-nek 2 db
nem valós gyöke van.
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