
LinAlgDM II. 1-3. gyakorlat: Lineáris leképezések, képtér, magtér,

sajátérték, sajátvektor

2023. március 9-10.

1 Elméleti összefoglaló

Definition 1. (Homogén) lineáris leképezés

Legyenek V és W vektorterek. Az L : V → W függvényt homogén lineáris leképezésnek, vagy röviden lineáris
leképezésnek nevezzük, ha teljeśıti az alábbi két tulajdonságot:

(a) (linearitás) minden u, v ∈ V esetén L(u+ v) = L(u) + L(v),

(b) (homogenitás) minden u ∈ V és minden λ ∈ R esetén L(λu) = λL(u).

Két fontos elnevezés: Ha w = L(u), akkor w az u vektor (L melletti) képe, mı́g u a w vektor (L melletti) őse (vagy
ősképe).

•

Megjegyzés 1. A lineáris leképezés és a homogén lineáris leképezés kifejezések pontosan ugyanazt jelentik! Ha a
defińıcióban szereplő két tulajdonság közül csak az egyik teljesül, L-et sem homogén lineáris leképezésnek, sem lineáris
leképezésnek nem nevezhetjük!

Megjegyzés 2. A defińıcióban szereplő két feltétel egy feltételként is léırható:

(a,b) (homogenitás + linearitás) minden u, v ∈ V és minden λ ∈ R esetén L(u+ λv) = L(u) + λL(v).

Megjegyzés 3. Ha az értelmezési tartomány és az értékkészlet ugyanaz a vektortér (V = W ), akkor az L : V → V
(homogén) lineáris leképezést (homogén) lineáris transzformációnak nevezzük.

Megjegyzés 4. Gyakran előfordul, hogy V vagy W a śıkkal vagy a térrel egyenlő. Ennek kapcsán hangsúlyozni szeretnénk
a vektortereknél tanultakat: R2 és R3 vektorait mindig helyvektorként, vagyis origóból induló vektorként értelmezzük!

Theorem 2. Két (homogén) lineáris leképezés összetett függvénye

Két tetszőleges (homogén) lineáris leképezésből képzett összetett függvény – ha létezik –, szintén (homogén) lineáris
leképezés.

Egy L : V → W (homogén) lineáris leképezés további fontos tulajdonságai:

1. Nullvektor képe nullvektor: Jelölje 0v ∈ V és 0w ∈ W a V és W vektorterek összeadásra vonatkoztatott
egységelemeit (azaz nullvektorait). Ekkor L(0v) = 0w .

2. Kivonás: L(u− v) = L(u)− L(v) mivel L(u− v) = L
(
u+ (−1)v

)
= L(u) + (−1)L(v).

3. Lineáris kombinációt lineáris kombinációba visz át: L(c1v1 + · · ·+ cmvm) = c1L(v1) + · · ·+ cmL(vm)

Definition 3. Képtér

Legyenek V és W vektorterek, L : V → W (homogén) lineáris leképezés. Azon W -beli vektorok összességét, amelyek
valamely V -beli vektor (L melletti) képei, az L leképezés képterének nevezzük. Jelölése: im(L). Vagyis:

im(L) =
{
y ∈ W

∣∣ ∃x ∈ V, y = L(x)
}
.

Megjegyzés 5. A defińıcióból adódóan az L leképezés képtere pontosan az L leképezés értékkészlete.

Megjegyzés 6. im(L) egy W -beli halmaz.
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Definition 4. Magtér

Legyenek V és W vektorterek, L : V → W (homogén) lineáris leképezés. Azon V -beli vektorok összességét, amelyek (L
melletti) képe a W vektortér nullvektora, az L leképezés magterének nevezzük. Jelölése: ker(L). Vagyis:

ker(L) =
{
x ∈ V

∣∣L(x) = 0W
}
.

Megjegyzés 7. ker(L) egy V -beli halmaz.

Theorem 5. Képtér, magtér alteret alkotnak

Legyenek V és W vektorterek, L : V → W (homogén) lineáris leképezés. Ekkor ker(L) alteret alkot V -ben, és im(L)
alteret alkot W -ben.

Megjegyzés 8. Alterekről tanultuk, hogy maguk is vektorteret alkotnak. Tehát ker(L) (a V -n értelmezett műveletekkel),
és im(L) (a W -n értelmezett műveletekkel) vektorteret alkotnak.

Theorem 6. Dimenziótétel

Legyenek V és W vektorterek, L : V → W (homogén) lineáris leképezés. Ekkor

dim(ker(L)) + dim(im(L)) = dim(V )

Megjegyzés 9. Ismétlés: Adott vektortér dimenziója a vektortér valamely bázisának az elemszáma. (Adott vektortérben
minden bázis ugyanannyi vektorból áll).

Megjegyzés 10. dim(V ) a kiindulási tér dimenziója, dim(im(L)) mutatja meg, hogy a leképezés ebből hány dimenziót
”tart meg” (vagyis mennyit sikerül ”átvinni” a képtérbe), mı́g dim(ker(L)) a leképezés során ”elvesztett” dimenziók
száma.

Definition 7. Sajátérték, sajátvektor

Legyen V vektortér, L : V → V (homogén) lineáris transzformáció. Azt a v ∈ V vektort, amelyre igaz, hogy

L(v) = λ · v, v ̸= 0

ahol λ ∈ R, az L transzformáció sajátvektorának nevezzük. Ekkor λ a v-hez tartozó sajátérték.

Megjegyzés 11. Az L sajátvektorai párhuzamosak a képükkel: v ∥ L(v), a nyújtás mértékét a λ határozza meg.

2 Feladatok: lineáris leképezések

Feladat 1. Legyen L a térbeli vektorok merőleges vet́ıtése az xy-śıkra: L : R3 → R2, L(

x
y
z

) =

(
x
y

)
. Igazoljuk,

hogy L lineáris leképezés!

Megoldás. Legyenek u =

u1

u2

u3

 és v =

v1
v2
v3

 térbeli vektorok, λ ∈ R. Ellenőrizzük a két tulajdonság tel-
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jesülését:

linearitás:

L(u+ v) = L(

u1

u2

u3

+

v1
v2
v3

) = L(

u1 + v1
u2 + v2
u3 + v3

) =

(
u1 + v1
u2 + v2

)

L(u) + L(v) = L(

u1

u2

u3

) + L(

v1
v2
v3

) =

(
u1

u2

)
+

(
v1
v2

)
=

(
u1 + v1
u2 + v2

)


= ✓

homogenitás:

L(λ · u) = L(λ ·

u1

u2

u3

) = L(

λ · u1

λ · u2

λ · u3

) =

(
λ · u1

λ · u2

)

λ · L(u) = λ · L(

u1

u2

u3

) = λ ·
(
u1

u2

)
=

(
λ · u1

λ · u2

)


= ✓

Mivel mindkét tulajdonságot teljeśıti, L lineáris leképezés.
Ha valaki jobban szeretné, a fenti két vizsgálatot egyszerre is elvégezheti Megjegyzés 2 alapján:

L(u+ λ · v) = L(

u1

u2

u3

+ λ ·

v1
v2
v3

) = L(

u1 + λ · v1
u2 + λ · v2
u3 + λ · v3

) =

(
u1 + λ · v1
u2 + λ · v2

)
L(u) + λ · L(v) =

(
u1

u2

)
+ λ ·

(
v1
v2

)
=

(
u1 + λ · v1
u2 + λ · v2

)
 = ✓

Mivel ez a feltétel teljesül, L lineáris leképezés.

Feladat 2. Legyen L a térbeli vektorok nyújtása/zsugoŕıtása: L : R3 → R3, L(

x
y
z

) = c ·

x
y
z

, ahol c

rögźıtett pozit́ıv szám (c > 1 esetén nyújtásról, 0 < c < 1 esetén zsugoŕıtásról beszélünk). Igazoljuk, hogy L
lineáris leképezés!

Megoldás. Tekintsük az u =

u1

u2

u3

 és v =

v1
v2
v3

 tetszőleges R3-beli vektorokat, és legyen λ ∈ R tetszőleges.

Ellenőrizzük a két tulajdonság teljesülését:

linearitás:

L(u+ v) = L(

u1

u2

u3

+

v1
v2
v3

) = L(

u1 + v1
u2 + v2
u3 + v3

) = c ·

u1 + v1
u2 + v2
u3 + v3


L(u) + L(v) = L(

u1

u2

u3

) + L(

v1
v2
v3

) = c ·

u1

u2

u3

+ c ·

v1
v2
v3

 = c ·

u1 + v1
u2 + v2
u3 + v3




= ✓

homogenitás:

L(λ · u) = L(λ ·

u1

u2

u3

) = L(

λ · u1

λ · u2

λ · u3

) = c ·

λ · u1

λ · u2

λ · u3

 = λ · c ·

u1

u2

u3


λ · L(u) = λ · L(

u1

u2

u3

) = λ · c ·

u1

u2

u3




= ✓

Mivel az összevont feltétel teljesül, L lineáris leképezés.

Feladat 3. Igazoljuk, hogy a térbeli vektorok tükrözése az origóra: L : R3 → R3, L(

x
y
z

) =

−x
−y
−z

 lineáris

leképezés!
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Megoldás. Lásd az előző feladat megoldását, ha c = −1.

Feladat 4. Legyen L : R2 → R2 a śıkbéli (hely)vektorok rögźıtett ϕ szöggel
pozit́ıv (óramutató járásával ellentétes) irányban való elforgatása az origó körül.
Ennek hozzárendelési szabálya a következőképpen adható meg:(

x′

y′

)
= L(

(
x
y

)
) =

(
x cos(ϕ)− y sin(ϕ)
x sin(ϕ) + y cos(ϕ)

)
Igazoljuk, hogy L lineáris leképezés!

Megoldás. A hozzárendelési szabály feĺırható mátrix-vektor szorzatként is:

L(

(
x
y

)
) =

(
x cos(ϕ)− y sin(ϕ)
x sin(ϕ) + y cos(ϕ)

)
=

[
cosϕ − sinϕ
sinϕ cosϕ

](
x
y

)
= A ·

(
x
y

)
Mivel ϕ rögźıtett (vagyis állandó), ezért cos(ϕ) és sin(ϕ) is konstansok. Ez azt jelenti, hogy A egy (2× 2)-es

valós elemű mátrix.
Innentől a feladatot visszavezetjük egy sokkal általánosabb problémára: ha egy vektortérből vektortérbe képező

függvény hozzárendelési szabálya mátrix-vektor szorzat formájában adott, akkor vajon lineáris leképezés-e?

Legyen L : V → W , L(v) = A · v, ahol V és W vektorterek. Vajon lineáris leképezés-e L?
Ennek megválaszolásához a linearitást és a homogenitást kell ellenőriznünk. Legyenek az u, v ∈ V vektorok és
λ ∈ R tetszőlegesek. Ekkor:

linearitás: L(u+ v) = A · (u+ v) = A · u+A · v = L(u) + L(v),

homogenitás: L(λu) = A · (λu) = λ (A · u) = λL(u).

A mátrixműveletek tulajdonságait felhasználva láthatjuk, hogy mindkét kritérium teljesül. Tehát a fenti módon
(egy mátrix és a változóvektor szorzataként) megadott függvények lineáris leképezések.

Kiegésźıtő anyag. De vajon miért ez a śıkbéli forgatás hozzárendelési szabálya?

Legyen az

(
x
y

)
vektor képe az

(
x′

y′

)
vektor:

(
x′

y′

)
= L(

(
x
y

)
). Írjuk fel az

(
x
y

)
vektort polárkoordinátás alakban:

(
x
y

)
=

(
r cos(α)
r sin(α)

)
, (1)

ahol r az

(
x
y

)
vektor hosszát, α pedig az x-tengely pozit́ıv felével bezárt szögét jelöli.

Írjuk fel az

(
x′

y′

)
képvektort is polárkoordinátás alakban:

(
x′

y′

)
=

(
r cos(α+ ϕ)
r sin(α+ ϕ)

)
(2)

Felhasználva az ismert trigonometrikus azonosságokat:

cos(α+ ϕ) = cos(α) cos(ϕ)− sin(α) sin(ϕ)

sin(α+ ϕ) = cos(α) sin(ϕ) + sin(α) cos(ϕ)

valamint az (1) és (2) összefüggéseket, megkapjuk a forgatás hozzárendelési szabályát:(
x′

y′

)
=

(
r cos(α) cos(ϕ)− r sin(α) sin(ϕ)
r cos(α) sin(ϕ) + r sin(α) cos(ϕ)

)
=

(
x cos(ϕ)− y sin(ϕ)
x sin(ϕ) + y cos(ϕ)

)
=

[
cosϕ − sinϕ
sinϕ cosϕ

](
x
y

)
.

Feladat 5. Igazoljuk, hogy az az L térbeli leképezés, amely először az origóra tükrözi, majd duplájára nyújtja a
vektorokat, lineáris leképezés! Adjuk meg a hozzárendelési szabályt is!
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Megoldás. Az előző példákban láthattuk, hogy a tükrözés és a nyújtás is lineáris leképezés. Az eme két
leképezésből képzett összetett függvény szintén lineáris leképezés lesz Tétel 2 szerint. A hozzárendelési szabályt
az összetett függvényeknél szokásos módon határozhatjuk meg:(

x
y

)
tükrözés−→

(
−x
−y

)
nyújtás−→ 2 ·

(
−x
−y

)
=

(
−2x
−2y

)
,

vagyis L(

(
x
y

)
) =

(
−2x
−2y

)
.

Feladat 6. Tekintsük az L : R3 → R2 leképezést, amelyre L(

x
y
z

) =

(
xy
z

)
. Lineáris leképezés-e L ?

Megoldás. Legyenek u =

u1

u2

u3

, v =

v1
v2
v3

 ∈ R3 valamint λ ∈ R tetszőlegesek. Ellenőrizzük a homogenitást!

Ennek bal oldala:

L(λ

u1

u2

u3

) = L(

λu1

λu2

λu3

) =

(
(λu1)(λu2)

λu3

)
=

(
λ2u1u2

λu3

)
,

Azonban a homogenitás a jobb oldalról indulva mást ad:

λL(

u1

u2

u3

) = λ

(
u1u2

u3

)
=

(
λu1u2

λu3

)
̸=

(
λ2u1u2

λu3

)
.

Vagyis L(λu) ̸= λL(u), ezért a homogenitás nem teljesül. Ennek következtében az L nem lineáris leképezés! (A
másik tulajdonságot már meg sem kell vizsgálni.)

Feladat 7. Tekintsük az L : R2 → R2 leképezést, amelyre L(

(
x
y

)
) =

(
cos(x)
sin(y)

)
. Lineáris leképezés-e L ?

Megoldás. Legyenek u =

(
u1

u2

)
és v =

(
v1
v2

)
∈ R2 valamint λ ∈ R tetszőlegesek. Ellenőrizzük a linearitást!

Ennek bal oldala:

L(u+ v) = L(

(
u1

u2

)
+

(
v1
v2

)
) = L(

(
u1 + v1
u2 + v2

)
) =

(
cos(u1 + v1)
sin(u2 + v2)

)
=

(
cos(u1)cos(v1)− sin(u1)sin(v1)
sin(u2)cos(v2) + sin(v2)cos(u2)

)
Azonban a linearitás a jobb oldalról indulva mást ad:

L(

(
u1

u2

)
) + L(

(
v1
v2

)
) =

(
cos(u1)
sin(u2)

)
+

(
cos(v1)
sin(v2)

)
=

(
cos(u1) + cos(v1)
sin(u2) + sin(v2)

)
Vagyis L(u+ v) ̸= L(u)+L(v), ezért a linearitás nem teljesül. Ennek következtében az L nem lineáris leképezés!
(A másik tulajdonságot már meg sem kell vizsgálni.)

Felvetődhet a kérdés: hogy lehet az, hogy a 4. feladatban szereplő origó körüli forgatásban is voltak trigonometrikus
függvények, ugyanakkor az mégis lineáris leképezés? A különbség az, hogy amı́g jelen feladat hozzárendelési
szabályában a változóink szinusza-koszinusza szerepel, a 4. feladatban egy rögźıtett ϕ szögfüggvényei fordulnak
elő. Például a ϕ = 30◦-os pozit́ıv irányú forgatás hozzárendelési szabálya:

(
x′

y′

)
= L(

(
x
y

)
) =

(
x cos(30◦)− y sin(30◦)
x sin(30◦) + y cos(30◦)

)
=


√
3

2
· x− 1

2
· y

1

2
· x+

√
3

2
· y


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Vagyis - mivel ϕ rögźıtett - a hozzárendelési szabályban a változók lineáris kombinációi szerepelnek.

Feladat 8. Tekintsük az L : R3 → R3 függvényt, amely a v ∈ R3 vektorokat az a ∈ R3, a ̸= 0 vektorral eltolja:
L(v) = v + a. Lineáris leképezés-e L ?

Megoldás. Ellenőrizzük a linearitást:

L(u+ v) = u+ v + a
L(u) + L(v) = u+ a+ v + a = u+ v + 2a

}
̸=

Ez nem teljesül, ezért az L nem homogén lineáris leképezés! (A másik tulajdonságot már meg sem kell vizsgálni.)

Feladat 9. Tekintsük a D : Pn → Pn−1 leképezést, amelyre D(p) = p′, ahol p′ a p polinom x szerinti deriváltja,
azaz a leképezés minden n-edfokú polinomhoz a deriváltját rendeli:(

D(p)
)
(x) =

dp

dx
(x) = p′(x).

Igazoljuk, hogy D egy homogén lineáris leképezés!

Megoldás. Legyenek p(x) = a0 + a1x + a2x
2 + · · · + anx

n és q(x) = b0 + b1x + b2x
2 + · · · + bnx

n tetszőleges
”vektorai” Pn-nek.

Ellenőrizzük a linearitást! Ennek bal oldala:

D
(
p(x) + q(x)

)
= D

(
a0 + a1x+ a2x

2 + · · ·+ anx
n + b0 + b1x+ b2x

2 + · · ·+ bnx
n
)
=

= D
(
(a0 + b0) + (a1 + b1)x+ (a2 + b2)x

2 + · · ·+ (an + bn)x
n
)
=

= (a1 + b1) + 2(a2 + b2)x+ · · ·+ n(an + bn)x
n−1

A linearitás jobb oldala:

D
(
p(x)

)
+D

(
q(x)

)
= D

(
a0 + a1x+ a2x

2 + · · ·+ anx
n
)
+D

(
b0 + b1x+ b2x

2 + · · ·+ bnx
n
)
=

= a1 + 2a2x+ · · ·+ nanx
n−1 + b1 + 2b2x+ · · ·+ nbnx

n−1 =

= (a1 + b1) + 2(a2 + b2)x+ · · ·+ n(an + bn)x
n−1

Ugyanazt kaptuk mindkét oldalon, tehát a linearitás teljesül.
Most nézzük a homogenitás bal oldalát:

D
(
λ · p(x)

)
= D

(
λ
(
a0 + a1x+ a2x

2 + · · ·+ anx
n
))

= D
(
λa0 + λa1x+ λa2x

2 + · · ·+ λanx
n
)
=

= λa1 + 2λa2x+ · · ·+ nλanx
n−1

A homogenitás jobb oldala:

λ ·D
(
p(x)

)
= λ ·D

(
a0 + a1x+ a2x

2 + · · ·+ anx
n
)
= λ

(
a1 + 2a2x+ · · ·+ nanx

n−1
)
=

= λa1 + 2λa2x+ · · ·+ nλanx
n−1

Ugyanazt kaptuk mindkét oldalon, tehát a homogenitás is teljesül. Mivel a homogenitás és a linearitás is teljesül,
L lineáris leképezés.

Feladat 10. Adott a Hossz : R3 → R leképezés, amely minden

x
y
z

 ∈ R3 vektorhoz annak hosszát rendeli:

Hossz(

x
y
z

) =
√
x2 + y2 + z2. Lineáris-e ez a leképezés?
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Megoldás. Legyenek u =

u1

u2

u3

 és v =

v1
v2
v3

 térbeli vektorok és λ ∈ R.

Most ellenőrizzük először a homogenitást!

Hossz
(
λ · u

)
= Hossz

(
λ ·

u1

u2

u3

)
= Hossz

(λu1

λu2

λu3

)
=

√
λ2u2

1 + λ2u2
2 + λ2u2

3 =

=
√
λ2 ·

√
u2
1 + u2

2 + u2
3 = |λ| ·Hossz

(
u
)

̸= λ ·Hossz
(
u
)

Látható, hogy negat́ıv λ szorzókra már nem teljesül az összefüggés, tehát Hossz nem lineáris leképezés.
Megjegyezzük, hogy ha valaki a linearitással kezdi a vizsgálatot, hasonló eredményre jut. Itt azt kellene belátni,

hogy
Hossz

(
u+ v

)
= Hossz

(
u
)
+Hossz

(
v
)

azonban a háromszög-egyenlőtlenség miatt általánosságban a

Hossz
(
u+ v

)
≤ Hossz

(
u
)
+Hossz

(
v
)

összefüggés az igaz, vagyis a linearitás tetszőleges u és v vektorok esetén nem teljesül.

Feladat 11. Mi a közös azokban az 1 - 10. feladatokban szereplő függvényekben, amelyek lineáris leképezésnek
bizonyultak? Válasszuk ki azokat a lineáris leképezéseket, amelyek egyben lineáris transzformációk is!

Megoldás. Lineáris leképezések a 1, 2, 3, 4, 5, 9. feladatokban szereplő függvények voltak. Közös jellemzőjük,
hogy hozzárendelési szabályukban a változóvektor komponenseinek csak a lineáris kombinációi fordulnak elő, más
egyéb függvényei nem. (A 9. feladatnál a polinomok együtthatóinak a lineáris kombinációi fordulnak elő.)

A lineáris transzformációk olyan lineáris leképezések, amelyeknél V = W (vagyis ugyanonnan ugyanoda
képeznek, ilyenek a 2, 3, 4, 5. feladatokban szerepelnek.

Az 1. feladatban szereplő lineáris leképezést, amely térbeli vektorokat vet́ıt az xy-śıkra, ı́gy definiáltuk:

L : R3 → R2, L(

x
y
z

) =

(
x
y

)

Ha ezt térből-térbe képező leképezésként definiáltuk volna az alábbiak szerint:

L : R3 → R3, L(

x
y
z

) =

x
y
0


ez is lineáris transzformáció lenne.

Hasonlóan, ha a 9. feladatban szereplő polinom deriválást D : Pn → Pn−1 helyett D : Pn → Pn t́ıpusú
függvényként értelmeznénk, ez is lineáris transzformáció lenne.

3 Feladatok: magtér, képtér, dimenziótétel

Feladat 12. Adjuk meg az 1, 3, 4, 9. feladatokban szereplő leképezések magterét és képterét! Ellenőrizzük a
dimenziótétel teljesülését!

Megoldás. • 1. feladat: térbeli vektorok merőleges vet́ıtése az xy-śıkra, L : R3 → R2, L(

x
y
z

) =

(
x
y

)
.

A képtér a leképezés értékkészlete, vagyis az összes olyan vektort tartalmazó halmaz, amely képvektorként
előfordulhat. Mivel az összes térbeli vektort levet́ıtjük az xy-śıkra, ı́gy a képtér maga az xy-śık lesz, azaz
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im(L) = R2.

Melyek lehetnek azok a vektorok, amelyekhez a leképezés a śık nullvektorát rendeli hozzá? A válaszhoz
kétféleképpen is eljuthatunk. Geometriai megközeĺıtéssel, ha a z tengely bármely vektorát merőlegesen
vet́ıtjük az xy-śıkra, nullvektort kapunk, vagyis

ker(L) =


0
0
z

∣∣∣∣∣ z ∈ R


A ”kiszámolós” megközeĺıtés ugyanezt adja eredményül: ha a ker(L) defińıciója alapján a hozzárendelési

szabályt egyenlővé tesszük a nullvektorral, vagyis L(

x
y
z

) =

(
x
y

)
=

(
0
0

)
, akkor kijön, hogy x = y = 0,

ugyanakkor a harmadik koordinátára nincs megkötés, tehát z ∈ R tetszőleges.

A dimenziótétel alkalmazásához meg kell határoznunk az adott vektorterek dimenzióit. Az im(L) = R2

bázisainak elemszáma 2 (pl. egy ilyen a kanonikus, śıkbéli i, j vektorból álló bázis), ı́gy dim(im(L)) = 2.
A ker(L) a z tengely összes vektorait tartalmazó vektortér. Ennek egy lehetséges bázisa állhat pl. a térbeli
kanonikus bázis k vektorából, vagyis dim(ker(L)) = 1. A kiindulási tér V = R3 bázisainak elemszáma 3
(lásd pl. a térbeli kanonikus bázist: {i, j, k}). Innen a dimenziótétel ellenőrzése:

dim(ker(L)) + dim(im(L)) = dim(V )
1 + 2 = 3

• 3. feladat: a térbeli vektorok tükrözése az origóra, L : R3 → R3, L(

x
y
z

) =

−x
−y
−z

.

A leképezés eredményeként térbeli vektorokat kapunk, és minden R3-beli elemhez van olyan kiindulási térbeli
vektor, aminek ez a képe, ezért im(L) = R3.

Mivel a leképezés minden v -hez az ellentettjét (−v-t) rendeli, egyedül a nullvektornak a képe lesz a nul-

lvektor, azaz ker(L) =


0
0
0

.

A dimenziók: dim(V ) = dim(R3) = 3, dim(im(L)) = 3, dim(ker(L)) = 0. A dimenziótétel teljesül:

dim(ker(L)) + dim(im(L)) = dim(V )
0 + 3 = 3

• 4 feladat: L : R2 → R2, L a śıkbéli (hely)vektorok rögźıtett ϕ szöggel pozit́ıv irányban való elforgatása az
origó körül.

Itt minden olyan R2-beli vektorhoz található olyan vektor, amelynek ez az elforgatottja, tehát im(L) = R2.

A nullvektor hossza 0. A forgatás a vektor hosszát nem változtatja meg, ezért csak 0 hosszúságú vektor
elforgatásával kaphatunk 0 hosszúságú vektort, vagyis csak a nullvektor képe lehet a nullvektor. Így ker(L) ={(

0
0

)}
. A dimenziók: dim(ker(L)) = 0, dim(im(L)) = 2, dim(V ) = 2. A dimenziótétel itt is teljesül:

dim(ker(L)) + dim(im(L)) = dim(V )
0 + 2 = 2

• 9 feladat: a D : Pn → Pn−1 leképezés minden p polinomhoz a deriváltját rendeli: D(p) = p′, ahol p′(x) a
p(x) polinom x szerinti deriváltja. (Itt Pn a maximum n-edfokú polinomok terét jelöli.)

Tudjuk, hogy bármely maximum (n − 1)-edfokú polinomhoz találunk olyan n-edfokú polinomot, amelynek
ez a deriváltja, ı́gy a képtérben az összes, legfeljebb (n− 1)-edfokú polinom szerepel, azaz: im(D) = Pn−1.

A Pn−1 tér nullvektora az azonosan nulla polinom lesz, vagyis a p(x) = 0 polinom. Mely polinomok
deriválásával kapjuk ezt? A nulladfokú polinomokéval, mert ha q(x) = c, c ∈ R, akkor q′(x) = c′ = 0.
Vagyis a magtér az összes nulladfokú polinomot tartalmazza: ker(D) = P0.
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Mivel Pn ”kanonikus” bázisának (az
{
1, x, x2, . . . , xn

}
bázisnak) az elemszáma n + 1, a dimenziók a

következők lesznek:

dim(ker(D)) = dim(P0) = 1, dim(im(D)) = dim(Pn−1) = n, dim(V ) = dim(Pn) = n+ 1

Ellenőrizzük a dimenziótételt:

dim(ker(L)) + dim(im(L)) = dim(V )
1 + n = n+ 1

Feladat 13. Legyen L : R2×2 → R3, L

([
a b
c d

])
=

2a− b
0
3c

 lineáris leképezés. Adjuk meg az L magterét,

képterét, és ellenőrizzük a dimenziótétel teljesülését!

Megoldás. Milyen R2×2-beli ”vektorok” képe lesz az R3-beli nullvektor? Ha a kiindulási térbeli mátrixokban
b = 2a és c = 0 paramétereket választunk, képvektorként a nullvektort kapjuk:

L

([
a 2a
0 d

])
=

0
0
0


Így a leképezés magtere az alábbi lesz:

ker(L) =

{[
a 2a
0 d

] ∣∣∣∣∣ a, d ∈ R

}

A képteret az összes lehetséges olyan W = R3-beli vektor alkotja, amit a leképezéssel kaphatunk:

im(L) =


s
0
t

∣∣∣∣∣ s, t ∈ R


A kiindulási tér egy lehetséges bázisa:{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

ennek elemszáma megadja a kiindulási tér dimenzióját: dim(V ) = dim(R2×2) = 4. A magtér egy lehetséges
bázisa: {[

1 2
0 0

]
,

[
0 0
0 1

]}
,

ennek elemszáma 2, ezért dim(ker(L)) = 2. A képtér egy lehetséges bázisa:

{i, k} =


1
0
0

 ,

0
0
1

 ,

ennek elemszáma adja a képtér dimenzióját: dim(im(L)) = 2. Innen már ellenőrizhetjük a dimenziótételt:

dim(ker(L)) + dim(im(L)) = dim(V )
2 + 2 = 4

4 Feladatok: sajátérték, sajátvektor

Feladat 14. Értelmezzük az 1. feladatban szereplő lineáris leképezést úgy, hogy térbeli vektorokhoz térbeli vek-
torokat rendel! L egy olyan lineáris transzformáció, amely a térbeli vektorokat merőlegesen vet́ıti a térbeli ko-
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ordinátarendszer xy-śıkjára (ahol z = 0):

L : R3 → R3, L(

x
y
z

) =

x
y
0


Adjuk meg ennek a lineáris transzformációnak a sajátvektorait és a hozzájuk tartozó sajátértékeket!

Megoldás. A merőleges vet́ıtést végrehajtva mely vektorok képe lesz az eredetivel párhuzamos?
Egyrészt minden xy-śıkon lévő vektor képe önmaga:x

y
0

 L−→ 1 ·

x
y
0


vagyis az összes xy-śıkon fekvő vektor (kivéve a nullvektort, amit defińıció szerint kizárunk) az L transzformáció
sajátvektora, λ = 1 sajátértékkel.

Másrészt a z tengely vektorait merőlegesen vet́ıtve az xy-śıkra nullvektort kapunk:0
0
z

 L−→ 0 ·

0
0
z

 =

0
0
0


vagyis a z tengely összes vektora (kivéve a nullvektort, amit defińıció szerint kizárunk) az L transzformáció
sajátvektora, λ = 0 sajátértékkel.

Feladat 15. Határozzuk meg a 3. feladatban szereplő origóra tükrözés sajátvektorait és a hozzájuk tartozó
sajátértékeket!

Megoldás. Ez a transzformáció térbeli vektorokat tükröz az origóra. A kérdés itt is az, hogy mely vektorok képe
lesz az eredetivel párhuzamos?

A válasz egyszerű: mindegyik, ugyanis minden vektort a −1-szeresébe visz át:

v
L−→ −1v

vagyis az L sajátvektorai:
v ∈ R3, v ̸= 0

(a nullvektort kizárjuk), a hozzájuk tartozó sajátérték pedig λ = −1.

Feladat 16. Legyen L egy śıkból-śıkba képező transzformáció, amely az xy-śık
vektorait tükrözi az y = x egyenesre! Adjuk meg L sajátvektorait és a hozzájuk
tartozó sajátértékeket!

Megoldás. Az ábrán a zöld sźınű vektor (a) és a hozzá tartozó képvektor (L(a)) mutatja a transzformáció
működését. Mely vektorok képe lesz az eredetivel párhuzamos?

Észrevehetjük, hogy az y = x egyenesen elhelyezkedő vektorokat a transzformáció nem változtatja meg:(
x
x

)
L−→

(
x
x

)
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vagyis ezek a vektorok (a nullvektor kivételével) sajátvektorai lesznek a transzformációnak, λ = 1 sajátértékkel.
A képen pirossal jelölt b vektor ilyen.

Ezen ḱıvül azokat a vektorokat, amelyek merőlegesek az y = x egyenesre, a transzformáció önmaguk ellen-
tettjébe viszi át: (

x
−x

)
L−→ −1 ·

(
x
−x

)
Ezek a vektorok (a nullvektor kivételével) szintén sajátvektorai a transzformációnak, λ = −1 sajátértékkel. A
képen lilával jelölt c vektor ilyen.

Feladat 17. Határozzuk meg a 4. feladatban szereplő transzformáció - śıkbéli (hely)vektorok elforgatása pozit́ıv
irányba ϕ szöggel - sajátvektorait és a hozzájuk tartozó sajátértékeket, ha ϕ = 90◦ !

Megoldás. Melyik vektor 90◦-os elforgatottja lesz az eredetivel párhuzamos?
Mivel a nullvektort kizárjuk a sajátvektorok közül, ezért semelyik - vagyis nincs R2-beli sajátvektora a transz-

formációnak. (Ellenben C2-beli sajátvektorai vannak - C itt a komplex számok halmazát jelöli - de ezt még nem
tanultuk.)

Feladat 18. Legyen L : R3 → R3 a z tengely körüli pozit́ıv irányú ϕ = 90◦-os
forgatás! Adjuk meg a transzformáció sajátértékeit, sajátvektorait!

Megoldás. Mit is csinál pontosan ez a transzformáció? Ha felülről (a z tengely csúcsáról) nézzük, egy forgatást
látunk az xy-śıkon. Ugyanakkor, ha ”oldalról” nézzük a transzformáció működését, észrevehetjük, hogy a vektorok
z koordinátáit nem változtatja meg.

Azt már tudjuk, hogy a 90◦-os forgatásnak nincsenek (valós) sajátvektorai. Viszont a transzformáció a z
tengelyen elhelyezkedő vektorokat önmagukba viszi át:

L(

0
0
z

) = 1 ·

0
0
z

 , z ∈ R

ı́gy ezek sajátvektorai lesznek L-nek (kivéve a nullvektort, amit kizárunk), λ = 1 sajátértékkel.

Feladat 19. Legyen az L olyan függvény, amely a (2× 2)-es mátrixokhoz azok transzponáltját rendeli:

L : R2x2 → R2x2, L(A) = AT

Mutassuk meg, hogy L lineáris transzformáció! Adjuk meg L sajátvektorait és a hozzájuk tartozó sajátértékeket!

Megoldás. Először is megvizsgáljuk, hogy L lineáris leképezés-e, vagyis ellenőrizzük a két tulajdonság tel-
jesülését:

linearitás:
L(A+B) = (A+B)T = AT +BT

L(A) + L(B) = AT +BT

}
= ✓

homogenitás:
L(λ ·A) = (λ ·A)T = λ ·AT

λ · L(A) = λ ·AT

}
= ✓
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Mivel mindkettő teljesül, L lineáris leképezés. Továbbá, mivel V és W ugyanaz a vektortér: V = W = R2×2,
ezért L lineáris transzformáció.

Írjuk fel a hozzárendelési szabályt részletesebben:[
a b
c d

]
L→

[
a c
b d

]
, a, b, c, d ∈ R

Láthatjuk, hogy b és c felcserélődnek, a többi elem nem változik. A kérdés, hogy mely ”vektorokat” visz át a
transzformáció önmaga számszorosába? Kézenfekvő ötlet lehet, hogy b = c esetén a transzponálás semmin nem
változtat: [

a b
b d

]
L→ 1 ·

[
a b
b d

]
vagyis az [

a b
b d

]
, a, b, d ∈ R

alakú (2x2)-es mátrixok az L sajátvektorai, λ = 1 sajátértékkel. Kivétel ez alól a (2× 2)-es nullmátrix, mert azt
a defińıcióban kizártuk (mint R2×2 nullvektorát).

Kevésbé kézenfekvő, de ha b és c egymás ellentettjei (c = −b) és a = d = 0, az ilyen mátrixokat a transzponálás
önmaguk (−1)-szeresébe viszi át:[

0 b
−b 0

]
L→

[
0 −b
b 0

]
= −1 ·

[
0 b
−b 0

]
, b ∈ R

vagyis a [
0 b
−b 0

]
, b ∈ R, b ̸= 0

alakú ”vektorok” az L sajátvektorai, λ = −1 sajátértékkel.

Feladat 20. Tekintsük ismét a 9. feladatban szereplő polinom deriválást Pn-ből Pn-be mutató leképezésként,
vagyis lineáris transzformációként! Ennek hozzárendelési szabálya

D : Pn → Pn, D(p) = p′

ahol p′ a p polinom x szerinti deriváltja, azaz a transzformáció minden n-edfokú polinomhoz a deriváltját rendeli.
Adjuk meg D sajátvektorait és a kapcsolódó sajátértékeket!

Megoldás. Ha a p(x) egy polinom, akkor a deriválás miatt p′(x) rendszerint p(x)-nél eggyel alacsonyabb
fokszámú polinom. Ez alól kivételt jelentenek a p(x) = c, c ∈ R nulladfokú polinomok (konstans függvények),
mert a deriváltjuk az azonosan nulla polinom:

c′ = 0 = 0 · c

Vagyis a D transzformáció sajátvektorai a nulladfokú polinomok: p(x) = c, c ∈ R, c ̸= 0, a hozzájuk tartozó
sajátérték pedig λ = 0. (A p(x) = 0 polinomot, mint Pn nullvektorát zártuk ki a c ̸= 0 feltétellel.)
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