
Mikrokontroller II.
Kékesi Kristóf

NEPTUN kód: ZI6I4M
Mérőpár: Bor Gergő

Mérés ideje: 2024.05.15. 15:15-18:00
Mérés helye: Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar

1083 Budapest, Práter utca 50/A 421-es labor
kekesi.kristof.mihaly@hallgato.ppke.hu

Kivonat—
A jegyzőkönyv részletesen leírja a május 15-én megoldandó
mérési feladatokat, valamint az ezek megoldásához szükséges
információkat. A dokumentum célja, hogy átfogó útmutatást
nyújtson a feladatok megoldásának folyamatáról és a reprodu-
kálhatósághoz szükséges lépésekről.
A jegyzőkönyv részletesen ismerteti az egyes feladatok megol-
dásához szükséges lépéseket, beleértve a szükséges eszközök és
eljárások használatát is. Ezáltal segíti az azt olvasókat a feladatok
hatékony és pontos megoldásában, valamint elősegíti a feladatok
reprodukálhatóságát és értelmezhetőségét.

Keywords-Mikrokontroller; Assembly; Regiszterek; Művele-
tek; Számrendszerek; Számábrázolás;

MÉRÉSSEL KAPCSOLATOS FOGALMAK

• Számrendszer: Olyan jelölési rendszer, amelyet a szá-
mok írására és az aritmetikai műveletek elvégzésére hasz-
nálnak. Alapvetően egy adott alapszám köré épül, ami a
számrendszer alapja, amely meghatározza a rendszerben
felhasználható szimbólumok (számjegyek) számát és a
helyiérték szerinti szorzót. A legismertebb számrendszer
a decimális, vagy tízes számrendszer, amely 10 különbö-
ző számjegyet használ (0-tól 9-ig).
Különböző kultúrák és számítógépes alkalmazások kü-
lönböző számrendszereket használhatnak. Például a szá-
mítástechnikában gyakran alkalmazzák a bináris (2-es
alapú), az oktális (8-as alapú) és a hexadecimális (16-os
alapú) számrrendszereket, mivel ezek hatékonyan model-
lezhetik a digitális áramkörök működését.

101, 01[10] = 1 ·102+0 ·101+1 ·100+0 ·10−1+1 ·10−2

(1)
• Kettes komplemens számábrázolási módszer: A kettes

komplemens módszer a negatív számok bináris ábrázo-
lására szolgál. Ez a módszer lehetővé teszi a bináris
összeadás használatát mind pozitív, mind negatív számok
esetében anélkül, hogy külön figyelemmel kellene kísérni
a szám előjelét. Egy adott bites szélességű szám kettes
komplementer alakjának meghatározása a következő lé-
pésekből áll, ha a szám negatív:

1) Hozzáadunk a számhoz egyet;
2) Az így kapott szám abszolútértékét vesszük;
3) Felírjuk binárisan a kapott számot, előre definiált

biten;
4) Minden bitet negálunk.

[1]
• Fix pontos ábrázolás: Előre definiált pontosvessző hely

alapján tudjuk, hogy a . képletben a hatványok kitevőit
mennyivel toljuk el.

• Assembly programozási nyelv: Egy alacsony szintű,
gépi kódhoz közel álló nyelv, melyet az adott processzor
architektúrájának utasításkészletével írnak. Az assembly
programozási nyelv lehetővé teszi a programozók számá-
ra, hogy közvetlenül befolyásolják a processzor működé-
sét, így nagyfokú kontrollt biztosítanak az alkalmazások
felett. Általában a gépi kódhoz legközelebb álló emberi
érthető formában íródik, és közvetlenül fordítható gépi
kóddá. Mivel az assembly nyelv közvetlenül kommunikál
a hardverrel, ezáltal nagy teljesítményt és precizitást biz-
tosít, azonban általában bonyolultabb és kevésbé átlátható
kódot eredményez, mint a magasabb szintű programozási
nyelvek. [2]

• Regiszterek: Olyan kis méretű adatokat tároló hardveres
komponensek, amelyek közvetlenül kapcsolódnak a pro-
cesszorhoz. Ezek a tárolók rendkívül gyors hozzáférést
tesznek lehetővé a processzor számára az adatokhoz és
utasításokhoz. A regisztereknek különböző típusai van-
nak, beleértve az általános célú regisztereket, az adatre-
gisztereket, az indexregisztereket és a vezérlőregisztere-
ket. Ezek a regiszterek játszanak kulcsfontosságú szerepet
az assembly nyelvben írt programokban, mivel közvet-
lenül manipulálhatók az alacsony szintű utasításokon
keresztül, lehetővé téve a programok számára a hatékony
adatmanipulációt és vezérlést.
Az egyes regiszterek általában a processzor architektú-
rájától függően vannak elnevezve, és ezek elnevezése
a processzor tervezésétől és az adott architektúra kon-
vencióitól függ. A regiszterek elnevezése gyakran követi
egy adott architektúra belső működését és funkcióit. Az
x86 architektúrában a regiszterek elnevezése a következő
típusok szerint csoportosítható:

– Általános célú regiszterek: Például az EAX, EBX,
ECX, EDX regiszterek.

– Index regiszterek: Például az ESI, EDI regiszterek.
– Adatregiszterek: Például az AL, AH, BL, BH regisz-

terek (byte regiszterek), valamint az AX, BX, CX,
DX regiszterek (word regiszterek).

– Pontosító regiszterek: Például az EFLAGS regiszter.

Más architektúrák esetében más elnevezési konvenciókat
használnak, például az ARM architektúra regiszterei kü-
lönböző típusokra oszlanak. Az elnevezési konvenciók
változhatnak az architektúrától és a processzorgyártótól
függően. [3]

• Műveletek Assembly-ben:

– MOV: Egy megadott regiszter értékét másoljuk át



egy másik megadott regiszterbe.

src → dst

– ADD: Egy megadott regiszter értékét hozzáadjuk
egy másik megadott regiszter értékéhez. Másnéven
az összeadás művelet. A C++ nyelvben az ehhez
leghasonlóbb a += operátor.

src + dst → dst

– ADDC: Az "összeadás cipeléssel" (add with carry)
műveletet végzi el. Ez az utasítás hasonló az egy-
szerű ADD utasításhoz, azonban a CARRY (cipelés)
állapotot is figyelembe veszi.A CARRY egy speciális
jelzőbit a processzorban, amely jelzi, hogy egy előző
aritmetikai művelet során az eredmény túlcsordult-e
(overflow), vagyis több bitet igényel, mint amennyi a
célregiszterben elfér. Az ADDC utasítás két operan-
dust ad össze, valamint figyelembe veszi a CARRY
jelzőbitet is. Ha a CARRY be van állítva (1), akkor
az ADDC az operandusokat összeadja, valamint az
egyesek helyiértékén levő cipelést is figyelembe ve-
szi. Ha a CARRY nem aktív (0), akkor az ADDC
ugyanúgy működik, mint az ADD utasítás.

src + dst + C → dst

– SUB: Assembly programozási nyelvben a "kivonás"
(subtract) műveletet valósítja meg. Ez az utasítás
lehetővé teszi két operandus különbségének kiszá-
mítását.

dst + ¬src + 1 → dst

– SUBC: Assembly programozási nyelvben a "kivonás
cipeléssel" (subtract with carry) műveletet valósít-
ja meg. Ez az utasítás hasonló az egyszerű SUB
utasításhoz , viszont a CARRY (cipelés) állapotot
is figyelembe veszi. A CARRY egy speciális jel-
zőbit a processzorban, amely jelzi, hogy egy előző
aritmetikaiművelet során az eredmény túlcsordult-e
(overflow), vagyis több bitet igényel, mint amennyi
a célregiszterben elfér. A SUBBC utasítás két ope-
randust von ki egymásból, valamint figyelembe veszi
a CARRY jelzőbitet is. Ha a CARRY be van állít-
va (1), akkor az SUBC az operandusokat kivonja,
valamint az egyesek helyiértékén levő cipelést is
figyelembe veszi. Ha a CARRY nem aktív (0), akkor
az SUBC ugyanúgy működik, mint az SUB utasítás.

dst + ¬src + C → dst

– CMP: Ez a művelet az assembly nyelv egyik alap-
vető utasítása, amely két operandust hasonlít össze.
A CMP utasítás lényegében az alapvető kivonás
műveletét végzi el, de az eredményt nem tárolja
el. Az CMP utasítás csak a jelzőbiteket állítja be
annak megfelelően, hogy az első operandus nagyobb,
kisebb vagy egyenlő-e a másodikkal megadott regisz-
terrel.

dst − src

– DADD: Az összeadás (Addition) az alapvető össze-
adás műveletét valósítja meg, de specifikus jelentés-
sel nem rendelkezik a legtöbb architektúrában.

Az "D" prefix (például az DADD) gyakran a Do-
uble, azaz double számokhoz kapcsolódik, és azt
jelzi, hogy a művelet double számokkal történik. Ez
gyakran az FP (Floating Point), azaz lebegőpontos
számokkal való műveletek esetén fordul elő, ahol a
dupla precizitású adatokhoz szükség lehet 64 bites
(vagy ennél nagyobb) adatokra.

src + dst + C → dst (decimally)

– BIT: A logikai és (∧) műveletet valósítja meg a meg-
adott src és dst regiszterek között, majd a közöttük
lévő és kapcsolat értékét a dst regiszterbe tárolja el.

src ∧ dts

– BIC: A BIT-hez hasonlóan logikai és kapcsolatot
vizsgál a két megadott regiszter között, viszont az
src regiszter értékének a negáltjával.

¬src ∧ dst → dst

– BIS: A logikai vagy (∨) műveletet valósítja meg
a megadott src és dst regiszterek között, majd a
közöttük lévő és kapcsolat értékét a dst regiszterbe
tárolja el.

src ∨ dst → dst

– XOR: A logikai kizáró vagy (⊕) műveletet valósítja
meg a megadott src és dst regiszterek között, majd
a közöttúk lévő kizáró vagy kapcsolat értékét a dst
regiszterbe tárolja el.

src ⊕ dst → dst

– AND: A logikai és (∧) műveletet valósítja meg
a megadott src és dst regiszterek között, majd a
közöttük lévő és kapcsolat értékét a dst regiszterbe
tárolja el.

src ∧ dst → dst

– RRC:
C → MSB → . . .LSC → C

– RRA:

MSB → MSB → . . . LSB → C

– PUSH:

SP − 2 → SP, src → @SP

– SWPB:
src → dst, dst → src

– CALL:

SP − 2 → SP, PC + 2 → @SP, dst → PC

– RETI:
TOS → SR, SP + 2 → SP

TOS → PC, SP + 2 → SP

– SXT:

Bit7 → Bit8 → Bit9 → Bit10 → Bit11 → Bit12

Bit12 → Bit13 → Bit14 → Bit15

– JMP: Az ugrás (Jump) egy alapvető utasítás az as-
sembly programozási nyelvben, amelyet elágazások



végrehajtására használnak. Az ugrás utasítás arra
szolgál, hogy átugorja a program kódsorának egy
adott részét, és folytassa a végrehajtást egy másik
címről. Az utasítás paraméterként egy cél-címet vár,
ahova a program vezérlése átkerül. Ez a cél-cím lehet
egy cím, egy regiszterben vagy változóban tárolt
érték.
Az ugrás utasítás a program futását a cél-címen lévő
utasításokkal folytatja, anélkül hogy bármilyen felté-
telt ellenőrizne. Ez azt jelenti, hogy az JMP utasítás
általában egy abszolút elágazást valósít meg, vagyis
mindig végrehajtódik, függetlenül a körülményektől.
[4] [5]

I. MÉRÉSI FELADAT

Végezzen el a kettővel való szorzást egy 8 bites előjel
nélküli számon.

Ebben a feladatban egy 8 bites előjel nélküli számot
szorzunk meg 2-vel. Ehhez az alábbi assembly kód részletet
illesztettük bele az IAR szimulátor által elkészített assembly
sablonba.

1 mov.b #6,R04 ; szorzando
2 rla.b R04

A program lefuttatása után a szimulált mikrokontroller
regiszterein az I. táblázatban összegyűjtött értékeket láttuk.

I. táblázat. A I. mérési feladatban a feladat lefuttatása után a
regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x000C (12)

II. MÉRÉSI FELADAT

Végezzen el a tízzel való szorzást egy 8 bites előjel nélküli
számon.

Ebben a feladatban egy 8 bites előjel nélküli számot
szorzunk meg 10-zel. Ehhez az alábbi assembly kód részletet
illesztettük bele az IAR szimulátor által elkészített assembly
sablonba.

1 mov.b #6,R4 ; szorzando
2 rla.b R4
3 rla.b R4
4 rla.b R4
5 mov.b #6,R5
6 add.b R4,R5
7 add.b R4,R5

A program lefuttatása után a szimulált mikrokontroller
regiszterein a II. táblázatban összegyűjtött értékeket láttuk.

II. táblázat. A II. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0030 (48)

R5 0x003C (60)

III. MÉRÉSI FELADAT

Végezzen el a két 8 bites előjel nélküli szám szorzását.

Ebben a feladatban két 8 bites előjel nélküli számot
szorzunk össze egymással. Ehhez az alábbi assembly kód
részletet illesztettük bele az IAR szimulátor által elkészített
assembly sablonba.

1 mov.b #12,R4 ; szorzando
2 mov.b #2,R5 ; szorzo
3 clr R6
4

5 AA:
6 add R5,R6
7 dec R4
8 jne AA

A program lefuttatása után a szimulált mikrokontroller
regiszterein a III. táblázatban összegyűjtött értékeket láttuk.

III. táblázat. A III. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0000 (0)

R5 0x0002 (2)

R6 0x0018 (24)

IV. MÉRÉSI FELADAT

Végezzen el szorzást két 16 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit
értékét.

Ebben a feladatban két 16 bites előjel nélküli számot
szorzunk össze egymással. Ehhez az alábbi assembly kód
részletet illesztettük bele az IAR szimulátor által elkészített
assembly sablonba.

1 mov.w #12,R4 ; szorzando
2 mov.w #2,R5 ; szorzo
3 clr R6
4

5 AA:
6 add R5,R6
7 dec R4
8 jne AA

A program lefuttatása után a szimulált mikrokontroller
regiszterein a IV. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy a kód természeté-
ből adódóan, amikor összeadásnál a két szám összege megha-
ladja a 16 bitbe elférő szám értékét, az túlcsordul, ezt angolul
overflow-nak hívják. Ilyenkor a C, mint carry flag értéke igaz
lesz.

IV. táblázat. A IV. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0000 (0)

R5 0x0002 (2)

R6 0x0018 (24)

V. MÉRÉSI FELADAT

Végezzen el szorzást két 32 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit
értékét.



Ebben a feladatban két 32 bites előjel nélküli számot
szorzunk össze egymással. Ehhez az alábbi assembly kód
részletet illesztettük bele az IAR szimulátor által elkészített
assembly sablonba.

1 mov.w #20,R5 ; szorzando
2 mov.w #10,R6
3 mov.w #0,R7
4 mov.w #0,R8
5

6 mov.w #5,R9 ; szorzo
7 mov.w R9,R10
8

9 mov.w #0,R11
10 mov.w #0,R12
11 mov.w #0,R13
12 mov.w #0,R14
13

14 mov.w #0,R4
15

16

17 a: jz break
18 rra R10
19 rrc R9
20 jnc b
21

22 add R5,R11
23 addc R6,R12
24 addc R7,R13
25 addc R8,R14
26

27 rla R5
28 rlc R6
29 rlc R8
30

31 dec.w R4
32 jmp a
33

34

35 b: rla R5
36 rlc R6
37 rlc R7
38 rlc R8
39

40 dec.w R4
41 jmp a
42

43

44 break: nop

A program lefuttatása után a szimulált mikrokontroller
regiszterein az V. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy a kód természeté-
ből adódóan, amikor összeadásnál a két szám összege megha-
ladja a 16 bitbe elférő szám értékét, az túlcsordul, ezt angolul
overflow-nak hívják. Ilyenkor a C, mint carry flag értéke igaz
lesz.

V. táblázat. A V. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0000 (0)

R5 0x0000 (0)

R6 0x0000 (0)

R7 0x0000 (0)

R8 0x0000 (0)

R9 0x0000 (0)

R10 0x0000 (0)

R11 0x0064 (100)

R12 0x0096 (−−)

R13 0x001E (−−)

R14 0x0000 (0)

VI. MÉRÉSI FELADAT

A tanultakat ellenőrizze az 1-5; feladat megoldásával
előjeles környezetben is.

Előjeles környezetben a programok létrehozása és a megírt
kódok nem változnak, csak arra kell figyelni, hogy a számok
tárolása során az előjel bit miatt 8 bit helyett csak 7 biten
tárolhatunk számokat. Előjeles összeadásnál érdemes a kettes
komplemens számábrázolást használni. Ez azt jelenti, hogy
a legnagyobb helyiértékű bitben tároljuk a szám előjelét.
Ha a szám nem negatív, akkor a bit értéke 0, ha viszont
negatív, akkor a bit értéke az 1 értéket vesz fel. Annak
érdekében, hogy megállapíthassuk, hogy az eredmény pozitív
vagy negatív, az úgynevezett "negatív zászlót" (N flag)
kell figyelni: ha értéke 0, akkor nem negatív, ha 1, akkor
negatív számot kaptunk eredményül. Ha a végeredmény a bit
számának megfelelő tartományon kívül esik, az úgynevezett
"túlcsordulás zászló" (O flag; Overflow) értéke 0-ról 1-re
vált. A "carry bit" akkor lesz 1, ha a túlcsordulás a tartomány
pozitív felén történik.

VII. MÉRÉSI FELADAT

Végezzen el osztást egy 16 bites osztandó és egy 8 bites
osztó között előjel nélküli számábrázolás esetén.

Ebben a feladatban egy 16 bites előjel nélküli osztandót
és 8 bites előjel nélküli osztót osztunk el. Ehhez a csatolt
’16and8bitdivide.asm’ assembly kódfájl részletet illesztettük
bele az IAR szimulátor által elkészített assembly sablonba.

VIII. MÉRÉSI FELADAT

Végezzen el az osztást 16 bites előjel nélküli számábrázolás
mellett.

Ebben a feladatban két 16 bites előjel nélküli számot
osztunk el egymással. Ehhez a csatolt ’16bitdivide.asm’
assembly kódfájl részletet illesztettük bele az IAR szimulátor
által elkészített assembly sablonba.

IX. MÉRÉSI FELADAT

Végezzen el az osztást 32 bites előjel nélküli számábrázolás
mellett.

Ebben a feladatban két 32 bites előjel nélküli számot
osztunk el egymással. Ehhez a csatolt ’32bitdivid.asm’
assembly kódfájl részletet illesztettük bele az IAR szimulátor
által elkészített assembly sablonba.

X. MÉRÉSI FELADAT

A tanultakat ellenőrizze az 7-8 feladat megoldásával
előjeles környezetben is.

A szorzáshoz hasonlóan, ebben az esetben is azonosak
a programok a előjel nélküli változatokhoz képest, de fontos,
hogy megjelöljük a számok előjelét. Az osztás definíció
alapján hasonlít a kivonásra, kivonás esetén pedig ugyanúgy
érvényes a számábrázolási tartomány, mint az összeadás
esetén. Ha a végeredmény negatív, akkor az N flag 1 értéket
vesz fel, és kettes komplemensként kell kezelni. Emellett az
overflow flag is jelzi a túlcsordulást a művelet során, így a
kapott érték nem fér bele az ábrázolási tartományba. A carry
bit ebben az esetben ellentétesen működik, hiszen negatív
irányból történik túlcsordulás esetén vált csak 1-es értékre.



HIVATKOZÁSOK

[1] T. Finley, Two’s Complement. 2000. cím: https://www.cs.
cornell.edu/~tomf/notes/cps104/twoscomp.html (elérés
dátuma 2024. 05. 15.).

[2] x86 Assembly Language Reference Manual. Oracle. cím:
https://docs.oracle.com/cd/E19641-01/802-1948/802-
1948.pdf (elérés dátuma 2024. 05. 15.).

[3] Description of the MIPS R2000. Imperial College Lon-
don. cím: https://www.doc.ic.ac.uk/lab/secondyear/spim/
node9.html (elérés dátuma 2024. 05. 16.).

[4] Wikipedia, Mikrovezérlő. cím: https://hu.wikipedia.org/
wiki / Mikrovez % C3 % A9rl % C5 % 91 (elérés dátuma
2024. 05. 15.).

[5] MSP430x1xx Family User’s Guide. Texas Instruments.
cím: https : / / www. ti . com / lit / ug / slau049f / slau049f .
pdf ? ts = 1649510678917 & ref _ url = https % 253A %
252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%
252Fdocs % 252Funiversalsearch . tsp % 253FlangPref %
253Den-US%2526searchTerm%253Dslau049%2526nr%
253D160 (elérés dátuma 2024. 05. 16.).

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160

	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat

