Mikrokontroller II.

Kékesi Krist6f
NEPTUN kéd: ZI614M
Meérépar: Bor Gergd

Mérés ideje: 2024.05.15. 15:15-18:00
Meérés helye: Pdzméany Péter Katolikus Egyetem, Informécids Technoldgiai és Bionikai Kar
1083 Budapest, Prater utca 50/A 421-es labor
kekesi.kristof.mihaly@hallgato.ppke.hu

Kivonat—

A jegyzOkonyv részletesen leirja a majus 15-én megoldando
mérési feladatokat, valamint az ezek megoldasahoz sziikséges
informaciokat. A dokumentum célja, hogy atfogé tvtmutatast
nydjtson a feladatok megoldasanak folyamatarél és a reprodu-
kalhatésaghoz sziikséges 1épésekral.

A jegyzokonyv részletesen ismerteti az egyes feladatok megol-
dasahoz sziikséges lépéseket, beleértve a sziikséges eszkozok és
eljarasok hasznalatat is. Ezaltal segiti az azt olvasokat a feladatok
hatékony és pontos megoldasaban, valamint eldsegiti a feladatok
reprodukalhatésagat és értelmezhetGségét.

Keywords-Mikrokontroller; Assembly; Regiszterek; Miivele-
tek; Szamrendszerek; Szamabrazolas;

MERESSEL KAPCSOLATOS FOGALMAK

o Szamrendszer: Olyan jelolési rendszer, amelyet a szé-

mok irdsara és az aritmetikai miiveletek elvégzésére hasz-
nalnak. AlapvetSen egy adott alapszam koré épiil, ami a
szamrendszer alapja, amely meghatdrozza a rendszerben
felhaszndlhaté szimbdlumok (szdmjegyek) szdmit és a
helyiérték szerinti szorzét. A legismertebb szamrendszer
a decimalis, vagy tizes szdmrendszer, amely 10 kiilonbo-
206 szdmjegyet haszndl (0-tdl 9-ig).
Kiilonbozd kultirdk és szamitégépes alkalmazdsok kii-
16nb6z6 szamrendszereket haszndlhatnak. Példdul a sza-
mitdstechnikdban gyakran alkalmazzdk a bindris (2-es
alapu), az oktalis (8-as alapu) és a hexadecimalis (16-0s
alapu) szamrrendszereket, mivel ezek hatékonyan model-
lezhetik a digitdlis dramkorok mikodését.

101,019 = 1-10°+0-10' +1-10°40-107" +1-107?

ey

o Kettes komplemens szamabrazolasi médszer: A kettes

komplemens moddszer a negativ szdmok bindris dbrazo-

lasdra szolgdl. Ez a moédszer lehet6vé teszi a bindris

Osszeadds haszndlatat mind pozitiv, mind negativ szdmok

esetében anélkiil, hogy kiilon figyelemmel kellene kisérni

a szam eldjelét. Egy adott bites szélességli szam kettes

komplementer alakjanak meghatirozasa a kovetkezd 1é-
pésekbdl 4ll, ha a szdm negativ:

1) Hozzdadunk a szdmhoz egyet;

2) Az igy kapott szam abszolutértékét vessziik;

3) Felirjuk bindrisan a kapott szamot, elére definidlt

biten;

4) Minden bitet negalunk.

(1]
« Fix pontos abrazolas: ElSre definidlt pontosvessz$ hely

alapjan tudjuk, hogy a . képletben a hatvanyok kitevdit
mennyivel toljuk el.

o Assembly programozasi nyelv: Egy alacsony szintd,

gépi kodhoz kozel 4ll6 nyelv, melyet az adott processzor
architektirdjanak utasitdskészletével irnak. Az assembly
programozasi nyelv lehet6vé teszi a programozok szama-
ra, hogy kozvetleniil befolydsoljdk a processzor miikodé-
sét, igy nagyfokud kontrollt biztositanak az alkalmazasok
felett. Altalaban a gépi kédhoz legkdzelebb 4ll6 emberi
érthetd formdban irédik, és kozvetleniil fordithaté gépi
kédda. Mivel az assembly nyelv kozvetleniil kommunikal
a hardverrel, ezaltal nagy teljesitményt és precizitast biz-
tosit, azonban &ltalaban bonyolultabb és kevésbé atlathatd
kédot eredményez, mint a magasabb szintli programozasi
nyelvek. [2]

Regiszterek: Olyan kis méretii adatokat tarol6 hardveres
komponensek, amelyek kozvetleniil kapcsolédnak a pro-
cesszorhoz. Ezek a tdrolék rendkiviil gyors hozzaférést
tesznek lehetévé a processzor szdmdra az adatokhoz és
utasitdsokhoz. A regisztereknek kiilonbozd tipusai van-
nak, beleértve az 4ltaldnos céld regisztereket, az adatre-
gisztereket, az indexregisztereket és a vezérldregisztere-
ket. Ezek a regiszterek jatszanak kulcsfontossagu szerepet
az assembly nyelvben firt programokban, mivel kozvet-
leniil manipuldlhaték az alacsony szintd utasitdsokon
keresztiil, lehetévé téve a programok szdmdra a hatékony
adatmanipulaciét és vezérlést.

Az egyes regiszterek altaldban a processzor architektu-
rdjatdl fiiggben vannak elnevezve, és ezek elnevezése
a processzor tervezésétl és az adott architektira kon-
venciditol fiigg. A regiszterek elnevezése gyakran koveti
egy adott architektira belsé miikodését és funkcidit. Az
x86 architektiraban a regiszterek elnevezése a kovetkezd
tipusok szerint csoportosithaté:

— Altaldnos céld regiszterek: Példaul az EAX, EBX,
ECX, EDX regiszterek.

— Index regiszterek: Példaul az ESI, EDI regiszterek.

— Adatregiszterek: Példaul az AL, AH, BL, BH regisz-
terek (byte regiszterek), valamint az AX, BX, CX,
DX regiszterek (word regiszterek).

— Pontosité regiszterek: Példaul az EFLAGS regiszter.

Mas architektirdk esetében mas elnevezési konvencidkat
hasznalnak, példdul az ARM architektira regiszterei kii-
16nboz6 tipusokra oszlanak. Az elnevezési konvencidk
véaltozhatnak az architektiiratél és a processzorgyart6tol
fuiggben. [3]

o Miiveletek Assembly-ben:

— MOV: Egy megadott regiszter értékét masoljuk &t



egy masik megadott regiszterbe.
src — dst

ADD: Egy megadott regiszter értékét hozzdadjuk
egy masik megadott regiszter értékéhez. Masnéven
az Osszeadds mfivelet. A C++ nyelvben az ehhez
leghasonlébb a += operator.

src + dst — dst

ADDC: Az "dsszeadas cipeléssel” (add with carry)
miiveletet végzi el. Ez az utasitds hasonlé az egy-
szeri ADD utasitdshoz, azonban a CARRY (cipelés)
allapotot is figyelembe veszi.A CARRY egy specidlis
jelzdbit a processzorban, amely jelzi, hogy egy el6z6
aritmetikai mfivelet sordn az eredmény tulcsordult-e
(overflow), vagyis tobb bitet igényel, mint amennyi a
célregiszterben elfér. Az ADDC utasitds két operan-
dust ad Ossze, valamint figyelembe veszi a CARRY
jelzdbitet is. Ha a CARRY be van allitva (1), akkor
az ADDC az operandusokat 6sszeadja, valamint az
egyesek helyiértékén levd cipelést is figyelembe ve-
szi. Ha a CARRY nem aktiv (0), akkor az ADDC
ugyanigy mikodik, mint az ADD utasités.

src 4+ dst + C' — dst

SUB: Assembly programozdsi nyelvben a "kivonds"
(subtract) mfiveletet valdsitja meg. Ez az utasitds
lehet6vé teszi két operandus kiilonbségének kisza-
mitasat.

dst 4+ —src + 1 — dst

SUBC: Assembly programozasi nyelvben a "kivonds
cipeléssel" (subtract with carry) miveletet val6sit-
ja meg. Ez az utasitds hasonlé az egyszerli SUB
utasitdshoz , viszont a CARRY (cipelés) allapotot
is figyelembe veszi. A CARRY egy specidlis jel-
z6bit a processzorban, amely jelzi, hogy egy el6z6
aritmetikaim@ivelet sordn az eredmény tulcsordult-e
(overflow), vagyis tobb bitet igényel, mint amennyi
a célregiszterben elfér. A SUBBC utasitds két ope-
randust von ki egymdsbdl, valamint figyelembe veszi
a CARRY jelzdbitet is. Ha a CARRY be van Allit-
va (1), akkor az SUBC az operandusokat kivonja,
valamint az egyesek helyiértékén levd cipelést is
figyelembe veszi. Ha a CARRY nem aktiv (0), akkor
az SUBC ugyaniigy miikddik, mint az SUB utasitas.

dst + —src + C' — dst

CMP: Ez a miivelet az assembly nyelv egyik alap-
vet$ utasitdsa, amely két operandust hasonlit Gssze.
A CMP utasitds lényegében az alapvetd kivonds
miiveletét végzi el, de az eredményt nem tdrolja
el. Az CMP utasitds csak a jelz&biteket dllitja be
annak megfelelGen, hogy az els6 operandus nagyobb,
kisebb vagy egyenl$-e a masodikkal megadott regisz-
terrel.
dst — src

DADD: Az 6sszeadds (Addition) az alapvetd Ossze-
adas mtveletét valésitja meg, de specifikus jelentés-
sel nem rendelkezik a legtobb architektiraban.

Az "D" prefix (példaul az DADD) gyakran a Do-
uble, azaz double szdmokhoz kapcsolddik, és azt
jelzi, hogy a mfivelet double szdimokkal torténik. Ez
gyakran az FP (Floating Point), azaz lebeg&pontos
szamokkal valo miiveletek esetén fordul eld, ahol a
dupla precizitdsi adatokhoz sziikség lehet 64 bites
(vagy ennél nagyobb) adatokra.

src + dst + C' — dst (decimally)

BIT: A logikai és (A) miiveletet valdsitja meg a meg-
adott src és dst regiszterek kozott, majd a kozottik
1évé és kapcesolat értékét a dst regiszterbe tarolja el.

src A dts

BIC: A BIT-hez hasonléan logikai és kapcsolatot
vizsgdl a két megadott regiszter kdzott, viszont az
src regiszter értékének a negéltjaval.

—src A dst — dst

BIS: A logikai vagy (V) miveletet valdsitja meg
a megadott src és dst regiszterek kozott, majd a
kozottik 16vE és kapcsolat értékét a dst regiszterbe
tarolja el.

src V dst — dst

XOR: A logikai kizaré vagy (&) miiveletet valdsitja
meg a megadott src és dst regiszterek kozott, majd
a kozottik 1évé kizard vagy kapcsolat értékét a dst
regiszterbe tarolja el.

src @ dst — dst

AND: A logikai és (A) miveletet valésitja meg
a megadott src és dst regiszterek kozott, majd a
kozottik 1évE és kapcsolat értékét a dst regiszterbe
tarolja el.

src A dst — dst

RRC:
C -MSB — ...LSC —- C

RRA:
MSB — MSB — ...LSB —» C
PUSH:
SP—-2 — SP, src— @SP

SWPB:
src — dst, dst — src

CALL:
SP—2-SP, PC+2— @SP, dst— PC

RETI:
TOS — SR, SP+2 — SP

TOS — PC, SP+2 — SP
SXT:
Bit7 — Bit8 — Bit9 — Bit10 — Bitll — Bitl2
Bit12 — Bit13 — Bitl4 — Bitl5

JMP: Az ugras (Jump) egy alapvetd utasitds az as-
sembly programozasi nyelvben, amelyet eldgazasok



végrehajtasara haszndlnak. Az ugrds utasitds arra III. MERESI FELADAT
szolgdl, hogy 4tugorja a program kddsordnak egy
adott részét, és folytassa a végrehajtist egy mdsik
cimr6l. Az utasitds paraméterként egy cél-cimet Var, Ephen a feladatban két 8 bites elSjel nélkiili szdmot
ahova a program vezérlése dtkeriil. Ez a cél-cim lehet  ¢;6r7unk ossze egymdssal. Ehhez az aldbbi assembly kéd
egy cim, egy regiszterben vagy viltozéban tarolt ysgsleter illesztettitk bele az IAR szimuldtor 4ltal elkészitett

erték. assembly sablonba.
Az ugrds utasitds a program futdsét a cél-cimen 1évé
I mov.b #12,R4 ; szorzando

utasftésokk.al folytatja, e}nélki:ll hogy barmilyen felté- =~ “ "/ 4 2, R5 i szorzo
telt ellendrizne. Ez azt jelenti, hogy az JMP utasitds : cir re

dltaldban egy abszolut eldgazast valdsit meg, vagyis *

mindig végrehajtodik, fiiggetleniil a koriilményektsl. = = 2dd R5.R6

[ ] [ ] 7 dec R4
8 jne AA

Végezzen el a két 8 bites eldjel nélkiili szam szorzasat.

I. MERESI FELADAT A program lefuttatdsa utdn a szimulalt mikrokontroller

regiszterein a III. tdblazatban 6sszegyijtott értékeket lattuk.
Végezzen el a kettével valdé szorzast egy 8 bites eldjel

nélkili szdmon. III. tablazat. A III. mérési feladatban a feladat lefuttatdsa utan

a regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke

Ebben a feladatban egy 8 bites elGjel nélkiili szamot
szorzunk meg 2-vel. Ehhez az aldbbi assembly kdd részletet

. - . . . L. R4 020000 (0
illesztettiik bele az IAR szimuldtor 4ltal elkészitett assembly v ©
blonb R5 020002 (2)
sablonba. R6 020018 (24)
mov.b #6,R04 ; szorzando
> rla.b RO4

IV. MERESI FELADAT
A program lefuttatdsa utdn a szimuldlt mikrokontroller

. - s . et ) Végezzen el szorzast két 16 bites elGjel nélkiili szdm
regiszterein az . tabldzatban Osszegyfijtott értékeket lattuk.

kozott. A mivelet elvégzése sordn vizsgélja a carry bit

értékét.
I. tdblazat. A 1. mérési feladatban a feladat lefuttatdsa utdn a
regiszterekben maradt értékek. Ebben a feladatban két 16 bites elGjel nélkiili szdmot
Regiszter neve || Regiszter értéke szorzunk Ossze egymdssal. Ehhez az aldbbi assembly kod
R4 H 0x000C (12) részletet illesztettiik bele az IAR szimulator altal elkészitett
assembly sablonba.
| mov.w #12,R4 ; szorzando
o > mov.w #2,R5 ; Szorzo
II. MERESI FELADAT : clr R6
4
Végezzen el a tizzel valé szorzast egy 8 bites eljel nélkiili ° A2°
. 6 add R5,R6
szamon. , dec R4
8 jne AA

Ebben a feladatban egy 8 bites eljel nélkilli szdmot
szorzunk meg 10-zel. Ehhez az aldbbi assembly kod részletet
illesztettiik bele az IAR szimulétor altal elkészitett assembly

A program lefuttatdsa utdn a szimulalt mikrokontroller
regiszterein a [V. tdbldzatban 0sszegytjtott értékeket lattuk.
A flageket megvizsgélva lathatjuk, hogy a kdd természeté-

sablonba. b6l adéddan, amikor 0sszeadasndl a két szdm Osszege megha-
mov.b #6,R4 ; szorzando ladja a 16 bitbe elférd szam értékét, az tilcsordul, ezt angolul
' B E-E ij overflow-nak hivjdk. Ilyenkor a C, mint carry flag értéke igaz
rla.b R4 lesz.
5 mov.b #6,R5
‘ Zgg'g ij' Eg IV. tablazat. A TV. mérési feladatban a feladat lefuttatdsa utén
' a regiszterekben maradt értékek.
A program lefuttatdsa utdn a szimuldlt mikrokontroller Regiszter neve [| Regisster értéke
regiszterein a II. tdbldzatban 6sszegydjtott értékeket lattuk. R4 0z0000 (0)
RS 020002 (2)
R6 020018 (24)

II. tablazat. A II. mérési feladatban a feladat lefuttatasa utan
a regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke
R4 020030 (48)
R5 0z003C' (60)

V. MERESI FELADAT

Végezzen el szorzast két 32 bites elGjel nélkiili szdm
kozott. A mivelet elvégzése sordn vizsgdlja a carry bit
értékét.




Ebben a feladatban két 32 bites elgjel nélkiili szdmot
szorzunk Ossze egymadssal. Ehhez az aldbbi assembly koéd
részletet illesztettiik bele az IAR szimuldtor éltal elkészitett
assembly sablonba.

mov.w #20,R5 ; szorzando
> mov.w #10,R6
3 mov.w #0,R7
mov.w #0,R8
» mov.w #5,R9 ; szorzo
mov.w R9,R10
mov.w #0,R11
mov.w #0,R12
mov.w #0,R13
> mov.w #0,R14
mov.w #0,R4
7 a: Jjz break
rra R10
rrc R9
jnc b
add R5,R11
addc R6,R12
addc R7,R13
addc R8,R14
rla R5
rlc R6
rlc R8
dec.w R4
Jmp a
35 b: rla RS
rlc R6
rlc R7
rlc R8
dec.w R4
jmp a
break: nop

A program lefuttatdsa utdn a szimuldlt mikrokontroller
regiszterein az V. tdblazatban Osszegyjtott értékeket 1attuk.

A flageket megvizsgdlva lathatjuk, hogy a kéd természeté-
bdl adéddan, amikor dsszeaddsndl a két szdm Osszege megha-
ladja a 16 bitbe elférd szam értékét, az tilcsordul, ezt angolul
overflow-nak hivjak. Ilyenkor a C, mint carry flag értéke igaz

lesz.

V. tablazat. A V. mérési feladatban a feladat lefuttatasa utan
a regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke

R4 020000 (0)
R5 020000 (0)
R6 020000 (0)
R7 020000 (0)
RS 020000 (0)
R9 020000 (0)
RI10 020000 (0)
R11 050064 (100)
RI2 020096 (——)
RI13 0z001E (——)
R14 020000 (0)

VI. MERESI FELADAT

A tanultakat ellendrizze az 1-5; feladat megolddsaval
eldjeles kornyezetben is.

ElGjeles kornyezetben a programok létrehozdsa és a megirt
kédok nem valtoznak, csak arra kell figyelni, hogy a szamok
taroldsa sordn az eldjel bit miatt 8 bit helyett csak 7 biten
tarolhatunk szamokat. El6jeles 6sszeaddsndl érdemes a kettes
komplemens szdmdbrdzolast haszndlni. Ez azt jelenti, hogy
a legnagyobb helyiértékd bitben taroljuk a szdm elGjelét.
Ha a szdm nem negativ, akkor a bit értéke 0, ha viszont
negativ, akkor a bit értéke az 1 értéket vesz fel. Annak
érdekében, hogy megallapithassuk, hogy az eredmény pozitiv
vagy negativ, az ugynevezett "negativ zdszI6t" (N flag)
kell figyelni: ha értéke 0, akkor nem negativ, ha 1, akkor
negativ szdmot kaptunk eredményiil. Ha a végeredmény a bit
szamanak megfelel6 tartomanyon kiviil esik, az dgynevezett
"tilcsordulds zaszl6" (O flag; Overflow) értéke 0-r6l 1-re
valt. A "carry bit" akkor lesz 1, ha a tdlcsordulds a tartomany
pozitiv felén torténik.

VII. MERESI FELADAT

Végezzen el osztast egy 16 bites osztandd és egy 8 bites
oszt6 kozott eldjel nélkiili szdmabrazolas esetén.

Ebben a feladatban egy 16 bites el6jel nélkiili osztandét
és 8 bites elGjel nélkiili osztét osztunk el. Ehhez a csatolt
’16and8bitdivide.asm’ assembly kodfajl részletet illesztettiik
bele az IAR szimulator 4ltal elkészitett assembly sablonba.

VIII. MERESI FELADAT

Végezzen el az osztdst 16 bites elgjel nélkiili szamabrazolas
mellett.

Ebben a feladatban két 16 bites elgjel nélkiili szdmot
osztunk el egymadssal. Ehhez a csatolt ’l16bitdivide.asm’
assembly kodfijl részletet illesztettiik bele az IAR szimulator
altal elkészitett assembly sablonba.

IX. MERESI FELADAT

Végezzen el az osztast 32 bites elbjel nélkiili szamabrazolas
mellett.

Ebben a feladatban két 32 bites eljel nélkiili szdmot
osztunk el egymdssal. Ehhez a csatolt ’32bitdivid.asm’
assembly kddfajl részletet illesztettiik bele az IAR szimulator
altal elkészitett assembly sablonba.

X. MERESI FELADAT

A tanultakat ellendrizze az 7-8 feladat megolddsdval
elgjeles kornyezetben is.

A szorzashoz hasonléan, ebben az esetben is azonosak
a programok a elgjel nélkiili véaltozatokhoz képest, de fontos,
hogy megjeloljik a szadmok elGjelét. Az osztds definicid
alapjan hasonlit a kivondsra, kivonds esetén pedig ugyanigy
érvényes a szdmdabrazoldsi tartomdny, mint az Osszeadds
esetén. Ha a végeredmény negativ, akkor az N flag 1 értéket
vesz fel, és kettes komplemensként kell kezelni. Emellett az
overflow flag is jelzi a tdlcsorduldst a mivelet sordn, igy a
kapott érték nem fér bele az dbrdzoldsi tartomanyba. A carry
bit ebben az esetben ellentétesen miikodik, hiszen negativ
iranybdl torténik tilcsordulds esetén valt csak 1-es értékre.



(1]

(2]

(3]

(5]

HIVATKOZASOK

T. Finley, Two’s Complement. 2000. cim: https://www.cs.
cornell.edu/~tomf/notes/cps104/twoscomp.html (elérés
datuma 2024. 05. 15.).

x86 Assembly Language Reference Manual. Oracle. cim:
https://docs.oracle.com/cd/E19641-01/802-1948/802-
1948.pdf (elérés datuma 2024. 05. 15.).

Description of the MIPS R2000. Imperial College Lon-
don. cim: https://www.doc.ic.ac.uk/lab/secondyear/spim/
node9.html (elérés datuma 2024. 05. 16.).

Wikipedia, Mikrovezérld. cim: https://hu.wikipedia.org/
wiki / Mikrovez % C3 % A9rl % C5 % 91 (elérés datuma
2024. 05. 15.).

MSP430x1xx Family User’s Guide. Texas Instruments.
cim: https://www.ti.com/lit/ug/slau049f/slau049f .
pdf ? ts = 1649510678917 & ref _ url = https % 253A %
252F%252Fwww.ti.com%252Fsitesearch%?252Fen-us %
252Fdocs % 252Funiversalsearch . tsp % 253FlangPref %
253Den-US%?2526searchTerm%?253Dslau049%?2526nr%
253D160 (elérés datuma 2024. 05. 16.).


https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160

	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat

