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I. FELADAT: MÉRÉS SORÁN FELMERÜLŐ FOGALMAK

I-A. Assembly

Az Assembly a számı́tógépes programozás egyik leg-
alacsonyabb szintű nyelve, amely közvetlenül kommu-
nikál a számı́tógép hardverével. Az Assembly nyelv alap
utası́tásokból áll (pl: move, add, sub), amelyeket a processzor
közvetlenül értelmez és végrehajt. A programok ı́rása assemb-
ly nyelven lehetővé teszi a maximális kontrollt a hardver
felett, és lehetőséget nyújt a hatékonyság és a teljesı́tmény
optimalizálására. Assembly nyelvű program ı́rása bonyolult,
és meglehetősen időigényes, azonban az ı́gy készült program
idő és teljesı́tményhatékony.

I-B. MSP430

Az MSP430 [1] mikrokontroller a Texas Instruments fej-
lesztése, mely igen alacsonyszintű programozási ismerete-
ket igényel, azonban ezzel együtt idő-, és energi hatékony.
Programozása gyakran Assembly nyelven történik, mi is ı́gy
használtuk.

I-C. Számrendszerek

A különböző számrendszerek életünk számos terén meg-
találhatóak. Mindennapi életünkben, de alapvetően a ma-
tematikában is a tizes számrendszert, vagyis a decimális
számrendszert használjuk. Itt a 10 az alap, tehát a számjegyek
1 és 9 közti számok.

Informatikában gyakran használatos a hexadecimális, vagy-
is a 16 alapú számrendszer. Itt az számjegyek lehetnek 1
és 9 közti számok, illetve betűk A-F között. (A = 10, ...
, F = 15) Gyakran használt például szı́nskáláknál, vagy
memóriacı́mzéseknél. Elsősorban azért kedvelt számrendszer,
mert a 16 egy kettő hatványa, 16 = 24, tehát egy számjeggyel
ábrázolhatunk 4 számjegynyi bináris számot.

És az informatika alapja a bináris, vagyis a kettes
számrendszer. Olyan lényeges, hogy az 5 Neumann-elv közt
is szerepel ennek használata. Könnyű használata, mivel ı́gy
kettéfelé bontható a digitális jel, logikai magas, és logikai
alacsony feszültségre (0, 5V). Kétféle számjeggyel kell leı́rni
minden számot, 0 vagy 1. (false, true)

Ábrázolásuk helyiértékekkel és alaki értékekkel történik. [2]
Képlet rá, ahol k alapú a számrendszer:

n∑
i=0

ai · ki

Elsősorban ezeket az ismereteket a mérés során rutinszerűen
kell tudjuk alkalmazni, mivel a regiszterek értékét hexade-
cimálisan ábrázolva láthatjuk csak, a számı́tógép binárisan dol-
gozik, és azzal kell gondolkodjunk, de egyben a számmegadás
pedig decimálisan történik.

I-D. Kettes komplemens

A ketes komplemens számábrázolást az előjeles egész
számok minél praktikusabb ábrázolásának igénye hı́vta életre.
Úgy alkották meg, hogy egy kivonásnál a kivonandót
könnyedén, kettes komplemensű negatı́v számként ábrázolva
a kisebbı́tendőhöz hozzáadva el lehessen végezni. Az alábbi
algoritmussal képzünk kettes komplemens negatı́v számot:

¬|neg.szam+ 1| (1)

Vagyis a negatı́v számhoz hozzáadunk egyet, majd vesszük
az abszolútértékét, és elvégezzük rajta a kettes számrendszerbe
átı́rást. Ezt követően pedig értékenként negáljuk, tehát minden
1-es 0 lesz és minden 0 1-es lesz. [3]

I-E. ALU

Az ALU (Arithmetic Logic Unit) [4] a számı́tógépek
nélkülözhetetlen eleme, mely a CPU-n, vagyis a processzo-
ron kap helyet. Alapvető, fundamentális számı́tásokat végez
el, összead, kivon, illetve egyes logikai műveleteket képes
elvégezni, mint például AND, OR, XOR.

1. ábra. Arithmetic Logic Unit

Mint az 1. ábrán is látható, két bemeneti értékből
ad ki egyet. Ezek jellemzően a regiszterekből, vagy-
is a műveletvégző egységhez legközelebb álló volatile
memóriákból származó adatok, értékek. Ezen kı́vül van egy
extra bemenet, ami a különböző műveletek elvégzését szabja



ki rá, illetve egy extra kimenet, az ún. flagek, vagy status bit-
ek, amik néhány extra adattal szolgálnak felénk (pl.: Carry,
Overflow, Zero, Negative).

II. FELADAT: SZORZÁSOK ELVÉGZÉSE

II-A. Mi is a szorzás?

A szorzás igazából ismételt összeadás. Mit jelent ez? Azt
jelenti, hogy a szorzandót szorzószor adom hozzá a nullához.
Papı́ron való szorzás egy egyszerűsı́tett műveletvégzés, ahol
már feltételezzük, hogy tudunk két egyjegyű számot össze-
szorozni, vagyis szorzószor nullához a szorzatot hozzáadni.
(Megjegyzés: A szorzás asszociativitása miatt az is helyes, ha
a szorzót adjuk hozzá nullához szorzandószor.)

Először is nézzük meg hogyan is szorzunk össze két egész
számot papı́ron.

2. ábra. Két decimális egész szám szorzása

a 2. ábrán látható egy papı́ron végzett szorzás. Nem is
az eredmény a lényeges, hanem a metódus. Először is a
szorzó legnagyobb helyiértékével megszorzom a szorzandót,
amit leı́rok. Következő lépésben ugyanezt megismétlem, tehát
a szorzó második legnagyobb helyiértékével végigszorozzuk
a számot, majd ezt is leı́rjuk, DE mivel tudjuk, hogy az
a számjegy eredetileg a második legnagyobb helyiértéken
van csak, ezért pont egy helyiértéknyivel (nagyságrenddel)
kevesebbet ér. Ez technikailag azt jelenti, hogy decimális
számoknál tı́zzel el kell osszuk, vagyis a papı́rra eggyel eltolva
(elshiftelve) ı́rjuk le. Ezt ismételjük meg annyiszor, ahány
helyiértékes a szorzó. Ha minddel megvagyunk, nincs más
dolgunk, mint összeadni (nagyságrendhelyesen) a kapott, leı́rt
eredményeinket.

Mi is áll emögött? A szorzás disztributı́v (2. azonosság)
tulajdonságát használjuk ki. Mi ez?

a · (b+ c) = a · b+ a · c (2)

Ennek értelmében 2023 · 19 = 2023 · (1 · 101 + 9 · 100) =
2023 · 1 · 101 + 2023 · 9 · 100. Azért ı́rtam ı́gy fel, hogy
egyértelműen lássuk a tı́zes számrendszer helyiértékeit. És
tudjuk még továbbá, hogy egy S számrendszerbeli szám SX

-nel való szorzása esetén van a legkönnyebb dolgunk, mivel
ez X -szer való balraeltolását jelenti a számnak úgy, hogy a
szám végére 0-kat ı́runk.

Ezt az előző tulajdonságot használjuk fel a kettes
számrendszer-beli szorzás esetén is, illetve azt, hogy az
eggyel való szorzása a számnak önmagát jelenti, nullával való
szorzása a számnak pedig nullát jelent, és nullát hozzáadni a
számhoz továbbra is változatlanul az eredeti számot jelenti.
(Megjegyzés: Fontos észrevenni, hogy egy A meg egy B
számjegyű szám szorzása egy A+B számjegyű szorzatot fog
jelenteni.)

Nézzük is meg, hogy néz ki egy hasonló szorzás bináris
számokkal, azaz a kettes számrendszerben.

3. ábra. Két bináris egész szám szorzása

Nagyon hasonlóképp végzünk szorzást bináris számokkal,
itt a 3. ábrán látható konkrét példában a 9 · 5 = 45 szorzást
végeztem el binárisan, és ha visszaváltjuk a számot decimális
számrendszerbe láthatjuk, hogy tényleg 45 lesz az eredmény.
A megfontolás mögötte ugyanaz.

II-B. Nézzük meg ezt a gyakorlatban!

Az MSP430 szimulátorral Assembly nyelven először meg-
próbálkozunk egy bináris számot kettővel megszorozni. Ehhez
felhasználjuk a II-A. részben található ismereteket.

MOV.B #19 , R4
RLA.B R4

Ezután ha megnézzük mi van a négyes regiszterben, 38-at
fogunk látni hexadecimálisan, azaz 0x0026.

Most próbáljuk meg a 19-et 10-zel megszorozni. Tudjuk,
hogy ez azt jelenti, hogy 19·(1·23+1·21) , vagyis binárisan úgy
néz ki, hogy 10011b · 1010b = 10111110b. Ezt úgy végezzük
el, hogy:

MOV #19 , R4
MOV #0 , R5
RLA R4
ADD R4 , R5
RLA R4
RLA R4
ADD R4 , R5

Ha most megnézzük az R5 regiszter értékét 0x00BE értéket
láthatnánk, ami pont a 190. Itt pont azt csináltam, amit
a II-A. részben leı́rtam, aképpen, ahogy itt fentebb leı́rtam,
vagyis megszoroztam kettővel (balra rotate), azt hozzáadtam
R5 regiszter kezdeti 0 értékéhez, majd megszoroztam kétszer
egymás után kettővel (balra rotate), és ezt a számot is
hozzáadtam R5-höz.

Nézzük meg ezt két tetszőleges 8bites (8 számjegyű)
számmal.

A 4. ábrán látható példában összeszorzom a tizet a néggyel.
Amire figyelni kell, hogy itt nem tudjuk előre, hogy mi
lesz a szám, szóval nem ı́rhatjuk bele csak ı́gy, hogy mikor
kell összeadni és eltolni. Így automatizáljuk, és elágazásokat
teszünk bele. Ebben az esetben maszkolással megvizsgálom,
hogy az éppen soronkövetkező biten egyes van-e. Ha igen,
akkor hozzá is adja az eredményregiszterhez, shifteli a masz-
kolót, és a szorzandót is, valamint növeli a lépésszámlálót. Ha
nulla a maszkolás eredménye, akkor átugorja az összeadást,
és csak shifteli a maszkolót meg a szorzandót, illetve növeli a
lépésszámlálót. Ha a lépésszámláló elérte azt a számot, ahány
biten végzünk szorzást (R4), akkor leáll.



4. ábra. Két tetszőleges 8bites egész szorzása

16 biten és 32 biten az elv ugyanez, csak már kifutunk a
környezet által számukra biztosı́tott határok közül, ezért még
a múltórai laboron elsajátı́tottak alapján külön össze is kell
adni, illetve a shiftelés során is több regiszternyi adatot tolunk
el. Hogy is néz ez ki.

5. ábra. Két tetszőleges 32bites egész szorzása

Mivel az előző maszkolós megoldás a 32 bites példában
túl sok regisztert elhasználna, többet, mint amennyink erre
van, ezért más megvalósı́tást kell eszközölnünk, de a háttér
továbbra is változatlan. Most az 5. ábrán látható, hogy nem
maszkolót léptetünk balra, hanem magát a szorzót jobbra.
Ez lényegét tekintve ugyanazt eredményezi, mindig a soron
követlező LSB (less significant bit) -t vizsgáljuk, illetve a
shiftelés végett ez a bit kicsúszik a Carry bitbe, tehát egész
pontosan a Carry értékétől függően fogjuk végrehajtani, avagy
átugrani az összeadást. Az összeadás tényleg változatlanul
megmaradt, annyi különbséggel, hogy ahogy múlt laboron
csináltuk, a Carry bit értékét hozzáadjuk a magasabb word
értékéhez. Továbbá arra is figyelni kell, hogy mint ahogy
azt a II-A. részben kiemeltem, számı́tani kell arra, hogy
megduplázódik az eredmény számjegyeinek száma.

Vegyük számba, mi történik, ha előjeles a szám. Nem
történik semmi egetrengető dolog, elején meg kell vizsgálnunk
az előjelbiteket, például egy nullát hozzáadással, ı́gy a

Negative bitben egy egyes lesz, és ezekkel végezhetünk
elágazásokat a JZ utası́tás segı́tségével. Vagy végezhetünk
velük XOR műveletet is. Ezt pedig el kell tárolni, hogy
ennek függvényében legyen a végén az eredmény, valamint
figyelnünk kell arra, hogy eggyel kevesebb bitet vehetünk
figyelembe, hiszen az előjel bit nem vehető figyelembe az
összeadásokkor.

III. OSZTÁSOK ELVÉGZÉSE

III-A. Mi is az osztás?

Ha végiggondoljuk az egészosztás elvégzése
tulajdonképpen egy ismételt kivonás. A kérdés az, hogy
hányszor tudjuk ”teljesen” kivonni az osztandóból az osztót,
ez lesz a hányados, amennyi pedig marad, mert nem tudjuk
”teljesen” kivonni a legvégén, az lesz a maradék. [5]

Hogyan is végezzük ezt el papı́ron osztást?

6. ábra. Két decimális egész szám osztása

Látható a 6. ábrán, hogy szerencsére nem ilyen hossza-
dalmas a dolgunk, van erre algoritmus, amit még alsóban
jóeséllyel megtanultunk. Hogy is működik ez? Vesszük az első
számjegyet (ha abban egyértelműen látjuk hogy nincs meg,
mert mondjuk több számjegyű az osztó, vagy mert tudjuk,
hogy kisebb az a szám pl.: ha 6 helyett a 6. ábrán 4 lenne,
akkor vehetünk rögtön több számjegyet is papı́ron, de ezt
a gép nyilván nem fogja hasraütésszerűen megmondani), és
megnézzük, hogy abban hányszor van meg. Az eredményt
leı́rjuk az egyenlőségjel mögé, a maradékot pedig leı́rjuk alá.
Majd vesszük a következő helyiértéket, leı́rjuk mellé (ez azt
jelenti, hogy az előző maradékot megszorozzuk tı́zzel, vagyis
shifteljük eggyel balra úgy, hogy melléhelyezzük a jelenlegi
utolsó számjegyet, amit még nem vettünk. Ebben az újonnan
képzett maradékban nézzük most meg, hogy hányszor van
meg az osztó, ennek eredményét is leı́rjuk az egyenlőségjel
mögé, majd a maradékot ugyanúgy leı́rjuk. Ezt ismételjük
annyiszor, ahány számjegyünk van. Látható, hogy ez minden
bizonnyal kevesebb ciklussal jár, mint az eredeti eljárás, de
persze mindegyik helyes.

Binárisan is nézzük meg.

7. ábra. Két bináris egész szám osztása

Látható, hogy teljesen ugyanez történik, még annyival
könnyebb dolgunk is van, hogy csak el kell döntenünk a kettő
számról, hogy megvan-e benne (≡ nagyobb vagy egyenlő a
maradék szám, mint az osztó), tehát ez is egy nagyon könnyen
programozhetó eljárás.



III-B. Lássuk a gyakorlatban!

Tulajdonképpen meg is tudánk valósı́tani az osztást, hogyha
az osztandóból kivonjuk az osztót, és egy számláló regisz-
terben számolnánk mennyiszer tudtuk ezt megtenni, és a
ciklus tart mindaddig, amı́g nagyobb a kisebbı́tett osztandó
az osztónál (első módszer a III-A. részből):

MOV #255 , R4
MOV #5 , R5
MOV #0 , R6

s t a r t : CMP R5 , R4
JL f i n e

SUB R5 , R4
INC R6
JMP s t a r t

f i n e : NOP

A kódban R4 az osztandó, R5 az osztó, R6 a ciklusváltozó.
A program végén az R4 regiszterben lesz a maradék, és R6
regiszterben a hányados. Ez is egy jó megoldás.

Nézzük meg a III-A. részben ismertetett második meg-
oldással, ami olyan, mint a papı́ron osztás.

MOV #255 , R4 ; o s z t a n d o
MOV #0 , R5 ; maradek
MOV #5 , R6 ; o s z t o
MOV #8 , R7 ; s z a m l a l a
MOV #0 , R8 ; hanyados
CLRZ

s t a r t : JZ f i n e

RLA R4
RLC R5
CMP R6 , R5
JL n e x t

SUB R6 , R5
SETC
RLC R8
DEC R7
JMP s t a r t

n e x t : CLRC
RLC R8
DEC R7
JMP s t a r t

f i n e : NOP

Ez a kód valószı́nűleg gyorsabb, de ugyanúgy működik
mindkettő. Természetesen mindkettő esetben ellenőrizni is
kéne, hogy nem nulla az osztó, mert első esetben végtelen
ciklusba jutnánk, mivel mindig kivonná a nullát, de ı́gy sosem
lesz az osztandó kisebb nullánál. Második esetben pedig csupa
egyes lenne az eredmény, mivel bármilyen számot raknánk
a maradék regiszterbe, az nem lenne kisebb nullánál, tehát
a maradékba kerülne az osztandó, és mivel nagyobb, ezért
kivonja belőle a nullát, tehát marad önmaga, és egyest beı́r
a hányados regiszterébe. De feltételezzük most, hogy ismeri
mindenki, hogy nullával nem osztunk.

Ha ennél több bites számokat szeretnénk osztani egymással,
hasonlóképp a szorzáshoz, annyi csupán a teendőnk, hogy több
regiszternyi adatot shiftelünk a maradék esetén is, az osztandó
esetén is, és a hányados esetén is. Az összehasonlı́táskor
pedig word-nként ellenőrizzük, hogy nagyobb-e, illetve ha
ugyanakkora, akkor megnézzük a következő regiszter értékét,
ha pedig utolsó regiszter, akkor az alapján döntünk.

Mi történik, ha negatı́v számok közt végezzük? Ugyanúgy
járunk el, mint szorzás esetén, az első előjelbitetkülön ke-
zeljük, nem vesszük figyelembe a műveletvégzés közben,
csak az elején XOR művelettel eldöntjük, hogy negatı́v
vagy pozitı́v lesz az eredmény, mert ugye a XOR művelet
az, ami éppen azt vizsgálja, hogy mindkettő megegyezik-
e, vagy mindkettő különböző. Ezt az előjelet az elején a
megoldásba beleshifteljük. Előny, hogy tudunk ı́gy negatı́v
számokat is szorozni/osztani, hátrány, hogy eggyel kevesebb
biten ábrázolhatunk számot.

LEZÁRÁS

Összegzésképpen az órán nehéz volt, és nem volt elég idő
átgondolni, de otthon volt idő szépen átgondolni, és lejátszani,
hogy mi is történik. Tanulságosnak mindnképp mondható,
mert ı́gy mégjobb betekintést nyertem mind a számı́tógép
számolásába, mind az Assembly nyelvbe.
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