Mikrokontroller II.

Levente VAJINA
(Mérési partner: Valik Levente Ferenc)
(Gyakorlatvezet6: Tihanyi Attila Kalman)
Pazmany Péter Katolikus Egyetem, Informacids Technolégiai és Bionikai Kar
Magyarorszag, 1083 Budapest, Prater utca 50/a
vajna.levente@hallgato.ppke.hu

Kivonat—A labor soran MSP430 mikrokontroller szi-
mulatorral, az IAR Visual State programmal végeztiink
méréseket Assembly nyelven. Regiszterekbe irtunk ki pozitiv
illetve negativ egész szamokat, és ezekkel végeztiink szorzast,
illetve osztast. Tekintve, hogy nincs ezen miiveletvégzéskhez
parancs létrehozva, teljes egészében magunk kellett megirjuk.

Keywords-MSP430; TIAR Visual State; flag; Assembly; szorzas;
0sZztas;

Mérés ideje: 2023.05.18.

1. FELADAT: MERES SORAN FELMERULO FOGALMAK
I-A. Assembly

Az Assembly a szamitégépes programozds egyik leg-
alacsonyabb szintli nyelve, amely kozvetlenil kommu-
nikdl a szamitégép hardverével. Az Assembly nyelv alap
utasitdsokbol all (pl: move, add, sub), amelyeket a processzor
kozvetlentil értelmez és végrehajt. A programok {rdsa assemb-
ly nyelven lehet6vé teszi a maximélis kontrollt a hardver
felett, és lehetdséget nydjt a hatékonysdg és a teljesitmény
optimalizdldsdra. Assembly nyelvi program {irdsa bonyolult,
és meglehetSsen iddigényes, azonban az igy késziilt program
1d6 és teljesitményhatékony.

I-B. MSP430

Az MSP430 [1] mikrokontroller a Texas Instruments fej-
lesztése, mely igen alacsonyszintli programozisi ismerete-
ket igényel, azonban ezzel egyiitt id6-, és energi hatékony.
Programozasa gyakran Assembly nyelven torténik, mi is igy
hasznaltuk.

I-C. Szdmrendszerek

A kiilonb6z6 szdmrendszerek életiink szdmos terén meg-
taldlhatéak. Mindennapi életiinkben, de alapvetéen a ma-
tematikdban is a tizes szdmrendszert, vagyis a decimadlis
szamrendszert hasznaljuk. Itt a 10 az alap, tehit a szamjegyek
1 és 9 kozti szdmok.

Informatikdban gyakran hasznalatos a hexadecimadlis, vagy-
is a 16 alapd szdmrendszer. Itt az szamjegyek lehetnek 1
és 9 kozti szamok, illetve betlik A-F kozott. (A = 10, ..
, F = 15) Gyakran hasznalt példaul szinskaldknal, vagy
memoriacimzéseknél. ElsGsorban azért kedvelt szamrendszer,
mert a 16 egy kettS hatvanya, 16 = 24, tehat egy szdmjeggyel
abrazolhatunk 4 szdmjegynyi bindris szamot.

Es az informatika alapja a bindris, vagyis a kettes
szamrendszer. Olyan l1ényeges, hogy az 5 Neumann-elv kozt
is szerepel ennek haszndlata. Konny(i haszndlata, mivel igy
kettéfelé bonthaté a digitdlis jel, logikai magas, és logikai
alacsony fesziiltségre (0, 5V). Kétféle szamjeggyel kell leirni
minden szdmot, 0 vagy 1. (false, true)

Abrazolasuk helyiértékekkel és alaki értékekkel torténik. [2]
Képlet ra, ahol k alapu a szdmrendszer:

n
E a; - k'
i=0

Els6sorban ezeket az ismereteket a mérés soran rutinszertien
kell tudjuk alkalmazni, mivel a regiszterek értékét hexade-
cimdlisan dbrdzolva lathatjuk csak, a szdmit6gép bindrisan dol-
gozik, és azzal kell gondolkodjunk, de egyben a szimmegadas
pedig decimalisan torténik.

I-D. Kettes komplemens

A ketes komplemens szdmabrazolast az elGjeles egész
szamok minél praktikusabb dbrazoldsanak igénye hivta életre.
Ugy alkottaik meg, hogy egy kivondsnil a kivonandét
konnyedén, kettes komplemensii negativ szdmként dbrizolva
a kisebbitend6hoz hozzdadva el lehessen végezni. Az aldbbi
algoritmussal képziink kettes komplemens negativ szdmot:

—|neg.szam + 1| (1)

Vagyis a negativ szdmhoz hozzaadunk egyet, majd vessziik
az abszolutértékét, és elvégezziik rajta a kettes szimrendszerbe
atirast. Ezt kovetden pedig értékenként negéljuk, tehat minden
1-es 0 lesz és minden O 1-es lesz. [3]

I-E. ALU

Az ALU (Arithmetic Logic Unit) [4] a szdmitogépek
nélkiilozhetetlen eleme, mely a CPU-n, vagyis a processzo-
ron kap helyet. Alapvetd, fundamentélis szdmitdsokat végez
el, osszead, kivon, illetve egyes logikai miiveleteket képes
elvégezni, mint példdul AND, OR, XOR.

INPUT X INPUT Y

| |

O ti
%e(;z ;on —> FLAGS
OUTPUT
1. abra. Arithmetic Logic Unit
Mint az 1. abran is lathatdé, két bemeneti értékbsl
ad ki egyet. Ezek jellemz&en a regiszterekbdl, vagy-

is a miiveletvégzd egységhez legkozelebb 4ll6 volatile
memoridkbdl szdrmazé adatok, értékek. Ezen kiviil van egy
extra bemenet, ami a kiilonb6z6 mtiveletek elvégzését szabja

ki ré, illetve egy extra kimenet, az Un. flagek, vagy status bit-
ek, amik néhdny extra adattal szolgdlnak felénk (pl.: Carry,
Overflow, Zero, Negative).

II. FELADAT: SZORZASOK ELVEGZESE
1I-A. Mi is a szorzds?

A szorzas igazabol ismételt Osszeadas. Mit jelent ez? Azt
jelenti, hogy a szorzandét szorzészor adom hozza a nullahoz.
Papiron valdé szorzds egy egyszertsitett miiveletvégzés, ahol
madr feltételezziik, hogy tudunk két egyjegyll szdmot Ossze-
szorozni, vagyis szorzdszor nulldhoz a szorzatot hozz4adni.
(Megjegyzés: A szorzas asszociativitdsa miatt az is helyes, ha
a szorzot adjuk hozza nulldhoz szorzanddszor.)

El6szor is nézziik meg hogyan is szorzunk Ossze két egész
szdmot papiron.

Qo223 ~ 49

AR A3
£ 18207

SRS

2. ébra. Két decimalis egész szdm szorzdsa

a 2. 4bran lathaté egy papiron végzett szorzds. Nem is
az eredmény a lényeges, hanem a metddus. Elészor is a
szorzé legnagyobb helyiértékével megszorzom a szorzandot,
amit lefrok. Kovetkez6 1épésben ugyanezt megismétlem, tehat
a szorz6 masodik legnagyobb helyiértékével végigszorozzuk
a szamot, majd ezt is leirjuk, DE mivel tudjuk, hogy az
a szamjegy eredetileg a mdsodik legnagyobb helyiértéken
van csak, ezért pont egy helyiértéknyivel (nagysagrenddel)
kevesebbet ér. Ez technikailag azt jelenti, hogy decimadlis
szamokndl tizzel el kell osszuk, vagyis a papirra eggyel eltolva
(elshiftelve) irjuk le. Ezt ismételjik meg annyiszor, ahdny
helyiértékes a szorz6. Ha minddel megvagyunk, nincs mas
dolgunk, mint dsszeadni (nagysagrendhelyesen) a kapott, leirt
eredményeinket.

Mi is 4ll emogott? A szorzéds disztributiv (2. azonossag)
tulajdonsagét hasznéljuk ki. Mi ez?

a-(b+c)=a-b+a-c 2)

Ennek értelmében 2023 - 19 = 2023 - (110 +9-10°) =
2023 - 1 - 10! + 2023 - 9 - 10°. Azért irtam igy fel, hogy
egyértelmiien ldssuk a tizes szdmrendszer helyiértékeit. Es
tudjuk még tovabba, hogy egy S szdmrendszerbeli szam S¥
-nel val6 szorzdsa esetén van a legkénnyebb dolgunk, mivel
ez X -szer vald balraeltoldsét jelenti a szdmnak gy, hogy a
szam végére 0-kat {runk.

Ezt az el6z6 tulajdonsdgot haszndljuk fel a kettes
szamrendszer-beli szorzds esetén is, illetve azt, hogy az
eggyel val6 szorzasa a szamnak 6nmagat jelenti, nullaval valé
szorzdsa a szdmnak pedig nullat jelent, és nulldt hozzdadni a
szamhoz tovabbra is véltozatlanul az eredeti szdmot jelenti.
(Megjegyzés: Fontos észrevenni, hogy egy A meg egy B
szamjegy(i szdm szorzdsa egy A + B szamjegyi szorzatot fog
jelenteni.)

Nézziik is meg, hogy néz ki egy hasonlé szorzas bindris
szamokkal, azaz a kettes szamrendszerben.

1004 - 404

4°o4p0
0 0o ©00

<+ @o/\OO-{
4011041

3. dbra. Két bindris egész szdm szorzdsa

Nagyon hasonldképp végziink szorzast bindris szdmokkal,
itt a 3. dbrdn l4thaté konkrét példdban a 9 - 5 = 45 szorzast
végeztem el bindrisan, és ha visszavaltjuk a szdmot decimélis
szamrendszerbe lathatjuk, hogy tényleg 45 lesz az eredmény.
A megfontolds mogotte ugyanaz.

II-B. Nézziik meg ezt a gyakorlatban!

Az MSP430 szimulatorral Assembly nyelven el6szor meg-
probalkozunk egy bindris szamot kettével megszorozni. Ehhez
felhasznaljuk a II-A. részben taldlhat6 ismereteket.

MOV.B #19, R4
RLA.B R4

Ezutdn ha megnézziik mi van a négyes regiszterben, 38-at
fogunk latni hexadecimalisan, azaz 0x0026.

Most prébéljuk meg a 19-et 10-zel megszorozni. Tudjuk,
hogy ez azt jelenti, hogy 19-(1-23+1-21) , vagyis bindrisan tgy
néz ki, hogy 100116 - 1010b = 10111110b. Ezt ugy végezziik
el, hogy:

MOV #19, R4
MOV #0, RS
RLA R4

ADD R4, RS
RLA R4

RLA R4

ADD R4, RS

Ha most megnézziik az RS regiszter értékét 000 B E értéket
lathatnank, ami pont a 190. Itt pont azt csindltam, amit
a II-A. részben leirtam, aképpen, ahogy itt fentebb leirtam,
vagyis megszoroztam kettvel (balra rotate), azt hozzdadtam
RS regiszter kezdeti O értékéhez, majd megszoroztam kétszer
egymds utdn kettével (balra rotate), és ezt a szamot is
hozzdadtam R5-hoz.

Nézziik meg ezt két tetszSleges S8bites (8 szdmjegyii)
szammal.

A 4. abran lathat6 példaban Gsszeszorzom a tizet a néggyel.
Amire figyelni kell, hogy itt nem tudjuk el6re, hogy mi
lesz a szam, széval nem irhatjuk bele csak igy, hogy mikor
kell Gsszeadni és eltolni. Igy automatizaljuk, és eldgazasokat
tesziink bele. Ebben az esetben maszkoldssal megvizsgdlom,
hogy az éppen soronkovetkezd biten egyes van-e. Ha igen,
akkor hozza is adja az eredményregiszterhez, shifteli a masz-
kolét, és a szorzandoét is, valamint noveli a 1€pésszamlalét. Ha
nulla a maszkolds eredménye, akkor atugorja az Osszeaddst,
és csak shifteli a maszkol6t meg a szorzandot, illetve noveli a
1épésszamlalot. Ha a 1épésszamlalo elérte azt a szamot, ahany
biten végziink szorzast (R4), akkor ledll.

iniz: MOV #SFE(CSTACK), 5P st wp stack —|Lru riegsters ~
BC = ox1140
sp 0x0A00
SR 0x0003
Reserve. a 0x00
v 0

see1
sceo
Oseo£f
CPUOLE
g S GIE
maszkolt szorzd N

main: NOP ;om
MOV.W #WDIEW+ADTHOLD, sWDICIL ; 5

Kezdet: mov.b #10, BS
mov.b #4, RE
mov.b #1, BT
mov.b $1, RS
mov.b $0, RS
mov.b 43, RIL
mov.b #0, RIO
=OV.D #0, RLL
mov.b #3, R&

.
a
b

cormmns

"

ide: cmp.b R7,R4
jz kesz

sif (1< 8)
0x0008
020500

[A A A I A A AN AR A
Leeooee

0x000%
= ox0008

add BS,RS

e 3 Jump to current location '§!
+ (endless loop)

4. dbra. Két tetszSleges 8bites egész szorzdsa

16 biten és 32 biten az elv ugyanez, csak mar kifutunk a
kornyezet altal szdmukra biztositott hatdrok koziil, ezért még
a multérai laboron elsajatitottak alapjan kiilon ossze is kell
adni, illetve a shiftelés soran is tobb regiszternyi adatot tolunk
el. Hogy is néz ez ki.

main: NOP
MOV.W $WDTEW-+WDTHOLD, SWOTCTL

; main program BC
; Stop watchdog timer sp

Kezdet: mov.w #10, RS
mov.w 1, Ré
mov.w $0, R7
mov.v $0, RS sez is

%00

zer 32 bit ar eltolds miatt

sszorZd
;sz0rzd mdsik fele

mov.w #5, R9
mov.w #5, R10

mov.w #0, R1l
mov.w #0, R1Z
mov.w $#0, R13
mov.w #0, R14

sszorzat
N

o
o
o
o
o
o
o
o

sszorzat eddig

mov.b #32, R4 int =32 R4
RS
ide jz kesz ; while (i > 0) Ré
R7
rra R10 RS
rrc RS Ro
jnc oda
R10
add BS,R11 ;hezzdadiuk a szorzathes Ri1
addc Ré,R12 ;de ugye kétszer 16 bit R1z
adde R7,R13 R13
addc RZ,R14 R14
rla RS : balra toljuk R15

rlc B¢
rlc R7
ric RS
dec.b R4 ; i--
Imp 1de

CYCLECOUNTER
CCTIMER1
CCTIMER2
CCSTEP

; és ebbe dtesiszik

oda rla BS
ric Re
rlc B7
ric RS
dec.b R4 ; i--
Imp 1de

: balra toljuk

; £s ebbe stesiszik

Pkesz: nop

5. abra. Két tetszSleges 32bites egész szorzdsa

Mivel az el6z6 maszkolés megoldds a 32 bites példdban
tdl sok regisztert elhaszndlna, tobbet, mint amennyink erre
van, ezért mas megvaldsitast kell eszk6zolniink, de a hattér
tovabbra is valtozatlan. Most az 5. dbran lathaté, hogy nem
maszkol6t 1éptetiink balra, hanem magat a szorzoét jobbra.
Ez 1ényegét tekintve ugyanazt eredményezi, mindig a soron
kovetlez6 LSB (less significant bit) -t vizsgéljuk, illetve a
shiftelés végett ez a bit kicsuszik a Carry bitbe, tehdt egész
pontosan a Carry értékétdl fiiggden fogjuk végrehajtani, avagy
atugrani az Osszeaddst. Az Osszeadds tényleg valtozatlanul
megmaradt, annyi kiilonbséggel, hogy ahogy mult laboron
csindltuk, a Carry bit értékét hozzdadjuk a magasabb word
értékéhez. Tovabbad arra is figyelni kell, hogy mint ahogy
azt a II-A. részben kiemeltem, szdmitani kell arra, hogy
megdupldzédik az eredmény szdmjegyeinek szama.

Vegyiik szdmba, mi torténik, ha elGjeles a szdm. Nem
torténik semmi egetrenget6 dolog, elején meg kell vizsgalnunk
az eclgjelbiteket, példaul egy nullat hozzdadassal, igy a

Negative bitben egy egyes lesz, és ezekkel végezhetiink
elagazasokat a JZ utasitds segitségével. Vagy végezhetiink
velik XOR miiveletet is. Ezt pedig el kell tarolni, hogy
ennek fiiggvényében legyen a végén az eredmény, valamint
figyelniink kell arra, hogy eggyel kevesebb bitet vehetiink
figyelembe, hiszen az elGjel bit nem vehetd figyelembe az
Osszeadasokkor.

III. OSZTASOK ELVEGZESE
III-A. Mi is az osztds?

Ha végiggondoljuk az egészosztas elvégzése
tulajdonképpen egy ismételt kivonds. A kérdés az, hogy
hanyszor tudjuk teljesen” kivonni az osztanddbdl az osztét,
ez lesz a hanyados, amennyi pedig marad, mert nem tudjuk
“teljesen” kivonni a legvégén, az lesz a maradék. [5]

Hogyan is végezziik ezt el papiron osztist?

Q‘Q‘S'\::= A29
Au
W<
0

6. abra. Két decimdlis egész szam osztisa

Lathaté a 6. dbran, hogy szerencsére nem ilyen hossza-
dalmas a dolgunk, van erre algoritmus, amit még alséban
joeséllyel megtanultunk. Hogy is miikodik ez? Vessziik az els6
szamjegyet (ha abban egyértelmiien latjuk hogy nincs meg,
mert mondjuk tobb szamjegyl az osztd, vagy mert tudjuk,
hogy kisebb az a szam pl.: ha 6 helyett a 6. dbrdn 4 lenne,
akkor vehetlink rogton tobb szdmjegyet is papiron, de ezt
a gép nyilvdn nem fogja hasraiitésszerlien megmondani), és
megnézziik, hogy abban hanyszor van meg. Az eredményt
leirjuk az egyenl8ségjel mogé, a maradékot pedig leirjuk ala.
Majd vessziik a kovetkezd helyiértéket, leirjuk mellé (ez azt
jelenti, hogy az el6z6 maradékot megszorozzuk tizzel, vagyis
shifteljiik eggyel balra gy, hogy melléhelyezziik a jelenlegi
utolsé szdmjegyet, amit még nem vettiink. Ebben az djonnan
képzett maradékban nézzilk most meg, hogy hanyszor van
meg az osztd, ennek eredményét is leirjuk az egyenl8ségjel
mogé, majd a maradékot ugyanigy leirjuk. Ezt ismételjiik
annyiszor, ahdny szdmjegyiink van. Lithat6, hogy ez minden
bizonnyal kevesebb ciklussal jir, mint az eredeti eljirds, de
persze mindegyik helyes.

Bindrisan is nézziik meg.

L
10«
A
Q

&

=4

7. édbra. Két bindris egész szdm osztisa

Lathat6, hogy teljesen ugyanez torténik, még annyival
konnyebb dolgunk is van, hogy csak el kell donteniink a kettd
szamrdl, hogy megvan-e benne (= nagyobb vagy egyenld a
maradék szdm, mint az 0szt6), tehat ez is egy nagyon konnyen
programozheté eljaras.

III-B. Ldssuk a gyakorlatban!

Tulajdonképpen meg is tudank valdsitani az osztast, hogyha
az osztand6bdl kivonjuk az osztét, és egy szamldld regisz-
terben szdmolndnk mennyiszer tudtuk ezt megtenni, és a
ciklus tart mindaddig, amig nagyobb a kisebbitett osztandé
az osztonal (elsé mddszer a III-A. részbdl):

MOV #255, R4
MOV #5, RS
MOV #0, R6
start: CMP R5, R4
JL fine
SUB R5, R4
INC R6
JMP start
fine : NOP

A kédban R4 az osztandd, R5 az osztd, R6 a ciklusvaltozo.
A program végén az R4 regiszterben lesz a maradék, és R6
regiszterben a hdnyados. Ez is egy j6 megoldis.

Nézzilk meg a III-A. részben ismertetett masodik meg-
oldassal, ami olyan, mint a papiron osztas.

MOV #255, R4 ;osztando
MOV #0, RS smaradek
MOV #5, R6 ;oszto
MOV #8, R7 ;szamlala
MOV #0, RS s hanyados
CLRZ
start: JZ fine
RLA R4
RLC R5
cMmP R6, R5
JL next
SUB R6, RS
SETC
RLC R8
DEC R7
JMP start
next: CLRC
RLC R8
DEC R7
JMP start
fine : NOP

Ez a kéd valdszintileg gyorsabb, de ugyanigy miikodik
mindkettd. Természetesen mindkettd esetben ellendrizni is
kéne, hogy nem nulla az oszt, mert elsé esetben végtelen
ciklusba jutnank, mivel mindig kivonnd a nullét, de igy sosem
lesz az osztand¢ kisebb nullanal. Masodik esetben pedig csupa
egyes lenne az eredmény, mivel barmilyen szdmot raknank
a maradék regiszterbe, az nem lenne kisebb nulldndl, tehat
a maradékba keriilne az osztandd, és mivel nagyobb, ezért
kivonja bel6le a nullat, tehdt marad onmaga, és egyest beir
a hanyados regiszterébe. De feltételezziik most, hogy ismeri
mindenki, hogy nulldval nem osztunk.

Ha ennél tobb bites szamokat szeretnénk osztani egymassal,
hasonléképp a szorzashoz, annyi csupén a teendénk, hogy tobb
regiszternyi adatot shifteliink a maradék esetén is, az osztandé
esetén is, €s a hdnyados esetén is. Az Osszehasonlitdskor
pedig word-nként ellendrizziik, hogy nagyobb-e, illetve ha
ugyanakkora, akkor megnézziik a kovetkezd regiszter értékét,
ha pedig utolsé regiszter, akkor az alapjan dontiink.

Mi torténik, ha negativ szdmok kozt végezziik? Ugyanugy
jarunk el, mint szorzds esetén, az elsd eldjelbitetkiilon ke-
zeljik, nem vessziik figyelembe a miiveletvégzés kozben,
csak az elején XOR miivelettel eldontjiik, hogy negativ
vagy pozitiv lesz az eredmény, mert ugye a XOR miivelet
az, ami éppen azt vizsgalja, hogy mindkett6 megegyezik-
e, vagy mindketté kiilonboz6. Ezt az elbjelet az elején a
megolddsba beleshifteljiik. Elény, hogy tudunk igy negativ
szamokat is szorozni/osztani, hatrdny, hogy eggyel kevesebb
biten abrazolhatunk szamot.

LEZARAS
Osszegzésképpen az 6ran nehéz volt, és nem volt elég id6
atgondolni, de otthon volt id6 szépen atgondolni, és lejatszani,
hogy mi is torténik. Tanulsdgosnak mindnképp mondhato,

mert igy mégjobb betekintést nyertem mind a szamitégép
szamolasaba, mind az Assembly nyelvbe.

HIVATKOZASOK

[1] TexasInstruments, ,Msp430 user’s guide,” 2006. [Online]. Available:
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&
ref_url=https%253A%252F%252Fwww.ti.com%?252Fsitesearch%
252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%
253Den-US%2526searchTerm%253Dslau049%2526nr%253D 160

[2] K. Andrés, ,Digitalis rendszerek szamabrazolds, mikrokontrollerek,” 05
2023. [Online]. Available: https://moodle.ppke.hu/pluginfile.php/74654/
mod_resource/content/1/Bev_Meres_2022_uC.pdf

[3] M. B. Naszlady, ,,Adatdbrazolés és logikai aramkorok,” p. 12, 09 2022.

[4] Y.-Y. Chuang, ,Arithmetic logic unit (alu) introduction to computer,”
09 2017. [Online]. Available: https://www.csie.ntu.edu.tw/~cyy/courses/
introCS/17fall/lectures/handouts/lecO4_ALU.pdf

[5] TexasInstruments, ,.Efficient multiplication and division
using msp430,” 07 2018. [Online]. Available:
https://www.ti.com/lit/an/slaa329a/slaa329a.pdf?ts=1684531083159&
ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%
252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%
253Den-US%2526searchTerm%253Dslaa329a%2526nr%253D2

https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://moodle.ppke.hu/pluginfile.php/74654/mod_resource/content/1/Bev_Meres_2022_uC.pdf
https://moodle.ppke.hu/pluginfile.php/74654/mod_resource/content/1/Bev_Meres_2022_uC.pdf
https://www.csie.ntu.edu.tw/~cyy/courses/introCS/17fall/lectures/handouts/lec04_ALU.pdf
https://www.csie.ntu.edu.tw/~cyy/courses/introCS/17fall/lectures/handouts/lec04_ALU.pdf
https://www.ti.com/lit/an/slaa329a/slaa329a.pdf?ts=1684531083159&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslaa329a%2526nr%253D2
https://www.ti.com/lit/an/slaa329a/slaa329a.pdf?ts=1684531083159&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslaa329a%2526nr%253D2
https://www.ti.com/lit/an/slaa329a/slaa329a.pdf?ts=1684531083159&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslaa329a%2526nr%253D2
https://www.ti.com/lit/an/slaa329a/slaa329a.pdf?ts=1684531083159&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslaa329a%2526nr%253D2

	feladat: Mérés során felmerülő fogalmak
	Assembly
	MSP430
	Számrendszerek
	Kettes komplemens
	ALU

	feladat: Szorzások elvégzése
	Mi is a szorzás?
	Nézzük meg ezt a gyakorlatban!

	Osztások elvégzése
	Mi is az osztás?
	Lássuk a gyakorlatban!

	Hivatkozások

