Mikrokontroller II.

Radvényi Zita
NEPTUN kéd: F346YE
Mérépar: Zahoray Anna
NEPTUN kéd: EF2JUM
Mérés ideje: 2023. 03. 23. 8:00-11:00
Meérés helye: Pazméany Péter Katolikus Egyetem Informéacids Technolédgiai és Bionikai Kar
Magyarorszag, 1083, Budapest, Prater utca 50/a
radvanyi.zita@hallgato.ppke.hu

Abstract—Komplemens szamabrazolas hasznalata, szorzas
megvalositasa, osztas megvaldstasa
Keywords - Mikorkontroller,
Szamabrazolas, Szamrendszerek

Regiszter, Miiveletek,

I. FOGALMAK, HASZNALT PROGRAMOK

e Gépi szdmdbrazolds: a szdmok (szamitd)gépek
memoridjdban vagy egyéb egységében torténd

z. 2z

tdroldasat vagy valamely adathal6zaton torténd tovabbitds
formatumat adja meg

o Elgjelbites 4abrazolas: az eldjel nélkili egészek
abrazolasdhoz egy elgjelet jelentd bitet adunk (0
ha pozitiv és 1 ha negativ az eljel). A tobbi biten pedig
abrazoljuk a szadm értékét.

o Komplemens szamabrazolds: A kettes komple-
menterképzés médszere Ugyanis a szorzds Osszeadasok
sorozatdra, az osztds pedig kivondsok sorozatdra
vezethetd vissza; ha tehat a kivonast sikeriil 0sszeadasra
visszavezetni, akkor a gépnek tulajdonképpen csak az
Osszeadds miiveletét kell ismernie. A fixpontos dbrazoldsi
médoknal a tortpont (tizedesvessz8, tizedespont,
kettedespont stb.) helye rogzitett. Tobbségében egész
szdmok tdroldsdra haszndljak, 1igy a tortpont az
abrazolt szdm végén van. Az egy byte-on tdrolt bindris
szdmirdsnak konnyen beldthaté korldtjai vannak. A
szamitogépen a fixpontos szamokat altalaban két byte-on
vagy négy byte-on abrazoljdk, azaz egy szdm hossza
16 vagy 32 bit. De a negativ szdmok dbrazoldsardl is
gondoskodnunk kell.

e Szamrendszerek: A szamabrazoldsi rendszer, roviden:
szamrendszer meghatdrozza, hogyan dabrazolhat6 egy
adott szdm. A szamjegy egy szimbdlum (vagy azok
csoportja), ami egy szdmot ir le. A szdmjegyek éppen
ugy kiilonboznek az éltaluk leirt szdmtdl, mint egy sz6
attol a dologtdl, amit valdjaban jelent.

o Regiszter: A regiszterek a szamitogépek kozponti fel-
dolgozé egységeinek (CPU-inak), illetve mikroprocess-
zorainak gyorsan irhaté-olvashatd, ideiglenes tartalmd,
és altaldban egyszerre csak 1 gépi szé feldolgozasara
alkalmas tdroldegységei. A regiszterek felépiilhetnek
statikus memoriaelemekbdl vagy egy RAM memoria
részeként. Néhany géptipusndl egyetlen chipben mind a
két megoldast alkalmazzak. Egy-egy regiszter hozzaférési
ideje altaldban néhanyszor 10 ns.

e Szadmdbrazolds: A szdmdbrdzolds az a méd, ahogyan
a szdmokat szimbdlumokkal jel6ljiik. Ez torténhet akdr
irasban, akar széban, akdr mashogy (pl. targyak vagy
valamilyen gép altal). Szikebb értelemben véve a

szamdbrdzolds az a mdd, ahogyan a szamitégépek a
szdmszer(i adatokat taroljdk (gépi szamdbrazolas).

e TAR Embedded Workspace: Az IAR Embedded Work-
bench szamos mikroprocesszorhoz és mikrokontrollerek a
8-, 16- és 32-bites szegmensben, lehetévé téve, hogy egy
jol ismert fejleszt6i kornyezet a kovetkezd projektjéhez
is. Biztosit egy konnyen megtanulhatd és rendkiviil
hatékony fejlesztéi kdrnyezet maximalis kéddal oroklési
képességek, 4tfogd és konkrét céltdimogatds. [AR Embed-
ded A Workbench el6segiti a hasznos munkamdédszert, és
ezaltal a munkavégzés jelent6s csokkentéséta fejlesztési
id6 az IAR Systems eszkozeivel érhetd el.

o Bindris szorzds: A négy alapmiivelet egyike a szorzas. Ezt
a miiveletet a szdmit6gép aritmetika ismételt dsszeaddsok
sorozatdaval végzi el. Szdmos algoritmust dolgoztak ki
a géptervezOk és a matematikusok. Ko6zos vondsuk a
bindris 0sszeadas és léptetés (shiftelés). Az operandusok
specidlis rekeszekbe, regiszterekbe keriilnek. A regiszter
fogalmat a 6.2 fejezetben ismertetjiik. A szorzashoz 3 reg-
iszter sziikséges (vannak olyan mddszerek, amelyeknél
tobb), ezek az AR (Accumulator Register), RR (Reserved
Register) és QR (Quotient Register). A bindris szorzast
szampéldan mutatjuk be.

II. ELSO FELADAT

Végezzen el a kettével vald szorzast egy 8 bites elGjel

nélkiili szdmon. Helyezze a szorzandét, mint konstanst, egy
regiszterbe, majd végezze el az adott feladatot, oly mddon,
hogy egyszer balra lépteti a regiszter értékét. A program
miikodését 1épésenkénti futtatdssal lehet ellendrizni. Ismételje
meg a feladatot mas konstansokkal is. Ellenérizze, hogy
mi torténik akkor, ha az eredmény tdllép a szamdabrazolasi
hatdron. A jegyz&konyve csatolja az elkészitett programokat,
valamint az ellendrzés eredményének értékelését is. Gondolja
végig, a 2-vel 4-el 8-al valé szorzds menetét!
Az elsd feladat elkezdéséhez els6 sorban a mikrokon-
troller programozashoz sziikséges IAR Embedded Workbench
programot hasznaltunk, melynek segirségével létrehozhettuk
a sziikséges szimuldciokat, ezzel tesztelve a kiilonbozo
értékeken a feladatokat. A program kozéps6é ablaka szolgal
arra, hogy létrehozzuk a megfeleld programkdédokat. A minta
programkéd alapjan 1étrehoztuk a szorzast, mely kettével
megszorozza az adott regiszterben tarolt értéket. Ezt a rla.b
paranccsal tudtuk elvégezni, mely arra szolgdl, hogy egyszer
balra lépteti a regiszter értékét, ezéltal elvégezve a kettdvel
val6 szorzdst. Els6 esetben a négyet szoroztuk meg kettSvel,
melynek az eredménye az R4-es regiszterbe keriilt. Az
esetlinkben hasznélt programkoéd az alabbi volt:

mov.b #4,R4
rla.b R4

mov.
rla.

Ezt letesztetiik olyan esetben is, ha a szorzds atlapi a megje-
lenithetd legnagyobb értéket, esetiinkben ehhez a 255 értékét
valasztottuk, hiszen annak a kettGvel valé szorzasa mar nem
jelenithetd meg a megadott bit szimon. Ilyenkor megfigyelhetd
az N és C flag értéke 1-re véltozik. A kettével, néggyel

R4
R5

0x0008

0x00FE

valamitn nyolccal valé szorzds nem mds mint ahanyadik
kettd6 hatvdnnyal szorozzuk annyiszor kell alkalmazni a rla
parancsot, hiszen ez balra tolja el az eredeti szamot, ezéltal
nd a helyiértékek értéke.

I1I. MASODIK FELADAT

Végezzen el a tizzel valé szorzdst egy 8 bites elGjel

nélkiili szdmon. Helyezze a szorzand6t, mint konstanst, egy
regiszterbe, majd végezze el az adott feladatot, oly médon,
hogy egyszer balra 1épteti a regiszter értékét.
Az aldbbiakban létrehozott koéd nagyban hasonlit az
el6z6ekben megirtakra, viszont itt kezelniink kellett azt, hogy
nem kett§ hatvdnnyal szoroztunk, hanem a tizes szdmmal.
Eppen ezért a tizzel valé szorzds megfelel annak, mintha
nyolccal szoroznank és ezt kovetden még kétszer Osszeadast
végeznénk el a szdmmal. Ebben az esetben is 8 biten
szdmoltunk azaz a parancsok mogé el kellett helyezni a .b
kiegészitést, amely megadja, hogy 16 bit helyett 8 biten
végezziik el a miveleteet. Ezen kiviil a masoik Osszeadasnal
figyelembe kellett venni a kordbban esetlegesen fennmaradt
carry értéket, amelyet az addc paranccsal tuduk megadni.
Eppen ebbdl az okbdl a létrehozott kédunk az aldbbi:

mov.b #3,R6
rla.b Ré6
rla.b R6
rla.b R6
mov.b #3,R7
add.b R6,R7

addc.b R6,R7

Ezen szdmolést elvégezve a haszndlt regiszterekbe bekeriilt
érékek az alabbiak voltak:

R6 = (0x0018
R7 = 0x0033

IV. HARMADIK FELADAT

Végezzen el a két 8 bites el§jel nélkiili szdm szorzdsit.
Helyezze a szorzandét és a szorz6t, mint konstansokat egy-egy
regiszterbe, majd végezze el az adott feladatot, oly médon,
hogy egyszer balra Iépteti a regiszter értékét. Az eredményt
egy 16 bites regiszterbe helyezze.

Ezalatt a feladat soran mar olyan nehézségbe iitkoztiink, hogy
két teljes mértékben tetsz6leges szamnak kellett 6sszeszorozn,
igy azt is bele kellett irni a szorzd algoritmusba, hogy kezelje,
hogy az mennyi kettes szamrendszerbeli helyiértéket kell

Iépni, azon kiviil pedig mennyi Osszeadast kell elvégezni az
adott szamokkal. Az adott regiszterekbe el6szor betoltottiik
a tetszbleges szdmokat, majd egy regiszterbdl kitoroltik az
esetlegesen kordbban bennemaradt adatokat. Ezt kovetSen
létrehoztuk magat a szorzast elvégzd programrészletet. E16szor
is 0Osszeadtuk az R9-es és a kinulldzott R10-es regiszter
értékeit, majd tizest osztast végetiink a dec paranccsal. Ezt
kovetéen a jne paranccsal meghivtuk az megadott pro-
gramrészletet, ezzel elvégezve a két szdm szorzdsit. Az
altalunk 1étrehozott programkdd:

mov.b #20,R8
mov.b #33,R9
clr R10

AA:

add R9,R1e
dec R8

cmp R8

jne AA

V. NEGYEDIK FELADAT

Végezzen el szorozast két 16 bites el6jel nélkiili szam

kozott. A mivelet elvégzése sordn vizsgdlja a carry bit értékét.
A jegyz8konyve csatolja az elkészitett programokat, valamint
az ellendrzés eredményének értékelését is. Az eredményt 32
biten abrazolja!
Ezen feladat megolddsdhoz hasonlé programkddot hoztunk
1étre, mint az el6z6 feladat soran. Itt is kezelniink kellett azt
a helyzetet, hogy nem tudjuk, hogy pontosan mennyi lesz a
szam értéke, ezdltal nem lehet tudni, hogy hdny alkalommal
alkalmazhatjuk a balra eltolat kettes szorzdsként, és mennyi
alkalommal kell hozzdadni a szdm sajat értékét onmagédhoz.
Ezen programkdéd soran is 16 biten abrazoltunk, igy a paranc-
sok utdn nem sziikséges a .b utasitds kiegészités. Az altalunk
létrehozott programkaéd:

mov
mov
clr

#40,R11
#23, R12
R13

AA:
add R12, R12
dec R11
cmp R11

jne AA

VI. OTODIK FELADAT

Végezzen el szorzast két 32 bites eldjel nélkiili szam kozott.
A miivelet elvégzése sordn vizsgdlja a carry bit értékét. Az
eredményt 64 biten 4brdzolja! A jegyzOkonyve csatolja az
elkészitett programokat, valamint az ellenérzés eredményének
értékelését is. Rogzitse a jegyz6konyvbe a szorzassal kapcso-
latban szerzett ismereteit.
A kordbbi feladatokhoz hasonldan itt is egy komplikdltabb
programkddot kellett 1étrehoznunk a szorzds miatt, valamint,
hogy a szorzand6 szdmok 32 biten keriiljenek be a programba
és a kiszamitott eredményt 64 biten abrazoljuk.

VII. HATODIK FELADAT

A tanultakat ellendrizze az 1-5; feladat megoldasaval

eléjeles kornyezetben is. Figyeljen az elgjel kezelésére. A
jegyzdkonyve csatolja az elkészitett programokat, valamint az
ellenérzés eredményének értékelését is.
Eldjeles kornyezetben nem véltozik a programok létrehozdsa,
valamint a megirt kédok sem valtoznak, arra kell figyelni,
hogy a szdmok tdroldsa sordn az el6jel bit miatt a 8 bit helyett
csak 7 biten tudunk szdmokat tdrolni. ElsGjeles Osszeadds
sordn a kettes komplemens szdmdbrazolast érdemes hasznélni,
ami azt jeleni, hogy a lefoglalt, legnagyobb helyiértéki bitjén
taroljuk a szam elgjelét. Ha a szdm nem negatyv, akkor
a bit értéke 0, ha viszont a szdm negativ, akkor a bit 1
értéket vesz fel. Annak érdekében, hogy tudjuk, hogy a kapott
eredmény pozitiv vagy negativ-e, az Ugynevezett ’negativ
flaget” (N flag) kell figyelni, ha ennek az értéke 0, akkor nem
negativ, ha 1 az értéke, akkor pedig negativ szamot kaptunk
eredményiil. Azokban az esetekben, amikor a végeredmény
a fent leirt, bitek szdmanak megfeleld, tartomdnyon kiviil
esik, az ugynevezett “overflow flag” (O flag) értéke 0-r6l 1-re
véaltozik. A carry bit akkor 1, ha a tdlcsordulds a tartomény
pozitiv felén torténik.

VIII. HETEDIK FELADAT

Ezen feladatok sordn a mar kordbban létrehozott osztast

elvégzd programrészletet egészitettiik ki, értelmeztiik,
valamint mellette kommenttel jeloltik, hogy melyik

programrészlet milyen feladatot végez el. Ezt az aldbbiakban
megfigyelhetd:

clr.w R15 ; kinullédzza az R15-6t
push.w R9 ; az R9 értéke bekeriil
a stack pointer dltal mutatott helyre
push.w R10 ; az R10 értéke bekeril
a stack pointer dltal mutatott helyre
push.w R11 ; az R11l értéke bekeril
a stack pointer dltal mutatott helyre
clr.w R10 ; kinullédzza az Rl0-et
clr.w R11 ; kinulldzza az Rll-et
mov.w #0x20,R9
; adatmozgatds R9-be a
megadott értéket

divide:

divloop:
rla.w R12 ;jobb oldalra 0-t
shiftel be
rlc.w R13 ;rla, csak a carryt
shifteli be
rlc.w R10 ;rla, csak a carryt
shifteli be
rlc.w R11 ;rla, csak a carryt

shifteli be
sub.w R14,R10
;kivonds R10-R14, az eredményt
az R10-be tdrolja el
subc.w R15,R11
;kivonds R11-R15, az eredményt
az Rll-be tdrolja el a carry érték
figyelembe vételével
jnc div001l ;atugrds az adott

helyre, ha a carry értéke 0

bis.w #0x1, R12
;bedllitja a biteket a megfeleld
rendeltetési helylikre

add.w #0xFFFF,R9;6sszeadds a szamot
az R9-be
jne divloop ;ugorjon a megadott

helyre, ha nem egyenld

Jmp div002 ;ugorjon a megadott
helyre
div001

add.w R14,R10

;O0sszeadja az Rl4-be az Rl4-et

és az Rl0-et
addc.w R15,R11

;Osszeadja az R15-be az Rll-et

és az Rll-et a carry érték figyelembe vételével
add.w #0xFFFF,R9;0sszeadja az R9-be az

R9-et és a megadott szdm értékét
jne divloop ;ugorjon a megadott

helyre, ha nem egyenld
div002
mov.w R10,R14
;adatmozgatds Rl4-be az R10
értékét
mov.w R11,R15
;adatmozgatds R15-be az R11
értékét
pop.w R11 ; az R11 felveszi a stack
pointer altal mutatott helyen 1évd értéket
pop.w R10 ; az R10 felveszi a stack

pointer dltal mutatott helyen 1léve értéket
pop.w R9 ; az R9 felveszi a stack
pointer altal mutatott helyen 1évd értéket

ret ; visszatérés a szubrutinbdl
multiply:
mov.w R12, &MPY ;adatmozgatds R12-bol
signed multiply-al
mov.w R14, &OP2 ;a jel kiterjeszti a

2. operandust
mov.w &RESLO, R12 ;adatmozgatds a reslo
(low word) cimbol az Rl2-be
mov.w &RESHI, R13 ;a reshi tartalmazza
a high word eredményt
ret ;visszatérés a szubrutinbdl

IX. A MERES HIBAJA

A mérés sordn nem meriiltek fel a program haszndlatdban
probléma, a szdmoldsi hibdkat a feladatok feldolgozasa soran
figyelembe vettiik a carry értékek tovabbvitelével, valamint a
tovabbi flagek vizsgélataval.

REFERENCES

[1] https://wwwfiles.iar.com/maxq/guides/EW-UserGuide.pdf
[1 https://hu.wikipedia.org/wiki/Regiszter-(szamitastechnika)
[2] https://hu.wikipedia.org/wiki/Szamabrazolas

[3] https://hu.wikipedia.org/wiki/Szdmrendszer

[4] https://hu.wikipedia.org/wiki/Fixpontosszamébrazolds

