
Mikrokontroller II.
Radványi Zita

NEPTUN kód: F346YE
Mérőpár: Zahoray Anna
NEPTUN kód: EF2JUM

Mérés ideje: 2023. 03. 23. 8:00-11:00
Mérés helye: Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar

Magyarország, 1083, Budapest, Práter utca 50/a
radvanyi.zita@hallgato.ppke.hu

Abstract—Komplemens számábrázolás használata, szorzás
megvalósı́tása, osztás megvalóstása
Keywords – Mikorkontroller, Regiszter, Műveletek,
Számábrázolás, Számrendszerek

I. FOGALMAK, HASZNÁLT PROGRAMOK

• Gépi számábrázolás: a számok (számı́tó)gépek
memóriájában vagy egyéb egységében történő
tárolását vagy valamely adathálózaton történő továbbı́tás
formátumát adja meg

• Előjelbites ábrázolás: az előjel nélküli egészek
ábrázolásához egy előjelet jelentő bitet adunk (0
ha pozitı́v és 1 ha negatı́v az előjel). A többi biten pedig
ábrázoljuk a szám értékét.

• Komplemens számábrázolás: A kettes komple-
menterképzés módszere Ugyanis a szorzás összeadások
sorozatára, az osztás pedig kivonások sorozatára
vezethető vissza; ha tehát a kivonást sikerül összeadásra
visszavezetni, akkor a gépnek tulajdonképpen csak az
összeadás műveletét kell ismernie. A fixpontos ábrázolási
módoknál a törtpont (tizedesvessző, tizedespont,
kettedespont stb.) helye rögzı́tett. Többségében egész
számok tárolására használják, ı́gy a törtpont az
ábrázolt szám végén van. Az egy byte-on tárolt bináris
számı́rásnak könnyen belátható korlátjai vannak. A
számı́tógépen a fixpontos számokat általában két byte-on
vagy négy byte-on ábrázolják, azaz egy szám hossza
16 vagy 32 bit. De a negatı́v számok ábrázolásáról is
gondoskodnunk kell.

• Számrendszerek: A számábrázolási rendszer, röviden:
számrendszer meghatározza, hogyan ábrázolható egy
adott szám. A számjegy egy szimbólum (vagy azok
csoportja), ami egy számot ı́r le. A számjegyek éppen
úgy különböznek az általuk leı́rt számtól, mint egy szó
attól a dologtól, amit valójában jelent.

• Regiszter: A regiszterek a számı́tógépek központi fel-
dolgozó egységeinek (CPU-inak), illetve mikroprocess-
zorainak gyorsan ı́rható-olvasható, ideiglenes tartalmú,
és általában egyszerre csak 1 gépi szó feldolgozására
alkalmas tárolóegységei. A regiszterek felépülhetnek
statikus memóriaelemekből vagy egy RAM memória
részeként. Néhány géptı́pusnál egyetlen chipben mind a
két megoldást alkalmazzák. Egy-egy regiszter hozzáférési
ideje általában néhányszor 10 ns.

• Számábrázolás: A számábrázolás az a mód, ahogyan
a számokat szimbólumokkal jelöljük. Ez történhet akár
ı́rásban, akár szóban, akár máshogy (pl. tárgyak vagy
valamilyen gép által). Szűkebb értelemben véve a

számábrázolás az a mód, ahogyan a számı́tógépek a
számszerű adatokat tárolják (gépi számábrázolás).

• IAR Embedded Workspace: Az IAR Embedded Work-
bench számos mikroprocesszorhoz és mikrokontrollerek a
8-, 16- és 32-bites szegmensben, lehetővé téve, hogy egy
jól ismert fejlesztői környezet a következő projektjéhez
is. Biztosı́t egy könnyen megtanulható és rendkı́vül
hatékony fejlesztői környezet maximális kóddal öröklési
képességek, átfogó és konkrét céltámogatás. IAR Embed-
ded A Workbench elősegı́ti a hasznos munkamódszert, és
ezáltal a munkavégzés jelentős csökkentéséta fejlesztési
idő az IAR Systems eszközeivel érhető el.

• Bináris szorzás: A négy alapművelet egyike a szorzás. Ezt
a műveletet a számı́tógép aritmetika ismételt összeadások
sorozatával végzi el. Számos algoritmust dolgoztak ki
a géptervezők és a matematikusok. Közös vonásuk a
bináris összeadás és léptetés (shiftelés). Az operandusok
speciális rekeszekbe, regiszterekbe kerülnek. A regiszter
fogalmát a 6.2 fejezetben ismertetjük. A szorzáshoz 3 reg-
iszter szükséges (vannak olyan módszerek, amelyeknél
több), ezek az AR (Accumulator Register), RR (Reserved
Register) és QR (Quotient Register). A bináris szorzást
számpéldán mutatjuk be.

II. ELSŐ FELADAT

Végezzen el a kettővel való szorzást egy 8 bites előjel
nélküli számon. Helyezze a szorzandót, mint konstanst, egy
regiszterbe, majd végezze el az adott feladatot, oly módon,
hogy egyszer balra lépteti a regiszter értékét. A program
működését lépésenkénti futtatással lehet ellenőrizni. Ismételje
meg a feladatot más konstansokkal is. Ellenőrizze, hogy
mi történik akkor, ha az eredmény túllép a számábrázolási
határon. A jegyzőkönyve csatolja az elkészı́tett programokat,
valamint az ellenőrzés eredményének értékelését is. Gondolja
végig, a 2-vel 4-el 8-al való szorzás menetét!
Az első feladat elkezdéséhez első sorban a mikrokon-
troller programozáshoz szükséges IAR Embedded Workbench
programot használtunk, melynek segı́rségével létrehozhettuk
a szükséges szimulációkat, ezzel tesztelve a különböző
értékeken a feladatokat. A program középső ablaka szolgál
arra, hogy létrehozzuk a megfelelő programkódokat. A minta
programkód alapján létrehoztuk a szorzást, mely kettővel
megszorozza az adott regiszterben tárolt értéket. Ezt a rla.b
paranccsal tudtuk elvégezni, mely arra szolgál, hogy egyszer
balra lépteti a regiszter értékét, ezéltal elvégezve a kettővel
való szorzást. Első esetben a négyet szoroztuk meg kettővel,
melynek az eredménye az R4-es regiszterbe került. Az
esetünkben használt programkód az alábbi volt:



Ezt letesztetük olyan esetben is, ha a szorzás átlápi a megje-
lenı́thető legnagyobb értéket, esetünkben ehhez a 255 értékét
választottuk, hiszen annak a kettővel való szorzása már nem
jelenı́thető meg a megadott bit számon. Ilyenkor megfigyelhető
az N és C flag értéke 1-re változik. A kettővel, néggyel

valamitn nyolccal való szorzás nem más mint ahanyadik
kettő hatvánnyal szorozzuk annyiszor kell alkalmazni a rla
parancsot, hiszen ez balra tolja el az eredeti számot, ezáltal
nő a helyiértékek értéke.

III. MÁSODIK FELADAT

Végezzen el a tı́zzel való szorzást egy 8 bites előjel
nélküli számon. Helyezze a szorzandót, mint konstanst, egy
regiszterbe, majd végezze el az adott feladatot, oly módon,
hogy egyszer balra lépteti a regiszter értékét.
Az alábbiakban létrehozott kód nagyban hasonlı́t az
előzőekben megı́rtakra, viszont itt kezelnünk kellett azt, hogy
nem kettő hatvánnyal szoroztunk, hanem a tı́zes számmal.
Éppen ezért a tı́zzel való szorzás megfelel annak, mintha
nyolccal szoroznánk és ezt követően még kétszer összeadást
végeznénk el a számmal. Ebben az esetben is 8 biten
számoltunk azaz a parancsok mögé el kellett helyezni a .b
kiegészı́tést, amely megadja, hogy 16 bit helyett 8 biten
végezzük el a műveleteet. Ezen kı́vül a másoik összeadásnál
figyelembe kellett venni a korábban esetlegesen fennmaradt
carry értéket, amelyet az addc paranccsal tuduk megadni.
Éppen ebből az okból a létrehozott kódunk az alábbi:

Ezen számolást elvégezve a használt regiszterekbe bekerült
érékek az alábbiak voltak:

IV. HARMADIK FELADAT

Végezzen el a két 8 bites előjel nélküli szám szorzását.
Helyezze a szorzandót és a szorzót, mint konstansokat egy-egy
regiszterbe, majd végezze el az adott feladatot, oly módon,
hogy egyszer balra lépteti a regiszter értékét. Az eredményt
egy 16 bites regiszterbe helyezze.
Ezalatt a feladat során már olyan nehézségbe ütköztünk, hogy
két teljes mértékben tetszőleges számnak kellett összeszorozn,
ı́gy azt is bele kellett ı́rni a szorző algoritmusba, hogy kezelje,
hogy az mennyi kettes számrendszerbeli helyiértéket kell

lépni, azon kı́vül pedig mennyi összeadást kell elvégezni az
adott számokkal. Az adott regiszterekbe először betöltöttük
a tetszőleges számokat, majd egy regiszterből kitöröltük az
esetlegesen korábban bennemaradt adatokat. Ezt követően
létrehoztuk magát a szorzást elvégző programrészletet. Először
is összeadtuk az R9-es és a kinullázott R10-es regiszter
értékeit, majd tı́zest osztást végetünk a dec paranccsal. Ezt
követően a jne paranccsal meghı́vtuk az megadott pro-
gramrészletet, ezzel elvégezve a két szám szorzását. Az
általunk létrehozott programkód:

V. NEGYEDIK FELADAT

Végezzen el szorozást két 16 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit értékét.
A jegyzőkönyve csatolja az elkészı́tett programokat, valamint
az ellenőrzés eredményének értékelését is. Az eredményt 32
biten ábrázolja!
Ezen feladat megoldásához hasonló programkódot hoztunk
létre, mint az előző feladat során. Itt is kezelnünk kellett azt
a helyzetet, hogy nem tudjuk, hogy pontosan mennyi lesz a
szám értéke, ezáltal nem lehet tudni, hogy hány alkalommal
alkalmazhatjuk a balra eltolát kettes szorzásként, és mennyi
alkalommal kell hozzáadni a szám saját értékét önmagához.
Ezen programkód során is 16 biten ábrázoltunk, ı́gy a paranc-
sok után nem szükséges a .b utası́tás kiegészı́tés. Az általunk
létrehozott programkód:

VI. ÖTÖDIK FELADAT

Végezzen el szorzást két 32 bites előjel nélküli szám között.
A művelet elvégzése során vizsgálja a carry bit értékét. Az
eredményt 64 biten ábrázolja! A jegyzőkönyve csatolja az
elkészı́tett programokat, valamint az ellenőrzés eredményének
értékelését is. Rögzı́tse a jegyzőkönyvbe a szorzással kapcso-
latban szerzett ismereteit.
A korábbi feladatokhoz hasonlóan itt is egy komplikáltabb
programkódot kellett létrehoznunk a szorzás miatt, valamint,
hogy a szorzandó számok 32 biten kerüljenek be a programba
és a kiszámı́tott eredményt 64 biten ábrázoljuk.



VII. HATODIK FELADAT

A tanultakat ellenőrizze az 1-5; feladat megoldásával
előjeles környezetben is. Figyeljen az előjel kezelésére. A
jegyzőkönyve csatolja az elkészı́tett programokat, valamint az
ellenőrzés eredményének értékelését is.
Előjeles környezetben nem változik a programok létrehozása,
valamint a megı́rt kódok sem változnak, arra kell figyelni,
hogy a számok tárolása során az előjel bit miatt a 8 bit helyett
csak 7 biten tudunk számokat tárolni. Elsőjeles összeadás
során a kettes komplemens számábrázolást érdemes használni,
ami azt jeleni, hogy a lefoglalt, legnagyobb helyiértékű bitjén
tároljuk a szám előjelét. Ha a szám nem negatyv, akkor
a bit értéke 0, ha viszont a szám negatı́v, akkor a bit 1
értéket vesz fel. Annak érdekében, hogy tudjuk, hogy a kapott
eredmény pozitı́v vagy negatı́v-e, az úgynevezett ”negativ
flaget” (N flag) kell figyelni, ha ennek az értéke 0, akkor nem
negatı́v, ha 1 az értéke, akkor pedig negatı́v számot kaptunk
eredményül. Azokban az esetekben, amikor a végeredmény
a fent leı́rt, bitek számának megfelelő, tartományon kı́vül
esik, az úgynevezett ”overflow flag” (O flag) értéke 0-ról 1-re
változik. A carry bit akkor 1, ha a túlcsordulás a tartomány
pozitı́v felén történik.

VIII. HETEDIK FELADAT

Ezen feladatok során a már korábban létrehozott osztást
elvégző programrészletet egészı́tettük ki, értelmeztük,
valamint mellette kommenttel jelöltük, hogy melyik
programrészlet milyen feladatot végez el. Ezt az alábbiakban
megfigyelhető:

divide: clr.w R15 ; kinullázza az R15-öt
push.w R9 ; az R9 értéke bekerül

a stack pointer által mutatott helyre
push.w R10 ; az R10 értéke bekerül

a stack pointer által mutatott helyre
push.w R11 ; az R11 értéke bekerül

a stack pointer által mutatott helyre
clr.w R10 ; kinullázza az R10-et
clr.w R11 ; kinullázza az R11-et
mov.w #0x20,R9

; adatmozgatás R9-be a
megadott értéket

divloop:
rla.w R12 ;jobb oldalra 0-t

shiftel be
rlc.w R13 ;rla, csak a carryt

shifteli be
rlc.w R10 ;rla, csak a carryt

shifteli be
rlc.w R11 ;rla, csak a carryt

shifteli be
sub.w R14,R10

;kivonás R10-R14, az eredményt
az R10-be tárolja el

subc.w R15,R11
;kivonás R11-R15, az eredményt
az R11-be tárolja el a carry érték
figyelembe vételével

jnc div001 ;atugrás az adott
helyre, ha a carry értéke 0

bis.w #0x1, R12
;beállı́tja a biteket a megfelel}o
rendeltetési helyükre

add.w #0xFFFF,R9;összeadás a számot
az R9-be

jne divloop ;ugorjon a megadott
helyre, ha nem egyenl}o

jmp div002 ;ugorjon a megadott
helyre

div001
add.w R14,R10

;összeadja az R14-be az R14-et
és az R10-et

addc.w R15,R11
;összeadja az R15-be az R11-et
és az R11-et a carry érték figyelembe vételével

add.w #0xFFFF,R9;összeadja az R9-be az
R9-et és a megadott szám értékét

jne divloop ;ugorjon a megadott
helyre, ha nem egyenl}o

div002
mov.w R10,R14

;adatmozgatás R14-be az R10
értékét

mov.w R11,R15
;adatmozgatás R15-be az R11
értékét

pop.w R11 ; az R11 felveszi a stack
pointer által mutatott helyen lév}o értéket

pop.w R10 ; az R10 felveszi a stack
pointer által mutatott helyen lév}o értéket

pop.w R9 ; az R9 felveszi a stack
pointer által mutatott helyen lév}o értéket

ret ; visszatérés a szubrutinból

multiply:
mov.w R12, &MPY ;adatmozgatás R12-bol

signed multiply-al
mov.w R14, &OP2 ;a jel kiterjeszti a

2. operandust
mov.w &RESLO, R12 ;adatmozgatás a reslo

(low word) cı́mbol az R12-be
mov.w &RESHI, R13 ;a reshi tartalmazza

a high word eredményt
ret ;visszatérés a szubrutinból

IX. A MÉRÉS HIBÁJA

A mérés során nem merültek fel a program használatában
probléma, a számolási hibákat a feladatok feldolgozása során
figyelembe vettük a carry értékek továbbvitelével, valamint a
további flagek vizsgálatával.

REFERENCES

[1] https://wwwfiles.iar.com/maxq/guides/EW-UserGuide.pdf
[] https://hu.wikipedia.org/wiki/Regiszter-(számı́tástechnika)
[2] https://hu.wikipedia.org/wiki/Számábrázolás
[3] https://hu.wikipedia.org/wiki/Számrendszer
[4] https://hu.wikipedia.org/wiki/Fixpontosszámábrázolás


