
Mikrokontroller I.
Kékesi Kristóf

NEPTUN kód: ZI6I4M
Mérőpár: Bor Gergő

Mérés ideje: 2024.05.08. 15:15-18:00
Mérés helye: Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar

1083 Budapest, Práter utca 50/A 421-es labor
kekesi.kristof.mihaly@hallgato.ppke.hu

Kivonat—
A jegyzőkönyv részletesen leírja az április 23-án megoldandó
mérési feladatokat, valamint az ezek megoldásához szükséges
információkat. A dokumentum célja, hogy átfogó útmutatást
nyújtson a feladatok megoldásának folyamatáról és a reprodu-
kálhatósághoz szükséges lépésekről.
A jegyzőkönyv részletesen ismerteti az egyes feladatok megol-
dásához szükséges lépéseket, beleértve a szükséges eszközök és
eljárások használatát is. Ezáltal segíti az azt olvasókat a feladatok
hatékony és pontos megoldásában, valamint elősegíti a feladatok
reprodukálhatóságát és értelmezhetőségét.

Keywords-Mikrokontroller; Assembly; Regiszterek; Művele-
tek; Számrendszerek; Számábrázolás;

MÉRÉSSEL KAPCSOLATOS FOGALMAK

• Számrendszer: Olyan jelölési rendszer, amelyet a szá-
mok írására és az aritmetikai műveletek elvégzésére hasz-
nálnak. Alapvetően egy adott alapszám köré épül, ami a
számrendszer alapja, amely meghatározza a rendszerben
felhasználható szimbólumok (számjegyek) számát és a
helyiérték szerinti szorzót. A legismertebb számrendszer
a decimális, vagy tízes számrendszer, amely 10 különbö-
ző számjegyet használ (0-tól 9-ig).
Különböző kultúrák és számítógépes alkalmazások kü-
lönböző számrendszereket használhatnak. Például a szá-
mítástechnikában gyakran alkalmazzák a bináris (2-es
alapú), az oktális (8-as alapú) és a hexadecimális (16-os
alapú) számrrendszereket, mivel ezek hatékonyan model-
lezhetik a digitális áramkörök működését.

101, 01[10] = 1 ·102+0 ·101+1 ·100+0 ·10−1+1 ·10−2

(1)
• Kettes komplemens számábrázolási módszer: A kettes

komplemens módszer a negatív számok bináris ábrázo-
lására szolgál. Ez a módszer lehetővé teszi a bináris
összeadás használatát mind pozitív, mind negatív számok
esetében anélkül, hogy külön figyelemmel kellene kísérni
a szám előjelét. Egy adott bites szélességű szám kettes
komplementer alakjának meghatározása a következő lé-
pésekből áll, ha a szám negatív:

1) Hozzáadunk a számhoz egyet;
2) Az így kapott szám abszolútértékét vesszük;
3) Felírjuk binárisan a kapott számot, előre definiált

biten;
4) Minden bitet negálunk.

[1]
• Fix pontos ábrázolás: Előre definiált pontosvessző hely

alapján tudjuk, hogy a . képletben a hatványok kitevőit
mennyivel toljuk el.

• Assembly programozási nyelv: Egy alacsony szintű,
gépi kódhoz közel álló nyelv, melyet az adott processzor
architektúrájának utasításkészletével írnak. Az assembly
programozási nyelv lehetővé teszi a programozók számá-
ra, hogy közvetlenül befolyásolják a processzor működé-
sét, így nagyfokú kontrollt biztosítanak az alkalmazások
felett. Általában a gépi kódhoz legközelebb álló emberi
érthető formában íródik, és közvetlenül fordítható gépi
kóddá. Mivel az assembly nyelv közvetlenül kommunikál
a hardverrel, ezáltal nagy teljesítményt és precizitást biz-
tosít, azonban általában bonyolultabb és kevésbé átlátható
kódot eredményez, mint a magasabb szintű programozási
nyelvek. [2]

• Regiszterek: Olyan kis méretű adatokat tároló hardveres
komponensek, amelyek közvetlenül kapcsolódnak a pro-
cesszorhoz. Ezek a tárolók rendkívül gyors hozzáférést
tesznek lehetővé a processzor számára az adatokhoz és
utasításokhoz. A regisztereknek különböző típusai van-
nak, beleértve az általános célú regisztereket, az adatre-
gisztereket, az indexregisztereket és a vezérlőregisztere-
ket. Ezek a regiszterek játszanak kulcsfontosságú szerepet
az assembly nyelvben írt programokban, mivel közvet-
lenül manipulálhatók az alacsony szintű utasításokon
keresztül, lehetővé téve a programok számára a hatékony
adatmanipulációt és vezérlést.
Az egyes regiszterek általában a processzor architektú-
rájától függően vannak elnevezve, és ezek elnevezése
a processzor tervezésétől és az adott architektúra kon-
vencióitól függ. A regiszterek elnevezése gyakran követi
egy adott architektúra belső működését és funkcióit. Az
x86 architektúrában a regiszterek elnevezése a következő
típusok szerint csoportosítható:

– Általános célú regiszterek: Például az EAX, EBX,
ECX, EDX regiszterek.

– Index regiszterek: Például az ESI, EDI regiszterek.
– Adatregiszterek: Például az AL, AH, BL, BH regisz-

terek (byte regiszterek), valamint az AX, BX, CX,
DX regiszterek (word regiszterek).

– Pontosító regiszterek: Például az EFLAGS regiszter.

Más architektúrák esetében más elnevezési konvenciókat
használnak, például az ARM architektúra regiszterei kü-
lönböző típusokra oszlanak. Az elnevezési konvenciók
változhatnak az architektúrától és a processzorgyártótól
függően. [3]

• Műveletek Assembly-ben:

– MOV: Egy megadott regiszter értékét másoljuk át



egy másik megadott regiszterbe.

src → dst

– ADD: Egy megadott regiszter értékét hozzáadjuk
egy másik megadott regiszter értékéhez. Másnéven
az összeadás művelet. A C++ nyelvben az ehhez
leghasonlóbb a += operátor.

src + dst → dst

– ADDC: Az "összeadás cipeléssel" (add with carry)
műveletet végzi el. Ez az utasítás hasonló az egy-
szerű ADD utasításhoz, azonban a CARRY (cipelés)
állapotot is figyelembe veszi.A CARRY egy speciális
jelzőbit a processzorban, amely jelzi, hogy egy előző
aritmetikai művelet során az eredmény túlcsordult-e
(overflow), vagyis több bitet igényel, mint amennyi a
célregiszterben elfér. Az ADDC utasítás két operan-
dust ad össze, valamint figyelembe veszi a CARRY
jelzőbitet is. Ha a CARRY be van állítva (1), akkor
az ADDC az operandusokat összeadja, valamint az
egyesek helyiértékén levő cipelést is figyelembe ve-
szi. Ha a CARRY nem aktív (0), akkor az ADDC
ugyanúgy működik, mint az ADD utasítás.

src + dst + C → dst

– SUB: Assembly programozási nyelvben a "kivonás"
(subtract) műveletet valósítja meg. Ez az utasítás
lehetővé teszi két operandus különbségének kiszá-
mítását.

dst + ¬src + 1 → dst

– SUBC: Assembly programozási nyelvben a "kivonás
cipeléssel" (subtract with carry) műveletet valósít-
ja meg. Ez az utasítás hasonló az egyszerű SUB
utasításhoz , viszont a CARRY (cipelés) állapotot
is figyelembe veszi. A CARRY egy speciális jel-
zőbit a processzorban, amely jelzi, hogy egy előző
aritmetikaiművelet során az eredmény túlcsordult-e
(overflow), vagyis több bitet igényel, mint amennyi
a célregiszterben elfér. A SUBBC utasítás két ope-
randust von ki egymásból, valamint figyelembe veszi
a CARRY jelzőbitet is. Ha a CARRY be van állít-
va (1), akkor az SUBC az operandusokat kivonja,
valamint az egyesek helyiértékén levő cipelést is
figyelembe veszi. Ha a CARRY nem aktív (0), akkor
az SUBC ugyanúgy működik, mint az SUB utasítás.

dst + ¬src + C → dst

– CMP: Ez a művelet az assembly nyelv egyik alap-
vető utasítása, amely két operandust hasonlít össze.
A CMP utasítás lényegében az alapvető kivonás
műveletét végzi el, de az eredményt nem tárolja
el. Az CMP utasítás csak a jelzőbiteket állítja be
annak megfelelően, hogy az első operandus nagyobb,
kisebb vagy egyenlő-e a másodikkal megadott regisz-
terrel.

dst − src

– DADD: Az összeadás (Addition) az alapvető össze-
adás műveletét valósítja meg, de specifikus jelentés-
sel nem rendelkezik a legtöbb architektúrában.

Az "D" prefix (például az DADD) gyakran a Do-
uble, azaz double számokhoz kapcsolódik, és azt
jelzi, hogy a művelet double számokkal történik. Ez
gyakran az FP (Floating Point), azaz lebegőpontos
számokkal való műveletek esetén fordul elő, ahol a
dupla precizitású adatokhoz szükség lehet 64 bites
(vagy ennél nagyobb) adatokra.

src + dst + C → dst (decimally)

– BIT: A logikai és (∧) műveletet valósítja meg a meg-
adott src és dst regiszterek között, majd a közöttük
lévő és kapcsolat értékét a dst regiszterbe tárolja el.

src ∧ dts

– BIC: A BIT-hez hasonlóan logikai és kapcsolatot
vizsgál a két megadott regiszter között, viszont az
src regiszter értékének a negáltjával.

¬src ∧ dst → dst

– BIS: A logikai vagy (∨) műveletet valósítja meg
a megadott src és dst regiszterek között, majd a
közöttük lévő és kapcsolat értékét a dst regiszterbe
tárolja el.

src ∨ dst → dst

– XOR: A logikai kizáró vagy (⊕) műveletet valósítja
meg a megadott src és dst regiszterek között, majd
a közöttúk lévő kizáró vagy kapcsolat értékét a dst
regiszterbe tárolja el.

src ⊕ dst → dst

– AND: A logikai és (∧) műveletet valósítja meg
a megadott src és dst regiszterek között, majd a
közöttük lévő és kapcsolat értékét a dst regiszterbe
tárolja el.

src ∧ dst → dst

– RRC:
C → MSB → . . .LSC → C

– RRA:

MSB → MSB → . . . LSB → C

– PUSH:

SP − 2 → SP, src → @SP

– SWPB:
src → dst, dst → src

– CALL:

SP − 2 → SP, PC + 2 → @SP, dst → PC

– RETI:
TOS → SR, SP + 2 → SP

TOS → PC, SP + 2 → SP

– SXT:

Bit7 → Bit8 → Bit9 → Bit10 → Bit11 → Bit12

Bit12 → Bit13 → Bit14 → Bit15

– JMP: Az ugrás (Jump) egy alapvető utasítás az as-
sembly programozási nyelvben, amelyet elágazások



végrehajtására használnak. Az ugrás utasítás arra
szolgál, hogy átugorja a program kódsorának egy
adott részét, és folytassa a végrehajtást egy másik
címről. Az utasítás paraméterként egy cél-címet vár,
ahova a program vezérlése átkerül. Ez a cél-cím lehet
egy cím, egy regiszterben vagy változóban tárolt
érték.
Az ugrás utasítás a program futását a cél-címen lévő
utasításokkal folytatja, anélkül hogy bármilyen felté-
telt ellenőrizne. Ez azt jelenti, hogy az JMP utasítás
általában egy abszolút elágazást valósít meg, vagyis
mindig végrehajtódik, függetlenül a körülményektől.
[4] [5]

I. MÉRÉSI FELADAT

Végezzen el összeadást két 8 bites előjel nélküli szám
között.

1 mov.b #5,R4
2 mov.b #6,R5
3

4 add.b R4,R5

I. táblázat. A I. mérési feladatban a feladat lefuttatása után a
regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x000B (11)

R5 0x0006 (6)

II. MÉRÉSI FELADAT

Végezzen el összeadást két 16 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit értékét.

Ebben a feladatban két 16 bites előjel nélküli számot
adtunk össze. Ehhez az alábbi assembly kód részletet
illesztettük bele az IAR szimulátor által elkészített assembly
sablonba.

1 mov.w #65535,R4
2 mov.w #6, R5
3

4 mov.w R5, R4

A program lefuttatása után a szimulált mikrokontroller
regiszterein a II. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy amikor a két szám
összege meghaladja a 16 bitbe elférő szám értékét, az túlcsor-
dul, ezt angolul overflow-nak hívják. Ilyenkor a C, mint carry
flag értéke igaz lesz.

II. táblázat. A II. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0005 (5)

R5 0x0006 (6)

III. MÉRÉSI FELADAT

Végezzen el összeadást két 32 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit értékét.

Ebben a feladatban két 32 bites előjel nélküli számot
adtunk össze. Ehhez az alábbi assembly kód részletet
illesztettük bele az IAR szimulátor által elkészített assembly
sablonba.

1 mov.w #3000,R4
2 mov.w #3200,R5
3 mov.w #3400,R6
4 mov.w #3600,R7
5

6 add.w R4,R5
7 add.w R6,R7
8 addc.w R5,R7

A program lefuttatása után a szimulált mikrokontroller
regiszterein a III. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy amikor a két szám
összege meghaladja a 32 bitbe elférő szám értékét, az túlcsor-
dul, ezt angolul overflow-nak hívják. Ilyenkor a C, mint carry
flag értéke igaz lesz.

III. táblázat. A III. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0BB8 (3000)

R5 0x1838 (6200)

R6 0x0D48 (3400)

R7 0x3390 (13200)

IV. MÉRÉSI FELADAT

Végezzen el összeadást két 64 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit
értékét.

Ebben a feladatban két 64 bites előjel nélküli számot adtunk
össze. Ehhez az alábbi assembly kód részletet illesztettük bele
az IAR szimulátor által elkészített assembly sablonba.

1 mov.w #11,R4
2 mov.w #22,R5
3 mov.w #33,R6
4 mov.w #44,R7
5 mov.w #55,R8
6 mov.w #66,R9
7

8 add.w R4,R5
9 add.w R6,R7

10 add.w R8,R9

A program lefuttatása után a szimulált mikrokontroller
regiszterein a IV. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy amikor a két szám
összege meghaladja a 64 bitbe elférő szám értékét, az túlcsor-
dul, ezt angolul overflow-nak hívják. Ilyenkor a C, mint carry
flag értéke igaz lesz.

V. MÉRÉSI FELADAT

A tanultakat ellenőrizze az 1;2;3; feladat megoldásával
előjeles környezetben is.

A programok létrehozása és a kódok megírása ugyanúgy
működik előjelezett környezetben, de fontos figyelembe venni,



IV. táblázat. A IV. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x000B (11)

R5 0x0021 (33)

R6 0x0021 (33)

R7 0x0047 (77)

R8 0x0037 (55)

R9 0x0079 (121)

hogy az előjelbit miatt csak 7 biten tudunk számokat tárolni,
nem 8 biten. Előjeles összeadás esetén érdemes a kettes
komplemens számábrázolást alkalmazni, ahol a legnagyobb
helyiértékű biten tároljuk a szám előjelét. Ha a szám pozitív,
akkor ennek a bitnek értéke 0, ha viszont negatív, akkor 1.
Az eredmény pozitív vagy negatív jellegét az úgynevezett
negatív (N) flag jelzi. Amennyiben ez az érték 0, akkor
pozitív, ha 1, akkor negatív számot kaptunk eredményül.
Ha az eredmény a bitek számának megfelelő tartományon
kívül esik, a túlcsordulás (O; Overflow) flag értéke 0-ról 1-re
vált. A carry (C) flag akkor 1, ha a túlcsordulás a tartomány
pozitív felé történik.

VI. MÉRÉSI FELADAT

Végezzen el kivonást két 8 bites előjel nélküli szám között.

Ebben a feladatban két 8 bites előjel nélküli számot
vonunk ki. Ehhez az alábbi assembly kód részletet illesztettük
bele az IAR szimulátor által elkészített assembly sablonba.

1 mov.b #5,R4
2 mov.b #6,R5
3

4 sub.b R4,R5

A program lefuttatása után a szimulált mikrokontroller
regiszterein az V. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy amikor a két szám
különbsége kisebb a 8 bitbe elférő szám értékénél, az alulcsor-
dul, ezt angolul underflow-nak hívják.

V. táblázat. A VI. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0005 (5)

R5 0x0001 (1)

VII. MÉRÉSI FELADAT

Végezzen el kivonást két 16 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a borrow bit
értékét.

1 mov.w #65535,R4
2 mov.w #6, R5
3

4 sub.w R5, R4

VI. táblázat. A VII. mérési feladatban a feladat lefuttatása után
a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0xFFFF (65535)

R5 0xFFF9 (65529)

VIII. MÉRÉSI FELADAT

Végezzen el kivonást két 32 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a borrow bit
értékét.

Ebben a feladatban két 32 bites előjel nélküli számot
vonunk ki. Ehhez az alábbi assembly kód részletet illesztettük
bele az IAR szimulátor által elkészített assembly sablonba.

1 mov.w #3200,R4
2 mov.w #3000,R5
3 mov.w #3600,R6
4 mov.w #3400,R7
5

6 sub.w R4,R5
7 sub.w R6,R7
8 subc.w R5,R7

A program lefuttatása után a szimulált mikrokontroller
regiszterein a VII. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy amikor a két
szám különbsége kisebb a 32 bitbe elférő szám értékénél, az
alulcsordul, ezt angolul underflow-nak hívják.

A kivonás műveletnél a "kölcsönvevés" (borrow) flag jelzi,
hogy a két szám amivel a kivonást végeztük megeggyeznek
e. Amennyiben a két szám értéke megegyezik, a művelet
elvégzésével a borrow flag igaz értéket vesz fel. Kivonáson
kívül az összehasonlítás művelet használja még a borrow
flaget. Összehasonlításkor (CMP) a borrow flag logikai igaz
értéket vesz fel, ha a két megadott érték, vagy regiszter
tartalma megyegyezik.

VII. táblázat. A VIII. mérési feladatban a feladat lefuttatása
után a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0C80 (3200)

R5 0x00C8 (200)

R6 0x0E10 (3600)

R7 0x00C8 (200)

IX. MÉRÉSI FELADAT

Végezzen el kivonást két 64 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a borrow bit
értékét.

Ebben a feladatban két 64 bites előjel nélküli számot
vonunk ki. Ehhez az alábbi assembly kód részletet illesztettük
bele az IAR szimulátor által elkészített assembly sablonba.

1 mov.w #66,R4
2 mov.w #55,R5
3 mov.w #44,R6
4 mov.w #33,R7
5 mov.w #22,R8
6 mov.w #11,R9
7

8 sub.w R4,R5
9 sub.w R6,R7

10 sub.w R8,R9



A program lefuttatása után a szimulált mikrokontroller
regiszterein a VIII. táblázatban összegyűjtött értékeket láttuk.

A flageket megvizsgálva láthatjuk, hogy amikor a két
szám különbsége kisebb a 64 bitbe elférő szám értékénél, az
alulcsordul, ezt angolul underflow-nak hívják.

A kivonás műveletnél a "kölcsönvevés" (borrow) flag jelzi,
hogy a két szám amivel a kivonást végeztük megeggyeznek
e. Amennyiben a két szám értéke megegyezik, a művelet
elvégzésével a borrow flag igaz értéket vesz fel. Kivonáson
kívül az összehasonlítás művelet használja még a borrow
flaget. Összehasonlításkor (CMP) a borrow flag logikai igaz
értéket vesz fel, ha a két megadott érték, vagy regiszter
tartalma megyegyezik.

VIII. táblázat. A IX. mérési feladatban a feladat lefuttatása
után a regiszterekben maradt értékek.

Regiszter neve Regiszter értéke

R4 0x0042 (66)

R5 0x000B (11)

R6 0x002C (44)

R7 0x000B (11)

R8 0x0016 (22)

R9 0x000B (11)

X. MÉRÉSI FELADAT

A tanultakat ellenőrizze az 6;9; feladat megoldásával
előjeles környezetben is.

Az összeadáshoz hasonlóan, ebben az esetben is azonosak
a programok a előjel nélküli változatokhoz képest, de
fontos, hogy megjelöljük a számok előjelét. Kivonás esetén
ugyanúgy érvényes a számábrázolási tartomány, mint az
összeadás esetén. Ha a végeredmény negatív, akkor az
N flag 1 értéket vesz fel, és kettes komplemensként kell
kezelni. Emellett az overflow flag is jelzi a túlcsordulást a
művelet során, így a kapott érték nem fér bele az ábrázolási
tartományba. A carry bit ebben az esetben ellentétesen
működik, hiszen negatív irányból történik túlcsordulás esetén
vált csak 1-es értékre.

HIVATKOZÁSOK

[1] T. Finley, Two’s Complement. 2000. cím: https://www.cs.
cornell.edu/~tomf/notes/cps104/twoscomp.html (elérés
dátuma 2024. 05. 10.).

[2] x86 Assembly Language Reference Manual. Oracle. cím:
https://docs.oracle.com/cd/E19641-01/802-1948/802-
1948.pdf (elérés dátuma 2024. 05. 10.).

[3] Description of the MIPS R2000. Imperial College Lon-
don. cím: https://www.doc.ic.ac.uk/lab/secondyear/spim/
node9.html (elérés dátuma 2024. 05. 10.).

[4] Wikipedia, Mikrovezérlő. cím: https://hu.wikipedia.org/
wiki / Mikrovez % C3 % A9rl % C5 % 91 (elérés dátuma
2024. 05. 10.).

[5] MSP430x1xx Family User’s Guide. Texas Instruments.
cím: https : / / www. ti . com / lit / ug / slau049f / slau049f .
pdf ? ts = 1649510678917 & ref _ url = https % 253A %
252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%
252Fdocs % 252Funiversalsearch . tsp % 253FlangPref %
253Den-US%2526searchTerm%253Dslau049%2526nr%
253D160 (elérés dátuma 2024. 05. 10.).

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160

	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat

