Mikrokontroller 1.

Kékesi Krist6f
NEPTUN kéd: ZI614M
Meérépar: Bor Gergd

Mérés ideje: 2024.05.08. 15:15-18:00
Meérés helye: Pdzméany Péter Katolikus Egyetem, Informécids Technoldgiai és Bionikai Kar
1083 Budapest, Prater utca 50/A 421-es labor
kekesi.kristof.mihaly@hallgato.ppke.hu

Kivonat—

A jegyzokonyv részletesen leirja az aprilis 23-dn megoldando
mérési feladatokat, valamint az ezek megoldasahoz sziikséges
informaciokat. A dokumentum célja, hogy atfogé tvtmutatast
nydjtson a feladatok megoldasanak folyamatarél és a reprodu-
kalhatésaghoz sziikséges 1épésekral.

A jegyzokonyv részletesen ismerteti az egyes feladatok megol-
dasahoz sziikséges lépéseket, beleértve a sziikséges eszkozok és
eljarasok hasznalatat is. Ezaltal segiti az azt olvasokat a feladatok
hatékony és pontos megoldasaban, valamint eldsegiti a feladatok
reprodukalhatésagat és értelmezhetGségét.

Keywords-Mikrokontroller; Assembly; Regiszterek; Miivele-
tek; Szamrendszerek; Szamabrazolas;

MERESSEL KAPCSOLATOS FOGALMAK

o Szamrendszer: Olyan jelolési rendszer, amelyet a szé-

mok irdsara és az aritmetikai miiveletek elvégzésére hasz-
nalnak. AlapvetSen egy adott alapszam koré épiil, ami a
szamrendszer alapja, amely meghatdrozza a rendszerben
felhaszndlhaté szimbdlumok (szdmjegyek) szdmit és a
helyiérték szerinti szorzét. A legismertebb szamrendszer
a decimalis, vagy tizes szdmrendszer, amely 10 kiilonbo-
206 szdmjegyet haszndl (0-tdl 9-ig).
Kiilonbozd kultirdk és szamitégépes alkalmazdsok kii-
16nb6z6 szamrendszereket haszndlhatnak. Példdul a sza-
mitdstechnikdban gyakran alkalmazzdk a bindris (2-es
alapu), az oktalis (8-as alapu) és a hexadecimalis (16-0s
alapu) szamrrendszereket, mivel ezek hatékonyan model-
lezhetik a digitdlis dramkorok mikodését.

101,019 = 1-10°+0-10' +1-10°40-107" +1-107?

ey

o Kettes komplemens szamabrazolasi médszer: A kettes

komplemens moddszer a negativ szdmok bindris dbrazo-

lasdra szolgdl. Ez a moédszer lehet6vé teszi a bindris

Osszeadds haszndlatat mind pozitiv, mind negativ szdmok

esetében anélkiil, hogy kiilon figyelemmel kellene kisérni

a szam eldjelét. Egy adott bites szélességli szam kettes

komplementer alakjanak meghatirozasa a kovetkezd 1é-
pésekbdl 4ll, ha a szdm negativ:

1) Hozzdadunk a szdmhoz egyet;

2) Az igy kapott szam abszolutértékét vessziik;

3) Felirjuk bindrisan a kapott szamot, elére definidlt

biten;

4) Minden bitet negalunk.

(1]
« Fix pontos abrazolas: ElSre definidlt pontosvessz$ hely

alapjan tudjuk, hogy a . képletben a hatvanyok kitevdit
mennyivel toljuk el.

o Assembly programozasi nyelv: Egy alacsony szintd,

gépi kodhoz kozel 4ll6 nyelv, melyet az adott processzor
architektirdjanak utasitdskészletével irnak. Az assembly
programozasi nyelv lehet6vé teszi a programozok szama-
ra, hogy kozvetleniil befolydsoljdk a processzor miikodé-
sét, igy nagyfokud kontrollt biztositanak az alkalmazasok
felett. Altalaban a gépi kédhoz legkdzelebb 4ll6 emberi
érthetd formdban irédik, és kozvetleniil fordithaté gépi
kédda. Mivel az assembly nyelv kozvetleniil kommunikal
a hardverrel, ezaltal nagy teljesitményt és precizitast biz-
tosit, azonban <alaban bonyolultabb és kevésbé atlathatd
kédot eredményez, mint a magasabb szintli programozasi
nyelvek. [2]

Regiszterek: Olyan kis méretii adatokat tarol6 hardveres
komponensek, amelyek kozvetleniil kapcsolédnak a pro-
cesszorhoz. Ezek a tdrolék rendkiviil gyors hozzaférést
tesznek lehetévé a processzor szdmdra az adatokhoz és
utasitdsokhoz. A regisztereknek kiilonbozd tipusai van-
nak, beleértve az 4ltaldnos céld regisztereket, az adatre-
gisztereket, az indexregisztereket és a vezérldregisztere-
ket. Ezek a regiszterek jatszanak kulcsfontossagu szerepet
az assembly nyelvben firt programokban, mivel kozvet-
leniil manipuldlhaték az alacsony szintd utasitdsokon
keresztiil, lehetévé téve a programok szdmdra a hatékony
adatmanipulaciét és vezérlést.

Az egyes regiszterek altaldban a processzor architektu-
rdjatdl fiiggben vannak elnevezve, és ezek elnevezése
a processzor tervezésétl és az adott architektira kon-
venciditol fiigg. A regiszterek elnevezése gyakran koveti
egy adott architektira belsé miikodését és funkcidit. Az
x86 architektiraban a regiszterek elnevezése a kovetkezd
tipusok szerint csoportosithaté:

— Altaldnos céld regiszterek: Példaul az EAX, EBX,
ECX, EDX regiszterek.

— Index regiszterek: Példaul az ESI, EDI regiszterek.

— Adatregiszterek: Példaul az AL, AH, BL, BH regisz-
terek (byte regiszterek), valamint az AX, BX, CX,
DX regiszterek (word regiszterek).

— Pontosité regiszterek: Példaul az EFLAGS regiszter.

Mas architektirdk esetében mas elnevezési konvencidkat
hasznalnak, példdul az ARM architektira regiszterei kii-
16nboz6 tipusokra oszlanak. Az elnevezési konvencidk
véaltozhatnak az architektiiratél és a processzorgyart6tol
fuiggben. [3]

o Miiveletek Assembly-ben:

— MOV: Egy megadott regiszter értékét masoljuk &t

egy masik megadott regiszterbe.
src — dst

ADD: Egy megadott regiszter értékét hozzdadjuk
egy masik megadott regiszter értékéhez. Masnéven
az Osszeadds mfivelet. A C++ nyelvben az ehhez
leghasonlébb a += operator.

src + dst — dst

ADDC: Az "dsszeadas cipeléssel” (add with carry)
miiveletet végzi el. Ez az utasitds hasonlé az egy-
szeri ADD utasitdshoz, azonban a CARRY (cipelés)
allapotot is figyelembe veszi.A CARRY egy specidlis
jelzdbit a processzorban, amely jelzi, hogy egy el6z6
aritmetikai mfivelet sordn az eredmény tulcsordult-e
(overflow), vagyis tobb bitet igényel, mint amennyi a
célregiszterben elfér. Az ADDC utasitds két operan-
dust ad Ossze, valamint figyelembe veszi a CARRY
jelzdbitet is. Ha a CARRY be van allitva (1), akkor
az ADDC az operandusokat 6sszeadja, valamint az
egyesek helyiértékén levd cipelést is figyelembe ve-
szi. Ha a CARRY nem aktiv (0), akkor az ADDC
ugyanigy mikodik, mint az ADD utasités.

src 4+ dst + C' — dst

SUB: Assembly programozdsi nyelvben a "kivonds"
(subtract) mfiveletet valdsitja meg. Ez az utasitds
lehet6vé teszi két operandus kiilonbségének kisza-
mitasat.

dst 4+ —src + 1 — dst

SUBC: Assembly programozasi nyelvben a "kivonds
cipeléssel" (subtract with carry) miveletet val6sit-
ja meg. Ez az utasitds hasonlé az egyszerli SUB
utasitdshoz , viszont a CARRY (cipelés) allapotot
is figyelembe veszi. A CARRY egy specidlis jel-
z6bit a processzorban, amely jelzi, hogy egy el6z6
aritmetikaim@ivelet sordn az eredmény tulcsordult-e
(overflow), vagyis tobb bitet igényel, mint amennyi
a célregiszterben elfér. A SUBBC utasitds két ope-
randust von ki egymdsbdl, valamint figyelembe veszi
a CARRY jelzdbitet is. Ha a CARRY be van Allit-
va (1), akkor az SUBC az operandusokat kivonja,
valamint az egyesek helyiértékén levd cipelést is
figyelembe veszi. Ha a CARRY nem aktiv (0), akkor
az SUBC ugyaniigy miikddik, mint az SUB utasitas.

dst + —src + C' — dst

CMP: Ez a miivelet az assembly nyelv egyik alap-
vet$ utasitdsa, amely két operandust hasonlit Gssze.
A CMP utasitds lényegében az alapvetd kivonds
miiveletét végzi el, de az eredményt nem tdrolja
el. Az CMP utasitds csak a jelz&biteket dllitja be
annak megfelelGen, hogy az els6 operandus nagyobb,
kisebb vagy egyenl$-e a masodikkal megadott regisz-
terrel.
dst — src

DADD: Az 6sszeadds (Addition) az alapvetd Ossze-
adas mtveletét valésitja meg, de specifikus jelentés-
sel nem rendelkezik a legtobb architektiraban.

Az "D" prefix (példaul az DADD) gyakran a Do-
uble, azaz double szdmokhoz kapcsolddik, és azt
jelzi, hogy a mfivelet double szdimokkal torténik. Ez
gyakran az FP (Floating Point), azaz lebeg&pontos
szamokkal valo miiveletek esetén fordul eld, ahol a
dupla precizitdsi adatokhoz sziikség lehet 64 bites
(vagy ennél nagyobb) adatokra.

src + dst + C' — dst (decimally)

BIT: A logikai és (A) miiveletet valdsitja meg a meg-
adott src és dst regiszterek kozott, majd a kozottik
1évé és kapcesolat értékét a dst regiszterbe tarolja el.

src A dts

BIC: A BIT-hez hasonléan logikai és kapcsolatot
vizsgdl a két megadott regiszter kdzott, viszont az
src regiszter értékének a negéltjaval.

—src A dst — dst

BIS: A logikai vagy (V) miveletet valdsitja meg
a megadott src és dst regiszterek kozott, majd a
kozottik 16vE és kapcsolat értékét a dst regiszterbe
tarolja el.

src V dst — dst

XOR: A logikai kizaré vagy (&) miiveletet valdsitja
meg a megadott src és dst regiszterek kozott, majd
a kozottik 1évé kizard vagy kapcsolat értékét a dst
regiszterbe tarolja el.

src @ dst — dst

AND: A logikai és (A) miveletet valésitja meg
a megadott src és dst regiszterek kozott, majd a
kozottik 1évE és kapcsolat értékét a dst regiszterbe
tarolja el.

src A dst — dst

RRC:
C -MSB — ...LSC —- C

RRA:
MSB — MSB — ...LSB —» C
PUSH:
SP—-2 — SP, src— @SP

SWPB:
src — dst, dst — src

CALL:
SP—2-SP, PC+2— @SP, dst— PC

RETI:
TOS — SR, SP+2 — SP

TOS — PC, SP+2 — SP
SXT:
Bit7 — Bit8 — Bit9 — Bit10 — Bitll — Bitl2
Bit12 — Bit13 — Bitl4 — Bitl5

JMP: Az ugras (Jump) egy alapvetd utasitds az as-
sembly programozasi nyelvben, amelyet eldgazasok

végrehajtasara haszndlnak. Az ugrds utasitds arra
szolgdl, hogy 4tugorja a program kddsordnak egy
adott részét, és folytassa a végrehajtist egy mdsik
cimrdl. Az utasitds paraméterként egy cél-cimet vér,
ahova a program vezérlése dtkeriil. Ez a cél-cim lehet
egy cim, egy regiszterben vagy véltozéban térolt
érték.

Az ugrds utasitds a program futdsét a cél-cimen 1évé
utasitdsokkal folytatja, anélkiil hogy barmilyen felté-
telt ellendrizne. Ez azt jelenti, hogy az JMP utasitas
altaldban egy abszolut eldgazdst valdsit meg, vagyis
mindig végrehajtédik, fiiggetleniil a koriilményektol. ¢

(4] [5] .

I. MERESI FELADAT

Végezzen el Osszeaddst két 8 bites el6jel nélkiili szam
kozott.

mov.b #5,R4

> mov.b #6,R5

> mov.w #6,

add.b R4,R5

I. tdblazat. A 1. mérési feladatban a feladat lefuttatdsa utdn a
regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke
R4 0z000B (11)
R5 0z0006 (6)

II. MERESI FELADAT

Végezzen el Osszeadast két 16 bites eldjel nélkiili szam
kozott. A miivelet elvégzése sordn vizsgélja a carry bit értékét.

Ebben a feladatban két 16 bites el§jel nélkiili szamot
adtunk Ossze. Ehhez az aldbbi assembly kod részletet
illesztettiik bele az IAR szimuldtor 4ltal elkészitett assembly '
sablonba. ,

mov.w #65535,R4
R5

mov.w R5, R4 8
A program lefuttatdsa utin a szimuldlt mikrokontroller 0
regiszterein a II. tablazatban Osszegyf(jtott értékeket lattuk.
A flageket megvizsgélva lathatjuk, hogy amikor a két szam
Osszege meghaladja a 16 bitbe elfér6 szam értékét, az tilcsor-
dul, ezt angolul overflow-nak hivjdk. Ilyenkor a C, mint carry

flag értéke igaz lesz.

II. tablazat. A II. mérési feladatban a feladat lefuttatdsa utdn
a regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke
R4 020005 (5)
R5 020006 (6)

w
2 mOoVv.w
3 MOV.W

w

s add.w

III. MERESI FELADAT

Végezzen el Osszeaddst két 32 bites elgjel nélkiili szdm
kozott. A miivelet elvégzése sordn vizsgdlja a carry bit értékét.

Ebben a feladatban két 32 bites elgjel nélkiili szamot
adtunk Ossze. Ehhez az aldbbi assembly kod részletet
illesztettiik bele az IAR szimuldtor altal elkészitett assembly
sablonba.

#3000, R4

#3200, R5

#3400,R6
#3600, R7

mov.

mov.

R4,R5
add.w R6,R7
addc.w R5,R7

A program lefuttatdsa utdn a szimuldlt mikrokontroller
regiszterein a III. tdblazatban 6sszegytijtott értékeket lattuk.

A flageket megvizsgélva lathatjuk, hogy amikor a két szam
Osszege meghaladja a 32 bitbe elfér6 szam értékét, az tilcsor-
dul, ezt angolul overflow-nak hivjdk. Ilyenkor a C, mint carry

flag értéke igaz lesz.

III. tablazat. A III. mérési feladatban a feladat lefuttatdsa utan
a regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke

R4 0x0BB8 (3000)
RS 01838 (6200)
R6 050D48 (3400)
R7 03390 (13200)

IV. MERESI FELADAT

Végezzen el Osszeaddst két 64 bites eldjel nélkiili szam
kozott. A miivelet elvégzése sordn vizsgélja a carry bit
értékét.

Ebben a feladatban két 64 bites elgjel nélkiili szamot adtunk
0ssze. Ehhez az aldbbi assembly kdd részletet illesztettiik bele
az IAR szimulator altal elkészitett assembly sablonba.

mov.w #11,R4
mov.w #22,R5
3 mov.w #33,R6
mov.w #44,R7
s mov.w #55,R8
mov.w #66,R9
add.w R4,R5
add.w R6,R7
add.w R8,R9

A program lefuttatdsa utdn a szimuldlt mikrokontroller
regiszterein a [V. tdblazatban 6sszegy(jtott értékeket lattuk.

A flageket megvizsgélva lathatjuk, hogy amikor a két szdm
Osszege meghaladja a 64 bitbe elférd szam értékét, az tilcsor-
dul, ezt angolul overflow-nak hivjak. Ilyenkor a C, mint carry
flag értéke igaz lesz.

V. MERESI FELADAT

A tanultakat ellendrizze az 1;2;3; feladat megolddsaval
el6jeles kornyezetben is.

A programok létrehozdsa és a kddok megirdsa ugyanigy
miikodik elgjelezett kornyezetben, de fontos figyelembe venni,

IV. tablazat. A IV. mérési feladatban a feladat lefuttatdsa utan
a regiszterekben maradt értékek.
Regiszter neve “ Regiszter értéke

R4 020008 (11)
R5 020021 (33)
R6 020021 (33)
R7 020047 (77)
RS 020037 (55)
R9 020079 (121)

hogy az eljelbit miatt csak 7 biten tudunk szdmokat tarolni,
nem 8 biten. ElGjeles Osszeadds esetén érdemes a kettes
komplemens szdmdbrdzolast alkalmazni, ahol a legnagyobb
helyiértékd biten taroljuk a szam elGjelét. Ha a szam pozitiv,
akkor ennek a bitnek értéke 0, ha viszont negativ, akkor 1.
Az eredmény pozitiv vagy negativ jellegét az tgynevezett

negativ (N) flag jelzi. Amennyiben ez az érték 0, akkor s

pozitiv, ha 1, akkor negativ szdmot kaptunk eredményiil.

Ha az eredmény a bitek szdmdnak megfelel§ tartomdnyon |,
kiviil esik, a tdlcsordulds (O; Overflow) flag értéke 0-rél 1-re -

valt. A carry (C) flag akkor 1, ha a tilcsordulds a tartomdny
pozitiv felé torténik.

VI. MERESI FELADAT

Végezzen el kivonast két 8 bites eldjel nélkiili szam kozott.

Ebben a feladatban két 8 bites el6jel nélkiili szdmot
vonunk ki. Ehhez az aldbbi assembly kdéd részletet illesztettiik
bele az IAR szimuldtor dltal elkészitett assembly sablonba.

mov.b #5,R4
> mov.b #6,R5

sub.b R4,R5

A program lefuttatdsa utdn a szimuldlt mikrokontroller
regiszterein az V. tdblazatban Osszegyljtott értékeket 1attuk.

A flageket megvizsgdlva lathatjuk, hogy amikor a két szdm
kiilonbsége kisebb a 8 bitbe elférd szam értékénél, az alulcsor-
dul, ezt angolul underflow-nak hivjak.

V. tdbldzat. A VI. mérési feladatban a feladat lefuttatidsa utan
a regiszterekben maradt értékek.
Regiszter neve “ Regiszter értéke
R4 020005 (5)
R5 020001 (1)

VII. MERESI FELADAT

Végezzen el kivondst két 16 bites eldjel nélkiili szam
kozott. A miivelet elvégzése sordn vizsgdlja a borrow bit
értékét.

I mov.w #65535,R4
> mov.w #6, R5

4 sub.w R5, R4

VI. tablazat. A VII. mérési feladatban a feladat lefuttatdsa utan
a regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke
R4 0xFFFF (65535)
R5 0zFFF9 (65529)

VIII. MERESI FELADAT

Végezzen el kivondst két 32 bites el6jel nélkiili szam
kozott. A miivelet elvégzése sordn vizsgdlja a borrow bit
értékét.

Ebben a feladatban két 32 bites elgjel nélkiili szdmot
vonunk ki. Ehhez az aldbbi assembly kéd részletet illesztettiik
bele az IAR szimuldtor dltal elkészitett assembly sablonba.

| m w #3200,R4
> mov.w #3000,R5
mov.w #3600,R6
4 mov.w #3400,R7
6 sub.w R4,R5
sub.w R6,R7

8 subc.w R5,R7

A program lefuttatdsa utdn a szimuldlt mikrokontroller
regiszterein a VII. tdbldzatban Osszegy(jtott értékeket lattuk.

A flageket megvizsgalva lathatjuk, hogy amikor a két
szam kiilonbsége kisebb a 32 bitbe elférd szam értékénél, az
alulcsordul, ezt angolul underflow-nak hivjak.

A kivonds miiveletnél a "kolcsonvevés" (borrow) flag jelzi,
hogy a két szdm amivel a kivondst végeztiik megeggyeznek
e. Amennyiben a két szdm értéke megegyezik, a miivelet
elvégzésével a borrow flag igaz értéket vesz fel. Kivondson
kivill az Osszehasonlitds mivelet hasznilja még a borrow
flaget. Osszehasonlitidskor (CMP) a borrow flag logikai igaz
értéket vesz fel, ha a két megadott érték, vagy regiszter
tartalma megyegyezik.

VII. tablazat. A VIII. mérési feladatban a feladat lefuttatdsa

utdn a regiszterekben maradt értékek.
Regiszter neve “ Regiszter értéke

R4 0z0C80 (3200)
R5 0z00C8 (200)
R6 0z0E10 (3600)
R7 000C38 (200)

IX. MERESI FELADAT

Végezzen el kivondst két 64 bites eldjel nélkiili szam
kozott. A miivelet elvégzése sordn vizsgdlja a borrow bit
értékét.

Ebben a feladatban két 64 bites el§jel nélkiili szdmot
vonunk ki. Ehhez az aldbbi assembly kéd részletet illesztettiik

bele az IAR szimuldtor dltal elkészitett assembly sablonba.

| mov.w #66,R4
> mov.w #55,R5
3 mov.w #44,R6
4 mov.w #33,R7
s mov.w #22,R8
6 mov.w #11,R9
s sub.w R4,R5

9 sub.w R6,R7

10 sub.w R8,R9

A program lefuttatdsa utin a szimuldlt mikrokontroller
regiszterein a VIII. tdblazatban 6sszegytjtott értékeket lattuk.

A flageket megvizsgalva lathatjuk, hogy amikor a két
szam kiilonbsége kisebb a 64 bitbe elférd szam értékénél, az
alulcsordul, ezt angolul underflow-nak hivjak.

A kivonds miiveletnél a "kolcsonvevés" (borrow) flag jelzi,
hogy a két szdm amivel a kivondst végeztik megeggyeznek
e. Amennyiben a két szam értéke megegyezik, a mivelet
elvégzésével a borrow flag igaz értéket vesz fel. Kivondson
kiviil az Osszehasonlitds miivelet haszndlja még a borrow
flaget. Osszehasonlitaskor (CMP) a borrow flag logikai igaz
értéket vesz fel, ha a két megadott érték, vagy regiszter
tartalma megyegyezik.

VIII. téblazat. A IX. mérési feladatban a feladat lefuttatisa
utdn a regiszterekben maradt értékek.
Regiszter neve H Regiszter értéke

R4 020042 (66)
R5 020008 (11)
R6 02002C (44)
R7 020008 (11)
RS 020016 (22)
R9 020008 (11)

X. MERESI FELADAT

A tanultakat ellendrizze az 6;9; feladat megoldédsaval
eléjeles kornyezetben is.

Az 0Osszeadashoz hasonldan, ebben az esetben is azonosak
a programok a elGjel nélkiili véltozatokhoz képest, de
fontos, hogy megjeldljiik a szdmok elgjelét. Kivonds esetén
ugyanigy érvényes a szdmdbrdzoldsi tartomdny, mint az
Osszeadds esetén. Ha a végeredmény negativ, akkor az
N flag 1 értéket vesz fel, és kettes komplemensként kell
kezelni. Emellett az overflow flag is jelzi a tulcsordulést a
miivelet sordn, igy a kapott érték nem fér bele az dbrdzolasi
tartomdnyba. A carry bit ebben az esetben -ellentétesen
miikodik, hiszen negativ irdnybdl torténik tilcsordulds esetén
vélt csak 1-es értékre.

HIVATKOZASOK

[1] T. Finley, Two’s Complement. 2000. cim: https://www.cs.
cornell.edu/~tomf/notes/cps104/twoscomp.html (elérés
datuma 2024. 05. 10.).

[2] x86 Assembly Language Reference Manual. Oracle. cim:
https://docs.oracle.com/cd/E19641-01/802-1948/802-
1948.pdf (elérés ddtuma 2024. 05. 10.).

[3] Description of the MIPS R2000. Imperial College Lon-
don. cim: https://www.doc.ic.ac.uk/lab/secondyear/spim/
node9.html (elérés datuma 2024. 05. 10.).

[4] Wikipedia, Mikrovezérld. cim: https://hu.wikipedia.org/
wiki / Mikrovez % C3 % A9rl % C5 % 91 (elérés datuma
2024. 05. 10.).

[S] MSP430xixx Family User’s Guide. Texas Instruments.
cim: https://www.ti.com/lit/ug/slau049f/ slau049f.
pdf ? ts = 1649510678917 & ref _ url = https % 253A %
252F%252Fwww.ti.com%252Fsitesearch%252Fen-us %
252Fdocs % 252Funiversalsearch . tsp % 253FlangPref %
253Den-US%?2526searchTerm%?253Dslau049%?2526nr%
253D160 (elérés datuma 2024. 05. 10.).

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://docs.oracle.com/cd/E19641-01/802-1948/802-1948.pdf
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://www.doc.ic.ac.uk/lab/secondyear/spim/node9.html
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160

	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat
	Mérési feladat

