Mikrokontroller 1., Szamabrazolas

Levente VAINA
(Mérési partner: Valik Levente Ferenc)
(Gyakorlatvezet6: Tihanyi Attila Kdlman)
Pazmény Péter Katolikus Egyetem, Informaciés Technoldgiai és Bionikai Kar
Magyarorszag, 1083 Budapest, Priter utca 50/a
vajna.levente@hallgato.ppke.hu

Kivonat—A labor soran MSP430 mikrokontroller szi-
mulatorral, az IAR Visual State programmal végeztiink
méréseket Assembly nyelven. Regiszterekbe irtunk ki pozitiv illet-
ve negativ egész szamokat, és ezekkel végeztiink osszeadast, illetve
kivonast. Kellett sajat osszeadast illetve kivonast is programozni,
mivel 32 illetve 64 biten ilyen miiveletvégzés nincs definialva.
Mindekozben elsajatitottuk a hexadecimalis, a decimalis és a
binaris szamrendszerek kozti atvaltast, valamint megfigyeltiik a
kiilonbozo flageket a szamitasok soran.

Keywords-MSP430; IAR Visual
szamrendszerek; atvaltas;

Meérés ideje: 2023.05.11.

State; flag; Assembly;

I. FELADAT: MERES SORAN FELMERUL® FOGALMAK
I-A. Assembly

Az Assembly a szamitégépes programozis egyik leg-
alacsonyabb szintd nyelve, amely kozvetleniil kommu-
nikdl a szdmitégép hardverével. Az Assembly nyelv alap
utasitdsokbol all (pl: move, add, sub), amelyeket a processzor
kozvetleniil értelmez és végrehajt. A programok irdsa assemb-
ly nyelven lehet6vé teszi a maximédlis kontrollt a hardver
felett, és lehetdséget nydjt a hatékonysag és a teljesitmény
optimalizdldsara. Assembly nyelvli program irdsa bonyolult,
és meglehetdsen iddigényes, azonban az igy késziilt program
1d6 és teljesitményhatékony.

I-B. MSP430

Az MSP430 [1] mikrokontroller a Texas Instruments fej-
lesztése, mely igen alacsonyszintli programozasi ismerete-
ket igényel, azonban ezzel egyiitt id6-, és energi hatékony.
Programozdsa gyakran Assembly nyelven torténik, mi is igy
hasznéltuk.

I-C. Szdmrendszerek

A kiilonbozd szdmrendszerek éEletiink szdmos terén meg-
taldlhatéak. Mindennapi életiinkben, de alapvetéen a ma-
tematikdban is a tizes szdmrendszert, vagyis a decimadlis
szamrendszert hasznaljuk. Itt a 10 az alap, tehdt a szamjegyek
1 és 9 kozti szamok.

Informatikdban gyakran haszndlatos a hexadecimadlis, vagy-
is a 16 alapi szdmrendszer. Itt az szdmjegyek lehetnek 1
és 9 kozti szamok, illetve betiik A-F kozott. (A = 10, ...
, F = 15) Gyakran hasznalt példdul szinskaldkndl, vagy
memoriacimzéseknél. ElsGsorban azért kedvelt szamrendszer,
mert a 16 egy kettS hatvanya, 16 = 24, tehat egy szdmjeggyel
abrazolhatunk 4 szdmjegynyi bindris szamot.

Es az informatika alapja a bindris, vagyis a Kettes
szamrendszer. Olyan lényeges, hogy az 5 Neumann-elv kozt
is szerepel ennek haszndlata. Konny(haszndlata, mivel igy
kettéfelé bonthaté a digitalis jel, logikai magas, és logikai

alacsony fesziiltségre (0, 5V). Kétféle szamjeggyel kell leirni
minden szdmot, 0 vagy 1. (false, true)

Abrazoldsuk helyiértékekkel és alaki értékekkel torténik. [2]
Képlet rd, ahol k alapt a szdmrendszer:

n

Zalkl

i=0
I-D. Kettes komplemens

A ketes komplemens szdmdbrazoldst az elGjeles egész
szdmok minél praktikusabb dbrazoldsidnak igénye hivta életre.
Ugy alkottak meg, hogy egy kivondsnil a kivonandét
konnyedén, kettes komplemensi negativ szamként abrazolva
a kisebbitend6hoz hozzdadva el lehessen végezni. Az aldbbi
algoritmussal képziink kettes komplemens negativ szamot:

—lneg.szam + 1 (D

Vagyis a negativ szdmhoz hozzdadunk egyet, majd vessziik
az abszolutértékét, és elvégezziik rajta a kettes szdmrendszerbe
atirast. Ezt kovetSen pedig értékenként negéljuk, tehit minden
1-es 0 lesz és minden O 1-es lesz. [3]

I-E. ALU

Az ALU (Arithmetic Logic Unit) [4] a szdmitogépek
nélkiilozhetetlen eleme, mely a CPU-n, vagyis a processzo-
ron kap helyet. Alapvetd, fundamentalis szamitdsokat végez
el, osszead, kivon, illetve egyes logikai miiveleteket képes
elvégezni, mint példaul AND, OR, XOR.

INPUT X INPUT Y

| |

O ti
%e(;i ;on —> FLAGS
OUTPUT
1. dbra. Arithmetic Logic Unit
Mint az 1. abran is lathatdé, két bemeneti értékbsl
ad ki egyet. Ezek jellemz&en a regiszterekbdl, vagy-

is a miiveletvégzd egységhez legkozelebb 4ll6 volatile
memoridkbol szdrmazé adatok, értékek. Ezen kiviil van egy
extra bemenet, ami a kiilonb6z6 mtiveletek elvégzését szabja

ki ré, illetve egy extra kimenet, az Un. flagek, vagy status bit-
ek, amik néhdny extra adattal szolgdlnak felénk (pl.: Carry,
Overflow, Zero, Negative).

II. FELADAT: OSSZEADASOK ELVEGZESE

Mind az Osszeadasok esetén, mind a kivonasok esetén els6
1épésként a regiszterekbe be kellett tolteni a literdl konstansa-
inkat. Erre szolgaltak az alabbbi utasitdsok:

MOV.B MOV.W

Az osszeadasok elvégzésére kétszer kett6féle parancsunk is
rendelkezésre allt:

ADD.B ADD.W ADDC.B ADDC.W

1I-A. Két 8 bites eldjel nélkiili szdm dsszeaddsa

Miutan két regiszterbe egy-egy byte adatot toltottiink a
MOVE.B paranccsal, ezen szamokat Osssze is kellett adni.
Erre szolgélt az ADD.B utasitds. A byte tipus itt egy egy byton
eltarolhaté szamot var. Ha nincs elGjele, akkor ez lehet ugye
egy 0-255 kozotti egész, ha elGjelesen haszndlnank, akkor egy
-128 és +127 kozotti egész értéket adhatndnk csak meg.

#include "msp430.n” LFU Hegsters v

NAE main
PUBLIC main
ORG OFFFER
DC16 inic

RSEG CSTACK
RSEG CODE

MOV $SEE(CSTACK), SP

main: NOP

MOV.W 4WDIFWHHDIHOLD, sWDICTL 7 &

MOV.B #1,R4 Ra

MOV.B 255,85 s

ADD.B R4,RS: R6

4 P 2 jump to current location 4! 7 - oxoEB2
(endless loop) R8

END

1 R9 = oxOFSE

2. abra. Két 8 bites eldjelnélkiili egész Hsszeaddsa

A 2. abran lathatd, hogy két elGjel nélkiili egész szamot
toltok az R0O4 és az RO5 regiszterekbe, majd ezeket adom
ossze. Az ADD utasitas szintaktikdja szerint el6szor adjuk
meg az src, azaz a source értékét, és masodjara a dst, vagyis
destination értékét, és az Osszeadds eredményét az tuticél(dst)
regiszterbe fogja tolteni. A 2. dbran lathaté példdban 255-6t,
és az 1-et szeretném 6sszeadni 1 byte-on. Ez azt jelenti, hogy
mivel nem fér el a 256 8 bit-en, ezért azt virom, hogy ez
ROS5 regiszter értéke O legyen. Fizika torvényeinek hala tényleg
igy is van, a kép jobb szélén pirossal taldlhaté a regiszter
értéke, és tényleg nulla lett. Ezen kiviil megfigyeljiik, hogy
a Zero flag, valamint a Carry flag is egy értéket ad. Ez azt
jelenti, hogy helyes a miiveletvégzés. Mivel az 11111111b(=
255d) 4+ 00000001b(= 1d) = 100000000b(= 256) lenne, de a
kilencedik szdmjegy mar csak a Carry biten fog meglatszani,
azaz ha még ezt 6ssze akarnank adni, ezt az 1-et tovabb kéne

sz

vinni. (ezt késébb fel is hasznaljuk)

II-B. Két 16 bites eldjel nélkiili szdm dsszeaddsa

7 2z

Az el6z8 feladatohoz képest ez nem sokban tért el. Sze-
rencsénkre a szimulacié képes kezelni a két byte-os intege-
reket, amiket a mikrokontroller “word”-nek nevez. Igy itt
a kiilonbség hogy az utasitds utdn nem .B a szintaktika,
hanem .W a haszndlatos. Tehdt miutdn a MOV.W paranccsal
betoltottiik tovabbra is az R04, és ROS regiszterekbe a két
tetsz6leges szamunkat, az ADD.W instrukcidval 6sszeadatjuk
a két egészet.

Azért, hogy ezittal lathaté legyen, hogy képes a na-
gyobb szdmokat is kezelni, 190-et és a 220-at adtuk Ossze.
190 + 220 = 410, tehat nem varunk semmi problémat, és
azt szeretnénk latni, hogy sikeres, és minden flag O legyen.

#include "mspd30.h”
NE
PUBLIC main
ORG OFFFER
DC16 init
BSEG CSTACK
RSEG CODE

MOV $SFE(CSTACK), SP

MOV.W $WDTEW+WDTHOLD, tWDTCTL ; St

a5 # Jump €5 curyent location V5! w7
; (zadless loop) e

3. abra. Két 16 bites eldjelnélkiili egész Osszeaddsa

A 3. dbran lathat6 jobb szélen az ROS5 regiszterben az Ossze-
adas eredménye, ami 0x019A hexadecimdlis szam, vagyis
decimdlisan 1-162 4+ 9 - 16' + 10 - 16° = 410, tehdt helyes
eredményt kaptunk, és a status biteket megtekintve valéban az
elvart viselkedést tanusitotta, és mind a négy zérus.

II-C. Kér 32 bites eldjel nélkiili szdam Osszeaddsa

Ez a feladat mar igényelt egy kis végiggondolast. Mivel a
szimuldcié és a mikrokontroller csak 8 és 16 bites szaimokat
tud kezelni alapbdl, ezért magunk kellett megirni, hogy 6ssze
tudja ezeket adni. Az alapkoncepcid, hogy egy 32 bites szdmot
két 16 bitesen akarunk eltarolni, elsé 2 byte-on a szdm els6
felét, (magasabb helyiértékek), masodik két byte-on a szam
kisebb helyiértéki felét.

#include "mapdal.h”
NMAME main
PUBLIC main

ORG OFEFER
pei6 1

RSEG CSTACK
RSEG CODE
MOV #SFE(CSTACK), SB
main: NOP
MOV.W $WDIRWWDTHOLD, sHDICIL ; St
MOV.w $19,R4
W $20000,RS

R10
s jump to current location '§1 R11
7 (endless loop) R12
ED R13

4. dbra. Két 32 bites elgjelnélkiili egész Osszeaddsa

A 4. abran az lathaté, hogy négy regiszterbe toltiink
értékeket, és utdna két 1épésben adunk 6ssze. Elszor a kisebb
helyiértékd word-ket adjuk Ossze, majd a madsodik Ossze-
adast mar egy ADDC.W utasitassal hajtjuk végre. Ez azért
sziikséges, mert ha akkora két szdmot akarndnk Osszeadni,
hogy tovabb kéne vinni értéket, akkor azt a magasabb he-
lyiértékii word-ben 1év6 szamnak 4t kell adni. Vegyiik a példat,
amit megcsindltunk. El&szor a 20000-et és a 60000-et sze-
retnénk Osszeadni. Err6l biztosan tudjuk, hogy fel kell villants
a Carry flaget, mivel két byte-on maximélisan dbrazolhat6
szdm a 2'® = 65536, ami pedig kisebb mint 80000. A
kovetkez6 Osszeadds hozzdsadja az el6z6 Carry értéket, és
ugy Osszegzi a nagyobb helyiértékdi word-t, amiben a 19 és a
22 szerepel. Tehat a tényleges szamok, amiket igy beirtam az
19-2164-20000 = 1265184, illetve 22-2'6+60000 = 1501792.
Ezen két sza Osszege 1265184 + 1501792 = 2766976, ami
hexadecimalisan dbrdzolva 0x2A3880. Ha megnézziik az R06
és RO7 regiszterek értékeit, éppen ez a szdm taldlhat6 benne.
Nem csalds, nem amitas, tényleg j6l mikodik.

II-D. Két 64 bites eldjel nélkiili szdam osszeaddsa

7z

Ez az el6z6 feladathoz képest ha mar megértettiik, hogy
mit is csindlunk, gyerekjaték. Ugyanigy elGszor Carry nélkiil
adjuk Ossze, majd utdna viszont Carry értékeit elkérve.

#include "mspi30.n” s #define controlled include file — |Lrunegsers =
[c = oxiiz2
NAE main 7 module s s
PUBLIC main = - 0x0000
Reserved = 0x00
ORG. OFFFER =0
DC16 init ; set reset vector to 'imit' label sce1 =0
sceo -0
RSEG CSTACK + pre-ds on of segment 0OscOEE -0
RSEG CODE ; place program in 'CODE' segment ceuors -0
oIE -0
init: MOV 4SPE(CSTACK), SP 5 set wp stack N e
main n progran z -
stchdog timer c =0
R4 - ox0013
RS = ox0014
R - ox0016
R7 = ox003C
R - 0x0067
RS9 = ox028¢
r10 - oxsESD
R11 = 0%003D
r12 - ox7cs6
r13 = oxsFee
R1a - oxsDo1
- R15 = 0x6DED
: CYCLECOUNTER
L e s s jump to curzent location '$! coTmERL
7 (endless loop) cormmne
0o
cesTER

5. abra. Két 64 bites eldjelnélkiili egész Osszeadasa

Eppen ezt tesszik az 5. dbran lathaté osszeaddsban.
Lényeges kiilonbség, hogy most nem 2, hanem 4 word-bdl
all egy 64 bites szdm, de az Osszeadds menete valtozatlan,
leszamitva, hogy kétszer annyi dsszeaddst végziink el. Nézziik
is meg, hogy j6 eredményt kapunk-e. (19 - 24® + 20 - 232 +
22 - 216 4 60) + (84 - 248 + 624 - 232 + 40519 - 216 + 1) =
28994691217031229d = 026702849 E5D003D

Ha megnézziik az RO8, R09, R10, R11 regisztereket, és igy
sorban kiolvassuk, pont ezt az eredményt kapjuk, tehat megint
nem csalédtunk.

II-E. Osszeaddsok eldjeles egészekkel

#include mepéan.n” ; #aetine controlled include file ' |UMUHegsters >
3
B main ; moau1e name s -
sw = oxa0
PUBLIC main
Reserved = 0200
ORG OFFFER v =0
bcts imic sce1 =0
scoo -0
RSEG CSTACK on of segment oscoss -0
RSEG CODE ce program in 'CODE' segment cpuoss _ 0
oIz -0
init: MOV #SFR(CSTACK) , SP : set up stack N —
main: NOP 7 mal ogram 2 =0
MOV.W #WDTPW+WDTHOLD, sWDTCIL : Stop watchdog timer < -
MOV #-19, 88 R4 -
YOV, $20,R5 ®s -
addw R, 7S re
e ; Jump to curzent location '3t 7
7 (endless loop) r8
EID R9

6. abra. Két 8 bites elbjeles egész Osszeaddsa

#include *mspd30.h" ¢ #define contzolled include file = [LTUneumas =
EC
NAE main ; module nans o
E
PUBLIC main ; make the main label vissible e — :
} outside this moduls
ORG OFFFER v 0
DC16 init ; set reset tor te 'init' label SCGL o
scco o
RSEG CSTACK on of s= oscorz o
RSEG CODE c2 progran in 'CODE’ secment pr—— o
GIE o
init: MoV #SEE (CSTACK), SP 7 set up stack N o
main z o
W #WDTPW+WDTHOLD, sWDICTL ; Ste < -
£13,m8 Re Ox4zEs
19,85 s oxrFED
R6
£-13,R¢ 7 0003
YOV 422,87 e owaacs
T o = oxs2es
;addc.v R4,R6; R10 = 0x0D85
IMP & ! Jump to current location '$' R11 = Ox3RSF
; (endizss locp) R12 = ox7535
=3 RL3 = ox0375

7. dbra. Két 16 bites eldjeles egész Osszeaddsa

Azt bettiik észre, hogy minden probat all, és azt végzi el,
amit mondunk neki, ha meg nem tdgy, ahogy mi gondoltunk,
akkor sem a gép a hibas, hanem a gondolatmenetiink, de annal
izgalmasabb volt kitaldlni, hogy mi a hiba a végiggondoldsban.

I11. FELADAT: KIVONASOK ELVEGZESE

A kivondsok elvégzésére kétszer kett6féle parancsunk is
rendelkezésre 4llt:
SUB.B SUB.W SUBC.B SUBC.W

#include "msp430.h" ; #define controlled include file | Reieostery
¥C =
NOE main 2 module s -
B -
PUBLIC main
Reserved =
ORG OFFEER =
DC16 init sco1 =
sco -
RSEG CSTACK oscoes -
RSEG CODE cpuoEE -
GIE -
initi MV 4SPE(CSTACK), 5P 5 set up stack N _
main: NOP ; z -
MOV.W $WDTBS4WDTHOLD, HDTCTL - ¢ =
Ra = oxFFES
RS = oxFFED
Rs = oxFFE?
#-13,R¢ Rr7 = 0x0003
#22,87 R8 = oxsn27
R9 - ox307a
add.w RS, B
addc.w R4, R6; R10 = Ox34bL
i o s 7 jump to current location 5! R11
7 (endless loop) R12
D R13

8. dbra. Két 32 bites eldjeles egész Osszeaddsa

III-A. Két 8 bites eldjel nélkiili szdm kivondsa

A szintaktika nagyon hasonlé az 6sszeaddshoz, a kiilonbség
csupan annyi, hogy ADD helyett a SUB parancsot hasznaljuk.
A megfontolds mogotte azonban mar egészen mas. A kivonds
is valéjaban egy Osszeadds. Azért, hogy a kivonas Ossze-
adasként is elvégezhetd legyen, megalkottdk a kettes komp-
lemens el§jeles szdmabrazolast (1 egyenlet). Itt az elsd bit-et
“bedldozzuk” elGjelbitnek, igy az dbrdzoldsi tartomanyunkat
eltoltuk -128 és 127 kozé. Ami még érdekes, hogy pont
visszafelé novekednek a szaimok, tehat ha pl 8 biten dbrazoljuk
a -1 -et, az 11111111 lesz, de cserébe ha ehhez hozzaadjuk
a 00000001 -et, akkor tényleg nulldt kapunk, meg egy Carry
flaget (és egy Zero flaget is).

#include "mspea0.n” ; #ietine controlled include file —! |LPUHegen Y
B
WE man s
s=
PUBLIC rain
Reserved
ORG OFFFER v
bets init sce1
sceo
RSEG CSTACK n of segment oscors
RsEG cone am in 'CODE! seament crvors
ore
init MoV #SFE (CSTACK), SP ; set up stack N
main: NOP main program z
MOV.W #WDTPW+WDTHOLD, sWDICTL ; Stop watchdog timer <
¥ov b 419,84 R4
¥ov.b 422,85 &5
sus b RiRS R6
§ a5 ; jump to current location '$' R
7 (endless loop) re
o R9

9. dbra. Két 8 bites elgjelnélkiili egész kivondsa

A 9. dbran lathaté példdban egy ennél kézzelfoghatébb
kivonast végeztiink el, 22-bél kivontuk a 19-et, aminek 3-
nak kell lenni, és ha megnézziik, tényleg 3-mat kaptunk. Ami
még érdekes, hogy a Carry flag jelez. A Borrow bit jelenti,
hogy kivondskor az el6tte levs szamjegytdl koleson kéne kérni
egyet, ami persze ndla minusz egyet jelentene. Szdval itt a
Borrow 0, vagyis nincs baj, és tényleg, mivel nem mentiink a
kivonassal negativba.

III-B. Két 16 bites eldjel nélkiili szdm kivondsa

P

Szintén nagyon hasonlé az el6z6hoz, itt is a kiilonbség
csupdan, hogy .B helyett .W -t hasznalunk.

#include "mspa30.n” ; #define controlled includs fils ot |Lrunmmes =
C = 0xllle
NAE main / module name sp - omon00
=E = ox000
PUBLIC main
[Reservea =
ORG OFFFER v -
De16 init F scot -
L sceo -
RSEG CSTACK I oscors -
RSEG CODE I ceoose -
[cB -
inic: MV #SPE(CSTACK), 5P [a -
nain: NOP rz -
MOV.W #WDTE+HDIHOLD, WDTCTL c -c -
oV £2190,R4 Ra -
OV.w $2200,85 RS -
sub.v R4,RS R6 -
e ¢ J jump bo current location ¢! r7 -
J (endless loop) 6 ~ omrens

10. abra. Két 16 bites eldjelnélkiili egész kivondsa

Amint a 10. dbran megfigyelhetd, itt is egy konnyebben
értelmezhetd példat vettiink, 2200 — 2190 = 10d = 0zA,

és lass csodat, tényleg az van a regiszterben, és a Carry
tovabbra is 1, ami helyes, mivel most sem mentiink negativ
tartomdnyba, tehat nem kell kolcsonkérni helyiértéket.

III-C. Két 32 bites eldjel nélkiili szdm kivondsa

Ennél a feladatndl mar tobb dtgondolasra van sziikség. Igaz,
pont ugyanugy torténik a szamolasa, mint az ADDC.W esetén,
csak most SUBC.W -t kell a helyére irni.

#include "msp430.n" 7 #define controlled include file ! |Lrunegwes >
BC = 0x1120
NAME main 7 module name sp ~ 020800
Bl = 020003
PUBLIC main 7 make the main label vissible
" Reserved = 0x00
 outside module
oRG oOFFFER v =0
DCi6 inic 7 set reset vector to 'init’ label sce1 -0
sCG0 =0
RSEG CSTACK on of segment oscofe -0
RSEG CODE in 'CODE' segment cruofe -0
cIE)
init: MV 4SFE(CSTACK), SP set up stack _
N -0
main: NOP : z -t
MOV.W #WDTBHIDTHOLD, WDICTL ; Sk = ¢ =1
MOV.w £19,R4 R4 = 0x0013
MOV.w $20,R5 RS = ox0014
R6 = 020000
MOV, #19,R8 r7 = oxo008
MOV.w #29,R7 R = oxeEBs
RS = oxazre
sub.w BS,R7; Ri0 e
subc.w R4, R6; = oxsE
5 R11 = oxeras
7 (endless loop) R12 = 0x7ESC
=0 R13 = ox0443

11. abra. Két 32 bites eldjelnélkiili egész kivondsa

Itt is egy konnyd példat hoztam, és az eredmény tényleg
9, mint ahogyan elvértuk t6le, még a Carry is jelez, tigyhogy
tudjuk, hogy jol csindltuk.

III-D. Két 64 bites eldjel nélkiili szam kivondsa

P

Itt a megfontolds semmiben sem tér el az el6z6 feladattol,
a megvaldsitds is csupan annyiban, hogy megdupldzzuk a
felhaszndlt regiszterek szadmadt, illetve a kivondsok szadmét.

#include "mspd30.n” CPU Registers v
BC
se

sr
; make th
; outside Reserved
ORG OFFFER v
DCL6 init it? label sce1
sceo

7 #define controlled imclude file
~

NAME main 7 moduls name

PUBLIC main

7 set veset

RSEG CSTACK
RSEG CODE

7 pre-ds
; place p

on of segment
in "CODE’ segment

Oseoft
cruoss
cIE
N
. z
n progran

atchdog timer c

Ra

Bs

R6

Y

Be

)

R10

R11

mi2

R13

R14

R15

CYCLECOUNTER

CCTIMERL

(emdless loop) ceTIMER2

END

ccsTER =2

init: MOV #SFE(CSTACK), SP : s=t up stack

main

#WDTEH4HDTHOLD, <WDTCTL ; Sto

12. abra. Két 64 bites eldjelnélkiili egész kivondsa

A 12. dbran egy még egyszerlibb példdval demonstraltuk
a miikodését, mivel az el6z6 esetben sikeriilt akkora szamot
Osszeadni, hogy még a Matlab se akarta pontosan kiszamolni.
Jol lathat6, hogy 1 a végeredmény, és ezt is vartuk, illetve 1
a Carry, dgyhogy tényleg rendesen mikodik. (illetve a Zero
flag is 1, mivel utoljira a 19-et vontam ki a 19-b&l, ami pedig
nulla)

III-E. Kivondsok eldjeles egészekkel

A tapasztalat, hogy ezeknél a szdmoknadl is teljesen ugy
viselkedik, ahogy elvart. Mivel minden kivonast 6sszeadasként
(kettes komplementer) végez el, és egy negativ szam kivondsa
az ugyanugy csak az a miivelet, hogy visszanegilja pozitiv
szammd, és ha van Carry, azt hozzdadja (illetve kivondsnal
ugye Borrownak nevezziik, igy ha nincs Borrow, akkor rendes
kettes komplementert képez).

#include "mspd30.n™ L regsters =
R maln SP = 0x0R00
PUBLIC main SR = oxoool
Raserved - oxin
ORG OFFFER =0
DC16 init # set reset vector to 'init' label Sc61 =0
<o o
e o L e oot -
e <o
init: MOV #SFE(CSTACK), SP 7 set up stack N _
main: NOP o program z -e
MoV #WDTEW+WDTHOLD, sWDTCTL : Stop chdog timer C =1
: w = oactrs
= = oaot0s
= - oz
P - oxcom
L o e s st s - oae
 (endless loop) R12 = 0x7C7E
m wa - st

13. dbra. Két 8 bites elGjeles egész kivondsa

#include "mspd30.h" ; #define controlled include file T LU Hegisters ~
C = owlile
NAME main SP = 0x0R00
PUBLIC main sbel vissible SR = 0x0000
e Reserved = 0x00
ORG OFFFER v =
DC16 init ; set reset vector to 'init' label SCGL =0
scco -0
RSEG CSTACK seqment oscozt -0
RSEG in 'CODE’ secment cruoe -0
o2 -0
it MV SPE(CSTACK), SB . -
main: z =
#WDTPW+WDTHOLD, sWDICTL ; Stop watchdog timex c =
5,74 Ra -
&5 -
R6 =
B - oxz
Ro = ow1aTS
RS = owECC
R10 = omzz7e
Ri1 =
: (endless loop) Rr12 =
D RIS -

14. abra. Két 16 bites eldjeles egész kivondsa

Vinclude mspé30 h” ¥ #aefine controlled include filz o |EPURegsles

B3
NAME main <
B
PUBLIC main ; make
.. Reserved =
outs.
ORG OFFFER v =
pCl6 imit ;set sco1 =
scoo -
RSEG CSTACK o of seqme; oscors -
RSEG CODE place program in 'CODE' segment cruorr -
GIE =
init: MOV #SFE(CSTACK), SP set up stack N -
main: NOP ; main progran z -
MOV.W $WDIBWWDTHOLD, sWDICTL tohdog timer ¢ -
MOV $-13,R4 R4
MOV.w $-29,R5 BS
R6
#-13,R6 R7
MOV $-20,R7 RS
RS
sub.w BS,R7;
subc.w R4, RE; R10
R11
7 (endless loop) R12
B R13

15. abra. Két 32 bites elgjeles egész kivondsa

LEZARAS

Osszességében nem is feltétleniil az 6sszeadogatds, kivonds
fogott meg, hanem az, hogy amit tavaly Naszyndl vettiink
Bevezetés a szamitastechnikdba oran, azt most itt élesbe is
megnézhettiik, raadasul tényleg nagyon hasonlé médon a Little
Man Computerhez. Ezen kiviil j6, hogy a labor és egyben
az Assembly végett kicsit jobban értem az ALU miikodését.
Elveztem latni, és utdnagondolni vagy olykor szdmolni is,
hogy miért kaptuk azt a flaget, amit. Egyediil azt sajndlom,
hogy az Overflow flagre nem néztiink meg példat, de ami
késik, nem mulik.

HIVATKOZASOK

[1] TexasInstruments, ,,Msp430 user’s guide,” 2006. [Online]. Available:
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&
ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%
252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%
253Den-US%2526searchTerm%253Dslau049%2526nr%253D 160

[2] K. Andrés, ,Digitalis rendszerek szamabrazolds, mikrokontrollerek,” 05
2023. [Online]. Available: https://moodle.ppke.hu/pluginfile.php/74654/
mod_resource/content/1/Bev_Meres_2022_uC.pdf

[3] M. B. Naszlady, ,,Adatdbrazolés és logikai aramkorok,” p. 12, 09 2022.

[4] Y.-Y. Chuang, ,Arithmetic logic unit (alu) introduction to computer,”
09 2017. [Online]. Available: https://www.csie.ntu.edu.tw/~cyy/courses/
introCS/17fall/lectures/handouts/lecO4_ALU.pdf

https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://moodle.ppke.hu/pluginfile.php/74654/mod_resource/content/1/Bev_Meres_2022_uC.pdf
https://moodle.ppke.hu/pluginfile.php/74654/mod_resource/content/1/Bev_Meres_2022_uC.pdf
https://www.csie.ntu.edu.tw/~cyy/courses/introCS/17fall/lectures/handouts/lec04_ALU.pdf
https://www.csie.ntu.edu.tw/~cyy/courses/introCS/17fall/lectures/handouts/lec04_ALU.pdf

	feladat: Mérés során felmerülő fogalmak
	Assembly
	MSP430
	Számrendszerek
	Kettes komplemens
	ALU

	feladat: Összeadások elvégzése
	Két 8 bites előjel nélküli szám összeadása
	Két 16 bites előjel nélküli szám összeadása
	Két 32 bites előjel nélküli szám összeadása
	Két 64 bites előjel nélküli szám összeadása
	Összeadások előjeles egészekkel

	feladat: Kivonások elvégzése
	Két 8 bites előjel nélküli szám kivonása
	Két 16 bites előjel nélküli szám kivonása
	Két 32 bites előjel nélküli szám kivonása
	Két 64 bites előjel nélküli szám kivonása
	Kivonások előjeles egészekkel

	Hivatkozások

