
Mikrokontroller I., Számábrázolás
Levente VAJNA

(Mérési partner: Válik Levente Ferenc)
(Gyakorlatvezető: Tihanyi Attila Kálmán)

Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar
Magyarország, 1083 Budapest, Práter utca 50/a
vajna.levente@hallgato.ppke.hu

Kivonat—A labor során MSP430 mikrokontroller szi-
mulátorral, az IAR Visual State programmal végeztünk
méréseket Assembly nyelven. Regiszterekbe ı́rtunk ki pozitı́v illet-
ve negatı́v egész számokat, és ezekkel végeztünk összeadást, illetve
kivonást. Kellett saját összeadást illetve kivonást is programozni,
mivel 32 illetve 64 biten ilyen műveletvégzés nincs definiálva.
Mindeközben elsajátı́tottuk a hexadecimális, a decimális és a
bináris számrendszerek közti átváltást, valamint megfigyeltük a
különböző flageket a számı́tások során.

Keywords-MSP430; IAR Visual State; flag; Assembly;
számrendszerek; átváltás;

Mérés ideje: 2023.05.11.

I. FELADAT: MÉRÉS SORÁN FELMERÜLŐ FOGALMAK

I-A. Assembly

Az Assembly a számı́tógépes programozás egyik leg-
alacsonyabb szintű nyelve, amely közvetlenül kommu-
nikál a számı́tógép hardverével. Az Assembly nyelv alap
utası́tásokból áll (pl: move, add, sub), amelyeket a processzor
közvetlenül értelmez és végrehajt. A programok ı́rása assemb-
ly nyelven lehetővé teszi a maximális kontrollt a hardver
felett, és lehetőséget nyújt a hatékonyság és a teljesı́tmény
optimalizálására. Assembly nyelvű program ı́rása bonyolult,
és meglehetősen időigényes, azonban az ı́gy készült program
idő és teljesı́tményhatékony.

I-B. MSP430

Az MSP430 [1] mikrokontroller a Texas Instruments fej-
lesztése, mely igen alacsonyszintű programozási ismerete-
ket igényel, azonban ezzel együtt idő-, és energi hatékony.
Programozása gyakran Assembly nyelven történik, mi is ı́gy
használtuk.

I-C. Számrendszerek

A különböző számrendszerek életünk számos terén meg-
találhatóak. Mindennapi életünkben, de alapvetően a ma-
tematikában is a tizes számrendszert, vagyis a decimális
számrendszert használjuk. Itt a 10 az alap, tehát a számjegyek
1 és 9 közti számok.

Informatikában gyakran használatos a hexadecimális, vagy-
is a 16 alapú számrendszer. Itt az számjegyek lehetnek 1
és 9 közti számok, illetve betűk A-F között. (A = 10, ...
, F = 15) Gyakran használt például szı́nskáláknál, vagy
memóriacı́mzéseknél. Elsősorban azért kedvelt számrendszer,
mert a 16 egy kettő hatványa, 16 = 24, tehát egy számjeggyel
ábrázolhatunk 4 számjegynyi bináris számot.

És az informatika alapja a bináris, vagyis a kettes
számrendszer. Olyan lényeges, hogy az 5 Neumann-elv közt
is szerepel ennek használata. Könnyű használata, mivel ı́gy
kettéfelé bontható a digitális jel, logikai magas, és logikai

alacsony feszültségre (0, 5V). Kétféle számjeggyel kell leı́rni
minden számot, 0 vagy 1. (false, true)

Ábrázolásuk helyiértékekkel és alaki értékekkel történik. [2]
Képlet rá, ahol k alapú a számrendszer:

n∑
i=0

ai · ki

I-D. Kettes komplemens

A ketes komplemens számábrázolást az előjeles egész
számok minél praktikusabb ábrázolásának igénye hı́vta életre.
Úgy alkották meg, hogy egy kivonásnál a kivonandót
könnyedén, kettes komplemensű negatı́v számként ábrázolva
a kisebbı́tendőhöz hozzáadva el lehessen végezni. Az alábbi
algoritmussal képzünk kettes komplemens negatı́v számot:

¬|neg.szam+ 1| (1)

Vagyis a negatı́v számhoz hozzáadunk egyet, majd vesszük
az abszolútértékét, és elvégezzük rajta a kettes számrendszerbe
átı́rást. Ezt követően pedig értékenként negáljuk, tehát minden
1-es 0 lesz és minden 0 1-es lesz. [3]

I-E. ALU

Az ALU (Arithmetic Logic Unit) [4] a számı́tógépek
nélkülözhetetlen eleme, mely a CPU-n, vagyis a processzo-
ron kap helyet. Alapvető, fundamentális számı́tásokat végez
el, összead, kivon, illetve egyes logikai műveleteket képes
elvégezni, mint például AND, OR, XOR.

1. ábra. Arithmetic Logic Unit

Mint az 1. ábrán is látható, két bemeneti értékből
ad ki egyet. Ezek jellemzően a regiszterekből, vagy-
is a műveletvégző egységhez legközelebb álló volatile
memóriákból származó adatok, értékek. Ezen kı́vül van egy
extra bemenet, ami a különböző műveletek elvégzését szabja



ki rá, illetve egy extra kimenet, az ún. flagek, vagy status bit-
ek, amik néhány extra adattal szolgálnak felénk (pl.: Carry,
Overflow, Zero, Negative).

II. FELADAT: ÖSSZEADÁSOK ELVÉGZÉSE

Mind az összeadások esetén, mind a kivonások esetén első
lépésként a regiszterekbe be kellett tölteni a literál konstansa-
inkat. Erre szolgáltak az alábbbi utası́tások:

MOV.B MOV.W
Az összeadások elvégzésére kétszer kettőféle parancsunk is

rendelkezésre állt:
ADD.B ADD.W ADDC.B ADDC.W

II-A. Két 8 bites előjel nélküli szám összeadása

Miután két regiszterbe egy-egy byte adatot töltöttünk a
MOVE.B paranccsal, ezen számokat össsze is kellett adni.
Erre szolgált az ADD.B utası́tás. A byte tı́pus itt egy egy byton
eltárolható számot vár. Ha nincs előjele, akkor ez lehet ugye
egy 0-255 közötti egész, ha előjelesen használnánk, akkor egy
-128 és +127 közötti egész értéket adhatnánk csak meg.

2. ábra. Két 8 bites előjelnélküli egész összeadása

A 2. ábrán látható, hogy két előjel nélküli egész számot
töltök az R04 és az R05 regiszterekbe, majd ezeket adom
össze. Az ADD utası́tás szintaktikája szerint először adjuk
meg az src, azaz a source értékét, és másodjára a dst, vagyis
destination értékét, és az összeadás eredményét az úticél(dst)
regiszterbe fogja tölteni. A 2. ábrán látható példában 255-öt,
és az 1-et szeretném összeadni 1 byte-on. Ez azt jelenti, hogy
mivel nem fér el a 256 8 bit-en, ezért azt várom, hogy ez
R05 regiszter értéke 0 legyen. Fizika törvényeinek hála tényleg
ı́gy is van, a kép jobb szélén pirossal található a regiszter
értéke, és tényleg nulla lett. Ezen kı́vül megfigyeljük, hogy
a Zero flag, valamint a Carry flag is egy értéket ad. Ez azt
jelenti, hogy helyes a műveletvégzés. Mivel az 11111111b(=
255d)+ 00000001b(= 1d) = 100000000b(= 256) lenne, de a
kilencedik számjegy már csak a Carry biten fog meglátszani,
azaz ha még ezt össze akarnánk adni, ezt az 1-et tovább kéne
vinni. (ezt később fel is használjuk)

II-B. Két 16 bites előjel nélküli szám összeadása

Az előző feladatohoz képest ez nem sokban tért el. Sze-
rencsénkre a szimuláció képes kezelni a két byte-os intege-
reket, amiket a mikrokontroller ”word”-nek nevez. Így itt
a különbség hogy az utası́tás után nem .B a szintaktika,
hanem .W a használatos. Tehát miután a MOV.W paranccsal
betöltöttük továbbra is az R04, és R05 regiszterekbe a két
tetszőleges számunkat, az ADD.W instrukcióval összeadatjuk
a két egészet.

Azért, hogy ezúttal látható legyen, hogy képes a na-
gyobb számokat is kezelni, 190-et és a 220-at adtuk össze.
190 + 220 = 410, tehát nem várunk semmi problémát, és
azt szeretnénk látni, hogy sikeres, és minden flag 0 legyen.

3. ábra. Két 16 bites előjelnélküli egész összeadása

A 3. ábrán látható jobb szélen az R05 regiszterben az össze-
adás eredménye, ami 0x019A hexadecimális szám, vagyis
decimálisan 1 · 162 + 9 · 161 + 10 · 160 = 410, tehát helyes
eredményt kaptunk, és a status biteket megtekintve valóban az
elvárt viselkedést tanúsı́totta, és mind a négy zérus.

II-C. Két 32 bites előjel nélküli szám összeadása

Ez a feladat már igényelt egy kis végiggondolást. Mivel a
szimuláció és a mikrokontroller csak 8 és 16 bites számokat
tud kezelni alapból, ezért magunk kellett megı́rni, hogy össze
tudja ezeket adni. Az alapkoncepció, hogy egy 32 bites számot
két 16 bitesen akarunk eltárolni, első 2 byte-on a szám első
felét, (magasabb helyiértékek), második két byte-on a szám
kisebb helyiértékű felét.

4. ábra. Két 32 bites előjelnélküli egész összeadása

A 4. ábrán az látható, hogy négy regiszterbe töltünk
értékeket, és utána két lépésben adunk össze. Először a kisebb
helyiértékű word-ket adjuk össze, majd a második össze-
adást már egy ADDC.W utası́tással hajtjuk végre. Ez azért
szükséges, mert ha akkora két számot akarnánk összeadni,
hogy tovább kéne vinni értéket, akkor azt a magasabb he-
lyiértékű word-ben lévő számnak át kell adni. Vegyük a példát,
amit megcsináltunk. Először a 20000-et és a 60000-et sze-
retnénk összeadni. Erről biztosan tudjuk, hogy fel kell villants
a Carry flaget, mivel két byte-on maximálisan ábrázolható
szám a 216 = 65536, ami pedig kisebb mint 80000. A
következő összeadás hozzásadja az előző Carry értéket, és
úgy összegzi a nagyobb helyiértékű word-t, amiben a 19 és a
22 szerepel. Tehát a tényleges számok, amiket ı́gy beı́rtam az
19·216+20000 = 1265184, illetve 22·216+60000 = 1501792.
Ezen két szá összege 1265184 + 1501792 = 2766976, ami
hexadecimálisan ábrázolva 0x2A3880. Ha megnézzük az R06
és R07 regiszterek értékeit, éppen ez a szám található benne.
Nem csalás, nem ámı́tás, tényleg jól működik.

II-D. Két 64 bites előjel nélküli szám összeadása

Ez az előző feladathoz képest ha már megértettük, hogy
mit is csinálunk, gyerekjáték. Ugyanúgy először Carry nélkül
adjuk össze, majd utána viszont Carry értékeit elkérve.



5. ábra. Két 64 bites előjelnélküli egész összeadása

Éppen ezt tesszük az 5. ábrán látható összeadásban.
Lényeges különbség, hogy most nem 2, hanem 4 word-ből
áll egy 64 bites szám, de az összeadás menete változatlan,
leszámı́tva, hogy kétszer annyi összeadást végzünk el. Nézzük
is meg, hogy jó eredményt kapunk-e. (19 · 248 + 20 · 232 +
22 · 216 + 60) + (84 · 248 + 624 · 232 + 40519 · 216 + 1) =
28994691217031229d = 0x6702849E5D003D

Ha megnézzük az R08, R09, R10, R11 regisztereket, és ı́gy
sorban kiolvassuk, pont ezt az eredményt kapjuk, tehát megint
nem csalódtunk.

II-E. Összeadások előjeles egészekkel

6. ábra. Két 8 bites előjeles egész összeadása

7. ábra. Két 16 bites előjeles egész összeadása

Azt bettük észre, hogy minden próbát áll, és azt végzi el,
amit mondunk neki, ha meg nem úgy, ahogy mi gondoltunk,
akkor sem a gép a hibás, hanem a gondolatmenetünk, de annál
izgalmasabb volt kitalálni, hogy mi a hiba a végiggondolásban.

III. FELADAT: KIVONÁSOK ELVÉGZÉSE

A kivonások elvégzésére kétszer kettőféle parancsunk is
rendelkezésre állt:

SUB.B SUB.W SUBC.B SUBC.W

8. ábra. Két 32 bites előjeles egész összeadása

III-A. Két 8 bites előjel nélküli szám kivonása

A szintaktika nagyon hasonló az összeadáshoz, a különbség
csupán annyi, hogy ADD helyett a SUB parancsot használjuk.
A megfontolás mögötte azonban már egészen más. A kivonás
is valójában egy összeadás. Azért, hogy a kivonás össze-
adásként is elvégezhető legyen, megalkották a kettes komp-
lemens előjeles számábrázolást (1 egyenlet). Itt az első bit-et
”beáldozzuk” előjelbitnek, ı́gy az ábrázolási tartományunkat
eltoltuk -128 és 127 közé. Ami még érdekes, hogy pont
visszafelé növekednek a számok, tehát ha pl 8 biten ábrázoljuk
a -1 -et, az 11111111 lesz, de cserébe ha ehhez hozzáadjuk
a 00000001 -et, akkor tényleg nullát kapunk, meg egy Carry
flaget (és egy Zero flaget is).

9. ábra. Két 8 bites előjelnélküli egész kivonása

A 9. ábrán látható példában egy ennél kézzelfoghatóbb
kivonást végeztünk el, 22-ből kivontuk a 19-et, aminek 3-
nak kell lenni, és ha megnézzük, tényleg 3-mat kaptunk. Ami
még érdekes, hogy a Carry flag jelez. A Borrow bit jelenti,
hogy kivonáskor az előtte levő számjegytől kölcsön kéne kérni
egyet, ami persze nála mı́nusz egyet jelentene. Szóval itt a
Borrow 0, vagyis nincs baj, és tényleg, mivel nem mentünk a
kivonással negatı́vba.

III-B. Két 16 bites előjel nélküli szám kivonása

Szintén nagyon hasonló az előzőhöz, itt is a különbség
csupán, hogy .B helyett .W -t használunk.

10. ábra. Két 16 bites előjelnélküli egész kivonása

Amint a 10. ábrán megfigyelhető, itt is egy könnyebben
értelmezhető példát vettünk, 2200 − 2190 = 10d = 0xA,



és láss csodát, tényleg az van a regiszterben, és a Carry
továbbra is 1, ami helyes, mivel most sem mentünk negatı́v
tartományba, tehát nem kell kölcsönkérni helyiértéket.

III-C. Két 32 bites előjel nélküli szám kivonása

Ennél a feladatnál már több átgondolásra van szükség. Igaz,
pont ugyanúgy történik a számolása, mint az ADDC.W esetén,
csak most SUBC.W -t kell a helyére ı́rni.

11. ábra. Két 32 bites előjelnélküli egész kivonása

Itt is egy könnyű példát hoztam, és az eredmény tényleg
9, mint ahogyan elvártuk tőle, még a Carry is jelez, úgyhogy
tudjuk, hogy jól csináltuk.

III-D. Két 64 bites előjel nélküli szám kivonása

Itt a megfontolás semmiben sem tér el az előző feladattól,
a megvalósı́tás is csupán annyiban, hogy megduplázzuk a
felhasznált regiszterek számát, illetve a kivonások számát.

12. ábra. Két 64 bites előjelnélküli egész kivonása

A 12. ábrán egy még egyszerűbb példával demonstráltuk
a működését, mivel az előző esetben sikerült akkora számot
összeadni, hogy még a Matlab se akarta pontosan kiszámolni.
Jól látható, hogy 1 a végeredmény, és ezt is vártuk, illetve 1
a Carry, úgyhogy tényleg rendesen működik. (illetve a Zero
flag is 1, mivel utoljára a 19-et vontam ki a 19-ből, ami pedig
nulla)

III-E. Kivonások előjeles egészekkel

A tapasztalat, hogy ezeknél a számoknál is teljesen úgy
viselkedik, ahogy elvárt. Mivel minden kivonást összeadásként
(kettes komplementer) végez el, és egy negatı́v szám kivonása
az ugyanúgy csak az a művelet, hogy visszanegálja pozitı́v
számmá, és ha van Carry, azt hozzáadja (illetve kivonásnál
ugye Borrownak nevezzük, ı́gy ha nincs Borrow, akkor rendes
kettes komplementert képez).

13. ábra. Két 8 bites előjeles egész kivonása

14. ábra. Két 16 bites előjeles egész kivonása

15. ábra. Két 32 bites előjeles egész kivonása

LEZÁRÁS

Összességében nem is feltétlenül az összeadogatás, kivonás
fogott meg, hanem az, hogy amit tavaly Naszynál vettünk
Bevezetés a számı́tástechnikába órán, azt most itt élesbe is
megnézhettük, ráadásul tényleg nagyon hasonló módon a Little
Man Computerhez. Ezen kı́vül jó, hogy a labor és egyben
az Assembly végett kicsit jobban értem az ALU működését.
Élveztem látni, és utánagondolni vagy olykor számolni is,
hogy miért kaptuk azt a flaget, amit. Egyedül azt sajnálom,
hogy az Overflow flagre nem néztünk meg példát, de ami
késik, nem múlik.

HIVATKOZÁSOK

[1] TexasInstruments, ”Msp430 user’s guide,” 2006. [Online]. Available:
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&
ref url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%
252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%
253Den-US%2526searchTerm%253Dslau049%2526nr%253D160

[2] K. András, ”Digitális rendszerek számábrázolás, mikrokontrollerek,” 05
2023. [Online]. Available: https://moodle.ppke.hu/pluginfile.php/74654/
mod resource/content/1/Bev Meres 2022 uC.pdf

[3] M. B. Naszlady, ”Adatábrázolás és logikai áramkörök,” p. 12, 09 2022.
[4] Y.-Y. Chuang, ”Arithmetic logic unit (alu) introduction to computer,”

09 2017. [Online]. Available: https://www.csie.ntu.edu.tw/∼cyy/courses/
introCS/17fall/lectures/handouts/lec04 ALU.pdf

https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://www.ti.com/lit/ug/slau049f/slau049f.pdf?ts=1649510678917&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Dslau049%2526nr%253D160
https://moodle.ppke.hu/pluginfile.php/74654/mod_resource/content/1/Bev_Meres_2022_uC.pdf
https://moodle.ppke.hu/pluginfile.php/74654/mod_resource/content/1/Bev_Meres_2022_uC.pdf
https://www.csie.ntu.edu.tw/~cyy/courses/introCS/17fall/lectures/handouts/lec04_ALU.pdf
https://www.csie.ntu.edu.tw/~cyy/courses/introCS/17fall/lectures/handouts/lec04_ALU.pdf

	feladat: Mérés során felmerülő fogalmak
	Assembly
	MSP430
	Számrendszerek
	Kettes komplemens
	ALU

	feladat: Összeadások elvégzése
	Két 8 bites előjel nélküli szám összeadása
	Két 16 bites előjel nélküli szám összeadása
	Két 32 bites előjel nélküli szám összeadása
	Két 64 bites előjel nélküli szám összeadása
	Összeadások előjeles egészekkel

	feladat: Kivonások elvégzése
	Két 8 bites előjel nélküli szám kivonása
	Két 16 bites előjel nélküli szám kivonása
	Két 32 bites előjel nélküli szám kivonása
	Két 64 bites előjel nélküli szám kivonása
	Kivonások előjeles egészekkel

	Hivatkozások

