
Mikrokontroller I.
Radványi Zita

NEPTUN kód: F346YE
Mérőpár: Zahoray Anna
NEPTUN kód: EF2JUM

Mérés ideje: 2023. 03. 23. 8:00-11:00
Mérés helye: Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar

Magyarország, 1083, Budapest, Práter utca 50/a
radvanyi.zita@hallgato.ppke.hu

Abstract—Komplemens számábrázolás használata, összeadás
megvalósı́tása, kivonás megvalósı́tása

Keywords-Mikrokontroller, regiszter, műveletek,
számábrázolás

I. FOGALMAK, HASZNÁLT PROGRAMOK

• Gépi számábrázolás: a számok (számı́tó)gépek
memóriájában vagy egyéb egységében történő
tárolását vagy valamely adathálózaton történő továbbı́tás
formátumát adja meg

• Előjelbites ábrázolás: az előjel nélküli egészek
ábrázolásához egy előjelet jelentő bitet adunk (0
ha pozitı́v és 1 ha negatı́v az előjel). A többi biten pedig
ábrázoljuk a szám értékét.

• Komplemens számábrázolás: A kettes komple-
menterképzés módszere Ugyanis a szorzás összeadások
sorozatára, az osztás pedig kivonások sorozatára
vezethető vissza; ha tehát a kivonást sikerül összeadásra
visszavezetni, akkor a gépnek tulajdonképpen csak az
összeadás műveletét kell ismernie. A fixpontos ábrázolási
módoknál a törtpont (tizedesvessző, tizedespont,
kettedespont stb.) helye rögzı́tett. Többségében egész
számok tárolására használják, ı́gy a törtpont az
ábrázolt szám végén van. Az egy byte-on tárolt bináris
számı́rásnak könnyen belátható korlátjai vannak. A
számı́tógépen a fixpontos számokat általában két byte-on
vagy négy byte-on ábrázolják, azaz egy szám hossza
16 vagy 32 bit. De a negatı́v számok ábrázolásáról is
gondoskodnunk kell.

• Számrendszerek: A számábrázolási rendszer, röviden:
számrendszer meghatározza, hogyan ábrázolható egy
adott szám. A számjegy egy szimbólum (vagy azok
csoportja), ami egy számot ı́r le. A számjegyek éppen
úgy különböznek az általuk leı́rt számtól, mint egy szó
attól a dologtól, amit valójában jelent.

• Regiszter: A regiszterek a számı́tógépek központi fel-
dolgozó egységeinek (CPU-inak), illetve mikroprocess-
zorainak gyorsan ı́rható-olvasható, ideiglenes tartalmú,
és általában egyszerre csak 1 gépi szó feldolgozására
alkalmas tárolóegységei. A regiszterek felépülhetnek
statikus memóriaelemekből vagy egy RAM memória
részeként. Néhány géptı́pusnál egyetlen chipben mind a
két megoldást alkalmazzák. Egy-egy regiszter hozzáférési
ideje általában néhányszor 10 ns.

• Számábrázolás: A számábrázolás az a mód, ahogyan
a számokat szimbólumokkal jelöljük. Ez történhet akár
ı́rásban, akár szóban, akár máshogy (pl. tárgyak vagy
valamilyen gép által). Szűkebb értelemben véve a

számábrázolás az a mód, ahogyan a számı́tógépek a
számszerű adatokat tárolják (gépi számábrázolás).

• IAR Embedded Workspace: Az IAR Embedded Work-
bench számos mikroprocesszorhoz és mikrokontrollerek a
8-, 16- és 32-bites szegmensben, lehetővé téve, hogy egy
jól ismert fejlesztői környezet a következő projektjéhez
is. Biztosı́t egy könnyen megtanulható és rendkı́vül
hatékony fejlesztői környezet maximális kóddal öröklési
képességek, átfogó és konkrét céltámogatás. IAR Embed-
ded A Workbench elősegı́ti a hasznos munkamódszert, és
ezáltal a munkavégzés jelentős csökkentéséta fejlesztési
idő az IAR Systems eszközeivel érhető el.

II. ELSŐ FELADAT

Végezzen el összeadást két 8 bites előjel nélküli szám
között. Helyezze az összeadandókat mint konstansokat egy-
egy regiszterbe, majd végezze el az adatok összeadását.
Az eredményt ellenőrizze a Registers ablakban.A program
működését lépésenkénti futtatással lehet ellenőrizni. Ismételje
meg a feladatot más konstansokkal is. Ellenőrizze, hogy mi
történik akkor ha az eredmény túllép a számábrázolási határon.
A jegyzőkönyve csatolja az elkészı́tett programokat, valamint
az ellenőrzés eredményének értékelését is.
Az első feladat elkezdéséhez első sorban a mikrokon-
troller programozáshoz szükséges IAR Embedded Workbench
programot használtunk, melynek segı́rségével létrehozhettuk
a szükséges szimulációkat, ezzel tesztelve a különböző
értékeken a feladatokat. A program középső ablaka szolgál
arra, hogy létrehozzuk a megfelelő programkódokat. Bal
oldalon található a Registers 1 ablak, melynek segı́tségével
megfigyelhetjük az egyes regiszterekben szereplő értékeket,
azoknak a változását a program során. Ennek az ablaknak
a megfigyelése kulcsfontosságú volt a feladatok megoldása
során, hiszen itt tudtuk nyomonkövetni az egyes regiszterek-
ben tárolt értékek változását, valamint nagy segı́tséget jelentett
a Debugger ablak is az esetleges hibák kiszűrésében. Ez
különböző hibakódokkal jelez vissza felénk, ha hibá kódot
hoztunk létre, emiatt elakaszva a szabályos futtatást. A fela-
dat során a mintaként megadott programrészletet alakı́tottuk
át, valamint futtattuk le több értékkel, ı́gy megvizsgálva
az eredményeket. Fontos észrevétel volt számunkra, hogy
mivel 16 bit-es rendszert használ a program, ı́gy előjel
nélkül a legnagyobb megadható érték a 255 volt, mı́g
elsőjeles számábrázolásként -128-tól 127ig tudtuk megjelenı́tei
a számokat.



A mintaként megadott kód az alábbi módon működik:

A leı́rt kód az alábbi utası́tásokat hajtotta végre: Elsőször
a négyes számú regiszterbe helyezte el az első konstanst
a megadottak alapján, majd a másokódik lépésben az ötös
számú regiszterbe helyezte el a másik megadott konstanst. Ezt
követően összeadta ezeket és eltárolta az eredményt a négyes
számú regiszterbe. A fent leı́rt kód a következő utası́tásokat
végezte el. Először a négyes számú regiszterbe (R4) behelyezte
az első konstanst az összeadandók közül (én esetemben ez a
szám a 3 volt). Második lépésben az ötös számú regiszterbe
(R5) beillesztette a második konstanst (az én esetemben ez az
5 volt). Végül összeadta a program a két konstanst és eltárolta
az eredményt a négyes számú regszterbe.

III. MÁSODIK FELADAT

Végezzen el összeadást két 16 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit
értékét. A jegyzőkönyve csatolja az elkészı́tett programokat,
valamint az ellenőrzés eredményének értékelését is.

Ebben az esetben a létrehozott szimuláció nagyon hason-
latosan működik az előzőekben létrehozottra. A különbség a
két program között, hogy ez esetben 16 biten ábrázotuk a
számokat, ı́gy a legnagyobb ábrázolható szám a 65535 volt.
A létrehozott programkód:

Ez a kód nagyon hasonlatosan űködik az előzőhöz, annyi
különbségg vélhető felfedezni, hogy itt már 16 bit-en dol-
goztunk, ı́gy nem volt szükség a ”b” jelzésre a parancsokat
követően. Ezt követően a hatos regiszterbe az alábbi eredmény
került:

Ebben az esetben ha túlcsordulás állhat fent, ha a kapott
eredmény nagyobb, mint 65634, ilyenkor az eredmény el fog
térni a helyes eredméntől, valamint a carry bit 0-ról 1-es
értékre vált.

IV. HARMADIK FELADAT

Végezzen el összeadást két 32 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit értékét.
A jegyzőkönyve csatolja az elkészı́tett programokat, valamint
az ellenőrzés eredményének értékelését is.

Ezen feladat során már új ismereteket is fel kellett használnunk
az előzőekhez képest. Tekintettel arra, hogy a használt pro-
gram 16 bites regiszterekkel tud csak számolni, ı́gy az
összeadandó konstansokat két db 16 bites regiszterben kell
eltárolni. Az első két regiszterben eltároltuk a két konstans
kisebb helyiértékű részét, majd kiszámoltuk ezek összegét. Ezt
követően újabb regisztereken eltároltuk a konstansok nagyobb
helyiértékű részeit, majd ezek összegét is kiszámoltuk, ám
ebben az esetben már a ”ADDC” parancsot használva, hogy
figyelembe vegye a carry értéket is figyelembe vegye. Ezzel a
paranccsal már meg is kaptuk a 32 bites konstansok összegét.
Használt programkód:

Megfigyelhető, hogy a második összeadás során az ”ADDC”
parancs segı́tségével a carry bitet is figyelembe tudtuk venni,
ezzel gondoskodva arról az esetről, ha az előző összeadás
során túlcsordulás keletkezett, akkor azt az érték megjelenjen
ebben a számı́tásban. Ez alapján az összeadás eresménye:

V. NEGYEDIK FELADAT

Végezzen el összeadást két 64 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit
értékét. A jegyzőkönyve csatolja az elkészı́tett programokat,
valamint az ellenőrzés eredményének értékelését is.
Az előző feladathoz hasonlóan a 64 bit-es számokat is fel kell
osztani 16 bit-es egységekre, amelyekkel külön kell elvégezni
az összeadásokat. Ezáltal létre kell hozni négy darab 16
bites egységet, ezzel kiadva az összesen 64 bitet. Ebben az
esetben csak az első művelet során használjuk az ”ADD”
parancsot, az összes többi esetben az ”ADDC” parancsot kell
használni. Ez esetben a legnagyobb megjelenı́thető szám a 264.

A lértehozott programkód:



A letrehozott programkódban mefigyelhető, hogy csak az első
esetben használtuk az ”ADD” parancsot, ezt követően csak
az ”ADDC” parancsot alkalmaztuk, ezzel figyelembe véve a
korábbi zámytásokból esetlegesen fennmaradt carry értékeket,
ı́gy elkerülve a fals eredmények létrejöttét. Az ezáltal létrejött
eredmények:

VI. ÖTÖDIK FELADAT

A tanultakat ellenőrizze az 1;2;3; feladat megoldásával
előjeles környezetben is. A jegyzőkönyve csatolja az
elkészı́tett programokat, valamint az ellenőrzés eredményének
értékelését is.
Előjeles környezetben nem változik a programok létrehozása,
valamint a megı́rt kódok sem változnak, arra kell figyelni,
hogy a számok tárolása során az előjel bit miatt a 8 bit helyett
csak 7 biten tudunk számokat tárolni. Elsőjeles összeadás
során a kettes komplemens számábrázolást érdemes használni,
ami azt jeleni, hogy a lefoglalt, legnagyobb helyiértékű bitjén
tároljuk a szám előjelét. Ha a szám nem negatyv, akkor a
bit értéke 0, ha viszont a szám negatı́v, akkor a bit 1 értéket
vesz fel. Annak érdekében, hogy tudjuk, hogy a kapott
eredmény pozitı́v vagy negatı́v-e, az úgynevezett ”negativ
flaget” (N flag) kell figyelni, ha ennek az értéke 0, akkor nem
negatı́v, ha 1 az értéke, akkor pedig negatı́v számot kaptunk
eredményül. Azokban az esetekben, amikor a végeredmény
a fent leı́rt, bitek számának megfelelő, tartományon kı́vül
esik, az úgynevezett ”overflow flag” (O flag) értéke 0-ról 1-re
változik. A carry bit akkor 1, ha a túlcsordulás a tartomány
pozitı́v felén történik.

VII. HATODIK FELADAT

Végezzen el kivonást két 8 bites előjel nélküli szám között.
Helyezze a kissebı́tendőt az egyik mı́g a kivonandót egy
másik regiszterbe, majd végezze el az adatok kivonását.
Az eredményt ellenőrizze a Registers ablakban. A program
működését lépésenkénti futtatással lehet ellenőrizni. Ismételje
meg a feladatot más konstansokkal is. Ellenőrizze, hogy mi
történik akkor ha az eredmény túllép a számábrázolási határon.

A jegyzőkönyve csatolja az elkészı́tett programokat, valamint
az ellenőrzés eredményének értékelését is.
A soron következő feladatok során a program szintaktikai
megjelenése nagyon hasonló az összeadások létrehozásakor
megı́rt programrészlettel, de ebben az esetben az ”ADD”
parancs helyett ”SUB” azaz kivonás parancsot kell alkalmazni.
A létrehozott programkód:

Ezt a programkódot lefuttatva az R4-es regiszterbe bele is
került a két szám különbsége:

Ha a kivonás elvégzése során a minimálisan ábrázolható
számnál kisebb eredményt kapunk (mint a fenti példában
tapasztalható), akkor a kapott eredményt kettes komplemens-
ben kell értelmezni és az N flag értéke 1 lesz.

VIII. HETEDIK FELADAT

Végezzen el kivonást két 16 bites előjel nélküli szám között.
A művelet elvégzése során vizsgálja a borrow bit értékét. A
jegyzőkönyve csatolja az elkészı́tett programokat, valamint az
ellenőrzés eredményének értékelését is.
Ebben az esetben a programkód csaknem megegyezik az
ötödik feladatban létrehozott kóddal, csak el kell távolı́tani az
”ADD” parancskat és meg kell változtatni őket ”SUB”, azaz
kivonás parancsokká. A létrehozott programkód:

Hasonlóan az előző feladathoz, itt is az elsőként megadott, az
R12-es regiszterbe kerül bele a kivonás eredménye:

IX. NYOLCADIK FELADAT

Végezzen el kivonást két 32 bites előjel nélküli szám között.
A művelet elvégzése során vizsgálja a borrow bit értékét. A
jegyzőkönyve csatolja az elkészı́tett programokat, valamint az
ellenőrzés eredményének értékelését is.
Mivel a csak 16 bites regiszterek állnak rendelkezésre, ı́gy az
kissebitendő és a kivonandó konstansokat két-két regiszterben
kellett eltárolni. Első két regiszterben eltároltam a két szám
kisebb helyiértékű részét, majd kiszámoltam ezek különbségét
a ”SUB” paranccsal. Újabb két regiszterben eltároltam a
konstansoknagyobb helyiértékű részét, akércsak az összeadás
esetén, majd ezek különbségét is kiszámoltam a megfelelő
parancs segı́tségével, ı́gy megkapva a keresett értéket. A
felhasznált programkód:



Hasonlóan a 32 bites összeadáshoz, itt is észrevehető,
hogy a második kivonás parancsnál nem az ”SUB”, hanem
az ”SUBC” utası́tást használtam, melyben a ”C” arra utal,
hogy ez a parancs figyelembe veszi a carry értékét is. Ez
azért fontos, mert ı́gy ha az előző művelet elvégzése során
keletkezett maradéktag, akkor az a második kivonás során
meg fog jelenni. Hasonlóan a 8 és 16 bites kivonáshoz, itt is
kettes komplmensként kell kezelni az értéket, ha az kisebb
nullánál. Ebben az esetben is az N flag 1-re vált. A számolás
során kapott eredmények:

X. KILENCEDIK FELADAT

Végezzen el kivonást két 64 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a borrow bit
értékét. A jegyzőkönyve csatolja az elkészı́tett programokat,
valamint az ellenőrzés eredményének értékelését is.
Ezen feladat során is nagyon hasonlatos a létrehozott kód a
64 bites számok összeadásához, hiszen mindent ugyanúgy
kell megadni, kivéve a parancsot, ahol első esetben a ”SUB”,
későbbi esetekben a ”SUBC” parancsot használtuk, ezáltal
figyelembe véve a továbbvivendő maradéktagot, amyelyet a
carry flag tárol. A létrehozott programkód:

Ezen számolások eredményét is lépésenként végigkövethetjük
a regiszterek értékeiben, amelyek folyamatosan változnak,
ahogy futtatjuk a programot. A kapott eredmények a
következők:

XI. TIZEDIK FELADAT

A tanultakat ellenőrizze az 5;6;7; feladat megoldásával
előjeles környezetben is. A jegyzőkönyve csatolja az
elkészı́tett programokat, valamint az ellenőrzés eredményének
értékelését is.

Az össezadáshoz hasonlóan ebben az esetben is mege-
gyeznek a prograkódok, az előjel nélküli verziókhoz, de
ebben az esetben jelölni kell a konstans számok előjelét.
Kivonás esetén ugyanúgy teljesül az ábrázolási tartomány,
mint összeadás esetén. Ezen esetben is igaz, hogy ha egatyv
szám a végeredmény, akkor az N flag 1 értéket vesz fel,
valamint kettes komplemens óként kell kezelni. Ezen kı́vül az
is teljesül, hogy az overflow flag jelzi, ha a művelet során
túlcsordulás történt, ezáltal az ábrázolási tartományba nem
tartozik bele a kapott éték. A carry bit ebben az esetben
ellentétesen működik, hiszen ebben az esetben pakkor vált 1-
es értékre, ha negatı́v irányból törénik túlcsordulás.

REFERENCES

[1] https://wwwfiles.iar.com/maxq/guides/EW-UserGuide.pdf
[] https://hu.wikipedia.org/wiki/Regiszter-(számı́tástechnika)
[2] https://hu.wikipedia.org/wiki/Számábrázolás
[3] https://hu.wikipedia.org/wiki/Számrendszer
[4] https://hu.wikipedia.org/wiki/Fixpontosszámábrázolás


