Mikrokontroller 1.

Radvényi Zita
NEPTUN kéd: F346YE
Mérépar: Zahoray Anna
NEPTUN kéd: EF2JUM
Mérés ideje: 2023. 03. 23. 8:00-11:00
Meérés helye: Pazméany Péter Katolikus Egyetem Informéacids Technolédgiai és Bionikai Kar
Magyarorszag, 1083, Budapest, Prater utca 50/a
radvanyi.zita@hallgato.ppke.hu

Abstract—Komplemens szamabrazolds hasznalata, osszeadas
megvalésitasa, kivonas megvaldsitasa

Keywords-Mikrokontroller,
szamabrazolas

regiszter, miiveletek,

I. FOGALMAK, HASZNALT PROGRAMOK

e Gépi szdmdbrazolds: a szdmok (szamitd)gépek
memoridjdban vagy egyéb egységében torténd

sz

tdrolasat vagy valamely adathal6zaton torténd tovabbitis
formatumat adja meg

o Elgjelbites 4abrazolas: az eldjel nélkiili egészek
abrazolasdhoz egy el§jelet jelentd bitet adunk (0
ha pozitiv és 1 ha negativ az eljel). A tobbi biten pedig
abrazoljuk a szadm értékét.

o Komplemens szamabrazolds: A kettes komple-
menterképzés médszere Ugyanis a szorzds Osszeadasok
sorozatdra, az osztds pedig kivondsok sorozatdra
vezethetd vissza; ha tehat a kivonast sikeriil 0sszeadasra
visszavezetni, akkor a gépnek tulajdonképpen csak az
Osszeadds miiveletét kell ismernie. A fixpontos dbrazoldsi
médoknal a tortpont (tizedesvessz8, tizedespont,
kettedespont stb.) helye rogzitett. Tobbségében egész
szdmok tdroldsdra haszndljak, {igy a tortpont az
abrazolt szdm végén van. Az egy byte-on tédrolt bindris
szdmirdsnak konnyen beldthaté korldtjai vannak. A
szamitogépen a fixpontos szamokat altalaban két byte-on
vagy négy byte-on abrazoljdk, azaz egy szdm hossza
16 vagy 32 bit. De a negativ szdmok dbrazoldsardl is
gondoskodnunk kell.

e Szamrendszerek: A szamabrazoldsi rendszer, roviden:
szamrendszer meghatdrozza, hogyan dabrazolhat6 egy
adott szdm. A szamjegy egy szimbdlum (vagy azok
csoportja), ami egy szdmot ir le. A szdmjegyek éppen
ugy kiilonboznek az éltaluk leirt szdmtdl, mint egy sz6
attol a dologtdl, amit valdjaban jelent.

o Regiszter: A regiszterek a szamitogépek kozponti fel-
dolgozé egységeinek (CPU-inak), illetve mikroprocess-
zorainak gyorsan irhaté-olvashatd, ideiglenes tartalmd,
és altaldban egyszerre csak 1 gépi szé feldolgozasara
alkalmas tdroldegységei. A regiszterek felépiilhetnek
statikus memoriaelemekbdl vagy egy RAM memoria
részeként. Néhany géptipusndl egyetlen chipben mind a
két megoldast alkalmazzak. Egy-egy regiszter hozzaférési
ideje altaldban néhanyszor 10 ns.

e Szadmdbrazolds: A szdmdbrdzolds az a mdd, ahogyan
a szdmokat szimbdlumokkal jeloljiik. Ez torténhet akdr
irasban, akar széban, akdr mashogy (pl. targyak vagy
valamilyen gép altal). Szikebb értelemben véve a

szamdbrazolds az a mdd, ahogyan a szamitégépek a
szdmszer(i adatokat taroljdk (gépi szamdbrazolas).

o TAR Embedded Workspace: Az IAR Embedded Work-
bench szamos mikroprocesszorhoz és mikrokontrollerek a
8-, 16- és 32-bites szegmensben, lehetévé téve, hogy egy
jol ismert fejleszt6i kornyezet a kovetkezd projektjéhez
is. Biztosit egy konnyen megtanulhatd és rendkiviil
hatékony fejlesztéi kornyezet maximalis kéddal oroklési
képességek, 4tfogd és konkrét céltdimogatds. [AR Embed-
ded A Workbench el6segiti a hasznos munkamdédszert, és
ezaltal a munkavégzés jelentds csokkentéséta fejlesztési
id6 az IAR Systems eszkozeivel érhetd el.

II. ELSO FELADAT

Végezzen el Osszeaddst két 8 bites eldjel nélkiili szdm

kozott. Helyezze az Osszeadanddkat mint konstansokat egy-
egy regiszterbe, majd végezze el az adatok Osszeadasat.
Az eredményt ellendrizze a Registers ablakban.A program
miikodését 1épésenkénti futtatdssal lehet ellendrizni. Ismételje
meg a feladatot mas konstansokkal is. Ellendrizze, hogy mi
torténik akkor ha az eredmény tillép a szamdbrizoldsi hatéron.
A jegyzbkonyve csatolja az elkészitett programokat, valamint
az ellendrzés eredményének értékelését is.
Az els6 feladat elkezdéséhez elsé sorban a mikrokon-
troller programozashoz sziikséges IAR Embedded Workbench
programot haszndltunk, melynek segirségével létrehozhettuk
a szilikséges szimuldciokat, ezzel tesztelve a kiilonbdzd
értékeken a feladatokat. A program kozéps6 ablaka szolgal
arra, hogy létrehozzuk a megfeleld programkoédokat. Bal
oldalon taldlhaté a Registers 1 ablak, melynek segitségével
megfigyelhetjiik az egyes regiszterekben szerepld értékeket,
azoknak a valtozdsit a program sordn. Ennek az ablaknak
a megfigyelése kulcsfontossdgu volt a feladatok megoldasa
sordn, hiszen itt tudtuk nyomonkovetni az egyes regiszterek-
ben tarolt értékek valtozasat, valamint nagy segitséget jelentett
a Debugger ablak is az esetleges hibdk kisziirésében. Ez
kiilonbozé hibakdédokkal jelez vissza felénk, ha hib4d kddot
hoztunk létre, emiatt elakaszva a szabalyos futtatast. A fela-
dat sordn a mintaként megadott programrészletet alakitottuk
at, valamint futtattuk le tobb értékkel, igy megvizsgilva
az eredményeket. Fontos észrevétel volt szdmunkra, hogy
mivel 16 bit-es rendszert haszndl a program, igy elgjel
nélkiill a legnagyobb megadhaté érték a 255 volt, mig
elsdjeles szamabrazolasként -128-t61 127ig tudtuk megjelenitei
a szamokat.

A mintaként megadott kéd az alabbi médon miikodik:

mov.b #5,R04
mov.b #6,R05
add.b RO5,R04

A leirt kéd az aldbbi utasitdsokat hajtotta végre: Els6szor
a négyes szdmu regiszterbe helyezte el az els§ konstanst
a megadottak alapjdn, majd a mdasokddik 1épésben az Otds
szamu regiszterbe helyezte el a masik megadott konstanst. Ezt
kovetSen Osszeadta ezeket és eltarolta az eredményt a négyes
szamu regiszterbe. A fent leirt kéd a kovetkezd utasitdsokat
végezte el. El6szor a négyes szamu regiszterbe (R4) behelyezte
az elsé konstanst az 0sszeadandok koziil (én esetemben ez a
szam a 3 volt). Masodik 1épésben az 6tds szdmu regiszterbe
(RS5) beillesztette a masodik konstanst (az én esetemben ez az
5 volt). Végiil 6sszeadta a program a két konstanst és eltdrolta
az eredményt a négyes szamu regszterbe.

R4
R5

0x000B

0x0006

I1I. MASODIK FELADAT

Végezzen el Osszeaddst két 16 bites eldjel nélkiili szdm
kozott. A mivelet elvégzése sordn vizsgdlja a carry bit
értékét. A jegyzOkonyve csatolja az elkészitett programokat,
valamint az ellendrzés eredményének értékelését is.

Ebben az esetben a létrehozott szimuldcié nagyon hason-
latosan miikddik az el6z&ekben létrehozottra. A kiilonbség a
két program kozott, hogy ez esetben 16 biten dbrdzotuk a
szamokat, igy a legnagyobb dbrizolhaté szam a 65535 volt.

A 1étrehozott programkéd:

mov.b #2355;BE
mov.b #150,R7
add.b R&,R7

vz

Ez a kdéd nagyon hasonlatosan (kodik az el6z6hoz, annyi
kiilonbségg vélhets felfedezni, hogy itt mar 16 bit-en dol-
goztunk, igy nem volt sziikség a ”b” jelzésre a parancsokat
kovetden. Ezt kovetSen a hatos regiszterbe az alabbi eredmény
keriilt:

Ox00FF

~

0x0095

R6
R7

Ebben az esetben ha tdlcsordulds allhat fent, ha a kapott
eredmény nagyobb, mint 65634, ilyenkor az eredmény el fog
térni a helyes eredmént6l, valamint a carry bit 0-r6l 1-es
értékre valt.

IV. HARMADIK FELADAT

Végezzen el Osszeaddst két 32 bites elGjel nélkiili szam
kozott. A miivelet elvégzése sordn vizsgdlja a carry bit értékét.
A jegyzbkonyve csatolja az elkészitett programokat, valamint
az ellendrzés eredményének értékelését is.

Ezen feladat soran mar 1j ismereteket is fel kellett hasznalnunk
az el6zéekhez képest. Tekintettel arra, hogy a hasznalt pro-
gram 16 bites regiszterekkel tud csak szamolni, igy az
Osszeadandé konstansokat két db 16 bites regiszterben kell
eltdrolni. Az elsd két regiszterben eltdroltuk a két konstans
kisebb helyiértéki részét, majd kiszdmoltuk ezek 6sszegét. Ezt
kovetSen ujabb regisztereken eltaroltuk a konstansok nagyobb
helyiértékd részeit, majd ezek Osszegét is kiszamoltuk, 4m
ebben az esetben mar a "ADDC” parancsot hasznalva, hogy
figyelembe vegye a carry értéket is figyelembe vegye. Ezzel a
paranccsal mar meg is kaptuk a 32 bites konstansok Osszegét.
Hasznalt programkéd:

mov.b #3,RE
mov.b #5,R9
add Rg8,R9
mov.b #12,R10
mov.b #13,RI11
addc R10,RI11

Megfigyelhetd, hogy a masodik Osszeadds sordn az "ADDC”
parancs segitségével a carry bitet is figyelembe tudtuk venni,
ezzel gondoskodva arrdl az esetrl, ha az el6z8 Osszeadas
sordn tulcsordulas keletkezett, akkor azt az érték megjelenjen

ebben a szdmitasban. Ez alapjan az 6sszeadds eresménye:

R8 = 0x0008
RS9 = 0x000D
R10 = 0x000C
R11 = 0x0019

V. NEGYEDIK FELADAT

Végezzen el Osszeaddst két 64 bites eldjel nélkiili szdm
kozott. A miivelet elvégzése soran vizsgélja a carry bit
értékét. A jegyzOkonyve csatolja az elkészitett programokat,
valamint az ellenérzés eredményének értékelését is.

Az el6z6 feladathoz hasonléan a 64 bit-es szdmokat is fel kell
osztani 16 bit-es egységekre, amelyekkel kiilon kell elvégezni
az Osszeaddsokat. Ezaltal létre kell hozni négy darab 16
bites egységet, ezzel kiadva az Osszesen 64 bitet. Ebben az
esetben csak az els6 miivelet sordn haszndljuk az “ADD”
parancsot, az 0sszes tobbi esetben az >ADDC” parancsot kell
hasznélni. Ez esetben a legnagyobb megjelenithets szam a 264,

A Iértehozott programkdéd:

mov.b #9,R4
mov.b #2,RS5
add R4,RS
mov.b #15,R¢e
mov.b #1¢,R7
addc R&,R7
mov.b #21,R!
mov.b #22,R
addc RE,R%
mov.b #30,R10
mov.b #31,R11l
addc R10,R11

oo

A letrehozott programkédban mefigyelhetd, hogy csak az els6
esetben hasznéltuk az ”ADD” parancsot, ezt kovetSen csak
az ”ADDC” parancsot alkalmaztuk, ezzel figyelembe véve a
kordbbi zdmytidsokbdl esetlegesen fennmaradt carry értékeket,
igy elkeriilve a fals eredmények 1étrejottét. Az ezaltal 1étrejott
eredmények:

-

R4 = 0x0009
RS = 0x0011
R6 = 0x000F
R7 = 0x001F
R8 = 0x0015
R9 = 0x002B
R10 = 0x001lE

VI. OTODIK FELADAT

A tanultakat ellendrizze az 1;2;3; feladat megoldasdval

elgjeles kornyezetben is. A jegyzOkonyve csatolja az
elkészitett programokat, valamint az ellendrzés eredményének
értékelését is.
El6jeles kornyezetben nem véltozik a programok 1étrehozésa,
valamint a megirt kddok sem valtoznak, arra kell figyelni,
hogy a szdmok tdroldsa sordn az eldjel bit miatt a 8 bit helyett
csak 7 biten tudunk szdmokat tdrolni. ElsGjeles Osszeadas
sordn a kettes komplemens szamabrazolast érdemes hasznalni,
ami azt jeleni, hogy a lefoglalt, legnagyobb helyiértékii bitjén
taroljuk a szdm elGjelét. Ha a szdm nem negatyv, akkor a
bit értéke 0, ha viszont a szdm negativ, akkor a bit 1 értéket
vesz fel. Annak érdekében, hogy tudjuk, hogy a kapott
eredmény pozitiv vagy negativ-e, az ugynevezett “negativ
flaget” (N flag) kell figyelni, ha ennek az értéke 0, akkor nem
negativ, ha 1 az értéke, akkor pedig negativ szdmot kaptunk
eredményiil. Azokban az esetekben, amikor a végeredmény
a fent leirt, bitek szdmdnak megfelels, tartomanyon kiviil
esik, az dgynevezett “overflow flag” (O flag) értéke 0-rol 1-re
valtozik. A carry bit akkor 1, ha a tdlcsordulds a tartomany
pozitiv felén torténik.

i

- v =
— SCG1 =
- SCGO =
- OscOff =
— CPUOLf =
- GIE =
- N =
Lz =
_C =

3

[s

]

L v T

il =

]

L e T

«

VII. HATODIK FELADAT

Végezzen el kivonast két 8 bites eldjel nélkiili szam kozott.
Helyezze a kissebitend6t az egyik mig a kivonandét egy
masik regiszterbe, majd végezze el az adatok kivondsit.
Az eredményt ellendrizze a Registers ablakban. A program
miikodését 1épésenkénti futtatdssal lehet ellendrizni. Ismételje
meg a feladatot mas konstansokkal is. Ellendrizze, hogy mi
torténik akkor ha az eredmény tullép a szamabrazolasi hataron.

A jegyzbkonyve csatolja az elkészitett programokat, valamint
az ellendrzés eredményének értékelését is.

A soron kovetkezd feladatok sordn a program szintaktikai
megjelenése nagyon hasonld az Osszeadasok létrehozdsakor
megirt programrészlettel, de ebben az esetben az "ADD”
parancs helyett "SUB” azaz kivonds parancsot kell alkalmazni.
A 1étrehozott programkéd:

mov.b #10,R4
mov.b #2,R5
sub.b R4,R5

Ezt a programkddot lefuttatva az R4-es regiszterbe bele is
keriilt a két szdm kiilonbsége:

R4 -
R5 =

Ox000A

0Ox00F8

Ha a kivonds elvégzése sordn a minimdlisan &brazolhatd
szamnal kisebb eredményt kapunk (mint a fenti példdban
tapasztalhat6), akkor a kapott eredményt kettes komplemens-
ben kell értelmezni és az N flag értéke 1 lesz.

VIII. HETEDIK FELADAT

Végezzen el kivonast két 16 bites el6jel nélkiili szdm kozott.
A miivelet elvégzése sordn vizsgédlja a borrow bit értékét. A
jegyzdkonyve csatolja az elkészitett programokat, valamint az
ellenérzés eredményének értékelését is.
Ebben az esetben a programkdéd csaknem megegyezik az
otodik feladatban 1étrehozott kéddal, csak el kell tavolitani az
”ADD” parancskat és meg kell valtoztatni ket "SUB”, azaz
kivonds parancsokkd. A 1étrehozott programkod:

mov.b #200,R12

mov.b #50,R13

sub.b R12,R13
Hasonldéan az el6z6 feladathoz, itt is az els6ként megadott, az
R12-es regiszterbe keriil bele a kivonds eredménye:

R12 0x00Cs8
R13 = 0x0064

IX. NYOLCADIK FELADAT

Végezzen el kivonast két 32 bites el6jel nélkiili szdm kozott.
A miivelet elvégzése sordn vizsgédlja a borrow bit értékét. A
jegyzokonyve csatolja az elkészitett programokat, valamint az
ellendrzés eredményének értékelését is.
Mivel a csak 16 bites regiszterek allnak rendelkezésre, igy az
kissebitendd €s a kivonand6 konstansokat két-két regiszterben
kellett eltarolni. Els6é két regiszterben eltaroltam a két szam
kisebb helyiértékii részét, majd kiszdmoltam ezek kiilonbségét
a "SUB” paranccsal. Ujabb két regiszterben eltdroltam a
konstansoknagyobb helyiérték részét, akércsak az 0sszeadds
esetén, majd ezek kiilonbségét is kiszdmoltam a megfelel
parancs segitségével, igy megkapva a keresett értéket. A
felhasznalt programkéd:

mov.b £#5,R4
mov.b #5,R5
sub R4,R5
mov.b #15,R6
mov.b #13,R7
subc R&,R7

Hasonléan a 32 bites Osszeadashoz, itt is észrevehetd,
hogy a masodik kivonds parancsnidl nem az "SUB”, hanem
az "SUBC” utasitast haszndltam, melyben a ”C” arra utal,
hogy ez a parancs figyelembe veszi a carry értékét is. Ez
azért fontos, mert igy ha az el6z8 miivelet elvégzése sordn
keletkezett maradéktag, akkor az a mdsodik kivonds sordn
meg fog jelenni. Hasonldan a 8 és 16 bites kivonashoz, itt is
kettes komplmensként kell kezelni az értéket, ha az kisebb
nulldndl. Ebben az esetben is az N flag 1-re vélt. A szdmolas

sordn kapott eredmények:

R4 = 0x0008
R5 = OxFFFD
R6 = 0x000F
R7 = OXFFFD

X. KILENCEDIK FELADAT

Végezzen el kivonast két 64 bites el6jel nélkiili szam

kozott. A mivelet elvégzése soran vizsgdlja a borrow bit
értékét. A jegyzOkonyve csatolja az elkészitett programokat,
valamint az ellenérzés eredményének értékelését is.
Ezen feladat sordn is nagyon hasonlatos a létrehozott kéd a
64 bites szamok Osszeadasahoz, hiszen mindent ugyanugy
kell megadni, kivéve a parancsot, ahol els6 esetben a "SUB”,
késébbi esetekben a "SUBC” parancsot haszndltuk, ezéltal
figyelembe véve a tovdbbvivendd maradéktagot, amyelyet a
carry flag tarol. A létrehozott programkdd:

mov.b #100,R8
mov.b #90,R9
sub RS,RS
mov.b #80,R10
mov.b #70,R11
subc R10,R11
mov.b #50,R12
mov.b #40,R13
subc R12,R13
mov.b #30,R14
mov.b #15,R15
subc R14,R15

Ezen szdmoldsok eredményét is 1épésenként végigkovethetjiik
a regiszterek értékeiben, amelyek folyamatosan véltoznak,
ahogy futtatjuk a programot. A kapott eredmények a
kovetkezok:

R8

R9

R10
R11
R12
R13
R14
R15

0x0064
OxFFFé
0x0050
OxFFF5S
0x0032
OxFFF5
0x001E
OxFFFO

XI. TIZEDIK FELADAT

A tanultakat ellendrizze az 5;6;7; feladat megoldasaval
el6jeles kornyezetben is. A jegyzdkonyve csatolja az
elkészitett programokat, valamint az ellendrzés eredményének
értékelését is.

Az 0Ossezaddshoz hasonléan ebben az esetben is mege-
gyeznek a prograkédok, az el6jel nélkiili verzidkhoz, de
ebben az esetben jelolni kell a konstans szdmok -elgjelét.
Kivonds esetén ugyandgy teljesiil az 4brdzoldsi tartomany,
mint dsszeadds esetén. Ezen esetben is igaz, hogy ha egatyv
szam a végeredmény, akkor az N flag 1 értéket vesz fel,
valamint kettes komplemens 6ként kell kezelni. Ezen kiviil az
is teljesiil, hogy az overflow flag jelzi, ha a mfivelet sordn
tilcsordulds tortént, ezdltal az dbrdzoldsi tartomdnyba nem
tartozik bele a kapott éték. A carry bit ebben az esetben
ellentétesen miikodik, hiszen ebben az esetben pakkor valt 1-
es értékre, ha negativ irdnybdl torénik tulcsordulés.

REFERENCES

[1] https://wwwfiles.iar.com/maxq/guides/EW-UserGuide.pdf
[1 https://hu.wikipedia.org/wiki/Regiszter-(szamit4stechnika)
[2] https://hu.wikipedia.org/wiki/Szdmabrazolas

[3] https://hu.wikipedia.org/wiki/Szdmrendszer

[4] https://hu.wikipedia.org/wiki/Fixpontosszamdbrazolds

