
Mikrokontroller mérés
Mérést végezte: Paulicsek Ádám Imre

Mérés dátuma: 2021.03.11. 11:15-14:00
Mérés helye: Budapest

paulicsek.adam.imre@hallgato.ppke.hu

Mérőeszköz adatai: IAR Embedded Workbench software

I. MIKROKONTROLLER

A mikrokontroller vagy mikrovezérlő egyetlen lapkára
integrált, általában vezérlési feladatokra optimalizált cél-
számı́tógép. A mikrokontroller egy mikroprocesszor
kiegészı́tve az áramköri lapkájára integrált perifériákkal.
Manapság sok hétköznapi használati eszközben
mikrokontroller lapul a digitális hőmérőtől az autónkon
át akár a gyorséttermi ajándék játékig.

Régebben mikroprocesszor-tı́pusokat használtak a vezérlési
feladatok elvégzésére. A mikroprocesszor használatakor a
szükséges perifériák miatt további integrált áramköröket (IC)
kellett beépı́teni. Az áramköri technológia fejlődésével egyre
több perifériát az IC-tokba lehetett integrálni, ı́gy alakult ki a
mikrokontroller, nagyon tömör áramkört eredményezve.

II. MÉRÉSI FELADATOK

A. Első feladat

(Végezzen el összeadást két 8 bites előjel nélküli szám
között.)

/ / 1 . f e l a d a t a )
mov . b #6 ,R4
mov . b #2 ,R5
add . b R5 , R4

Először létrehoztam egy R4-es nevű, 8 bites regisztert,
aminek az értéke 6 lesz. Ezt úgy csináltam, hogy mov.b
segı́tségével rendeltem a konstant, a regiszterhez. A move
utáni .b jelenti, hogy a regiszter milyen hosszúságú, ami
ebben az esetben 8. Ezután egy R5-os regiszterbe teszem
a 2-es értéket. Futtatás közben látható a Registers ablak-
ban, hogy az adott regiszterben milyen érték van, és ezek
az értékek hexidecimálisan vannak megadva, amit onnan
tudunk, hogy 0x kezdődnek a számok. Aztán a két reg-
isztert az add.b segı́tségével adom össze. Fontos hogy két
azonos hosszúságú regisztert adjunk össze, és akkor azonos
hosszú végeredményt fogunk kapni. Az összeadott értékeket,
a másodikként megadott regiszterbe fog kerülni, ami ebben
az esetben az R4-es volt, annak az értékét ı́rjuk felül, mı́g az
R5-ösnek nem változik meg az értéke ebben az esetben, és
továbbra marad a 2-es szám, mı́g fel nem ı́rjuk utána, vagy
nullázuk le.

/ / 1 . f e l d a t b )
mov . b #255 ,R4
mov . b #17 ,R5
add . b R5 , R4

Tudjuk, hogy a 8 bites sorozatnál 0 ... 255 közötti számok
lehet, mivel 28 darab ábrázolható szám van, és a legnagyobb
ábrázolható szám pedig 28−1. Ebben az esetben megnézzem,
hogy mi történik, ha a 255 értékhez adok hozzá egy másikat,

ami túlcsordulást fog eredményezni. Először az R4-hez ren-
delem hozzá a 255 értéket, ugyanúgy mint az előző fe-
ladatrészben, aztán az R5-höz a 17-et. Ezeket összeadva,
ugyanúgy mint az előbb, az R4-be kerül az összeg, de
kevesebb lett, mint 255. Ekkor a regiszter ablakban megfi-
gyelhető a flag biteknél, hogy a carry bitnek az értéke 1 lett,
vagyis túlcsordulást történt. Ekkor tudhatjuk, hogy pontosan
miért is mutat 255-nél kevesebbet az összeadás után. Az R5
értéke viszont megint változatlan maradt.

B. Második feladat

(Végezzen el összeadást két 16 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit
értékét.)

/ / 2 . f e l a d a t a )
mov .w #155 ,R4
mov .w #132 ,R5
add .w R5 , R4

Hasonló a feladat, mint az előzőben, de itt nem 8 bites,
hanem 16 bites sorozatokat kell összeadni. Vagyis annyi
különbség lesz a kódban, hogy nem .b, hanem .w fogok
használni. Ugyanazt fogom tapasztalni, mint az előzőben, hogy
a két regiszter összeadásakor, az R4-be fog kerülni az összeg,
és az R5-ösnek nem fogja megváltoztatni az értékét.

/ / 2 . f e l a d a t b )
mov .w #65535 ,R4
mov .w #132 ,R5
add .w R5 , R4

Ebben az esetben is megnézem, hogy mi történik, ha
túlcsordul az összeg. Itt az előzőhöz képest, ugyanazt a kódot
fogom használni, de az értéke más lesz. Az ábrázolható
számok száma 16 biten 216, a legnagyobb ábrázolható szám
216 − 1, vagyis 65535. Ekkor ugyanazt fogom tapasztalni a
regiszter ablakban, hogy a carry flag bit értéke megválozik
1-re, ami jelzi ugyanúgy a túlcsordulást.

C. Harmadik feladat

(Végezzen el összeadást két 32 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a carry bit értékét)

/ / 3 . f e l a d a t
mov .w #0x12AE , R4
mov .w #0 x3232 , R5
mov .w #0 x4321 , R6
mov .w #0x1A1E , R7
add .w R4 , R5
addc .w R6 , R7

Mivel a mikrokontroller a regisztereibe maximálisan 16
bites soroztot tudd tárolni, ezért a 32 bites sorozatot két
16-os bit sotozatként fogjom kezelni, az egyikbe lesz a



kisebb helyiértékű sorozat, és a másikban lesz a magasabb
helyiértékű sorozat. Mint az összeadásnál is, mindig a kisebb
helyiértékeket adjuk először össze, hogy a túlcsordulást tovább
tudjuk majd vinni. Aztán a magasabbat adjuk össze, és
ehhez az előző művelet esetén keletkező túlcsordulást. Ezért a
másodikat addc.w paranccsal fogom elvégezni. És ı́gy kaptam
két darab 16-os bit sorozatot, aminek a kisebb helyiértékűt az
R5-be, mı́g a nagyobbikat pedig a R7-be fog belekerülni. A
többi regiszter értéke nem fog megváltozik.

D. Negyedik feladat

(A tanultakat ellenőrizze az 1;2;3; feladat megoldásával
előjeles környezetben is.)

/ / 4 . f e l a d a t a )
mov . b #+6 ,R4
mov . b #+2 ,R5
add . b R5 , R4

Az előjeles összeadásnál hasonlóan történik, mint előtte
előjel nélkül. Viszont mivel a legmagasabb helyiérték helyén
most már az előjelet fogja jelölni, ezért a legnagyobb
ábrázolható szám kevesebb lesz, viszont az ábrázolható
számok majdnem a duplájára nőnek. Ebben az esetben 27 − 1
lesz a legnagyobb ábrázolható szám, vagyis a 127. De akkor a
legkisebb szám viszont nem a 0, hanem a -127 lesz. Ugyanúgy
mint az első feladatban, a két szám összege az R4-be fog
kerülni, és az R5-ös értéke nem fog megváltozni.

/ / 4 . f e l d a t b )
mov . b #+127 ,R4
mov . b #+17 ,R5
add . b R5 , R4

Ebben az esetben nem a carry flag bitnek az értéke fog
megváltozni, hanem az overflow flag bitnek az értéke lesz
1. Az összeadott szám ugyaúgy az R4-ben lesz, és az R5
megintváltozatlan lesz.

/ / 4 . f e l a d a t c )
mov .w #+155 ,R4
mov .w #+132 ,R5
add .w R5 , R4

Ugyanaz történik, mint az előjel nélküli összeadásnál. És
itt is, mint a 8 biteshez hasonlóan 1 bittel kevesebb számot
tudunk ábrázolni az előjel miatt. A legnagyobb ábrázolható
szám 215 − 1, vagyis 32767 lesz.

/ / 4 . f e l a d a t d )
mov .w #+32767 ,R4
mov .w #+150 ,R5
add .w R5 , R4

Ebben az esetben, az overflow értéke 1 lesz, és emellett a
negatı́v flag bit értéke is 1 lesz, mivel túlcsordulás történt. Az
eredmény az R4-es regiszterbe kerül.

/ / 4 . f e l a d a t e )
mov .w #0xEFFF , R4
mov .w #0 x0017 , R5
mov .w #0xFFFE , R6
mov .w #0 x0005 , R7
add .w R5 , R4
addc .w R7 , R6

Ugyanúgy mint az előzőekben, ezt a 32 bites sorozatot is
két részre bontjuk, és ı́gy adogatjuk össze, de itt ADDC-
t használunk, aztán a végeredmény két regiszterbe kerül.
Amikor az alsó helyiértékeket adom össze, akkkor a negatı́v
flag bit értéke 1 lesz, mı́g amikor a felső helyiértékek szerint
adom össze, akkor a carry flag bit értéke változik 1-re.

E. Ötödik feladat

(Végezzen el kivonást két 8 bites előjel nélküli szám között.)

/ / 5 . f e l a d a t a )
mov . b #17 ,R4
mov . b #7 ,R5
sub . b R5 , R4

A kivonáshoz a sub-ot fogom használni, másképpen mond-
hatjuk, hogy ez az összeadás műveletének az inverze. Ebben
az esetben, a 17-ből fogjuk kivonni a 7-est. Ennek az értékét
az R4-es regiszterbe fog kerülni, mı́g az R5-ösben marad a
7-es érték. Emellett a carry flag bit értéke 1 lesz, vagyis a
borrow bit értéke az ellentetje, vagyis No.

/ / 5 . f e l a d a t b )
mov . b #7 ,R4
mov . b #17 ,R5
sub . b R5 , R4

Ebben az esetben felcseréltem az értékeket, és most azt
vizsgálom meg, hogy mi történik amikor mı́nuszos számot
kapnék, miközben nem használjuk az előjel bitet, amikor ilyen
esetekben nagyon jól jönne. Viszont az történik, hogy a negatı́v
flag bitnek az értéke fog megváltozni 1-re, és azt vehetjük még
észre, hogy amikor kilépünk az értelmezett intervallumból,
akkor kezdődik újra a legnagyobb ábrázolható számtól. Ekkor
a carry flag bit értéke nem véltozik, marad 0. Ekkor az
ellentetje a borrow bit értéke Yes lesz.

F. Hatodik feladat

/ / 6 . f e l a d a t a )
mov .w #155 ,R4
mov .w #132 ,R5
sub .w R5 , R4

Ebben az esetben is azt tapasztalhatjuk mint előbb, amikor
nem lépünk ki az intervallumból. Viszont amikor elvégeztük
a műveletet, akkor a carry flag bit értéke 1 lett, ami azt jelenti
hogy a borrow bit értéke 0 lesz.

/ / 6 . f e l a d a t b )
mov .w #132 ,R4
mov .w #155 ,R5
sub .w R5 , R4

Ugyanaz történik, mint a 8 bites sorozatoknál, viszont itt
nem lesz carry bit, hanem csak negatı́v flag bit. És az értéke
ugyanúgy a legmagasabban ábrázolható számtól fog kezdődni,
amikor elhagyjuk az intervallumot. És mivel a carry bit értéke
0, ezért a borrow bit értéke 1 lesz.

G. Hetedik feladat

(Végezzen el kivonást két 32 bites előjel nélküli szám
között. A művelet elvégzése során vizsgálja a borrow bit
értékét.)



/ / 7 . f e l a d a t
mov .w #0 x0004 , R4
mov .w #0 x0002 , R5
mov .w #0 x0000 , R6
mov .w #0 x0008 , R7
sub .w R5 , R4
subc .w R7 , R6

Mind az előző 32 bites esetben itt is a végeredményt két
regiszterbe fogom tudni eltárolni. Ebben az esetben is ADDC-
t értékként megadni őket. Az alsóhelyiértéknél carry flag bit
értéke 1, ezért a borrow bit értéke 0. Mı́g a felsőhelyiértéknél
a negatı́v flag bit értéke lesz 1, és a carry flag bit értéke 0,
vagyis a borrow bit értéke ekkor 1 lesz.

H. Nyolcadik feladat

(A tanultakat ellenőrizze az 5;6;7; feladat megoldásával
előjeles környezetben is.)

/ / 8 . f e l a d a t a )
mov . b # −128 ,R4
mov . b #+17 ,R5
sub . b R5 , R4

Ebben az esetben az overflow flag bit értéke 1 lesz, és a
carry bit értéke is szintén 1 lesz. Vagyis a borrow bitnek az
értéke 0.

/ / 8 . f e l a d a t b )
mov .w #+23 , R4
mov .w # −156 , R5
sub .w R5 , R4

Ebben az esetben a carry bit értéke 0 lesz, és a borrow bit
értéke viszont 1 lesz. Az eredmény az R4-es regiszterbe kerül,
a többi regiszter változatlan marad.

/ / 8 . f e l a d a t b )
mov .w # −365 ,R4
mov .w # −210 ,R5
mov .w # −241 ,R6
mov .w # −444 ,R7
sub .w R5 , R4
subc .w R7 , R6

Ebben az esetben is a 32 bites sorozatot két részre szedtem
szét. A két résznek az eredménye az R4-es, és az R6-os
regiszterbe fog kerülni. A carry bit értéke 1, ezzel szemben
a borrow bit értéke 0 lesz.

REFERENCES

[1] Mikrokontroller,
https://hu.wikipedia.org/wiki/Mikrovez%C3%A9rl%C5%91


