
 LabVIEW használata

Heiszman Henrik

Neptun kód: ENV2R9

Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar

1083 Budapest, Práter utca 50/A

heiszman.henrik@hallgato.ppke.hu

Téma–A LabVIEW grafikus programozói környezet

segítségével különböző matematikai és programozói

feladatok illetve problémák megoldása olyan

programokkal, melyeket a felhasználó egyszerűen, számára

is érthető módon tud használni. Mérés során a National

Instruments által fejlesztett LabVIEW programot

használtam.

I. A JEGYZŐKÖNYVBEN HASZNÁLT FOGALMAK

Front Panel: ez az általunk elkészített, virtuális műszer

kezelőfelülete, ide helyezhetők el a különböző vezérlő és

kijelző egységek, valamint különféle design elemek.

Block Diagram: itt az alkalmazás grafikus programozása

folyik, ez a virtuális műszer belseje.

Controls Palette: itt találhatóak a Front Panel-en

elhelyezhető vezérlő és kijelző elemeket (illetve szokás még

kontrolloknak és indikátoroknak nevezni őket).

II. A LABVIEW ELŐKÉSZÍTÉSE

A LabVIEW ikonra kattintva elindítottam a programot,

majd létrehoztam egy új „Blank VI” projectet. A tanultak

alapján a „ctrl+T” billentyűkombinációval egymás mellé

illesztettem a képernyőn a Front Panelt és a Block Diagramot.

Ezzel a pár lépéssel elő is állítottam a két tiszta oldallal

rendelkező munkafelületet.

III. SEBESSÉG ÁTVÁLTÁSA

Az általam elkészített programnak feladata lesz, hogy hiba

nélkül, a felhasználó által meghatározott,
𝑚

𝑠
 mértékegységű

sebességet átváltsa
𝑘𝑚

ℎ
 -ba, majd az így kiszámolt értéket

jelenítse meg egy általam tetszőlegesen megválasztott kijelzőn.

Valamint a program képes lesz egy, a felhasználó által

üzemeltetett gomb hatására egy sárga színű, négyzet alakú

LED-et felkapcsolni.

A program elkészítése során több fajta inputra (a

felhasználó által kezelt bemenetre) is szükségem lesz. Kelleni

fog egy nyomógomb, amely majd üzemelteti a LED, továbbá

egy numerikus bemenet, amely segítségével az üzemeltető

megadhatja az átváltani kívánt sebesség mértékét (
𝑚

𝑠
-ban).

Ezeket a bemeneteket egyszerűen elhelyezem a Front

Panel. A használni kívánt inputot a következőképpen hoztam

létre: az egér jobb gombjával kattintottam a Front Panelen,

amelynek köszönhetően megjelent Controls Palette. Ebből az

ablakból kiválasztottam az általam használni kívánt inputokat:

egy Boolean típusú nyomógombot és egy numerikus

bemenetet. (Boolean típusú gombnak nevezzük azt a bemenet,

amely igaz vagy hamis érték bevitelére szolgál.) Ezek után

szinten a Controls Paletten „Boolean” menüpont alatt

kiválasztottam a négyszögletes LED-et, majd elhelyeztem a

Front Panelen. Elvárás, hogy az a dióda négyzet alakú legyen

és sárgán világítson. A méretét egyszerűen a LED egyik

szélére kattintva, húzással méretre lehet szabni. A dióda

színének beállításához a jobb kattintással lenyíló menüsor

„Properties” alpontját kell megnyitni. Itt az „Appearance”

fülön a „Colors” alpontban beállítható az On/Off állásban lévő

LED színe. Én az On állapot színét a feladatnak megfelelően a

255; 255; 100 és az Off állapot színét pedig a 100; 100; 0;

RGB kódú sárga árnyalatra állítottam. Végül elhelyeztem egy

numerikus és egy string típusú kimenetet is, amelyen keresztül

a program képes lesz megjeleníteni az átváltott sebesség

mértékét és mértékegységét a felhasználó számára.

Az vizuális kellékek elkészítése után elkezdtem a feladat

software-es részét elkészíteni Block Diagramon.

Első lépésben a nyomógomb kimenetét összekötöttem a

LED bemenetével, ezzel biztosítva, hogy a dióda kapcsolható

legyen a felhasználó igénye szerint.

Második lépésben a mértékegységváltó helyes működését

szolgáló programot készítettem el. A Block Diagramon

létrehoztam egy numerikus konstanst, amelynek a 3,6-et adtam

értékül, majd elhelyeztem a szorzás elvégzésére szolgáló

függvényt. Ennek a függvénynek a bemenetéra rákötöttem a

numerikus bementet és a konstans számot, majd a kimenetét

pedig összekötöttem a numerikus kimenettel. Ezek után a

Block Diagramon létrehoztam egy string típusú konstanst is,

amelybe „
𝑘𝑚

ℎ
”-ot írtam. Ez az állandó felelős azért, hogy az

üzemeltető lássa az átváltott szám mértékegységét. Végül

összekötöttem a string állandót a string kimenettel.

E két lépés elvégzésével a program elkészült és az

ellenőrző futtatás során hibátlannak bizonyult: a nyomógomb

kapcsolja a lámpát és a bemenetre érkező az adatott átváltás

során helyesen meg is jeleníti. (1. ábra)

Meg kell még említeni a program matematikáját is.

Fizikából tanultak alapján tudjuk, hogy 1
𝑚

𝑠
= 3,6

𝑘𝑚

ℎ
 . Ebből

adódóan volt szükségem egy konstans számmal (3,6) való

szorzásra.

Mivel a program készítése során egymástól független

működésre kalibráltam az mértékegységváltót és a LED

kapcsolóját, így az applikáció használata során ez a két funkció

egymást semmiben sem befolyásolja.

IV. VÁLASZTHATÓ ÁTVÁLTÁS

Ebben a részben átalakítottam a már meglévő (1.

feladatban létrehozott) programomat úgy, hogy a felhasználó

saját maga tudja meghatározni, hogy át szeretné-e váltani a

megadott sebességet vagy sem.

Annak érdekében, hogy a program el tudja végezni a

feladatát, két esetet kell elkülöníteni egymástól, és mind a két

szcenáriót egymástól különböző módon kell kezelni. Az egyik

eset az, ha a felhasználó nem szeretne átváltást, tehát a

kapcsoló az „OFF” állásban van. Ekkor a programtól azt

várjuk el, hogy egyszerűen kiírja a bemeneti értéket és a

mértékegység kijelzőn a „
𝑚

𝑠
” jelenjen meg. A másik esetben a

felhasználó bekapcsolja az átváltó funkciót, tehát a kapcsoló az

„ON” állásban van. Ekkor azt várom el a programtól, hogy

helyesen átváltsa a bemeneti adatot és a mértékegység kijelzőn

a „
𝑘𝑚

ℎ
” szerepeljen.

Első lépésben a Block Diagramon létre kell hozni egy

„Case Structure ” nevű függvényt, amely arra szolgál, hogy

különböző eseteket lehessen megkülönbözetni (jelen esetben

ez az „OFF” / „ON” (igaz/hamis) állása a kapcsolónak.), és

össze kell kötni a kapcsoló kimenetével.

Második lépésben meg kell tervezni azt az esetet, amely

során a kapcsoló a hamis, tehát kikapcsolt állásban van. Ekkor

egyszerűen a „Case Structure” False állásánál át kell kötnünk a

sebesség bemenetet a kimenettel és a string konstanst
𝑚

𝑠

állapotban be kell kötni a string kimenetre. Ezt a következő

ábrán szemléltetem. (2. ábra)

Harmadik lépésben megterveztem azt az esetet, amikor a

kapcsoló az igaz, tehát a bekapcsolt állapotban van. Ekkor a

„Case Structure” True állásában be kell húzni az első feladat

során elkészített átváltó program szorzó és mértékegységet

kiíró részét. Ezt szemlélteti a következő ábra. (3. ábra)

Feladat része volt továbbá az, hogy használjak úgynevezett

SubVI-t a program elkészítése során. A SubVI arra szolgál,

hogy a programon belül egy-egy részletet össze lehet sűríteni,

így az elkészült program jobban átláthatóvá és könnyebben

kezelhetővé válik. SubVI létrehozásához ki kell jelölni a

tömörítendő elemeket a Block Diagramon és az „Edit”

menüpont alatt a „Create SubVI” alpontot kell kiválasztani. A

következő ábrán látható, hogy hogyan jelzi a LabVIEW az

elkészült SubVI-t. (4. ábra)

1. ábra

Elkészült átváltó
2. ábra

False ág

3. ábra

True ág

A programban továbbra is él az a funkció, hogy a kapcsoló

segítségével vezérelni lehet a LED-et. Itt ez hasznos volt mert,

így tudja a felhasználó a dióda állapota alapján, hogy be van- e

kapcsolva az átváltás.

Az előbb ismertetett lépések elvégzése során a program

elkészült. Az ellenőrző futtatás során hibátlannak bizonyult.

V. KOCKAJÁTÉK

Ez a program egy kockajátékot fog szimulálni, amely egy

nyomógomb segítségével üzemeltethető. A gomb megnyomása

után a program egyszerre fog „dobni” három hatoldalú

dobókockával és abban az esetbe, ha a dobókockákon szereplő

számok összege pontosan megegyezik tízzel, akkor elkezd

világítani zölden egy LED. Fontos részlet, hogy ne legyenek

hamisak a dobókockák, tehát minden dobás során az egyes

kockák értéke 1 és 6 között azonos valószínűséggel

forduljanak elő.

Első lépésben, a már megszokott módon, elhelyeztem a

Front Panelen az üzemeltetéshez elengedhetetlen eszközöket: a

nyomógombot, a zöld színű kerek LED-et és egy numerikus

kijelzőt, hogy a felhasználó lássa, hogy mennyi az adott dobás

során, a kockákon szereplő értékek összege. (5. ábra)

Második lépésben nekiláttam elkészíteni a program

sofware-es hátterét. A korábbi példához hasonló, itt is két

esetet kell megkülönböztetni. Egyik eset, amikor a gombot

nem nyomták le, a másik esetben pedig, amikor a felhasználó

elindította az adott kört, tehát lenyomta a gombot. Az első

esetben nem kell semmit csinálnia a programnak, hiszen

ilyenkor a játékos még nem indította el a játékot. Ez számomra

azt jelenti, hogy a Block Diagramon létrehozott, a nyomógomb

által vezérelt esetvizsgáló függvény „false” állásában nem

szabad, hogy bármi is szerepeljen. (6. ábra)

Harmadik lépésben leprogramoztam annak az esetnek a

kezelését, amikor a felhasználó megnyomja a gombot. Ekkor le

kell generálni három, egymástól független, 1-6 közötti, egész

számot, majd ezeknek az összegét ki kell írni a kijelzőre,

valamint be kell kapcsolni az izzót abban az esetben, ha ez az

összeg megegyezik tízzel. Ez az alábbi módon néz ki a

LabVIEW-ban. (7. ábra)

LabVIEW-ban a random szám generálására létrehoztam az

esetvizsgálón belül három „Random Number (0-1)” nevű

függvényt (ezek reprezentálják a három dobókockát). Ezek a

függvények legenerálnak egy 0 és 1 között lévő számot.

Nyilván való, hogy ez számomra csak részben jó, ezzel

valamilyen matematikai műveletet kell végezni, hogy 1-től 6-g

valamilyen egész számot kapjak. Erre tökéletes megoldás,

hogy a generált számot megszorzom hattal, amely így 0 és 6

közötti tört szám lesz, majd ezt egy újabb függvény

segítségével felfelé kerekítem. Ezzel a módszerrel a program

4. ábra

SubVI használata

5. ábra

Kockajáték Front Panel

6. ábra

False állás

7. ábra

True állás

legenerál egytől hatig egy random számot, amely során az

egyes számok az valószínűséggel fordulnak elő.

Ezt a random szám generálást a program háromszor végzi

el egymás után és az így kapott három számot összegzi. Az

összeadás elvégzése során az eredmény megjeleníti a kijelzőn.

A programba fel kellett használ egy egyenlőséget vizsgáló

függvényt, amely két bemenetére a kockák összegét és egy

konstanst kötöttem. Ennek az állandónak az értéke 10, hiszen

azt szeretnénk vizsgálni, hogy az összeg értéke megegyezik-e

tízzel. A függvény kimenetét, amelyen vagy igaz, vagy hamis

érték szerepel a működés során, a zöld LED-re kötöttem,

amellyel azt értem el, hogy az egyenlőséget vizsgáló függvény

értéke határozza meg az állapotát.

Utolsó lépésben az esetvizsgáló függvény belsejében

található elemeket SubVI-ba rendeztem. (8.ábra)

A SubVI tartalma a következő ábrán látható. (9. ábra)

A fent leírt lépések elvégzésével a program elkészült és a

futtatások során hibátlannak bizonyult. (10. ábra)

VI. KOCKAJÁTÉK GYAKORISÁGA

Ez a program a már V. pontban látott kockajáték

módosított verziója lesz. Ez a software ebben az esetben

minimum 10 000-szer fogja elvégezni a három kockával

egyszerre való dobást és az értékek összegzését, majd ezeknek

az értékeknek a gyakoriságát megjeleníti. (Hány alkalommal

lett az összeg 3; 4; … 18.)

Első lépésben, a kockajáték programomból eltávolítottam

az aktuális összeget monitorozó numerikus kijelzőt. Erre az

eszközre többé már nincs szükség, hiszen a software a

másodperc tört része alatt végzi el a 10 000 összeg

kiszámolását és jeleníti azt meg, így a felhasználó csak az

utolsó értéket érzékelné a kijelző, ami ebben az esetben

szükségtelen. Hasonló indokkal távolítottam el a kerek LED-et

is, amely abban az esetben világított, ha a dobott összeg értéke

megegyezett tízzel.

Második lépésben leprogramoztam, hogy a kockák dobása

és összegzése, a gomb lenyomását követően, 10 000-szer

történjen meg. Ezt a LabVIEW-ba beépített „for” ciklussal

valósítottam meg úgy, hogy a már meglévő SubVI-t

belehelyeztem a ciklusba. A for ciklusnak az a tulajdonsága,

hogy addig ismétel egy adott feladatot, amíg egy előre

meghatározott érték el nem ér egy általunk választott értéket.

Ebben az esetben a „N”-et futtatjuk 1-től 10 000-ig. N=1 a első

kör után, N=2 a második kör után, és így tovább addig, ami el

nem éri a 10 000-dik kört, ami után a program leáll és

megjeleníti a kért értékeket. LabVIEW-ban az N végső

értékének megadását egy numerikus konstanssal kell megtenni.

A második lépést a következő ábra szemlélteti. (11. ábra)

10. ábra

A program futás közben

8. ábra

SubVI-ba rendezett függvények

9. ábra

SubVI tartalma

11. ábra

For cikklus

Harmadik lépésben létrehoztam egy hisztogram előállító

függvényt, amelynek „Signal” nevezetű bementére a SubVI

numerikus kimenetét kötöttem. Miután ezzel végeztem

létrehoztam a felhasználó számára egy panelt, amely

grafikusan szemlélteti a dobott értékek eloszlását. Ennek a

gráfnak a vízszintes tengelyén a dobott értékek láthatóak,

függőleges tengelyén pedig az egyes értékek száma

(10 000-ből hányszor szerepelt a dobott érték). (12-13. ábra)

Negyedik lépesben az eddig elkészült programot

belehelyeztem egy „while” ciklusba. While ciklus általában

addig fut, amíg egy adott feltétel nem teljesül. Az én

programomban ez a feltétel a felhasználói felületen elhelyezett

STOP gomb megnyomása, tehát a program barmikor

megszakítható futás közben, ha a felhasználó úgy akarja.

Az elkészült program a következő ábrán látható. (14. ábra)

Az elkészült program futtatása után láthatjuk az eloszlást a

front panelen elhelyezett kijelzőn (lásd 12. ábra). A

grafikonból látható, hogy az értékek egy úgy nevezett

normális, más néven Gauss-eloszlást követnek. Ennek képe

egy haranggörbe. Ez abból adódik, hogy a három

dobókockával dobható összegek nem azonos valószínűséggel

fordulnak elő. Ennek oka, hogy vannak összegek, amelyeket

több féle kombinációval lehet kidobni, mint másokat. Például

hármat csak egyféleképpen lehet kidobni, ha mind a három

kockával egyest dobunk, míg tízet sokkal több módon. Ez az

eloszlás ideális esetben egy szimmetrikus görbét alkot, ehhez

nagyon jól közelít az én programom által rajzolt grafikon is.

Ebből láthatjuk, hogy a program a feljebb taglalt lépésekkel

elkészült és az elvárt feladatot hibamentesen elvégzi.

VII. GYAKORISÁG SZÁMOLÁSA

Ez a program az előző program egy variánsa, melyben a

dobókocka 1-6 értéke helyett folytonos 0-1 intervallumot

használ és a gyakoriságot legalább 20 független értékből

képezi.

Ehhez a program elkészítéséhez felhasználtam a VI.

pontban elkészített, hibátlanul futó programot. a meglévő

programon az alábbi módosítást végeztem. Az előzőleg

elkészített programban a SubVI tartalmazott egy számolást,

amely hattal való szorzással és kerekítéssel a 0-1 intervallumú

számot 1-6 intervallumú számmá alakította. Erre a lépesre a

mostani programban nem volt szükség, hiszen számomra az a

cél, hogy 0-1 intervallumon adjak össze véletlen számokat.

számokat. (15. ábra)

12. ábra

Front Panel a gráffal

13. ábra

Gráf software-s része

14. ábra

While ciklussal kiegészített program

A programot lefuttattam és számomra megfelelőképpen futott.

(16-17. ábra)

VIII. VÁLASZTHATÓ JEL SZIMULÁLÁSA

Ennek a programnak az lesz a feladat, hogy a felhasználó

igénye szerint tudjon előállítani és megjeleníteni sinus,

négyszög, fűrész valamint háromszög alakú jelet. Emellett, a

felhasználó kedve szerint tudja majd állítani a jel három

paraméterét: amplitúdó, offset, frekvencia, melyekből a

program ki fogja számolni az effektív feszültség értékét és azt

egy numerikus kijelzőn meg fogja jeleníteni.

Első lépésben létrehoztam egy „while” ciklust a Block

Diagrammon. Erre azért volt szükség, hogy később a

felhasználó bármikor le tudja állítani egy gomb lenyomásával a

program futását. Innentől kezdve minden felhasznált függvény

valamint fizikai eszköz a while cikluson belül került

programozásra.

Második lépésben a Front Panelen elhelyeztem a

használathoz elengedhetetlen eszközöket. Négy inputot raktam

le a felhasználói felületre. A „Combo Box” nevezetű input

biztosítja, hogy a felhasználó ki tudja választani a kívánt

alakzatot, míg három egyenként nullától tízig állítható csuszka

pedig a grafikon paramétereinek állítására szolgál (amplitúdó,

offset, frekvencia). A negyedik vezérlő pedig egy STOP gomb,

amellyel a felhasználó leállíthatja a program futását az előbb

taglalt módon. Ezeken kívül elhelyeztem két numerikus

kijelzőt melyek egyike a számolt a másik pedig az elvárt

effektív feszültséget fogja kijelezni. Végül létrehoztam a

panelt, amelyen kirajzolja a program a választott grafikont.

Harmadik lépésben a létrehoztam egy függvényt („Case

Structure”), amely segítségével szét lehet választani a négy

különböző, a felhasználó által kiválasztott grafikonrajzolási

módot. A függvény a korábban már létrehozott „Combo Box”

állásának megfelelő módon fog futni. A Case Structure

függvénynek három bemenete van minden állásban:

amplitúdó, offset, frekvencia és három kimenete. Két

numerikus, amelyek az effektív feszültséget jelenítik majd meg

és egy, a grafikonok megjelenítésére szolgáló panel. Ezeket

már a második lépésben elhelyezetem a Front Panelen.

Negyedik lépésben leprogramoztam az egyes esetek során

a kirajzoláshoz szükséges elemeket az alábbi módon. Minden

esetnél elhelyeztem egy-egy a jel szimulálására szolgáló

függvényt, melynek bemeneteire az amplitúdó, a frekvencia és

az offsetet állító csúszkák kimenetét kötöttem. A szimulátor

megfelelő típusú kimenetét (sinus esetén sine stb.) pedig

rákötöttem a grafikonrajzoló panelre.

Ezek után lefuttattam a programot, hogy ellenőrizni tudja,

hogy az eddig elkészített funkciók megfelelően működnek-e. A

futás során nem tapasztaltam semmiféle rendellenességet

 (18. ábra)

15. ábra

A SubVI tartalma

16. ábra

Elkészült program: Front Panel

17. ábra

Elkészült program:Block Diagram

Utolsó lépésben elkészítettem az effektív feszültségek

számolására szolgáló programot. Ezt minden görbetípusra

azonos módon tettem meg, így csak egy (sinus) görbe esetén

írom le a lépéseket, de ezek mindegyik esetre igazak és

helyesen működnek. Matematikai összefüggésből tudom az

effektív érték az alábbi képlettel számítható ki:

 𝑈eff =
𝑋

√2
 , x csúcsérték eseten.

A sinusgörbéből, az adatokat eltároltam egy tömbben,

ebből a tömbből lekértem maximális értéket, amelynek

hányadosát vettem √2 –vel, így kiszámítva az effektív értéket.

A tömb maximuma ebben az esetben a generált jel csúcsértékét

adja vissza. Az elméleti effektív érték kiszámítást hasonlóan

programoztam le kivéve, hogy itt a csúcsértéket egyenlővé

tettem az amplitúdó, mivel definíció szerint az amplitúdó

időben változó mennyiségek legnagyobb eltérése az egyensúlyi

állapottól (csúcsérték). (19. ábra)

Az elkészült program futtatása során látható, hogy

hibamentesen fut, viszont egyes paramétereknél a számolt és

az elméleti effektív értékek eltérnek. Ez abban az esetben

fordul elő, ha az offset paraméter nem nulla. Ennek az az oka,

hogy míg az elméleti érték számolása során az amplitúdóval

számol a program, addig a számolt érték előállítása során a

tömb maximumával számol, amely nem minden esetben

egyezik meg a csúcsértékkel. Ezen kívül a program tökéletesen

fut és elvégzi az elvárt feladatokat. (20-21. ábra)

18. ábra

A kirajzolt grafikon

19. ábra

Effektív értéket számoló program

20. ábra

Elkészült program: Front Panel

21. ábra

Elkészült program: Block Diagram

FELHASZNÁLT FORRÁSOK

ONLINE LABVIEW HELP RESOURCES

LABVIEW MÉRÉSI UTASÍTÁS

LABVIEW SEGÉDLET

NORMÁLIS ELOSZLÁS

EFFEKTÍV ÉRTÉK SZÁMOLÁSA

https://www.ni.com/getting-started/labview-basics/online-help
http://users.itk.ppke.hu/~tihanyia/bevezet/labvi1merut.pdf
http://users.itk.ppke.hu/~tihanyia/
https://regi.tankonyvtar.hu/hu/tartalom/tamop425/0046_valoszinusegszamitas_es_statisztika/ch04s03.html
https://tudasbazis.sulinet.hu/hu/termeszettudomanyok/fizika/fizika-10-evfolyam/valtakozo-aram-es-feszultseg/a-szinuszos-valtakozo-aram-es-feszultseg-effektiv-erteke

