
LabVIEW II. mérés
Mérést végezte: Radványi Zita

NEPTUN kód: F346YE
Mérőpár: Zahoray Anna
NEPTUN kód: EF2JUM

Mérés ideje: 2023. 03. 23. 8:00-9:30
Mérés helye: Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar

Magyarország, 1083, Budapest, Práter utca 50/a
radvanyi.zita@hallgato.ppke.hu

Abstract—LabVIEW programmal való ismerkedés, kiadott
feladatok megoldása.

I. LABVIEW PROGRAM

A LabVIEW környezetben egy úgynevezett virtuális
műszer megvalósı́tására van lehetőség grafikus
programozási környezetben, de természetesen általános
célú programok fejlesztésére is felhasználható. A
grafikus programozási környezet annyit jelent, hogy a
programozás során nem szöveges kód készül, hanem
különböző függvényeket/utası́tásokat reprezentáló elemek
összekapcsolásával épül fel a program. LabVIEW
környezetben folyamatvezérelt, adatfolyam elvű
programozásra van lehetőség, a program végrehajtási
sorrendjét az utası́tások kapcsolódási rendszere határozza
meg.

II. MÉRÉSI FELADATOK

A. Első feladat

Az előlapon elhelyezett tetszőleges tı́pusú, nyomógombot
bekapcsolva gyulladjon meg egy ovális alakú sárga LED. A
m/s mértékben beadott sebességet ı́rja ki és mutassa meg egy
tetszőleges formájú kijelző km/h egységben.
A LabVIEW progrsam elindı́tása után a Front Panelt
megnyitottuk, majd kiválasztottunk a controls palette-ről egy
megfelelő nyomógombot (push button), majd ezután egy LED-
et (round LED) tı́pusú visszajelző fényt választottunk. A LED
szı́nét a eszközmenün (tools bar-on) található szı́nválasztó
eszközzel (color brush) állı́tottuk át citromsárgára, valamint
az egyik szerkesztő eszközzel (positioning tool) formáltuk
ovális alakúvá.
Ennek befejeztével átváltottunk a Block Diagramra,
ahol összekapcsoltuk a már létrehozott izzót, valamint a
nyomógombot. Amikor rákattintunk a nyomógombra, akkor
annak a logikai értéke false-ról true-ra vált, ezáltal felvillan
a vele összekötött sárga, ovális alakú LED. Az izzó egészen
addig fog világı́tani, amı́g nyomógomb értéke újra false nem
lesz, azaz, amı́g újra rá nem kattintunk a gombra. Ezen
kı́vül átneveztük az adott részeket a feladat szövegének
megfelelően.
A feladat másik részében m/s-ban megadott értéket kellett
átváltani km/h-ba. Ehhez fontos a matematikai képlet, amely
biztosı́tja az átváltást az alábbi egységek közt. Ez alapján a
képlet alapján tudjuk, hogy 1 m/s megegyezik 3.6 km/h-val. A
Front Panel-en kiválasztottunk egy numeric control-t, amely
az átváltandó érték bevitelére szolgált, valamint egy numeric
indicator-t, amely a kiszámı́tott értéket mutatta meg. Ezután

a Block Diagram-on létrehoztunk egy numeric constant-ot,
amelynek az értékének 3.6-ot adtuk, a későbbi számı́tások
miatt. Ezután hozzáadtuk a szorzás matematikai műveletet,
amelynek az egyik bemenete a numeric control, azaz a
átváltani kı́vánt bemenet, a másik bemenet, pedig az imént
létrehozott konstans érték volt. A kimeneti értékének pedig a
numeric indicator-t állı́tottuk, ami ezáltal a kiszámı́tott értéket
mutatja futtatás során.
A feladat két része, a LED felkapcsolása, valamint a m/s
km/h-ba való átváltása teljes mértékben elkülönül egymástól,
nincsenek befolyással a másik feladat működésére. Ezáltal
az egyik tud működni a másik nélkül is, valamint ugyanı́gy
fordı́tva is.

B. Második feladat

Alakı́tsa át és mentse el új néven az 1. pont feladatában
a nyomógombot kapcsolóra, majd módosı́tsa a programot
olyanra, hogy csak akkor történjen mértékegység átszámı́tás,
ha a kapcsoló ki van kapcsolva.
A feladat leı́rása alapján az előbb elkészı́tett feladatot
fejlesztettük tovább, alakı́tottuk át az utası́tások alapján.
Elsősorban a nyomógombot alakı́tottuk át kapcsolóvá. Ez
egy kétállású kapcsoló, ami szintén ture, vagy false (igaz,
vagy hamis) értékeket vehet fel, ezáltal tökéletesen alka-
lmas a feladat megoldására. Ezt követően gondolkoztunk
el azon, hogy miként tudjuk az izzó világı́tásától függővé
tenni a átszámı́tás kimenetét. Erre véleményünk szerint a
legkézenfekvőbb módszer egy case structure alkalmazsa.
Akárcsak különböző programozási nyelvek esetén, például a
C++-ban egy if elágazás használata. Ez a struktúra rendelkezik
egy igaz és egy hamis érték szerinti lefutási móddal, amelyek
egymástól teljesen függetlenül működnek. Ezt a módot fogja
befolyásolni a létrehozott kétállású kapcsoló. Mindkét módban
összekötöttük a LED-et a kapcsolóval, hisz ez mindkét esetben
fontos és megjelenı́tendő információ lesz (a LED világı́tásán
keresztül). A numeric control bemenetet szintén átadjuk a
case struktúrának, de itt már különböző módon kezeljük az
igaz, vagy hamis érték folyamán. Az első esetben, amikor a
LED nem világı́t, azaz a kapcsoló hamis értékkel rendelkezik,
az adott értéket megszorozzuk a 3.6-tal rendelkező konst-
tanssal, az előbbi számolásnak megfelelően. Ezt a kiszámı́tott
értéket adjuk át a kimenetnek, ı́gy megjelentetve azt a case
struktúrából kilépve. A másik esetben, amikor a kapcsoló igaz
értéket ad vissza, akkor a feladat szerint nem kell elvégezni
az átváltást, ezáltal a konstanssal való szorzás nélkül adjuk át
a kimenetnek a numeric control által érkező bemeneti értéket.
Emellett a feladat kiı́rásánk megfelelően létrehoztunk egy
string constant-ot is. Ennek az értéke szintén a kétállású



kapcsoló bemeneti információjától függ. Ennek a string kon-
stansnak értéke szintén a case struktúra állapotával változik.
Ha a hamis ág fut a programba, akkor az átszámı́tásnak
megfelelően km/h, ha igaz ágban van, akkor pedig m/s jelenik
meg a string constantban.

C. Harmadik feladat

Készı́tsen egy kockajáték szimulációt mely egy
nyomógombot segı́tségével hozható működésbe. A
nyomógomb megnyomására egyszer kell három független
kockával dobni (ennek értéke 1...6 tartományon van) és
az eredményeket külön-külön kijelezni. Ha az eredmények
összege 18 akkor gyulladjon ki egy kör alakú zöld LED.
Először a Front Panelen választottunk egy nyomógombot, egy
push buttont a funkció elindı́tásához, amely megfelel a feladat
leı́tásának. Létrehoztunk egy zöld szı́nű LED-et is, amely
kis zöld kör alakú. Ezáltal megkaptuk a LED-et, amely a
feladat leı́rása szerint a 18-as dobásösszegnél felvillanhasson.
Emellett hozzáadtunk 4 darab numeric indicator-t is, amely a
kijelzőn jelenı́ti meg a feladatok eredményét. Ezzel nyomon
tudjuk követni a 3 kockadobás számait, valamint, hogy
meg tudjuk jelenı́teni az összegüket is. Akárcsak az előző
feladatban itt is egy case struct-ot hoztunk létre a Block
Diagramban, amely két ágon tud futni, azaz egy igaz és
egy hamis ágon, a bemenettől függően. Ebben az esetben
az igaz ág során jönnek majd létre a kockadobások. Ehhez
hozzáadtunk egy véletlen szám generátort a programunkhoz,
amelyet egy dobókocka jelű szimbólum jelképez. Ám ez
csak 0 és 1 közötti valós számokat generál, ı́gy meg kellett
oldanunk, hogy 1 és 6 közötti eredményeket kapjunk, hiszen
szabályos dobókockákkal kell szimulálnunk az adott feladatot.
Ezt úgy küszöböltük ki, hogy megszoroztuk 6-tal a kapott
eredményt, ı́gy kapva 0 és 6 közötti valós számokat. Ám ez
nem teljesen oldotta meg a problémát, hiszen még mindig
nem egész számokat generált a program. Így átkonvertáltuk az
értéket int-é (egész számmá), amelyhez a numeric műveletek
közül választottuk ki a megfelelőt. Ezután felfigyeltünk arra,
hogy mivel 0-tól indulnak a számok, ezért hozzáadtunk
még 1-et, ı́gy a generált számok tökéletesen megfeleltek a
követelményeknek. Tekintve, hogy a véletlen szám generátor
ugyanakkora eséllyel generál számokat 0 és 1 között és a
konstanssal való szorzás nem változtat ezen az eloszláson, ı́gy
továbbra is teljes mértékben véletlenszerű értékeket kapunk.
Ezt követően ezt a metódust lemásoltuk két alkalommal,
ezúton lérehozva az összesen három darab dobókockát, majd
ezeket összekötöttük a korábban létrehozott három numeric
indicator-ral. Ezek után a generált eredményeket összeadtuk,
az összeadás művelet segı́tségével, de mivel annak csak két
bemenete lehet, ı́gy kétszer egymás után alkalmaztuk a három
eredményre. Ennek az eredménye került a negyedik numeric
indicator, kijelzőpaneé által kiı́rásra, ezáltal megmutatva a
három dobás összegét.
A feladat második részében a kapott eredményt vizsgáljuk,
amelyet külön eltároltunk. Ha az pontosan 18, azaz mind
a három dobás 6-os lett, akkor világı́tson a zöld szı́nű
LED. Ennek az egyik legkisebb az esélye, hiszen az összes
kockának hatos számot kell mutatnia. A már létrehozott
case struct-on belül hoztunk létre egy numeric constans-ot,
melynek az értékét 18-ra állı́tottuk be. Emellett létrehoztunk
egy egyenlőség függvényt annak az eldöntésére, a két
bemeneti érték megegyezik-e. Ezt a vizsgálatot végző
függvény bemenetéhez kötöttük a három dobás összegét,

valamint a 18-as értéket viselő konstanst is, majd ennek a
kimenetét hozzákapcsoltuk a LED-hez, ezzel elérve azt, hogy
igaz érték esetén világı́tson az.
A case structure hamis ágát ebben a feladatban nem
használtuk, hiszen csak akkor kell a dobásokat elvégezni,
ha a nyomógomb lenyomásra kerül, azaz igaz igazságértéket
vesz fel. Emellett a gomb beállı́tásaiban meg kellett adni,
hogy csak abban a pillanatban adjon igaz értéket, amikor
le lett nyomva, hiszen az alap beállı́tással addig adna igaz
értéket, amı́g újbóli gomblenyomás nem történik.
A dobott összegek eloszlása egy haranggörbe formát vesz fel.
A haranggörbe a változók normál valószı́nűségi eloszlása,
amelyet a grafikon ábrázol, és olyan, mint egy harang alakja,
ahol a görbe legmagasabb vagy legfelső pontja jelenti a
legvalószı́nűbb eseményt a sorozat összes adata közül. Ez
magában foglalja, hogy sokkal kisebb eséllyel dobunk 3-ast
vagy éppen 18-ast, mint például a legnagyobb eséllyel dobható
összeg a 11. Mivel a 11-hez közelı́tve pozitı́v és negatı́v
irányból is egyre nő, azok száma, hogy hányféleképpen
állı́thatjuk elő az adott összeget, mı́g a hármat, vagy a
tizennyolcat csak egyféleképpen lehetséges. Emellett vannak
olyanok is, melyek szabályos dobókockával, három dobás
esetén nem lehetetséges, mint a 3-nál kisebb, vagy 18-nál
nagyobb számot dobni.
Ezt a programot egy subVI-ban kell elhelyezni. A subVI
egy program csomag, vagy más néven egy modul. Ennek az
a fő jelenfőssége és előnye, hogy az egész modul egyetlen
ikonból áll, ezáltal nem fogjuk látni a szerkezetét, ı́gy könnyű
és átlátható felhasználást biztosı́t.

D. Negyedik feladat

A 3. pontban elkészı́tett dobókocka szimulációt subvi-ként
felhasználva készı́tsen programot, mely egy gombnyomásra
egyszer fut le és legalább 10000-szer dob a kockákkal. Meg-
jelenı́ti az eredmények gyakoriságát, azaz, azt, hogy hány
alkalommal lett az eredmény 3; 4, . . . 18.
Ebben a feladatban a 3. feladat subVI formátumát használtuk
fel, ami egy dobást jelentett. A subVI forma előnyeinek
köszönhetően egy sokkal átláthatóbb programot hoztunk létre,
hiszen nem szerepel a szükségesnél több ciklus, ami ne-
hezebbé tenné a kiigazodást a programon. Tekintettel arra,
hogy itt megadott számú, ez esetben 10000 dobást kellett
egymás után szimulálni, ı́gy a legkézenfekvőbb megoldás egy
For Loop használata volt. Ez a ciklus pontosan annyiszor fog
lefutni, amennyi értéket mi adunk neki, ı́gy esetünkben be is
állı́tottuk az n=10000-es határt. Ennek a for loop belsejébe
helyeztük el a korábban elkészı́tett kockaszimulációt. Ennek
a kimenetét csatoltuk hozzá a megfelelő gráfhoz, amelynek a
bemenete az adott dobott kockák számainak összege. Ezáltal
a gráfon nyomon tudjuk követni, hogy melyik összegből hány
darab jött létre a szimuláció során. Ezzek bizonyı́tva az előző
feladatban megfogalmazott eloszlást. Itt is jól megfigyelhető
a haranggörbe, ahogy 11-et sokkal nagyobb eséllyel dobunk,
mint az éppen nagyon kicsi, vagy éppen a nagyon nagy
számot.

E. Ötödik feladat

Szimuláció segı́tségével válaszható módon állı́tson elő
szinusz, négyszög, fűrész és háromszög alakú jeleket. Az
előállı́tott jelek paraméterei (amplitudó, offszet, frekvencia)
legyenek beállı́thatók. Az előállı́tott jeleket értelmezze úgy
mintha egy feszültségforrás jele lenne. A számı́tás során a



jelalakot mintánkét egy adott tömbben kell elhelyezni, és
annak értékeit kell ábrázolni. A megjelenı́tés során ügyeljen
arra, hogy futtatás közben sem ugrálhat össze vissza az ábra.
Első sorban néhány, a feladat megéréséhez alapvető fogalom
definı́cióját ismertetném:

• Amplitúdó: Az amplitúdó időben változó mennyiségek
legnagyobb eltérése az egyensúlyi állapottól. Jele: A
Mindig pozitı́v szám. Harmonikus rezgőmozgás esetén
az amplitúdó az egyensúlyi vagy nyugalmi helyzettől
számı́tott legnagyobb kitérést jelenti.

• Offszet: Az eltolásos görbék/felületek,
más néven párhuzamos görbék/felületek, a
generátorgörbéktől/felületektől a normálvektor mentén
állandó távolságra lévő pontok helyeként határozhatók
meg, ez az állı́tható adat az offszet.

• Frekvencia: A frekvencia egy periodikus jelenség
(rezgés) ismétlődési gyakoriságát” jelenti: egy esemény
hányszor ismétlődik meg egységnyi idő alatt (idő alatti
periódussűrűség).

A feladat során létrehoztunk a Front Panelen egy Waveform
Graph-ot, az előállı́tott jelek megjelenı́tésére, egy Combo
Box-ot amely segı́tségével a legördülő listából kiválaszthatjuk
a megelelő alakot, valamint három darab Numeric Slidert,
amelyen állı́thatók a kért offszetet, amplitudót, frekvenciát.
Létrehoztunk egy Case Structur-et, ahol négy állást hoz-
tunk létre, amely megfelel a legördülő listán szereplő fogal-
maknak. Az adott Case Structure bemenetéhez csatoltuk a
combo boxot, valamint a három Numeric Slidert. A struktúra
belsejében létrehoztunk egy-egy Simulate Signal-t, amelyen az
előre elkészı́tett függvényrajzokat használtuk, ezeket kötöttük
össze a Case-en kı́vül elhelyekedő Waveform Graph-fal. Ezt
megismételtük az összes Case ágban, ı́gy már mind a négy
formát meg tudja jelenı́teni a gráf a legördülő menü alapján
választott alakzatot. Ezután már csak a folyamatos futtatást
kellett megldanunk, amelyhez létrehoztunk a létrehozott ob-
jektumok köré egy While Loop-ot, amelynek a leállı́tásához
bekötöttük egy true/false értéket tartalamazó kapcsolót, ame-
lynek az értékét mindig false-ra állı́tottuk.

F. Hatodik feladat

Középiskolai tanulmányai alapján tetszőleges periódikus
jelalak alkalmazása esetén határozza meg annak effektı́v
értékét. A meghatározása során induljon ki az effektı́v érték
definı́cójából és mutassa meg, hogy hogyan is kell azt
alkalmazni.

• Effektı́v érték: A villamos áram effektı́v értéke (vagy
négyzetes középértéke) az áram hőhatására ad útmutatást.
Az effektı́v érték annak az egyenáramnak az értékével
egyenlő, amely azonos idő alatt ugyanakkora munkát
végez (hőt termel), mint a vizsgált váltakozóáram.

Ezen feladat során az ötödik feldatban létrehozott programot
fejlesztettük tovább. A Siulate Signalból kimenő értékhez
kötöttük hozzá a Double to Ineger tı́pusú konventátort. Ennek
a két kimenete lesz az RMS, amelyet az egyik létrehozott
Numeric Indicatorhoz kötünk hozzá, ez adja meg az effektı́v
értéket. A konvertáló másik kimenete a két kimenetű Ar-
rayhez kapcsoltuk hozzá. Ettől a ponttól a négy különböző

alakhoz, négy különböző módszer tartozik. A sinus görbe
esetén a tömb felső kimenetét elosztjuk a

√
2 -vel. Ennek

az eredményét kötjük hozzá a másik létrehozott Numeric
Indicatorhoz, ez tartalmazza az számı́tott értéket. A fűrész és
a háromszög esetén hasonló metódust hajtunk végre, annyi
különbséggel, hogy

√
2 helyett

√
3 -mal osztjuk el az Array

kimenő értékét, ezzel kiszámolva a keresett értéket. A négyzet
esetén könnyebb volt a feladat, hiszen már nem kellett több
számolást végezni, hiszen a kimenő Array értéket kötöttük
össze a megjelenı́tő Numeric Indicatorral. Ezáltal a Front Pan-
elen minden kiválasztott grafikon esetén, az állı́tható értékeket
figyelembe véve, láthatjuk a kért kijelzőket, ezlátal remekül
össze is tudjuk őket hasonlı́tani.

REFERENCES

[1] https://hu.wikipedia.org/wiki/Amplitúdó
[2] https://hu.wikipedia.org/wiki/Frekvencia
[3] https://wiki.ham.hu/index.php?title=Effektivérték
[4] https://www.hindawi.com/journals/jam/2014/124240/


