
Ismerkedés a LabVIEW programmal

Heiszman Henrik

Neptun kód: ENV2R9

Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar

1083 Budapest, Práter utca 50/A

heiszman.henrik@hallgato.ppke.hu

Téma–A LabVIEW grafikus programozói környezet

segítségével különböző matematikai és programozói

feladatok illetve problémák megoldása olyan

programokkal, melyeket a felhasználó egyszerűen, számára

is érthető módon tud használni. Mérés során a National

Instruments által fejlesztett LabVIEW programot

használtam.

I. A JEGYZŐKÖNYVBEN HASZNÁLT FOGALMAK

Front Panel: ez az általunk elkészített, virtuális műszer

kezelőfelülete, ide helyezhetők el a különböző vezérlő és

kijelző egységek, valamint különféle design elemek.

Block Diagram: itt az alkalmazás grafikus programozása

folyik, ez a virtuális műszer belseje.

Controls Palette: itt találhatóak a Front Panel-en

elhelyezhető vezérlő és kijelző elemeket (illetve szokás még

kontrolloknak és indikátoroknak nevezni őket).

II. A LABVIEW ELŐKÉSZÍTÉSE

A LabVIEW ikonra kattintva elindítottam a programot,

majd létrehoztam egy új „Blank VI” projectet. A tanultak

alapján a „ctrl+T” billentyűkombinációval egymás mellé

illesztettem a képernyőn a Front Panelt és a Block Diagramot.

Ezzel a pár lépéssel elő is állítottam a két tiszta oldallal

rendelkező munkafelületet.

III. SEBESSÉG ÁTVÁLTÁSA

Az általam elkészített programnak feladata lesz, hogy hiba

nélkül, a felhasználó által meghatározott,
𝑚

𝑠
 mértékegységű

sebességet átváltsa
𝑘𝑚

ℎ
 -ba, majd az így kiszámolt értéket

jelenítse meg egy általam tetszőlegesen megválasztott kijelzőn.

Valamint a program képes lesz egy, a felhasználó által

üzemeltetett gomb hatására egy sárga színű, négyzet alakú

LED-et felkapcsolni.

A program elkészítése során több fajta inputra (a

felhasználó által kezelt bemenetre) is szükségem lesz. Kelleni

fog egy nyomógomb, amely majd üzemelteti a LED, továbbá

egy numerikus bemenet, amely segítségével az üzemeltető

megadhatja az átváltani kívánt sebesség mértékét (
𝑚

𝑠
-ban).

Ezeket a bemeneteket egyszerűen elhelyezem a Front

Panel. A használni kívánt inputot a következőképpen hoztam

létre: az egér jobb gombjával kattintottam a Front Panelen,

amelynek köszönhetően megjelent Controls Palette. Ebből az

ablakból kiválasztottam az általam használni kívánt inputokat:

egy Boolean típusú nyomógombot és egy numerikus

bemenetet. (Boolean típusú gombnak nevezzük azt a bemenet,

amely igaz vagy hamis érték bevitelére szolgál.) Ezek után

szinten a Controls Paletten „Boolean” menüpont alatt

kiválasztottam a négyszögletes LED-et, majd elhelyeztem a

Front Panelen. Elvárás, hogy az a dióda négyzet alakú legyen

és sárgán világítson. A méretét egyszerűen a LED egyik

szélére kattintva, húzással méretre lehet szabni. A dióda

színének beállításához a jobb kattintással lenyíló menüsor

„Properties” alpontját kell megnyitni. Itt az „Appearance”

fülön a „Colors” alpontban beállítható az On/Off állásban lévő

LED színe. Én az On állapot színét a feladatnak megfelelően a

255; 255; 100 és az Off állapot színét pedig a 100; 100; 0;

RGB kódú sárga árnyalatra állítottam. Végül elhelyeztem egy

numerikus és egy string típusú kimenetet is, amelyen keresztül

a program képes lesz megjeleníteni az átváltott sebesség

mértékét és mértékegységét a felhasználó számára.

Az vizuális kellékek elkészítése után elkezdtem a feladat

software-es részét elkészíteni Block Diagramon.

Első lépésben a nyomógomb kimenetét összekötöttem a

LED bemenetével, ezzel biztosítva, hogy a dióda kapcsolható

legyen a felhasználó igénye szerint.

Második lépésben a mértékegységváltó helyes működését

szolgáló programot készítettem el. A Block Diagramon

létrehoztam egy numerikus konstanst, amelynek a 3,6-et adtam

értékül, majd elhelyeztem a szorzás elvégzésére szolgáló

függvényt. Ennek a függvénynek a bemenetéra rákötöttem a

numerikus bementet és a konstans számot, majd a kimenetét

pedig összekötöttem a numerikus kimenettel. Ezek után a

Block Diagramon létrehoztam egy string típusú konstanst is,

amelybe „
𝑘𝑚

ℎ
”-ot írtam. Ez az állandó felelős azért, hogy az

üzemeltető lássa az átváltott szám mértékegységét. Végül

összekötöttem a string állandót a string kimenettel.

E két lépés elvégzésével a program elkészült és az

ellenőrző futtatás során hibátlannak bizonyult: a nyomógomb

kapcsolja a lámpát és a bemenetre érkező az adatott átváltás

során helyesen meg is jeleníti. (1. ábra)

Meg kell még említeni a program matematikáját is.

Fizikából tanultak alapján tudjuk, hogy 1
𝑚

𝑠
= 3,6

𝑘𝑚

ℎ
 . Ebből

adódóan volt szükségem egy konstans számmal (3,6) való

szorzásra.

Mivel a program készítése során egymástól független

működésre kalibráltam az mértékegységváltót és a LED

kapcsolóját, így az applikáció használata során ez a két funkció

egymást semmiben sem befolyásolja.

IV. VÁLASZTHATÓ ÁTVÁLTÁS

Ebben a részben átalakítottam a már meglévő (1.

feladatban létrehozott) programomat úgy, hogy a felhasználó

saját maga tudja meghatározni, hogy át szeretné-e váltani a

megadott sebességet vagy sem.

Annak érdekében, hogy a program el tudja végezni a

feladatát, két esetet kell elkülöníteni egymástól, és mind a két

szcenáriót egymástól különböző módon kell kezelni. Az egyik

eset az, ha a felhasználó nem szeretne átváltást, tehát a

kapcsoló az „OFF” állásban van. Ekkor a programtól azt

várjuk el, hogy egyszerűen kiírja a bemeneti értéket és a

mértékegység kijelzőn a „
𝑚

𝑠
” jelenjen meg. A másik esetben a

felhasználó bekapcsolja az átváltó funkciót, tehát a kapcsoló az

„ON” állásban van. Ekkor azt várom el a programtól, hogy

helyesen átváltsa a bemeneti adatot és a mértékegység kijelzőn

a „
𝑘𝑚

ℎ
” szerepeljen.

Első lépésben a Block Diagramon létre kell hozni egy

„Case Structure ” nevű függvényt, amely arra szolgál, hogy

különböző eseteket lehessen megkülönbözetni (jelen esetben

ez az „OFF” / „ON” (igaz/hamis) állása a kapcsolónak.), és

össze kell kötni a kapcsoló kimenetével.

Második lépésben meg kell tervezni azt az esetet, amely

során a kapcsoló a hamis, tehát kikapcsolt állásban van. Ekkor

egyszerűen a „Case Structure” False állásánál át kell kötnünk a

sebesség bemenetet a kimenettel és a string konstanst
𝑚

𝑠

állapotban be kell kötni a string kimenetre. Ezt a következő

ábrán szemléltetem. (2. ábra)

Harmadik lépésben megterveztem azt az esetet, amikor a

kapcsoló az igaz, tehát a bekapcsolt állapotban van. Ekkor a

„Case Structure” True állásában be kell húzni az első feladat

során elkészített átváltó program szorzó és mértékegységet

kiíró részét. Ezt szemlélteti a következő ábra. (3. ábra)

Feladat része volt továbbá az, hogy használjak úgynevezett

SubVI-t a program elkészítése során. A SubVI arra szolgál,

hogy a programon belül egy-egy részletet össze lehet sűríteni,

így az elkészült program jobban átláthatóvá és könnyebben

kezelhetővé válik. SubVI létrehozásához ki kell jelölni a

tömörítendő elemeket a Block Diagramon és az „Edit”

menüpont alatt a „Create SubVI” alpontot kell kiválasztani. A

következő ábrán látható, hogy hogyan jelzi a LabVIEW az

elkészült SubVI-t. (4. ábra)

1. ábra

Elkészült átváltó
2. ábra

False ág

3. ábra

True ág

A programban továbbra is él az a funkció, hogy a kapcsoló

segítségével vezérelni lehet a LED-et. Itt ez hasznos volt mert,

így tudja a felhasználó a dióda állapota alapján, hogy be van- e

kapcsolva az átváltás.

Az előbb ismertetett lépések elvégzése során a program

elkészült. Az ellenőrző futtatás során hibátlannak bizonyult.

V. KOCKAJÁTÉK

Ez a program egy kockajátékot fog szimulálni, amely egy

nyomógomb segítségével üzemeltethető. A gomb megnyomása

után a program egyszerre fog „dobni” három hatoldalú

dobókockával és abban az esetbe, ha a dobókockákon szereplő

számok összege pontosan megegyezik tízzel, akkor elkezd

világítani zölden egy LED. Fontos részlet, hogy ne legyenek

hamisak a dobókockák, tehát minden dobás során az egyes

kockák értéke 1 és 6 között azonos valószínűséggel

forduljanak elő.

Első lépésben, a már megszokott módon, elhelyeztem a

Front Panelen az üzemeltetéshez elengedhetetlen eszközöket: a

nyomógombot, a zöld színű kerek LED-et és egy numerikus

kijelzőt, hogy a felhasználó lássa, hogy mennyi az adott dobás

során, a kockákon szereplő értékek összege. (5. ábra)

Második lépésben nekiláttam elkészíteni a program

sofware-es hátterét. A korábbi példához hasonló, itt is két

esetet kell megkülönböztetni. Egyik eset, amikor a gombot

nem nyomták le, a másik esetben pedig, amikor a felhasználó

elindította az adott kört, tehát lenyomta a gombot. Az első

esetben nem kell semmit csinálnia a programnak, hiszen

ilyenkor a játékos még nem indította el a játékot. Ez számomra

azt jelenti, hogy a Block Diagramon létrehozott, a nyomógomb

által vezérelt esetvizsgáló függvény „false” állásában nem

szabad, hogy bármi is szerepeljen. (6. ábra)

Harmadik lépésben leprogramoztam annak az esetnek a

kezelését, amikor a felhasználó megnyomja a gombot. Ekkor le

kell generálni három, egymástól független, 1-6 közötti, egész

számot, majd ezeknek az összegét ki kell írni a kijelzőre,

valamint be kell kapcsolni az izzót abban az esetben, ha ez az

összeg megegyezik tízzel. Ez az alábbi módon néz ki a

LabVIEW-ban. (7. ábra)

LabVIEW-ban a random szám generálására létrehoztam az

esetvizsgálón belül három „Random Number (0-1)” nevű

függvényt (ezek reprezentálják a három dobókockát). Ezek a

függvények legenerálnak egy 0 és 1 között lévő számot.

Nyilván való, hogy ez számomra csak részben jó, ezzel

valamilyen matematikai műveletet kell végezni, hogy 1-től 6-g

valamilyen egész számot kapjak. Erre tökéletes megoldás,

hogy a generált számot megszorzom hattal, amely így 0 és 6

közötti tört szám lesz, majd ezt egy újabb függvény

segítségével felfelé kerekítem. Ezzel a módszerrel a program

4. ábra

SubVI használata

5. ábra

Kockajáték Front Panel

6. ábra

False állás

7. ábra

True állás

legenerál egytől hatig egy random számot, amely során az

egyes számok az valószínűséggel fordulnak elő.

Ezt a random szám generálást a program háromszor végzi

el egymás után és az így kapott három számot összegzi. Az

összeadás elvégzése során az eredmény megjeleníti a kijelzőn.

A programba fel kellett használ egy egyenlőséget vizsgáló

függvényt, amely két bemenetére a kockák összegét és egy

konstanst kötöttem. Ennek az állandónak az értéke 10, hiszen

azt szeretnénk vizsgálni, hogy az összeg értéke megegyezik-e

tízzel. A függvény kimenetét, amelyen vagy igaz, vagy hamis

érték szerepel a működés során, a zöld LED-re kötöttem,

amellyel azt értem el, hogy az egyenlőséget vizsgáló függvény

értéke határozza meg az állapotát.

A fent leírt lépések elvégzésével a program elkészült és a

futtatások során hibátlannak bizonyult. (8. ábra)

A mérési utasításban szereplő feladatokból hármat tudtam

elvégezni labor végéig.

8. ábra

A program futás közben

FELHASZNÁLT FORRÁSOK

ONLINE LABVIEW HELP RESOURCES

LABVIEW MÉRÉSI UTASÍTÁS

LABVIEW SEGÉDLET

https://www.ni.com/getting-started/labview-basics/online-help
http://users.itk.ppke.hu/~tihanyia/bevezet/labvi1merut.pdf
http://users.itk.ppke.hu/~tihanyia/

