
LabVIEW 1 jegyzőkönyv
Levente VAJNA

(Mérési partner: Válik Levente Ferenc)
(Gyakorlatvezető: Tihanyi Attila Kálmán)

Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar
Magyarország, 1083 Budapest, Práter utca 50/a
vajna.levente@hallgato.ppke.hu

Kivonat—Megismerkedtünk a LabVIEW blockprogramozási,
és szimulációskörnyezettel. Elkészı́tettük első programjainkat,
mint egy LED villogtatás, dobókockával való dobás szimulációja,
és még különböző tı́pusú jeleket is mintavételeztünk, valamint
azok effektı́v értékét számoltuk ki.

Keywords-LabVIEW; átváltás; dobókocka; mintavétel; effektı́v
feszültség

Mérés ideje: 2023.03.16.

I. FELADAT: LED HASZNÁLAT, ÉS M/S - KM/H ÁTVÁLTÁS

Elsőként miután a LabVIEW megnyitási, telepı́tési,
és BlankVI készı́tési nehézségeivel megbirkóztunk,
mérőpartneremmel megcsináltuk az első kis programunkat.
A nyomógombunkat, mint bemeneti eszköz konfigurálnunk
kellett alapértelmezettről olyan állapotra, hogy amı́g lenyomva
tartjuk a gombot, addig égjen a LED. A Block Diagram
oladalon pedig a gombhoz kellett kötni a kimeneti LED-et.
Ezt is minimálisan át kellett állı́tani, hogy ovális legyen, és
sárga, ne alapértelmezett zöld, kerek.

Továbbá egy átváltási feladatot is meg kellett oldjunk a
programban, ehhez egy Numeric Contor-ra és egy Nume-
ric Indicator-ra volt szükségünk, hiszen amit a bemeneten
m/s mértékegységben megadunk, azt egy kimeneten km/h
mértékegységben kell visszaadjuk. A Block Diagramon a
bejövő értéket valamint a 3, 6 lebegőpontos konstanst ve-
zetékkel összekötöttem egy szorzó műveleti egységgel, és az
ı́gy kapott eredményt vezetékkel összekötöttem a kimeneti
numerikus indikátorral.

Érdekes volt megtapasztalni, hogy miként előadáson
Tanárúr elmondta, a parancsok nem irány szerint futnak le,
hanem a műveletvégrehajtás szempontjából vett irányban, azaz
ahogy bekábelezetük. És bár nem tudom leellenőrizni, hogy
tényleg egyszerre futnak a külön lévő szálak, tekintve, hogy
nincs két kurzorom, a működését megfigyelve azt tapasztal-
tam, hogy közel egyidőben biztosan tudja futtatni.

II. FELADAT: KI/BEKAPCSOLHATÓ ÁTVÁLTÁS,
MÉRTÉKEGYSÉG KIJELZÉSE

Itt e feladat során az előző feladatot egészı́tettem ki
olymódon, hogy a kapcsoló benyomott állapotában ne
végezzen átváltás, ellenkező esetben pedig igen, és hogy még
szebb legyen, a mértékegységet is kiı́rjuk mellé.

Ezt akképp tudtam megtenni, hogy behelyeztem a Block
Diagram-ra egy Case struktúrát (1. ábra), mely a kapcsoló
kiengedett állapotánál a bejövő számot megszorozza a megis-
mert módon 3, 6-tal, és azt adja ki a numerikus indikátornak,
továbbá egy string konstans értékét, ami pedig nem más, mint
a ”km/h” -t is kiadja, amit egy string indikátoron jelenı́tünk
meg, illetve a kpacsoló benyomott állapotánál csupán a be-
meneti értéket viszi tovább a kimenetre, és a ”m/s” szöveg
konstanst is kiadja a string indikátorra.

1. ábra. Case struktúra

Az 1. ábrán egy Case struktúra látható. Mivel a LabVIEW
program nem tartalmaz külön ”if” elágazást, ı́gy minden-
nemű kódbeli elágazást ezzel lehet megvalósı́tani. Használható
logikai kapuként, ez felel meg az ”if”-nek, ahol ha nincs
kimeneti érték, amit visszaad az elágazás, elég csak az egyik
eshetőségre elkészı́teni a programsorozatot, azonban ha már
kimeneti értékkel is rendelkezik a Case struktúránk, nem
elhanyagolható mindkét ágnál valamilyen kimeneti értéket
bekábelezni. Van lehetőségünk például string tı́pusú elágazást
is létrehozni, vagy integer, vagy double tı́pusút is, mindez azon
múlik, hogy milyen tı́pusú vezeték kerül bekötésre a bemeneti
kis ”[?]” kérdőjelbe. Kettő fontos dologra figyelni kell, hogy
ezeknél ugyanúgy be kellenek kötve a kimenetek, ha vannak,
illetve a lényeges, hogy legyen ”Default”, azaz alapértelmezett
lehetőség is megadva, kölönben a VI addig nem is futtatható,
amı́g ez nem történt meg. Még egyféle lehetőségünk van, ez az
úgynevezett ”Enumerate”, ami annyit takar, hogy előre meg-
adott lehetőségeken kı́vül más biztosan nem lesz, ezért ennél a
tı́pusú elágazásnál nem szükséges az alapértelmezés beállı́tása.
Ennél a módnál van még egy könnyedség, jobbegérrel a
Case struktúrára kattintva kiválaszthatjuk azt a lehetőséget,
hogy automartikusan legeneráljon minden lehetséges elágazási
lehetőséghez egy ablaskocskát, ami azért is lehet segı́tség, mert
ı́gy biztosra mehetünk azzal, hogy nem hagyunk ki semmit.

További nehézséget okoztott elsőre a SubVI elkészı́tése, de
aztán megtaláltam azt a lehetőséget, mely a kijelölt objektu-
mokat behelyezi egy SubVI-ba. (lásd: 4. ábra)

III. FELADAT: KOCKADOBÁS 3 KOCKÁVAL

Először a partneremmel a dobókockát készı́tettük el. Egy
random I = [0; 1) intervallumbeli számot generáló objektum
segı́tségét vettük igénybe. A generált számot felszoroztuk 6-
tal, ı́gy I1 = [0; 6) lehetséges számot kapunk, de ehhez még
hozzáadtunk egyet, ı́gy az intervallumunk I2 = [1; 7), vagyis
1 lehet még, de 7 nem. Ezt a számot még egy alsó egész
számra kerekı́tő objektumhoz kábeleztük be, vagyis a valós
szám egészrészét veszi, ı́gy bebiztosı́tva, hogy minden egyes
számhoz azonos méretű intervallum tartozzon, vagyis azonos
eséllyel ”dobódjon ki” mind a hatféle szám.



Például:

2 : [2; 3)

3 : [3; 4)

6 : [6; 7)

Ezt a objektumsorozatot SubVI-á alakı́tottam, majd
hozzáadtam a VI-hoz ebből további kettőt. Ahhoz, hogy ezek
gombnyomásra menjenek, megint a Case struktúrára esett a
választásom, és ha a bemeneti érték True, vagyis a gomb le van
nyomva rövid ideig, akkor a dobott kockák értékeit egyesével
egy-egy Numeric Indicator-on megjelenı́tem, majd a három
kocka eredmményét összeadom, és az ı́gy kapott összeget
és egy 18 konstanst egy = operátorral összehasonlı́tom, és
amennyiben ez a feltétel teljesül, a kis zöld LED kivillan.

Számı́tásaim a következők:

P (3) =
1

63
=

1

216

P (4) =
3

216
=

1

72

P (5) =
6

216
=

1

36

P (6) =
10

216
=

5

108

P (7) =
15

216
=

5

72

P (8) =
21

216
=

7

72

P (9) =
25

216

P (10) =
27

216
=

1

8

P (11) =
27

216
=

1

8

P (12) =
25

216

P (13) =
21

216
=

7

72

P (14) =
15

216
=

5

72

P (15) =
10

216
=

5

108

P (16) =
6

216
=

1

36

P (17) =
3

216
=

1

72

P (18) =
1

216

(1)

Az egyes résszámı́tásaimat tartalamazza a 2. ábrán
látható levezetés. Elegendő volt csupán elmenni 10-ig a
számı́tásokban, hiszen egyrészt korábbi matematikai ismerete-
ink is alátámasztják, illetve ugyanezek az eredmények lesznek
visszafelé. Olyan módon, mint kombinatorikában is n-ből
kiválasztani k darabot ugyanannyiféleképpen lehet, mint k
darabot NEM kiválasztani, azaz (n− k) darabot kiválasztani.

Az 1. egyenletben a valószı́nűségeket a 2. ábrán
látható részszámı́tásaim alapján határoztam meg, illetve azon
eredményeket osztottam 63-nal, hiszen az az összes lehetőség,
tekintve, hogy 3 kockával dobunk, és mindegyik 6-féle
eredményt vehet fel.

Szépen látszik, hogy a 10-nek és a 11-nek ugyanakkora
a valószı́nűsége, ezek fordulnak elő legtöbbször. Így nem

meglepő, hogy sokszori futtatás után az a kettő ugyanannyi-
szor fog kijönni nagyságrendileg, és az lesz a legtöbb. Ta-
pasztalatszerzés során én is lejátszottam a szimulációt 20-30
alkalommal, és az is ezt az állı́tást bizonyı́totta.

A kis led bekötése, ha 18 az összeg a korábbiakhoz hasonló
módon történt, azonban nehéz volt tesztelni, hogy tényleg
működik-e, hiszen matematikailag minden 216.-ra kell csak
hogy kijöjjön, ezért ennek érdekében a tesztelés erejéig egy
másik számra, 11-re ı́rtam át, hogy szemléletese jobban a
működést.

2. ábra. Számı́tásaim az egyes valószı́nűségekre

IV. FELADAT: 10000 KOCKADOBÁS 3 KOCKÁVAL

Ez a feladat okozta számomra a legnagyobb fejtörést, hiszen
az úgynevezett array-ek működési elve kicsit nehezebben
megérthető. Természetesen egy 10000-szer lefutó For Loop (3.
ábra) használata elengedhetetlen ebben a feladatban, azonban
az mindenképp tömbként adja vissza az eredményeket.

3. ábra. For Loop

A 3. ábrán keresztül mutatnám be a For Loop működési
elvét. A C++ programozási nyelvből már jól ismert ciklust
mind ismerjük, itt is hasonlóan végzi el a feladatot. A bal
felső sarokban hozzá kell kötni egy integer konstanst, amit
akár egy jobbegér kattintás/Create Constant opcióval még
gyorsabban is elvégezhetünk. Ez az ’N’ jelenti, hogy a ciklus
hányszor fog lefutni. A kis ’i’ betű is megjelenik, ami alatt a



ciklusváltozót értjük. Ez szolgál arra, hogy menet közben 0-
tól indexelve le tudjuk kérni, hogy hányadik lefutásánál tarunk
a For Loop tartalmazta kódrészletnek. Fontos tulajdonsága
továbbá a ciklusnak, hogy a kimeneti eredményeket nem
egyesével érhetjük el, hanem a teljes lefutás végén, array-ben
tárolva.

A feladat elkészı́tése során, hogy jobban átlássam, a három
kockával való dobást, amiben külön SubVI-ok vannak, szintén
egy további SubVI-já alakı́tottam. Ezen tı́zezer eredményt egy
tömbként adja vissza a For Loop, de csak akkor szeretnénk
ezzel foglalkozni, ha lenyomtuk a gombot. Ezért egy beépı́tett
elágazást raktam bele, mely azért van, hogy ha lenyomom,
továbbı́tásra kerüljön a friss tömb, ha viszont nincs lenyomva,
akkor az előző eredmények továbbra is kiı́rva maradjanak, ne
csak egy villanásnyira lássuk az eredményeket.

4. ábra. SubVI

Egy LabVIEW VI-ba beágyazott SubVI látható 4. ábrán.
Ez olyasformán működik, és úgy kell őket értelmezni, mint
programozás során a függvényeket. Ha VI-ban egy bizonyos
”kódrészletet” az ember többször is fel szeretne használni,
érdemes abból SubVI-t létrehozni, melyet úgy tehetünk meg,
hogy a kı́vánt vezetékeket, paneleket, blokkokat és ki-, illetve
bemeneteket kijelöljük a Block Diagramon, majd utána bal
felül az Edit/Create SubVI opciót választjuk, hiszen onnantól
kezdve könnyedén felhasználható bárhol a továbbiakban.
Bármely már kész VI is beimportálható SubVI-ként egy másik
tetszőleges VI-ba oly módon, hogy megnyitjuk mindkettőt, és
a beágyazni kı́vánt VI jobb felső sarkában található 4. ábrabeli
ikont Drag and Drop módon az új VI Block Diagramjára
húzzuk. Innentől ugyanúgy működik kódon belül a maga be-,
és kimeneteivel.

A következő For Loop (3. ábra) arra szolgál, hogy az össze-
geket 3-tól 18-ig megszámoljuk, olymódon, hogy ha egyenlő
az elem a For Loop i ciklusváltozójával, akkor egy logikai
igen helyett egy integer 1-est adjunk tovább, melyet egy előre
beépı́tett operátor tesz lehetővé. Ezen egyesek számát a szum-
ma operátor megszámolja, array-ként továbbadja, és egy in-
dikátor tömbben a Front Panelen megjelenı́ti. Ezt végigcsinálja
mind a 16-féle dobott értékkel, és végül ı́gy külön-külön
válogatva, de egy helyen egyszerre láthatjuk mindegyiknek az
előfordulását.

Amiért tanulságos számunkra az eredmény, mert ekkora
dobásszám már elég jól reprezentálja, hogy tényleg ezeknek
az előfordulása a legnagyobb, és mint az előző bekezdésben
kiszámoltam, 1

8 valószı́nűséggel lesz 10, és ugyanekkora
valószı́nűséggel, azaz minden nyolcadik lesz 11.

V. FELADAT: JELEK

Egy beépı́tett jelgenerátort (5. ábra) használtam munkám
során, amit az effektı́v érték kiszámı́tásához át kellett alakı́tsak
egy tömbbé. Innen ki tudtam számı́tani a matematikai és
fizikai ismereteim segı́tségével az effektı́v feszültséget, hi-
szen az nem lesz más, mint a vett minták négyzetes avagy
kvadratikus közepe. Az egyik legkönnyebben ellenőrizhető
módon tudtam tesztelni tudásomat, hiszen azt fizikán mind

megtanultuk, hogy a hálózati effektı́v feszültség 230V, és
kb. 325V ennek maximális értéke, hiszen a jel szinuszos,
mivel váltakozó feszültségű áramról beszélünk. Ez a hálózati
feszültség továbbá 50Hz-es, amit bár nem kell ismerni ennek
kiszámı́tásához, be lehet állı́tani a még életszerűbb szimuláció
érdekében.

5. ábra. A mintavételezéshez jeleket szimuláló beépı́tett ob-
jektum

Az 5. ábrán látható jelszimuláló egy hasznos beépı́tett
generátor, remekül alkalmazható többek közt ennél a szi-
mulációnál is, de bárhol, ahol nem áll rendelkezésünkre éppen
egy külső hardware. Sokféleképpen konfigurálható, ki tud
bocsátani többféle jeltı́pust, mint szinuszost, háromszögalakút,
négyzetest, vagy akár még fűrészest is. Be lehet állı́tani a min-
taelőállı́tás számát, illetve, ami az egyik legfontosabb beállı́tás,
hogy egész számú jelet állı́tson elő azonos időközönként,
különben a frekvencia függvénye is lehetne az effektı́v érték,
ami pedig helytelen lenne. További beállı́tásra ad lehetőséget,
hogy bemeneti numerikus értékkel szabályozható a kibocsátott
jel amplitúdója, offszete vagy a frekvenciája is.

A beállı́tott tekerők (”potméterek”) segı́tségével könnyedén
beállı́tható mind a jel frekvenciája, mind a jel amplitudója,
illetve még a kezdése is, vagyis az offszet is az imént leı́rtak
alapján, de ennek a tesztelésére még külön, konstansokkal
meghı́vott programot is készı́tettem. Szerencsémre stimmelt
minden és az adatok megegyeztek az elvárt értékekkel, ı́gy
kijött a 230V effektı́v feszültség, amit szerettem volna meg-
kapni a számı́tásokkal, de persze bármilyen más számmal is
kijön, csak ez az az érték, amit középiskolából és a hétközna-
pokból mind jól ismerünk. Egyezést persze nem tudtam rá
ı́rni, mert szerintem a double nem látott tizedes számjegyei,
amik a pontosság, illetve a kerekı́tés miatt eltűnhettek, de a
numerikus kimeneten mégis jól látszik a 230V.

Ahhoz, hogy a jeltı́pust is ki lehessen választani, én egy
legördülő szöveges bemenetet választottam ki céleszközként.
Egy Case elágazásba behelyeztem minden ágához az adott
tı́pushoz tartozó jelgenerátort, mely annak kiválasztása esetén
olyan tı́pusú jelet fog adni, amilyet mi szerettünk volna. Ezt
a jelet egy nagy ”oscilloscope” (Waveform Graph) beme-
netére is bekötöttem, hogy a jel egy gráfon ábrázolva is
szemlélhető legyen. A jelet egy speciális, úgynevezett dina-
mikus adat tı́pus formában kapjuk meg a Signal Simulator-
tól. Annak érdekében, hogy ezzel számolni lehessen, egy
beépı́tett átalakı́tó operátorral double tı́pussá konvertálom, és
azt adom át az effektı́v feszültség kiszámı́tására alkalmas



függvényemnek.

VI. FELADAT: MINTAVÉTELEZÉS ÉS EFFEKTÍV ÉRTÉK
SZÁMÍTÁS ÁLTALÁNOSÍTVA

Tulajdonképpen én első esetben is ugyanazon képletet
használtam, márpedig ugye a minták kvadratikus közepét
vettem. Ezt az egyszerűség és a szépség kedvéért SubVI-
já alakı́tottam, ı́gy mobilisabb is volt és nem okozott gon-
dot a másik szimulációban is felhasználni. Ezt úgy tettem,
hogy a beérkező tömb elemeit négyzetre emelem, majd azo-
kat szummázom össze a korábban emlı́tett módon. Emellett
a vezetéket korábban kettéoszottam, és a másik szálon a
minták számát egy erre szolgáló beépı́tett függvénnyel meg-
határozom. Ennek a kettőnek a hányadosát veszem, tehát
elosztom a négyzetösszeget az összes mintával, majd végül
az egészet négyzetgyök alá vonom, és ı́gy kapjuk meg a de-
finı́ció szerinti effektı́v értéket: azt az egyenfeszültség-szintet
vagy egyenáram-áramerősséget, amely átlagosan ugyanakkora
Joule-hőt termel egy ellenálláson. [1]

A számı́tások itt is helytálltak:

Ueff =

√√√√ 1

n

n∑
i=1

U2
i

Ebben az esetben mivel minták feldolgozásával számolunk,
használható ez a képlet, de nagyon fontos arra figyelni, hogy
itt is csak egy periódusnyi mintára számı́tsuk, különben az
effektı́v érték változni fog, és bár nem drasztikusan, de fog,
annak ellenére, hogy nem lenne szabad, mivel az effektı́v
értéknek nem szabad függnie attól, hogy hány van belőle
másodpercenként, azaz mekkora a frekvenciája. Abban az
esetben, amikor egy folytonos, periodikus függvény ı́rja le
a feszültség időbeni változását, akkor az integrálos formulát
használjuk:

URMS =

√
1

T

∫ t0+T

t0

u2(t)dt

ahol t0 egy periódus kezdete, T pedig a periódusidő.

LEZÁRÁS

Összegzésképp, kipróbáltuk magunkat egy új, izgalmas
környezetben, és bár a kezdeti nehézségek megvoltak, mégis
sikerült mindent elvégeznünk. Ámbár a laborban elkezdtük a
feladatok elvégzését, de csak a második feladatig jutottunk
órán, a többit azon kı́vül készı́tettük el. Annak ellenére, hogy
az Érzékelő robotika laborban találkoztam rendes, gyönyörűen
jelmegjelenı́tő-, illetve mérőműszerrel, ez a program is egészen
szemléletes, jól alkalmazható. És izgalmas, hogy itt is milyen
jól visszaköszönnek a középiskolai fizika fakultáción tanultak.
Kı́váncsian várom amikor tényleges műszerekkel kötjük majd
össze a programot, és ténylegesen mérjük azokat, nem csak
szimuláljuk. Ott majd várhatóan jobban előjönnek a hibák, és
akkor majd azokkal jobban lehet foglalkozni.

HIVATKOZÁSOK

[1] M. Zsolt, ”Measuring ac voltage,” 04 2017. [Online].
Available: https://uni-obuda.hu/users/markellazs/mt/eng/MT1/UAC(ac%
20feszultseg%20meres angol).pdf

https://uni-obuda.hu/users/markellazs/mt/eng/MT1/UAC(ac%20feszultseg%20meres_angol).pdf
https://uni-obuda.hu/users/markellazs/mt/eng/MT1/UAC(ac%20feszultseg%20meres_angol).pdf

	feladat: LED használat, és m/s - km/h átváltás
	feladat: Ki/Bekapcsolható átváltás, mértékegység kijelzése
	feladat: Kockadobás 3 kockával
	feladat: 10000 kockadobás 3 kockával
	feladat: Jelek
	feladat: Mintavételezés és effektív érték számítás általánosítva
	Hivatkozások

