
LabVIEW I. mérés
Mérést végezte: Radványi Zita

NEPTUN kód: F346YE
Mérőpár: Zahoray Anna
NEPTUN kód: EF2JUM

Mérés ideje: 2023. 03. 09. 8:15-11:00
Mérés helye: Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar

Magyarország, 1083, Budapest, Práter utca 50/a
radvanyi.zita@hallgato.ppke.hu

Abstract—LabVIEW programmal való ismerkedés, kiadott
feladatok megoldása.

I. LABVIEW PROGRAM

A LabVIEW környezetben egy úgynevezett virtuális
műszer megvalósı́tására van lehetőség grafikus
programozási környezetben, de természetesen általános
célú programok fejlesztésére is felhasználható. A
grafikus programozási környezet annyit jelent, hogy a
programozás során nem szöveges kód készül, hanem
különböző függvényeket/utası́tásokat reprezentáló elemek
összekapcsolásával épül fel a program. LabVIEW
környezetben folyamatvezérelt, adatfolyam elvű
programozásra van lehetőség, a program végrehajtási
sorrendjét az utası́tások kapcsolódási rendszere határozza
meg.

II. MÉRÉSI FELADATOK

A. Első feladat

Az előlapon elhelyezett tetszőleges tı́pusú, nyomógombot
bekapcsolva gyulladjon meg egy ovális alakú sárga LED. A
m/s mértékben beadott sebességet ı́rja ki és mutassa meg egy
tetszőleges formájú kijelző km/h egységben.
A LabVIEW progrsam elindı́tása után a Front Panelt
megnyitottuk, majd kiválasztottunk a controls palette-ről egy
megfelelő nyomógombot (push button), majd ezután egy LED-
et (round LED) tı́pusú visszajelző fényt választottunk. A LED
szı́nét a eszközmenün (tools bar-on) található szı́nválasztó
eszközzel (color brush) állı́tottuk át citromsárgára, valamint
az egyik szerkesztő eszközzel (positioning tool) formáltuk
ovális alakúvá.
Ennek befejeztével átváltottunk a Block Diagramra,
ahol összekapcsoltuk a már létrehozott izzót, valamint a
nyomógombot. Amikor rákattintunk a nyomógombra, akkor
annak a logikai értéke false-ról true-ra vált, ezáltal felvillan
a vele összekötött sárga, ovális alakú LED. Az izzó egészen
addig fog világı́tani, amı́g nyomógomb értéke újra false nem
lesz, azaz, amı́g újra rá nem kattintunk a gombra. Ezen
kı́vül átneveztük az adott részeket a feladat szövegének
megfelelően.
A feladat másik részében m/s-ban megadott értéket kellett
átváltani km/h-ba. Ehhez fontos a matematikai képlet, amely
biztosı́tja az átváltást az alábbi egységek közt. Ez alapján a
képlet alapján tudjuk, hogy 1 m/s megegyezik 3.6 km/h-val. A
Front Panel-en kiválasztottunk egy numeric control-t, amely
az átváltandó érték bevitelére szolgált, valamint egy numeric
indicator-t, amely a kiszámı́tott értéket mutatta meg. Ezután

a Block Diagram-on létrehoztunk egy numeric constant-ot,
amelynek az értékének 3.6-ot adtuk, a későbbi számı́tások
miatt. Ezután hozzáadtuk a szorzás matematikai műveletet,
amelynek az egyik bemenete a numeric control, azaz a
átváltani kı́vánt bemenet, a másik bemenet, pedig az imént
létrehozott konstans érték volt. A kimeneti értékének pedig a
numeric indicator-t állı́tottuk, ami ezáltal a kiszámı́tott értéket
mutatja futtatás során.
A feladat két része, a LED felkapcsolása, valamint a m/s
km/h-ba való átváltása teljes mértékben elkülönül egymástól,
nincsenek befolyással a másik feladat működésére. Ezáltal
az egyik tud működni a másik nélkül is, valamint ugyanı́gy
fordı́tva is.

B. Második feladat

Alakı́tsa át és mentse el új néven az 1. pont feladatában
a nyomógombot kapcsolóra, majd módosı́tsa a programot
olyanra, hogy csak akkor történjen mértékegység átszámı́tás,
ha a kapcsoló ki van kapcsolva.
A feladat leı́rása alapján az előbb elkészı́tett feladatot
fejlesztettük tovább, alakı́tottuk át az utası́tások alapján.
Elsősorban a nyomógombot alakı́tottuk át kapcsolóvá. Ez
egy kétállású kapcsoló, ami szintén ture, vagy false (igaz,
vagy hamis) értékeket vehet fel, ezáltal tökéletesen alka-
lmas a feladat megoldására. Ezt követően gondolkoztunk
el azon, hogy miként tudjuk az izzó világı́tásától függővé
tenni a átszámı́tás kimenetét. Erre véleményünk szerint a
legkézenfekvőbb módszer egy case structure alkalmazsa.
Akárcsak különböző programozási nyelvek esetén, például a
C++-ban egy if elágazás használata. Ez a struktúra rendelkezik
egy igaz és egy hamis érték szerinti lefutási móddal, amelyek
egymástól teljesen függetlenül működnek. Ezt a módot fogja
befolyásolni a létrehozott kétállású kapcsoló. Mindkét módban
összekötöttük a LED-et a kapcsolóval, hisz ez mindkét esetben
fontos és megjelenı́tendő információ lesz (a LED világı́tásán
keresztül). A numeric control bemenetet szintén átadjuk a
case struktúrának, de itt már különböző módon kezeljük az
igaz, vagy hamis érték folyamán. Az első esetben, amikor a
LED nem világı́t, azaz a kapcsoló hamis értékkel rendelkezik,
az adott értéket megszorozzuk a 3.6-tal rendelkező konst-
tanssal, az előbbi számolásnak megfelelően. Ezt a kiszámı́tott
értéket adjuk át a kimenetnek, ı́gy megjelentetve azt a case
struktúrából kilépve. A másik esetben, amikor a kapcsoló igaz
értéket ad vissza, akkor a feladat szerint nem kell elvégezni
az átváltást, ezáltal a konstanssal való szorzás nélkül adjuk át
a kimenetnek a numeric control által érkező bemeneti értéket.
Emellett a feladat kiı́rásánk megfelelően létrehoztunk egy
string constant-ot is. Ennek az értéke szintén a kétállású



kapcsoló bemeneti információjától függ. Ennek a string kon-
stansnak értéke szintén a case struktúra állapotával változik.
Ha a hamis ág fut a programba, akkor az átszámı́tásnak
megfelelően km/h, ha igaz ágban van, akkor pedig m/s jelenik
meg a string constantban.

C. Harmadik feladat

Készı́tsen egy kockajáték szimulációt mely egy
nyomógombot segı́tségével hozható működésbe. A
nyomógomb megnyomására egyszer kell három független
kockával dobni (ennek értéke 1...6 tartományon van) és
az eredményeket külön-külön kijelezni. Ha az eredmények
összege 18 akkor gyulladjon ki egy kör alakú zöld LED.
Először a Front Panelen választottunk egy nyomógombot, egy
push buttont a funkció elindı́tásához, amely megfelel a feladat
leı́tásának. Létrehoztunk egy zöld szı́nű LED-et is, amely
kis zöld kör alakú. Ezáltal megkaptuk a LED-et, amely a
feladat leı́rása szerint a 18-as dobásösszegnél felvillanhasson.
Emellett hozzáadtunk 4 darab numeric indicator-t is, amely a
kijelzőn jelenı́ti meg a feladatok eredményét. Ezzel nyomon
tudjuk követni a 3 kockadobás számait, valamint, hogy
meg tudjuk jelenı́teni az összegüket is. Akárcsak az előző
feladatban itt is egy case struct-ot hoztunk létre a Block
Diagramban, amely két ágon tud futni, azaz egy igaz és
egy hamis ágon, a bemenettől függően. Ebben az esetben
az igaz ág során jönnek majd létre a kockadobások. Ehhez
hozzáadtunk egy véletlen szám generátort a programunkhoz,
amelyet egy dobókocka jelű szimbólum jelképez. Ám ez
csak 0 és 1 közötti valós számokat generál, ı́gy meg kellett
oldanunk, hogy 1 és 6 közötti eredményeket kapjunk, hiszen
szabályos dobókockákkal kell szimulálnunk az adott feladatot.
Ezt úgy küszöböltük ki, hogy megszoroztuk 6-tal a kapott
eredményt, ı́gy kapva 0 és 6 közötti valós számokat. Ám ez
nem teljesen oldotta meg a problémát, hiszen még mindig
nem egész számokat generált a program. Így átkonvertáltuk az
értéket int-é (egész számmá), amelyhez a numeric műveletek
közül választottuk ki a megfelelőt. Ezután felfigyeltünk arra,
hogy mivel 0-tól indulnak a számok, ezért hozzáadtunk
még 1-et, ı́gy a generált számok tökéletesen megfeleltek a
követelményeknek. Tekintve, hogy a véletlen szám generátor
ugyanakkora eséllyel generál számokat 0 és 1 között és a
konstanssal való szorzás nem változtat ezen az eloszláson, ı́gy
továbbra is teljes mértékben véletlenszerű értékeket kapunk.
Ezt követően ezt a metódust lemásoltuk két alkalommal,
ezúton lérehozva az összesen három darab dobókockát, majd
ezeket összekötöttük a korábban létrehozott három numeric
indicator-ral. Ezek után a generált eredményeket összeadtuk,
az összeadás művelet segı́tségével, de mivel annak csak két
bemenete lehet, ı́gy kétszer egymás után alkalmaztuk a három
eredményre. Ennek az eredménye került a negyedik numeric
indicator, kijelzőpaneé által kiı́rásra, ezáltal megmutatva a
három dobás összegét.
A feladat második részében a kapott eredményt vizsgáljuk,
amelyet külön eltároltunk. Ha az pontosan 18, azaz mind
a három dobás 6-os lett, akkor világı́tson a zöld szı́nű
LED. Ennek az egyik legkisebb az esélye, hiszen az összes
kockának hatos számot kell mutatnia. A már létrehozott
case struct-on belül hoztunk létre egy numeric constans-ot,
melynek az értékét 18-ra állı́tottuk be. Emellett létrehoztunk
egy egyenlőség függvényt annak az eldöntésére, a két
bemeneti érték megegyezik-e. Ezt a vizsgálatot végző
függvény bemenetéhez kötöttük a három dobás összegét,

valamint a 18-as értéket viselő konstanst is, majd ennek a
kimenetét hozzákapcsoltuk a LED-hez, ezzel elérve azt, hogy
igaz érték esetén világı́tson az.
A case structure hamis ágát ebben a feladatban nem
használtuk, hiszen csak akkor kell a dobásokat elvégezni,
ha a nyomógomb lenyomásra kerül, azaz igaz igazságértéket
vesz fel. Emellett a gomb beállı́tásaiban meg kellett adni,
hogy csak abban a pillanatban adjon igaz értéket, amikor
le lett nyomva, hiszen az alap beállı́tással addig adna igaz
értéket, amı́g újbóli gomblenyomás nem történik.
A dobott összegek eloszlása egy haranggörbe formát vesz fel.
A haranggörbe a változók normál valószı́nűségi eloszlása,
amelyet a grafikon ábrázol, és olyan, mint egy harang alakja,
ahol a görbe legmagasabb vagy legfelső pontja jelenti a
legvalószı́nűbb eseményt a sorozat összes adata közül. Ez
magában foglalja, hogy sokkal kisebb eséllyel dobunk 3-ast
vagy éppen 18-ast, mint például a legnagyobb eséllyel dobható
összeg a 11. Mivel a 11-hez közelı́tve pozitı́v és negatı́v
irányból is egyre nő, azok száma, hogy hányféleképpen
állı́thatjuk elő az adott összeget, mı́g a hármat, vagy a
tizennyolcat csak egyféleképpen lehetséges. Emellett vannak
olyanok is, melyek szabályos dobókockával, három dobás
esetén nem lehetetséges, mint a 3-nál kisebb, vagy 18-nál
nagyobb számot dobni.
Ezt a programot egy subVI-ban kell elhelyezni. A subVI
egy program csomag, vagy más néven egy modul. Ennek az
a fő jelenfőssége és előnye, hogy az egész modul egyetlen
ikonból áll, ezáltal nem fogjuk látni a szerkezetét, ı́gy könnyű
és átlátható felhasználást biztosı́t.

D. Negyedik feladat

A 3. pontban elkészı́tett dobókocka szimulációt subvi-ként
felhasználva készı́tsen programot, mely egy gombnyomásra
egyszer fut le és legalább 10000-szer dob a kockákkal. Meg-
jelenı́ti az eredmények gyakoriságát, azaz, azt, hogy hány
alkalommal lett az eredmény 3; 4, . . . 18.
Ebben a feladatban a 3. feladat subVI formátumát használtuk
fel, ami egy dobást jelentett. A subVI forma előnyeinek
köszönhetően egy sokkal átláthatóbb programot hoztunk létre,
hiszen nem szerepel a szükségesnél több ciklus, ami ne-
hezebbé tenné a kiigazodást a programon. Tekintettel arra,
hogy itt megadott számú, ez esetben 10000 dobást kellett
egymás után szimulálni, ı́gy a legkézenfekvőbb megoldás egy
For Loop használata volt. Ez a ciklus pontosan annyiszor fog
lefutni, amennyi értéket mi adunk neki, ı́gy esetünkben be is
állı́tottuk az n=10000-es határt. Ennek a for loop belsejébe
helyeztük el a korábban elkészı́tett kockaszimulációt. Ennek
a kimenetét csatoltuk hozzá a megfelelő gráfhoz, amelynek a
bemenete az adott dobott kockák számainak összege. Ezáltal
a gráfon nyomon tudjuk követni, hogy melyik összegből hány
darab jött létre a szimuláció során. Ezzek bizonyı́tva az előző
feladatban megfogalmazott eloszlást. Itt is jól megfigyelhető
a haranggörbe, ahogy 11-et sokkal nagyobb eséllyel dobunk,
mint az éppen nagyon kicsi, vagy éppen a nagyon nagy
számot.


