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Matematikai analízis II. - 2. és 4. csoport
9. heti órai és házi feladatok

Órai feladatok
1. Határozzuk meg az alábbi függvények Fourier transzformáltját!

f(x) =

{
1 |x| < 1

0 |x| ≥ 1
f(x) = e−|x| f(x) = e−2|x|

f(x) = e−|x−3| f(x) = e−2|x−3| f(x) = e−
(2x+1)2

2

f(x) = xe−
x2

2 f(x) = x2e−
x2

2 f(x) = e−9(x−4)2

2. Oldjuk meg az alábbi differenciálegyenleteket!

y′(x)− 2y(x) = 0 y′(x) = 5y(x) y′′(x) + 2y′(x)− 15y(x) = 0

Típusfeladatok
1. Határozzuk meg az alábbi függvények közül kettő Fourier transzformáltját!

f(x) =

{
ex |x| < 1

0 |x| ≥ 1
f(x) =


−1 x ∈ (−1, 0)

1 x ∈ (0, 1)

0 egyébként
f(x) = xe−x2

f(x) = (2x+ 3)e−
x2

2 f(x) = e−2(x−3)2 f(x) = e−2|x−3|

2. Oldjunk meg az alábbi differenciálegyenletek közül kettőt!

4y′′(x)− 25y(x) = 0 y′′(x) + 2πy′(x) + π2y(x) = 0

y′′(x) + 9y′(x) + 20y(x) = 0 9y′′(x)− 30y′(x) + 25y(x) = 0

3. Oldjunk meg az alábbi Cauchy feladatok közül egyet!

y′′(x) + y′(x)− 6y(x) = 0, y(0) = 10, y′(0) = 0

y′′(x)− y(x) = 0, y(0) = 2, y′(0) = −2

Elgondolkodtatóbb feladatok
1. Határozzuk meg az f(x) = xeix−|x| függvény Fourier transzformáltját!

2. Határozzuk meg az f(x) = (3x− x3)e−
x2

2 függvény Fourier transzformáltját!

3. Határozzuk meg az f(x) = 1
1+(2x+1)2 függvény Fourier transzformáltját!

4. Határozzuk meg az f(x) = 2x
(1+x2)2 függvény Fourier transzformáltját!

5. Határozzuk meg az alábbi integrál értékét!
ˆ ∞

−∞

dx

(1 + x2)2

6. Határozzuk meg az (f ∗ f)(x) függvényt, ha

f(x) =

{
1 |x| < 1

0 egyébként!
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7. Határozzuk meg az d
dx (f ∗ g)(x) függvényt ha f, g abszolút integrálható és folytonosan differenciálható

függvények!

8. Határozzuk meg az (f ∗ g)(x) függvény Fourier transzformáltját, ha f(x) = 1
9+x2 és g(x) = e−

5x2

2 .

9. Határozzuk meg az alábbi differenciálegyenlet megoldását!

y′′(x) + y′(x) = x y(0) = y′(0) = 0

**10. Adott f : Rn 7→ R abszolút integrálható függvény Fourier transzformáltja

f̂(s) =
1

(2π)
n
2

ˆ
Rn

f(x)e−i⟨s,x⟩ dx .

Igazoljuk az alábbi összefüggéseket!

F
(
f(x− x0), s

)
= e−i⟨x0,s⟩F

(
f(x), s

)
F
(
ei⟨x,s0⟩f(x), s

)
= F

(
f(x), s− s0

)
**11. Tekintsük az

{
yn

}
n∈N sorozatot, melynek elemeit az alábbi rekurzív szabállyal képezzük:

yn +

k∑
i=1

aiyn−i = b(n)

ahol y0, y1, . . . , yk−1 kezdeti értékek adottak. A fenti egyenletet differenciaegyenletnek is nevezzük (hiszen
az egyenlet könnyen átírható differenciahányadosokkal ∆n = 1 mellett) és gyakran felmerülnek például
diszkrét jelek analízisekor. Az yn elemre explicit képletet is megadhatunk a diferenciálegyenletekhez
hasonló eljárással. A homogén megoldást kiszámítjuk a karakterisztikus polinom segítségével:

p(λ) = λk +

k∑
i=1

aiλ
k−i.

Legyenek a p(λ) = 0 egyenlet gyökei r1, r2, . . . , rk, ekkor különböző gyökök esetén az alapmegoldások rni
alakúak, így a homogén megoldás

y(h)n =

k∑
i=1

cir
n
i .

Többszörös gyökök esetén a differenciálegyenletekhez hasonlóan bevezetünk nrni , n2rni , . . . alakú alapmegoldásokat
is. Partikuláris megoldást számíthatunk például próbafüggvény módszerével, legyen ez y

(p)
n . Ekkor a

szuperpozíció elvét alkalmazva
yn = y(h)n + y(p)n

és a ci paraméterek értékeit kiszámíthatjuk a kezdeti feltételekből.

Tekintsük a jól ismert Fibonacci-számokat képező sorozatot:

Fn = Fn−1 + Fn−2 F0 = 0, F1 = 1.

Adjunk meg explicit képletet az Fn sorozatra! Gondoljuk meg, hogy a sorozat valóban egész számokat
állít elő! Számítsuk ki a limn→∞

Fn+1

Fn
határértéket!
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