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Matematikai analízis II. - 2. és 4. csoport
1. heti órai és házi feladatok

Órai feladatok
1. Vizsgáljuk meg az alábbi sorok konvergenciáját, illetve ha lehet, az összegét!
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2. Mekkora m esetén lesznek az alábbi részletösszegek két tizedesjegyre pontosak?
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3. Legyen f(x) = ln(1 + x) és x0 = 0.

(a) Határozzuk meg a függvény T3 harmadfokú Taylor polinomját!
(b) Becsüljük meg az

∣∣f(x)− T3(x)
∣∣ hibát!

(c) Becsüljük meg az ln(1.1) értékét és a közelítés hibáját!
(d) Határozzuk meg a függvény Taylor sorát, illetve annak konvergenciahalmazát!

4. Legyen f(x) = cos(x) és x0 = 0.

(a) Határozzuk meg a függvény harmad-, negyed-, illetve ötödfokú Taylor polinomját!
(b) Mit veszünk észre a polinomok együtthatóival kapcsolatban? Mivel magyarázható a jelenség?
(c) Becsüljük meg a fenti közelítések hibáit!
(d) Adjunk két tizedesjegyig pontos becslést a cos(62◦) értékre megfelelő fokú Taylor polinom alkalma-

zásával!
(e) Határozzuk meg a függvény Taylor sorát, illetve annak konvergenciahalmazát!

5. Határozzuk meg az alábbi függvények Taylor sorát, illetve azok konvergenciahalmazát!

f(x) = sinx f(x) = ex f(x) = cos 4x f(x) =
1

1 + x

6. Határozzuk meg az alábbi hatványsorok konvergeciahalmazát!
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Típusfeladatok
1. Határozzuk meg az alábbiak közül két függvény harmadfokú Taylor-polinomját a megadott x0 pont körül!
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2. Határozzuk meg az alábbiak közül két függvény Taylor-sorát a megadott x0 pont körül!
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3. Határozzuk meg az alábbiak közül két hatványsor konvergenciahalmazát!
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Elgondolkodtatóbb feladatok
1. Vizsgáljuk meg az alábbi hatványsor konvergenciáját az 1

2 ≤ |x| ≤ 2 intervallumon!
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2. Adjuk meg az alábbi hatványsor konvergenciahalmazát!

∞∑
n=1

(
1 +

1

n

)n2

xn

3. Adjuk meg az alábbi hatványsor konvergenciahalmazát!
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4. Adjuk meg az alábbi hatványsor konvergenciahalmazát!
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5. Adjuk meg az f(x) = 5
7+2x függvény Taylor sorát az x0 = 0 és x0 = 3 pontok körül!

6. Adjuk meg az f(x) = (1 + x)ex függvény Taylor sorát az x0 = 0 pont körül!

7. Adjuk meg az f(x) = cos2 x függvény Taylor sorát az x0 = 0 pont körül!

8. Adjuk meg az f(x) = sin3 x függvény Taylor sorát az x0 = 0 pont körül!

*9. Tegyük fel, hogy az y(x) függvény sorbafejthető. A sort helyettesítsük be az y′(x) = y(x) differenciál-
egyenletbe és adjuk meg a megoldást az y(0) = 1 kezdetiérték mellett!

*10. Mutassuk meg, hogy az

y(x) =
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hatványsor kielégíti az
xy′′(x) + y′(x)− y(x) = 0

egyenletet!

*11. Azonosítsuk az alábbi függvénysorokat és határozzuk meg a konvergenciasugarukat!
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**12. Tegyük fel, hogy a
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n hatványsorok konvergenciasugara rendre R1 és R2. Mit
tudunk mondani az alábbi sorok konvergenciasugaráról?
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