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Matematikai analizis II. - 2. és 4. csoport

1. heti o6rai és hazi feladatok

Orai feladatok

1. Vizsgéljuk meg az aldbbi sorok konvergenciajat, illetve ha lehet, az Gsszegét!
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2. Mekkora m esetén lesznek az alabbi részletosszegek két tizedesjegyre pontosak?
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3. Legyen f(z) =In(l + z) és xo = 0.
(a) Hatéarozzuk meg a fiiggvény T3 harmadfoka Taylor polinomjat!
(b) Becsiiljitk meg az | f(z) — T3(x)| hibat!
¢ ecsuljuk meg az In(1.1) értékét és a kozelités hibajat!
Becsiiliiik In(1.1) értékét és a kézelitas hibaist!
(d) Hatarozzuk meg a fiiggvény Taylor sorat, illetve annak konvergenciahalmazat!
4. Legyen f(z) = cos(z) és x9 = 0.
(a) Hatarozzuk meg a fliggvény harmad-, negyed-, illetve 6tédfoka Taylor polinomjat!
(b)
(c) Becsiiljiik meg a fenti kozelitések hibait!
(d)

Mit vesziink észre a polinomok egyititthatoival kapcsolatban? Mivel magyarazhato a jelenség?

Adjunk két tizedesjegyig pontos becslést a cos(62°) értékre megfelels foka Taylor polinom alkalma-
zaséaval!

(e) Hatarozzuk meg a fiiggvény Taylor sorat, illetve annak konvergenciahalmazat!

5. Hatarozzuk meg az alébbi fiiggvények Taylor sorat, illetve azok konvergenciahalmazat!
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6. Hatarozzuk meg az alabbi hatvanysorok konvergeciahalmazat!
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Tipusfeladatok
1. Hatéarozzuk meg az alabbiak koziil két fiiggvény harmadfoki Taylor-polinomjat a megadott zo pont koriil!
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2. Hatarozzuk meg az aldbbiak koziil két fiiggvény Taylor-sorat a megadott xy pont koriil!
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3. Hatarozzuk meg az aldbbiak koziil két hatvanysor konvergenciahalmazat!
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Elgondolkodtatobb feladatok

1. Vizsgaljuk meg az alabbi hatvanysor konvergenciajat az % < |z| < 2 intervallumon!
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2. Adjuk meg az alabbi hatvanysor konvergenciahalmazat!
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3. Adjuk meg az alabbi hatvanysor konvergenciahalmazat!
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4. Adjuk meg az alabbi hatvanysor konvergenciahalmazat!
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Adjuk meg az f(z fiiggvény Taylor sorat az zg = 0 és xg = 3 pontok koriil!

( ) 7+2z
Adjuk meg az f(z) = (1 + z)e” fiiggvény Taylor sorat az zo = 0 pont koriil!
(z) =

Adjuk meg az f(z) = cos? z fiiggvény Taylor sorat az zg = 0 pont koriil!
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. Adjuk meg az f(z) = sin® z fiiggvény Taylor sorat az zo = 0 pont koriil!

*9. Tegyiik fel, hogy az y(x) fliggvény sorbafejthets. A sort helyettesitsiik be az y'(z) = y(x) differencial-
egyenletbe és adjuk meg a megoldast az y(0) = 1 kezdetiérték mellett!

*10. Mutassuk meg, hogy az

hatvanysor kielégiti az
wy"(z) +y () - y(x) =0

egyenletet!

*11. Azonositsuk az alabbi fliggvénysorokat és hatarozzuk meg a konvergenciasugarukat!
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**12. Tegyiik fel, hogy a > 2 ja,z™ és a Y - b,z" hatvanysorok konvergenciasugara rendre R; és Ro. Mit
tudunk mondani az alabbi sorok konvergenciasugararol?
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