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1.1. Hatványsor értelmezése

Az el®z® fejezetben láttuk, hogy ha f analitikus az x0ϵDf pontban, akkor a
pont egy környezetében el®állítható ilyen alakban:

f(x) =
∞∑
n=0

cn(x− x0)
n, ahol cn =

f (n)(x0)

n!

A fordított feladatot nézzük: mikor értelmezhet® egy ilyen végtelen összeg?

1.1. De�níció. Legyen (cn) egy számsorozat, x0ϵIR egy rögzített szám. Hat-

ványsor egy ilyen alakú formális összeget jelent:

∞∑
n=0

cn(x− x0)
n, (cn) ⊂ IR. (1.1)

A fenti összeg ∀xϵIR esetén egy konkrét számsor, ami lehet konvergens vagy
divergens. Ezért szerepelt a de�nícióban a formális jelz®.

Els® esetként az egyszer¶ség kedvéért feltesszük, hogy x0 = 0. Az általános
esettel a fejezet végén foglalkozunk majd. Ekkor a hatványsor természetes
módon úgy is tekinthet®, mint egy "végtelen fokú" polinom:

c0 + c1x+ · · ·+ cnx
n + . . .

1.2. De�níció. Adott a
∞∑
n=0

cnx
n hatványsor. A konvergencia halmaz

(vagy konvergencia tartomány) azon xϵIR számok halmaza, ahol a hatványsor
konvergens, azaz:

H = {xϵIR :
∞∑
n=0

cnx
n <∞},

Ezen a halmazon az összeg jól értelemzett. Az összegfüggvény

f : H → IR, f(x) =
∞∑
n=0

cnx
n.

1. Példa Legyen cn ≡ 1, ekkor a hatványsor

∞∑
n=0

xn.
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Ez egy mértani sor. Tudjuk, hogy pontosan akkor konvergens, ha |x| < 1,
ezért a konvergencia halmaz H = (−1, 1).

2. Példa Legyen cn =
1

n!
, ekkor a hatványsor

∞∑
n=0

xn

n!
.

A Taylor sorokról szóló fejezetben láttuk, hogy ez épp az f(x) = ex függvény
Taylor sora minden xϵIR-r. Ezért most H = IR.

3. Példa Legyen cn = nn, a hatványsor

∞∑
n=0

nnxn.

Mivel ∀x ̸= 0 esetén |nnxn| → ∞, ezért a Divergencia kritérium miatt x ̸= 0

esetén sehol nem konvergens. Tehát H = {0}.

1.1. Állítás. A konvergencia halmaz alaptulajdonságai:

1. 0ϵH.

2. Tegyük fel, hogy ξϵH. Akkor minden x, melyre |x| < |ξ|, szintén xϵH.

3. Tegyük fel, hogy ηϵ|H. Akkor minden x, melyre |x| > |η|, szintén xϵ|H.

Bizonyítás∗.

1. Triviális, hiszen a végtelen összeg minden tagja 0.
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2.
∞∑
n=0

cnξ
n <∞ miatt ∃K > 0, melyre |cnξn| < K minden nϵIN0 indexre.

Legyen q := |x/ξ|. Tudjuk, hogy 0 < q < 1. Ekkor

|cnxn| = |cnξn| ·
∣∣∣∣xnξn

∣∣∣∣ < Kqn.

Ezért az állítás következik a végtelen számsorokra vonatkozó majoráns-
kritériumból.

3. Ha a feltételek mellett mégis xϵH teljesülne, akkor a 2. pont szerint
ηϵH következne, ami nem így van.

1.3. De�níció. A hatványsor konvergencia sugarát (ρ) így de�niáljuk:

� Tegyük fel, hogy van ξ ̸= 0, melyre ξϵH, és van ηϵ|H. Ekkor

ρ := sup{|x| : xϵH}, 0 < ρ <∞.

� Tegyük fel, hogy nincs ξ ̸= 0, melyre ξϵH, azaz H = {0}. Ekkor ρ := 0..

� Tegyük fel, hogy nincs ηϵ|H, azaz H = IR. Ekkor ρ := ∞.

1.1. Következmény. A konvergencia halmaz az alábbi három típusú lehet:

1. H = {0}.

2. H = IR.

3. H = [(−ρ, ρ)].

Megjegyzés. A fenti 3. eset röviden azt jelenti, hogy ha a konvergencia sugár
0-tól különböz® véges szám. Ekkor a konvergencia halmaz végpontjairól nem
tudunk semmit, tehát a következ® esetek bármelyike lehetséges:

H = [−ρ, ρ], H = (−ρ, ρ], H = [−ρ, ρ), H = (−ρ, ρ).

Példa. Legyen

f(x) :=
∞∑
k=1

xk

k
.
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x = 1 esetén a hatványsor
∞∑
k=1

1

k
divergens.

x = −1 esetén a hatványsor
∞∑
k=1

(−1)k
1

k
Leibniz típusú, tehát konvergens.

Így a 1.1 Állítás miatt a konvergencia halmaz egyértelm¶en H = [−1, 1), és
ezért a konvergencia sugár ρ = 1.

1.2. A konvergencia sugár meghatározása

Emlékeztetünk arra, hogy egy
∞∑
n=1

an

számsor esetén a konvergencia eldöntésére az ún (gyengített) gyökkritériumot
is használhatjuk. Eszerint, ha létezik az alábbi határérték:

A = lim
n→∞

n
√
|an|,

akkor A > 1 esetén a sor divergens és A < 1 esetén a sor konvergens.

Alkalmazzuk ezt a
∞∑
n=0

cnx
n hatványsorra konkrét x esetén. Ekkor

an = cnx
n =⇒ n

√
|an| = n

√
|cn| · |x|.

Tegyük fel, hogy az alábbi határérték létezik és véges:

lim
n→∞

n
√

|cn| =: γ.

Ekkor lim
n→∞

n
√
|cnxn| = γ · |x|, ezért

|x| < 1/γ esetén a hatványsor konvergens,

|x| > 1/γ esetén a hatványsor divergens.

1.2. Következmény. Tegyük fel, hogy létezik az alábbi határérték:

γ := lim
n→∞

n
√
|cn|. (1.2)
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1. Ekkor ha 0 < γ <∞, akkor a hatványsor konvergencia sugara:

ρ =
1

γ
,

2. Ha γ = 0, akkor ρ = ∞, azaz a hatványsor mindenütt konvergens.

3. Ezen túl, ha
γ = lim

n→∞
n
√
|cn| = +∞,

akkor ρ = 0, azaz a hatványsor csak a 0-ban konvergens.

A végtelen sorokhoz hasonlóan itt is megfogalmazhatjuk a fenti állítás meg-
felel®jét a hányadoskritérium alapján.

1.3. Következmény. Tegyük fel, hogy létezik az alábbi határérték:

γ := lim
n→∞

|cn+1|
|cn|

. (1.3)

1. Ekkor ha 0 < γ <∞, akkor a hatványsor konvergencia sugara:

ρ =
1

γ
,

2. Ha γ = 0, akkor ρ = ∞, azaz a hatványsor mindenütt konvergens.

3. Ezen túl, ha

γ = lim
n→∞

|cn+1|
|cn|

= +∞,

akkor ρ = 0, azaz a hatványsor csak a 0-ban konvergens.

1.3. Általános eset

Általában a hatványsort egy x0ϵIR pont körül tekintjük, alakja:

∞∑
n=0

cn(x− x0)
n.

A konvergencia halmaz itt is csak három típusú lehet:
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1. H = {x0},

2. H = IR,

3. H = [(x0 − ρ, x0 + ρ)].

A hatványsor konvergencia sugarát ugyanúgy határozhatjuk meg a (cn) együtt-
hatókból a (1.2) vagy (1.3) képletek segítségével, mint a speciális (azaz
x0 = 0) esetben.

1.4. Összegfüggvény deriválása és integrálása

1.2. Állítás. Adott egy hatványsor, melynek összegfüggvénye

f(x) =
∞∑
n=0

cnx
n, xϵH.

1. Ekkor a konvergenciatartomány bels® pontjaiban f folytonos

2. A hatványsor összegfüggvénye konvergencia halmazának minden bels®
pontjában akárhányszor tagonként deriválható, és k-dik deriváltja:

f (k)(x) =
∞∑
n=k

n(n− 1) . . . (n− k + 1) cn x
n−k.

3. Ha [α, β] a konvergeciatartomány belsejének része, akkor fϵR[α, β], és∫ β

α
f(x)dx =

∞∑
n=0

cn
xn+1

n+ 1

∣∣∣∣β
α

.

Példa. Határozzuk meg az alábbi sor összegfüggvényét zárt alakban:

∞∑
n=1

nxn =?

El®zetesen látjuk, hogy konvergencia sugara és konvergencia tartománya:

γ = lim
n→∞

n
√
n = 1 =⇒ ρ = 1 =⇒ H = (−1, 1).
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Tudjuk, hogy
∞∑
n=0

xn =
1

1− x
, −1 < x < 1 (1.4)

A konvergencia tartomány belsejében tagonként deriválhatjuk a (1.4) hat-
ványsort:

∞∑
n=1

nxn−1 =

(
1

1− x

)′
=

1

(1− x)2
.

Ezért megkapjuk a keresett zárt alakot:
∞∑
n=1

nxn = x
∞∑
n=1

nxn−1 =
x

(1− x)2
.

1. Gyakorlat. Hasonló módon határozzuk meg az alábbi hatványsor összeg-
függvényét zárt alakban:

∞∑
n=1

xn

n
=?

1.5. Hatványsor és Taylor sor kapcsolata

1.3. Állítás. (Hatványsor el®állítás jellemzése)

1. Ha egy függvény hatványsor összegeként reprezentálható, akkor ez a
reprezentáció egyértelm¶.

2. Ha az el®állítá sa 0 valamely környezetében:

f(x) =
∞∑
n=0

cnx
n,

akkor az együtthatók: cn =
f (n)(0)

n!
.

2.+ Általában, ha az x0 valamely környezetében:

f(x) =
∞∑
n=0

cn(x− x0)
n,

akkor az együtthatók: cn =
f (n)(x0)

n!
.
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2.1. Trigonometrikus polinomok és sorok

A Taylor soroknál tanultak során láttuk, hogy bizonyos függvényeket el® tu-
dunk állítani polinomok határértékeként. Most trigonometrikus polinomokat
tekintünk.

2.1. De�níció. Az f függvény n-ed fokú trigonometrikus polinom, ha

f(x) =
a0
2

+
n∑
k=1

(ak cos(kx) + bk sin(kx)) , xϵIR

valamely ak, bk valós együtthatókkal. A sin(kx) és cos(kx) függvények argu-
mentumában szerepl® k konstansokat frekvenciának nevezzük.

Példa. f(x) = sin(2x) + 2 cos(x).

2.2. De�níció. Adottak az (ak), (bk) valós számsorozatok, ezek együtthatók.
Az alábbi formális végtelen sort trigonometrikus sornak nevezzük:

f(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) , xϵIR.

Az összegfüggvény 2π szerint periodikus lesz. Emiatt elegend® lesz xϵ[−π, π]
pontokat tekinteni. (Bármely más 2π hosszú intervallumot is lehet.)
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2.2. A trigonometrikus függvényrendszer

De�niáljuk az alábbi alapfüggvényeket xϵ[−π, π] esetén:

ϕ0(x) = 1,

ϕ1(x) = sin(x), ϕ2(x) = cos(x),

...
...

ϕ2k−1(x) = sin(kx), ϕ2k(x) = cos(kx),

...
...

2.1. Lemma. Tetsz®leges n ̸= m mellett

π∫
−π

ϕn(x)ϕm(x) = 0.

Bizonyítás∗. Ha valamelyik trigonometrikus tényez® frekvenciája 0, akkor

π∫
−π

cos(0x)ϕn(x)dx = 0,

π∫
−π

sin(0x)ϕn(x)dx = 0.

Egyéb esetekben az alábbi trigonometrikus azonosságokat használjuk fel:

cos(nx) cos(mx) =
cos((n+m)x) + cos((n−m)x)

2
,

cos(nx) sin(mx) =
sin((n+m)x) + sin((m− n)x)

2
,

sin(nx) sin(mx) =
cos((n−m)x)− cos((n+m)x)

2
,

ahonnan a Lemma állítása következik.

Megjegyzés. A Lemmában megfogalmazott tulajdonságot szokás úgy nevezni,
hogy a (ϕn) függvényrendszer ortogonális
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2.2. Lemma. Tetsz®leges n mellett

π∫
−π

ϕ2n(x)dx =


2π, ha n = 0,

π, ha n ̸= 0.

Bizonyítás∗. n = 0 esetén az azonosan 1 függvényt integráljuk a 2π hosszú
intervallumon. n ≥ 1 esetén egyrészt

π∫
−π

cos2(nx)dx =

π∫
−π

sin2(nx)dx,

másrészt
π∫

−π

(
cos2(nx) + sin2(nx)

)
dx =

π∫
−π

1dx = 2π.

Ezért
π∫

−π

cos2(nx)dx =

π∫
−π

sin2(nx)dx = π.

2.3. Fourier sorok

2.1. Tétel. Tegyük fel, hogy f egy trigonometrikus polinom:

f(x) =
a0
2

+

N∑
k=1

(ak cos(kx) + bk sin(kx)). (2.1)

Ekkor

ak =
1

π

π∫
−π

f(x) cos(kx)dx, k = 0, 1, 2, . . . N

bk =
1

π

π∫
−π

f(x) sin(kx)dx, k = 1, 2, . . . N.
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Bizonyítás. Belátjuk a képletet am-re Szorozzuk meg az (2.1) egyenlet
mindkét oldalát cos(mx)-el, majd integráljuk a [−π, π] intervallumon:

π∫
−π

f(x) cos(mx)dx =

=

π∫
−π

(
a0
2

cos(mx) +

{
N∑
k=1

ak cos(kx) + bk sin(kx)

}
cos(mx)

)
dx =

a0
2

π∫
−π

cos(mx)dx+
N∑
k=1

ak π∫
−π

cos(kx) cos(mx)dx+ bk

π∫
−π

sin(kx) cos(mx)dx

 =

= am

π∫
−π

cos2(mx)dx = amπ.

A 2.1. Lemma miatt a szummában csak egyetlen tag értéke nem 0.

Hasonlóan igazolhatóak az a0-ra, illetve bm-re vonatkozó képletek.

2.3. De�níció. Legyen f egy 2π szerint periodikus függvény, mely integrál-
ható [−π, π]-ben. Az f függvény Fourier együtthatóit így de�niáljuk:

ak :=
1

π

π∫
−π

f(x) cos(kx)dx, k = 0, 1, 2, . . . (2.2)

bk :=
1

π

π∫
−π

f(x) sin(kx)dx, k = 1, 2, . . . . (2.3)

2.4. De�níció. A fenti f függvény Fourier sorát így értelmezzük:

f ∼ a0
2

+
∞∑
k=1

(ak cos(kx) + bk sin(kx)),

ahol ak és bk a fenti (2.2) és (2.3) képletekkel de�niált Fourier együtthatók.
A Fourier sor közelítése az n-dik Fourier polinom:

sn(x) =
a0
2

+
n∑
k=1

(ak cos(kx) + bk sin(kx)).
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1. Példa. Tegyük fel, hogy f páros függvény. Ekkor f Fourier sorában a bk
együtthatók mind 0-k lesznek, így

f ∼ a0
2

+
∞∑
k=1

ak cos(kx), ak =
2

π

π∫
0

f(x) cos(kx)dx.

2. Példa. Hasonlóképp, ha f páratlan, akkor Fourier sora:

f ∼
∞∑
k=1

bk sin(kx), bk =
2

π

π∫
0

f(x) sin(kx)dx.

3. Példa. Legyen f az a periodikus függvény, mely az el®jelfüggvény
megszorítása a [−π, π] intervallumra.

f(x) =



1, ha 0 < x < π,

0, ha x = 0, π, −π,

−1, ha −π < x < 0,

Láthatóan f páratlan függvény. Fourier együtthatói:

bk =
2

π

π∫
0

f(x) sin(kx)dx =
2

π

π∫
0

sin(kx)dx =
2

kπ
(1− (−1)k).

Ez az együttható 0, ha k páros. Így f Fourier sora:

f ∼ 4

π

∞∑
k=1

sin((2k − 1)x)

2k − 1
.
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A következ® ábrákon bemutatjuk az els® néhány Fourier polinomot. (Mit
lehet észrevenni?)

2.1. ábra. Az f függvény Fourier polinomja, n = 1.

2.2. ábra. Az f függvény Fourier polinomja, n = 5.
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2.3. ábra. Az f függvény Fourier polinomja, n = 20.

2.2. Tétel. (Deriváltfüggvény Fourier sora) Legyen az f : IR → IR valós
függvény 2π szerint periodikus és tegyük fel, hogy f di�erenciálható. Ekkor
az f ′ deriváltfüggvény Fourier sora tagonkénti deriválással kiszámítható:

f ′ ∼
∞∑
k=1

(−akk sin(kx) + bkk cos(kx)).

Bizonyítás∗. f ′ Fourier együtthatóit jelölje αk és βk. Ekkor f ′ Fourier sora:

f ′ ∼ α0

2
+

∞∑
k=1

(αk cos(kx) + βk sin(kx)),

ahol a de�níciót felhasználva:

αk =
1

π

π∫
−π

f ′(x) cos(kx)dx, βk =
1

π

π∫
−π

f ′(x) sin(kx)dx.

Parciálisan integrálva kiszámoljuk αk-t:

αk =
1

π

π∫
−π

f ′(x) cos(kx)dx =

=
1

π

[
f(x) cos(kx)

]π
−π

+
k

π

π∫
−π

f(x) sin(kx)dx = 0 + kbk.

A fenti egyenlet baloldalán az els® tag azért t¶nik el, mert az f függvény 2π

szerint periodikus.



2.4. FOURIER SOR KOMPLEX ALAKJA 21

A βk együtthatókra vonatkozó számolás hasonló.

Következmény. A fenti Tétel állítása akkor is igaz, ha f a [−π, π] interval-
lumban véges sok els®fajú szakadás kivételével folytonos, és [−π, π]-ben véges
sok pont kivételével f di�erenciálható.

2.4. Fourier sor komplex alakja

Emlékeztetünk rá, hogy az Euler formula szerint minden xϵIR-re:

eix = cos(x) + i sin(x). (2.4)

Ebb®l következik, hogy

e−ix = ei(−x) = cos(−x) + i sin(−x) = cos(x)− i sin(x). (2.5)

A (2.4) és (2.5) egyenleteket összeadva ill. kivonva egymásból a trigonomet-
rikus függvények kifejezhet®k komplex alakban:

cos(x) =
eix + e−ix

2
sin(x) =

eix − e−ix

2i
. (2.6)

A Fourier sor közelítésére szolgáló n-dik Fourier polinom:

sn(x) =
a0
2

+
n∑
k=1

ak cos(kx) +
n∑
k=1

bk sin(kx).

Helyettesítsük be a (2.6) kifejezések alapján az alábbi összefüggéseket:

cos(kx) =
eikx + e−ikx

2
, sin(kx) =

eikx − e−ikx

2i
.

Így azt kapjuk, hogy

sn(x) =

n∑
k=−n

αke
ikx,

ahol az együtthatók

α0 =
a0
2
, αk =

ak − ibk
2

, α−k =
ak + ibk

2
, k > 0.
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2.3. Lemma. Az eimx, xϵ[−π, π] függvény integrálja:

π∫
−π

eimxdx =


0 ha m ̸= 0,

2π ha m = 0.

Bizonyítás. A lemma következik eimx trigonometrikus alakjából.

2.3. Tétel. Tegyük fel, hogy f ilyen alakú:

f(x) =

n∑
k=−n

αke
ikx. (2.7)

Ekkor az együtthatók:

αk =
1

2π

π∫
−π

f(x)e−ikxdx, −n ≤ k ≤ n. (2.8)

Bizonyítás∗. A tétel állítása következik a 2.3. Lemmából. Szorozzuk meg
ugyanis az (2.7) egyenletet e−imx-el, és integráljunk a [−π, π] intervallumon:

π∫
−π

f(x)e−imxdx =
n∑

k=−n
αk

π∫
−π

eikxe−imxdx = αm · 2π.

2.5. Fourier sor konvergenciája

Kérdés, hogy milyen feltételek mellett áll el® f , mint Fourier sora összege,
azaz

f(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)).

2.4. Tétel. (Fourier sorok alaptétele) Legyen az f : IR → IR függvény 2π

szerint periodikus. Tegyük fel, hogy f teljesíti az alábbi feltételeket:

1. Szakaszonként folytonosan di�erenciálható [−π, π]-ben.
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2. Legfeljebb véges sok szakadási hely van [−π, π]-ben, amelyek els®fajú
szakadások.

3. Ha x0 szakadási pont, akkor itt a függvényérték:

f(x0) =
f(x0 + 0) + f(x0 − 0)

2
.

Ekkor a függvényt el®állítja Fourier sora:

f(x) =
a0
2

+
∞∑
k=1

(ak cos(kx) + bk sin(kx)) =
∞∑

k=−∞
αke

ikx,

ahol az ak, bk és αk együtthatókat (2.2), (2.3) ill. (2.8) de�niálja.

A Tételt nem bizonyítjuk.

1. Példa. Legyen f(x) = |x|, ha xϵ[−π, π], egyébként 2π szerint periodikus.
Teljesülnek az el®z® Tétel feltételei, ezért a függvényt el®állítja Fourier sora.

Mivel f páros, ezért bk = 0. A többi együttható:

a0 =
2

π

π∫
0

xdx =
2

π

[
x2

2

]π
0

= π,

ak =
2

π

π∫
0

x cos(kx)dx =
2

π

[
x
sin(kx)

k

]π
0

− 2

π

1

k

π∫
0

sin(kx)dx =

= − 2

πk

[
− cos(kx)

k

]π
0

=


0 ha k = 2n > 0,

− 4

πk2
ha k = 2n+ 1.
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Így f Fourier sora:

|x| = π

2
− 4

π

(
cos(x) +

cos(3x)

32
+

cos(5x)

52
+ . . .

)
, xϵ(= π, π).

Speciális esetként vizsgáljuk meg, mit kapunk x = 0 esetén:

0 =
π

2
− 4

π
(1 +

1

32
+

1

52
+ . . .),

azaz
π2

8
= 1 +

1

32
+

1

52
+ . . . .

2. Példa. Korábban felírtuk a következ® függvény Fourier sorát:

g(x) =



1, ha 0 < x < π,

0, ha x = 0, π, −π,

−1, ha −π < x < 0,

g(x+ 2kπ) = g(x).

g is teljesíti az el®z® Tétel feltételeit, ezért Fourier sorának összege az eredeti
g(x) függvény. Mivel x ̸= kπ esetén f ′(x) = g(x), ezért g Fourier sorát
megkaphatjuk tagonkénti deriválással:

g(x) =
4

π

(
sin(x) +

sin(3x)

3
+

sin(5x)

5
+ . . .+

sin((2k − 1)x)

2k − 1
+ . . .

)
.

2.6. Fourier együtthatók nagyságrendje

Adott f , mely teljesíti a 2.4 Tétel fetételeit. Ekkor el®állítható Fourier sorá-
nak összegeként:

f(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)).

Megvizsgáljuk, hogy mit mondhatunk a fenti végtelen sor konvergeciájának
sebességér®l.

2.4. Lemma. (Bessel egyenl®tlenség) A fenti f függvény Fourier együttha-
tóira

a20
2

+
n∑
k=1

(a2k + b2k) ≤
1

π

π∫
−π

f2(x)dx, ∀nϵIN.
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Bizonyítás∗. Alapötlet. Induljunk ki az alábbi egyenl®tlenségb®l:

0 ≤ 1

π

π∫
−π

(
f(x)− a0

2
−

n∑
k=1

(ak cos(kx) + bk sin(kx))

)2

dx.

A jobboldalon a négyzetreemelést elvégezve, behelyettesítve a Fourier együtt-
hatók de�nícióját, "szinte triviális" számolással megkapjuk a fenti Bessel
egynl®tlenséget.

2.1. Következmény. A Bessel egyenl®tlenség n→ ∞ esetén is igaz:

a20
2

+

∞∑
k=1

(a2k + b2k) ≤
1

π

π∫
−π

f2(x)dx.

Ennél több is igaz, amit nem bizonyítunk:

2.5. Tétel. (Parseval egyenl®ség) A Fourier együtthatókra teljesül az alábbi
egyenl®ség:

a20
2

+
∞∑
k=1

(a2k + b2k) =
1

π

π∫
−π

f2(x)dx.

2.7. Általános eset∗

Eddig olyan függvényekkel foglalkoztunk, amelyek 2π szerint periodikusak, és
bármely 2π hosszú intervallumon felvett értékeikkel megadhatók. Tekintsünk
most egy olyan f függvényt, amely egy véges intervallumon van értelmezve,
és ezen az intervallumon keressük Fourier sorát. Ez azt jelenti, hogy fel
szeretnénk írni végtelen trigonometrikus polinom határtértékeként, mely az
adott intervallumon az adott függvényt állítja el®.

2.6. Tétel. Legyen
f : [x0 − T, x0 + T ] → IR

olyan függvény, amelyk véges sok pont kivételével folytonosan di�erenciálha-
tó, csak els®fajú szakadása van, és a szakadási helyen vett helyettesítési érték
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a jobb- és baloldali határértékek számtani átlaga. Ekkor

f(x) =

∞∑
k=−∞

αke
ik π

T
x,

ahol

αk =
1

2T

x0+T∫
x0−T

f(x)e−ik
π
T
xdx.
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Többváltozós valós függvények
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3.1. IR2 tér

3.1.1. Pontok és pontsorozatok IR2-ben.

A sík pontjait rögzített koordináta-rendszerben megadott rendezett számpá-
rokkal jellemezzük: P = (x, y). Ezen pontok halmazát IR2-vel jelöljük.

3.1. De�níció. Legyen P1 = (x1, y1) és P2 = (x2, y2) két pont IR2-ben. Ezek
távolsága:

P1P2 =
√

(x1 − x2)2 + (y1 − y2)2.

Két pont távolságának jelölésére szokás még az alábbiakat is használni:

ρ(P1, P2), ∥P1 − P2∥.

Az origóból az (x, y) pontba mutató vektor hossza

∥(x, y)∥ =
√
x2 + y2.

Használni fogjuk a lineáris algebrából ismert háromszög egyenl®tlenséget:

∥(x1, y1) + (x2, y2)∥ ≤ ∥(x1, y1)∥+ ∥(x2, y2)∥.

3.2. De�níció. Legyen adott a CϵIR2 pont, C = (A,B), és az ε > 0 valós
szám. A C pont körüli ε-sugarú gömböt így de�niáljuk:

S(C, ε) = {PϵIR2 : PC < ε}.
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Ezzel egy körlemezt kapunk C középponttal.

3.3. De�níció. Pontsorozat alatt síkbeli pontok sorozatát értjük:

Pn = (xn, yn), n = 1, 2 . . .

1. Példa. Két pontsorozat: P (1)
n = (n, n2), illetve P (2)

n = ((−1)n, 2).

Megjegyzés. A sorozat tagjai nem feltétlenül különböznek.

3.4. De�níció. A (Pn) sorozat korlátos, ha ∃S(C, ε) gömb, amely a sorozat
minden elemét tartalmazza. Tehát ez azt jelenti, hogy (Pn) korlátos, ha ∃C =

(A,B) és ∃ε > 0 hogy ∀Pn = (xn, yn)-re teljesül, hogy√
(xn −A)2 + (yn −B)2 < ε.

1. Példa. (folyt.) P (1)
n = (n, n2) nem korlátos; P (2)

n = ((−1)n, 2) korlátos.

3.5. De�níció. A (Pn) sorozat konvergens és határértéke Q, ha

lim
n→∞

∥Pn −Q∥ = 0.

Ezt így jelöljük: lim
n→∞

Pn = Q.

Ekvivalens megfogalmazás: A (Pn) sorozat konvergens és határértéke Q ha
∀ε > 0-hoz ∃N(ε) küszöbindex:

∥Pn −Q∥ < ε ∀n ≥ N(ε).
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Másképp fogalmazva: Minden ε > 0 esetén az S(Q, ε) gömbön kívül csak
véges sok pont van (véges sok index¶).

Következmény. Ha egy sorozat konvergens, akkor korlátos.

2. Példa. Legyen Pn = (e−n/4 cos(n), e−n/4 sin(n)), n = 1, 2, . . . .

Ekkor ∥Pn − (0, 0)∥ =
√
e−n/2 cos2(n) + e−n/2 sin2(n) =

√
e−n/2 = e−n/4.

Így lim
n→∞

Pn = (0, 0).

3.1. Állítás. Tekintsük a Pn = (xn, yn) elemekb®l álló sorozatot. Ekkor az
alábbi két állítás ekvivalens:

1. A (Pn) pontsorozat konvergens és lim
n→∞

Pn = Q = (x0, y0).

2. Az (xn) és (yn) számsorozatok konvergensek és ezek határértéke lim
n→∞

xn = x0,

lim
n→∞

yn = y0.

Bizonyítás∗. 1. ⇒ 2. (Pn) konvergenciája miatt minden ε > 0-hoz létezik
egy N(ε) index, hogy ∥Pn −Q∥ < ε, ha n ≥ N(ε).

|xn − x0| ≤
√
(xn − x0)2 + (yn − y0)2 =⇒ |xn − x0| < ε,

és hasonlóan |yn − y0| < ε is teljesül.
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2.⇒ 1.Minden ε > 0-hoz létezik olyan küszöbindex, hogy minden n ≥ N -re:

|xn − x0| <
ε√
2
, |yn − y0| <

ε√
2
.

∥Pn −Q∥ =
√
(xn − x)2 + (yn − y)2 =⇒ ∥Pn −Q∥ <

√
ε2

2
+
ε2

2
= ε.

Cauchy sorozat

3.6. De�níció. (Pn) Cauchy sorozat, ha teljesíti a Cauchy-féle feltételt:
∀ε > 0-hoz létezik olyan N = N(ε) küszöbindex, amelyre

∥Pn − Pm∥ < ε ∀n,m ≥ N.

3.2. Állítás. (Pn) pontosan akkor konvergens, ha Cauchy sorozat.

Bizonyítás. Csak az egyik irányt bizonyítjuk. Belátjuk, hogy konvergens
sorozat teljesíti a Cauchy-féle feltételt. Tegyük fel, hogy lim

n→∞
Pn = P . Ekkor

∀ε-hoz létezik N küszöbindex, amelyre

∥Pn − P∥ < ε/2 ∀n ≥ N

Ekkor ha n,m ≥ N , akkor a háromszögegyenl®tlenség miatt

∥Pn − Pm∥ ≤ ∥Pn − P∥+ ∥P − Pm∥ < ε/2 + ε/2 = ε.

3.1. Tétel. (Bolzano-Weierstrass-tétel) Legyen (Pn) korlátos pontsorozat a
síkon. Ekkor létezik konvergens részsorozata.

Bizonyítás. Ha (Pn) korlátos és Pn = (xn, yn), akkor (xn) és (yn) is korlátos
sorozatok. Ekkor létezik (xn)-nek konvergens részsorozata, legyen ez (xmk

),
illetve létezik (ymk

)-nak is konvergens részsorozata, ez legyen (ynk
). Ekkor

nyilván ((xnk
, ynk

)) is konvergens.
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Halmazok IR2-ben

IR2 részhalmazait tartományoknak is nevezzük.

1. Példa. T ⊂ IR2 téglalap, ha megadhatók a < b és c < d valós számok,
melyre

T = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.

Ez egy kétdimenziós intervallum, melyet direkt szorzat alakban is írhatjuk:
[a, b]× [c, d].

2. Példa. Legyen ε > 0 valós szám és C = (A,B)ϵIR2 síkbeli pont. A C

középpontú ε sugarú gömb:

S(C, ε) = {(x, y) :
√
(x−A)2 + (y −B)2 < ε}.
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IR2 topológiája

Egydimenzióban az x0 pont környezetei az x0 középpontú intervallumok
(x0 − ε, x0 + ε), tetsz®leges ε > 0 esetén. Ezt általánosítjuk.

3.7. De�níció. Egy P = (x, y) pont környezetei azon S⊂IR2 tartományok,
melyek P közeppontú gömbök.

3.8. De�níció. Adott S ⊂ IR2 halmaz.

1. Q0ϵS bels® pontja S-nek, ha ∃U környezete, melyre U ⊂ S.

2. Q1ϵIR
2 küls® pontja S-nek, ha ∃U környezete, melyre U ∩ S = ∅.

3. Q2ϵIR
2 határpontja S-nek, ha ∀U környezetben ∃P ′ϵU pont melyre

P ′ϵS, és ∃P ′′
ϵU melyre P

′′
ϵ|S.

3.1. Következmény. Minden S halmaz a síkot 3 diszjunkt részre osztja:

- küls® pontok, ezek halmazát ext(S) jelöli. (Ez az 'exterior' szóból ered.)

- bels® pontok, ezek halmazát int(S) jelöli. (Ez az 'interior' szóból ered.)

- határpontok, ezeket halmazát ∂S jelöli. Lehetnek határpontok, amelyek
elemei az adott halmaznak, és lehetnek, amelyek nem elemei.
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3.9. De�níció. Az S halmaz zárt, ha minden határpontját tartalmazza. Az
S halmaz nyílt, h a minden pontja bels® pont. Az S halmaz lezárása:

S = S ∪ ∂S.

Példa. A gömb nyílt halmaz. Ennek határpontjai:

∂S(C, r) = {P : ∥P − C∥ = r},

és így lezárása:

S(C, r) = {P : ∥P − C∥ ≤ r}.

Példa. Legyen S = {(x, y) : x, yϵQ} a sík racionális koordinátájú pontjainak
halmaza. Ekkor a halmaz lezárása S = IR2.

3.10. De�níció. P az S halmaz torlódási pontja, ha létezik olyan (Pn)⊂S
sorozat, melyre Pn ̸= P és lim

n→∞
Pn = P.

Torlódási pontok lehetnek bels® pontok és határpontok. Zárt halmaz minden
torlódási pontját tartalmazza.

Vonal a síkon

3.11. De�níció. Legyen P és P ′ két IR2-beli pont. Ezeket összeköt® folyto-
nos vonalat egy γ : [α, β] → IR2 függvénnyel tudunk megadni. A vonal:

Γ = {γ(t) : tϵ[α, β]}, γ(α) = P, γ(β) = P ′.

A γ(t)ϵIR2 pont koordinátáit jelölje γ(t) =: (x(t), y(t)). Feltesszük, hogy ezek
az x(t) és y(t) koordináta-függvények:

x, y : [α, β] → IR folytonosak.

3.12. De�níció. Az S ⊂ IR2 tartomány összefügg®, ha bármely két pontját
kiválasztva tartalmaz egy ®ket összeköt® folytonos vonalat.
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3.13. De�níció. Legyen P = (x, y) és P ′ = (x′, y′) két IR2-beli pont. A két
pontot összeköt® szakaszt az alábbi függvény írja le:

γ : [0, 1] → IR2, γ(t) := P + t(P ′ − P ).

Speciálisan tehát γ(0) = P , γ(1) = P ′.

A szakasz is folytonos vonal, mégpedig az alábbi koordináta-függvényekkel:

x(t) = x+ t(x′ − x),

y(t) = y + t(y′ − y).

3.14. De�níció. Az S ⊂ IR2 tartomány konvex, ha bármely két pontjával
együtt az ®ket összeköt® szakaszt is tartalmazza.
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3.2. Polárkoordináták

A síkbeli pontokat nem csak a megszokott Descartes-féle koordinárendszer-
ben tudjuk megadni. Sokszor hasznos lesz a most bevezetésre kerül® polár-
koordináták használata.

3.15. De�níció. Egy adott (x, y)ϵIR2 pont polárkoordinátái (r, θ), melye-
ket így de�niálunk:

1. r: a pont origótól vett távolsága

2. θ: az origóból az adott pontba mutató vektornak az x tengely pozitív
részével bezárt szöge.

Így tehát a polárkoordinátákra rϵIR+ ∪ {0}, θϵ[0, 2π).

Ha r és θ adottak, akkor

x = r cos(θ), y = r sin(θ).

A fenti hozzárendelés egy-egyértelm¶ megfeleltetés, kivéve a (0, 0) pontot.

3.1. ábra. A polárkoordináták értelmezése.

Fordítva, ha x és y adottak, akkor a polárkoordináták:

r =
√
x2 + y2, θ = arctan

(y
x

)
az 1. síknegyedben.

A θ-ra vonatkozó formulát �nomítani kell attól függ®en, hogy a pont melyik
síknegyedben van.
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3.3. Kétváltozós függvények

Adott S ⊂ IR2 tartomány. f : S → IR kétváltozós függvény, amely S

elemeihez egy valós számot rendel. Értelmezési tartományát Df -fel jelöljük
(="domain"), értékkészletét Rf -fel (="range").

Függvény megadása azt jelenti, hogy megadjuk az értelmezési tartományt és
a hozzárendelés módját u = f(x, y).

Elnevezések: (x, y): független változó, u: függ® változó.

Legegyszer¶bb példák:

1. Lineáris függvény.

f(x, y) = ax+ by + c,

ahol a, b, cϵIR rögzítettek. Értelmezési tartománya IR2.

2. Másodfokú polinom.

f(x, y) = ax2 + bxy + cy2 + dx+ ey + j,

ahol a, b, c, d, e, jϵIR rögzítettek. Értelmezési tartománya IR2.

3. Polinomokat két dimenzióban úgy de�niáljuk, mint monomiálok összege.
Egy monomiál általános alakja:

amnx
myn.

Együtthatója amnϵIR, foka a benne lev® fokok összege: m+ n. Egy polinom
fokát úgy de�niáljuk, mint a legmagasabb fokú monomiáljának foka.

Egy polinom homogén, ha a polinomban szerepl® monomiálok foka ugyanaz.
Például egy homogén másodfokú polinom

f(x, y) = x2 + 2xy + y2.

További kétváltozós függvények konstrukciója az ismert egyváltozós függ-
vények segítségével történhet, például:

u = sin(xy) vagy u = ln(y2 + cos(x/2)).
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3.3.1. Geometriai reprezentác�ó

Egyváltozós függvényt görbe segítségével lehet reprezentálni, a kétváltozós
függvényt felületként fogjuk megadni. Tekintjük a háromdimenziós koordi-
nátarendszert, melyben a koordináta tengelyek x, y és u. Itt az (x, y) síkot
képzelhetjük a vízszintes síknak. A függvény értelmezési tartományának tet-
sz®leges (x, y) pontja fölött kijelöljük azt a P pontot, melynek harmadik
koordinátája u = f(x, y). Ha (x, y) bejárja a függvény értelmezési tartomá-
nyát, akkor a megfelel® P pontok egy felületet fognak megadni.

Tehát az f : S → IR függvényt a térben az alábbi számhármasok írják le:

{(x, y, f(x, y)) : (x, y)ϵS} .

Ezek a pontok felületet alkotnak a térben.

Példa. Legyen f(x, y) = x2 + y2. A felület egy darabja:

3.2. ábra. Az f(x, y) = x2 + y2 függvény felülete.

Példa. Legyen f(x, y) = x2 − y2. A felület egy darabja:

A háromdimenziós ábrázolás nem mindig megfelel®. Egyrészt ezt több füg-
getlen változóra nem tudjuk kiterjeszteni. Másrészt még két független válto-
zó esetén is szerencsésebb az (x, y) síkban dolgozni, itt gond nélkül tudunk
rajzolni. Ehhez adnak segítséget a szintvonalak. Rögzített kϵIR mellett
ábrázoljuk azokat az (x, y) pontokat, melyekre f(x, y) = k.

Példa. Legyen f(x, y) = x2 + y2. A szintvonalak koncentrikus körök:
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3.3. ábra. Az f(x, y) = x2 − y2 függvény felülete.

3.4. ábra. Az f(x, y) = x2 + y2 függvény szintvonalai

Példa. Legyen f(x, y) = x2 − y2. A szintvonalak hiperbolák és egyenesek:

A szintvonalakkal történ® ábrázolás kiterjeszthet® háromváltozós f(x, y, z)
függvényekre. Ekkor szintvonalak helyett k = f(x, y, z) szintfelületeket
kapunk, ahol k tetsz®leges konstans.
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3.5. ábra. Az f(x, y) = x2 − y2 függvény szintvonalai

3.3.2. Folytonosság

Heurisztikusan elképzelve azt várjuk, hogy ha (x, y) "közel van" (x0, y0)-hoz,
akkor f(x, y) is "közel van" f(x0, y0)-hoz.

3.16. De�níció. Legyen (x0, y0) az f függvény értelmezési tartományának
egy pontja. Az f függvény folytonos (x0, y0)-ban, ha f(x0, y0) tetsz®leges
U környezetéhez megadható (x0, y0)-nak olyan V környezete, hogy minden
(x, y)ϵV , (x, y)ϵDf esetén f(x, y)ϵU .

Figyelembe véve a környezet de�nícióját, ezt így átfogalmazhatjuk:

De�níció. Legyen (x0, y0) az f függvény értelmezési tartományának egy
pontja. f folytonos (x0, y0)-ban, ha ∀ε > 0-hoz ∃δ > 0, melyre ∀(x, y)ϵDf

esetén √
(x− x0)2 + (y − y0)2 < δ =⇒ |f(x, y)− f(x0, y0)| < ε.

3.17. De�níció. Az f függvény sorozatfolytonos az értelmezési tartomány
P0 pontjában, ha minden (Pn) ⊂ Df sorozatra:

lim
n→∞

Pn = P0 =⇒ lim
n→∞

f(Pn) = f(P0).
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A kétfajta fogalom ekvivalenciájáról szól az alábbi tétel:

3.2. Tétel. f pontosan akkor folytonos P0-ban, ha ott sorozatfolytonos.

A bizonyítás teljesen analóg az egyváltozós esettel, az olvasóra bízzuk.

Könnyen látható a fenti tétel alapján, hogy folytonos függvények összege,
szorzata, skalárszorosa is folytonos lesz.

3.18. De�níció. Ha egy függvény értelmezési tartományának egy pontjában
nem folytonos, akkor ott szakadása van.

1. Példa.

f(x, y) :=


x

y
ha y ̸= 0,

0 ha y = 0.

A függvény tetsz®leges (x, y) pontban folytonos, ha y ̸= 0. Szakadás az y = 0

egyenes mentén van.

2. Példa

f(x, y) :=


2xy

x2 + y2
ha (x, y) ̸= (0, 0)

0 ha (x, y) = (0, 0)

A függvény folytonos, ha x vagy y nem 0. S®t:

lim
x→0

f(x, y) = 0 ∀y ̸= 0.

lim
y→0

f(x, y) = 0 ∀x ̸= 0.

Tekintsük az x = y egyenest. Ezen egyenes mentén f(x, x) ≡ 1. Tehát ha
ennek az egyenesnek a mentén egy sorozattal tartunk az origóba, akkor a
függvényértékek sorozata azonosan 1 lesz. f nem folytonos a (0, 0)-ban.

3. Példa. Legyen

f(x, y) :=


x2y2

x2 + y2
ha (x, y) ̸= (0, 0),

0 ha (x, y) = (0, 0).
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Folytonos-e a függvény a (0, 0) pontban?

Igen! A sorozatfolytonosságot igazoljuk. Legyen (Pn) egy olyan sorozat,
melyre lim

n→∞
Pn = (0, 0). Pn polárkoordinátáit jelölje (rn, θn). Ekkor nyilván

lim
n→∞

rn = 0, míg a (θn) sorozat bármilyen lehet.

A fenti képletnek megfelel®en (x, y) ̸= (0, 0) esetén f(x, y) így írható:

f(r cos θ, r sin θ) =
r2 cos2(θ) r2 sin2(θ)

r2
= r2 cos2(θ) sin2(θ).

Ezért a függvény valóban folytonos , mert a fenti sorozat mentén

lim
n→∞

f(Pn) = 0.

3.3. Tétel. (Bolzano tétel) Legyen f : S → IR folytonos függvény, mely-
nek értelmezési tartomámya S⊂IR2 összefügg®. A tartomány két tetsz®leges
pontja P = (x, y) és P ′ = (x′, y′), melyekre

A = f(x, y) < f(x′, y′) = B.

Ekkor ∀cϵ(A,B) számhoz ∃Q = (x0, y0)ϵS pont, melyre f(x0, y0) = c.

Bizonyítás∗. Alapötlet. Mivel S összefügg®, ezért létezik S-ben P -t és P ′-t
összeköt® γ(t) folytonos görbe. A görbe mentén F (t) := f(x(t), y(t)) folyto-
nos függvény, és az egyváltozós Bolzano tétel szerint ∃ξ, melyre F (ξ) = c.

3.19. De�níció. Adott f : S → IR függvény, S⊂IR2. f egyenletesen foly-

tonos S-ben, ha ∀ε > 0-hoz ∃δ > 0, hogy bármely két P, P ′ϵS pontra

∥P − P ′∥ < δ =⇒ |f(P )− f(P ′)| < ε.

Az f : S → IR függvény Lipschitz folytonos S-ben, ha ∃L > 0, melyre

|f(P )− f(P ′)| ≤ L · ∥P − P ′∥ ∀P, P ′ϵS.

Az L számot Lipschitz-konstansnak hívjuk.

Triviálisan látható, hogy ha f egyenletesen folytonos S-n, akkor minden
pontjában folytonos. Ha f Lipschitz folytonos egy tartományban, akkor ott
egyenletesen is folytonos.
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Korlátos és zárt halmazon folytonos függvények

3.4. Tétel. (Weierstrass 1. tétele) Ha S⊂IR2 korlátos és zárt, f : S → IR

folytonos függvény, akkor f korlátos.

A bizonyítás "ugyanaz", mint az egyváltozós Weierstrass 1. tétel bizonyítása.
(HF)

3.5. Tétel. (Weierstrass 2. tétele) Korlátos és zárt tartományon folytonos
függvény felveszi a maximumát és minimumát.

A bizonyítás teljesen analóg az egyváltozós esettel. (HF)

3.3.3. Határérték

3.20. De�níció. Adott f : S → IR kétváltozós valós függvény, P0 = (x0, y0)

az ÉT egy torlódási pontja. Az f függvény határértéke (x0, y0)-ban L, ha
∀ε > 0 -hoz létezik δ > 0, hogy ∀(x, y)ϵS esetén

0 <
√

(x− x0)2 + (y − y0)2 < δ =⇒ |f(x, y)− L| < ε.

Jelölés

lim
(x,y)→(x0,y0)

f(x, y) = L.

Megfogalmazható az átviteli elv.

3.3. Állítás. f : S → IR, (x0, y0) torlódási pontja S-nek. Az alábbi tulaj-
donságok ekvivalensek:

1. lim
(x,y)→(x0,y0)

f(x, y) = L.

2. ∀Pn = (xn, yn)ϵS, Pn ̸= P0 sorozatra:

lim
n→∞

Pn = P0 =⇒ lim
n→∞

f(Pn) = L.
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1. Példa. Legyen S = {(x, y) : y > 0} a fels® félsík, és tekintsük azt az
f : S → IR függvényt, melyre

f(x, y) = e−x
2/y.

Legyen P0 = (x0, 0), ahol x0 ̸= 0 rögzített. Ekkor

lim
(x,y)→(x0,0)

e−x
2/y = lim

y→0+
e−x

2
0/y = 0,

ezért itt van határérték. Az origó-beli határérték létézését vizsggáljuk. Ha az
y = kx2 parabola mentén tartunk a (0, 0)-ba egy �x k mellett, azaz tekintünk
egy Pn = (xn, kx

2
n) sorozatot, melyre lim

n→∞
xn = 0, akkor minden n-re

lim
n→∞

f(Pn) = lim
n→∞

e−x
2
n/kx

2
n = e−1/k,

ez a határérték függ a sorozat választásától. Ezért a függvény határértéke
nem létezik a (0, 0) pontban.

2. Példa. Legyen

f(x, y) :=


x+ 2y

3x− y
ha 3x− y ̸= 0

0 ha 3x− y = 0

Legyen an = 1/n, és az egyik pontsorozat

Pn = (an, a
2
n) =⇒ lim

n→∞
Pn = (0, 0)

Ekkor

f(Pn) =
n+ 2

3n− 1
=⇒ lim

n→∞
f(Pn) =

1

3
.

Legyen egy másik pontsorozat

P ′
n = (a2n, an) =⇒ lim

n→∞
P ′
n = (0, 0).

Ekkor

f(P ′
n) =

1 + 2n

3− n
=⇒ lim

n→∞
f(P ′

n) = −2.

Ezért az origóban nincs határértéke a függvénynek.
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Itt az történt, hogy a (0, 0)-beli határértéket két közelítéssel próbáltuk meg
kiszámolni. Egyrészt

lim
x→0

lim
y→0

x+ 2y

3x− y
= lim

x→0

x

3x
=

1

3
.

Másrészt

lim
y→0

lim
x→0

x+ 2y

3x− y
= lim

y→0

2y

−y
= −2.

−2 ̸= 1/3 ezért nincs határérték. Figyelem! A határértékek egyenl®sége nem
lenne elég a kétdimenziós határérték létezéséhez.

3.6. ábra. A 2. példában szerepl® függvény az origó körül

3.4. Di�erenciálszámítás

3.4.1. Parciális deriváltak

3.21. De�níció. Legyen f : S → IR kétváltozós valós függvény. Legyen
(x0, y0) az S halmaz bels® pontja. A függvény x szerinti parciális deriváltja
az (x0, y0) pontban az alábbi határérték, ha létezik és véges:

f ′x(x0, y0) =
∂

∂x
f(x0, y0) = lim

x→x0

f(x, y0)− f(x0, y0)

x− x0
.
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Hasonlóan, a függvény y szerinti parciális deriváltja (x0, y0)-ban az alábbi
véges határérték, ha létezik:

f ′y(x0, y0) =
∂

∂y
f(x0, y0) lim

y→y0

f(x0, y)− f(x0, y0)

y − y0

A parciális deriválást értelmezhetjük a következ®képpen is. Rögzített y0
mellett de�niáljuk az f1(x) = f(x, y0) egyváltozós valós függvényt. Ekkor

∂

∂x
f(x0, y0) = f ′1(x0).

Hasonlóan, �x x0-ra de�niáljuk az f2(y) = f(x0, y) egyváltozós függvényt.
Ekkor

∂

∂y
f(x0, y0) = f ′2(y0).

A fenti f1 és f2 függvények az eredeti függvény metszetfüggvényei.

3.7. ábra. f(x, y) = xy rögzített y = 1 mellett egyváltozós függvény.

Ha a függvény parciális deriváltjai egy S tartomány minden pontjában lé-
teznek, akkor értelmezhet® a parciális derivált függvény. Ha a parciális
deriváltfüggvénynek létezik parciális deriváltja, akkor másodrend¶ parciális
deriváltat kaphatunk. Például:

∂

∂y
(
∂

∂x
f(x, y)) =

∂2

∂y∂x
f(x, y) = f ′′xy(x, y) = lim

h→0

f ′x(x, y + h)− f ′x(x, y)

h
.
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Példa. f(x, y) = 3x2 + y2. Az els®rend¶ parciális deriváltak

f ′x(x, y) =
∂

∂x
f(x, y) = 6x

f ′y(x, y) =
∂

∂y
f(x, y) = 2y.

A másodrend¶ parciális deriváltak

f ′′xx(x, y) = 6 f ′′yy(x, y) = 2

f ′′yx(x, y) = 0 f ′′xy(x, y) = 0. (3.1)

Példa.

f(x, y) :=


(x+ 2)2y

x2 + y2
+ 2x+ 3 ha (x, y) ̸= (0, 0)

3 ha (x, y) = (0, 0)

Léteznek-e a parciális deriváltak a (0, 0) pontban?
Számoljuk ki a f ′x(0, 0) parciális deriváltat a de�níció alapján:

f ′x(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

2h+ 3− 3

h
= 2.

Ekkor az x szerinti parciális derivált létezik.

Próbáljuk meg kiszámítani f ′y(0, 0)-t a de�níció alapján.

f ′y(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

4

h2
,

és ez a határérték nem létezik.

Láttuk, hogy ha egyváltozós valós függvény di�erenciálható egy a pontban,
akkor ott folytonos is. Kérdés, hogy a ha a parciális deriváltak léteznek,
akkor vajon folytonos-e a függvény az adott pontban? Nem feltétlenül.

Példa. Legyen

f(x, y) :=


xy

x2 + y2
ha (x, y) ̸= (0, 0)

0 ha (x, y) = (0, 0)
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Láttuk, hogy f nem folytonos az origóban. Mégis, a parciális deriváltak
léteznek a (0, 0) pontban:

f ′x(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= 0

f ′y(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= 0.

Szemléletesen, a probléma abból adódik, hogy a parciális deriváltak a függvény
simaságát csak az x ill. az y tengelyek mentén adják meg.

Egy elégséges feltétel a folytonosságra a parciális deriváltak korlátossága. Az
alábbi tételt bizonyítás nélkül kimondjuk.

3.6. Tétel. f : S → IR kétváltozós függvény, (x0, y0)ϵ intS. Tegyük fel, hogy
az f ′x és f

′
y parciális deriváltak léteznek (x0, y0) valamely U⊂S környezetében.

Tegyük fel továbbá, hogy a parciális deriváltak itt korlátosak, azaz

|f ′x(x, y)| ≤M, |f ′y(x, y)| ≤M ∀(x, y)ϵU.

Ekkor az f függvény folytonos az (x0, y0)-ban.

Az el®z® példa folytatása. Ha (x, y) ̸= (0, 0), akkor

f(x, y) =
xy

x2 + y2
.

Ennek például x szerinti parciális deriváltja:

f ′x(x, y) =
y(x2 + y2)− xy(2x)

(x2 + y2)2
=

y3 − x2y

(x2 + y2)2
.

Ez a függvény az origó közelében nem korlátos, hiszen például y = 2x esetén

f ′x(x, 2x) =
3x3

25x4
=

3

25x
,

ami tetsz®legesen nagy lehet, ha x közel van 0-hoz. Tehát nem meglep®,
hogy a függvény az origóban nem folytonos.



3.4. DIFFERENCIÁLSZÁMÍTÁS 49

Parciális deriváltak felcserélhet®sége

Korábban egy példában azt láttuk a (3.1) számolsásban, hogy a vegyes par-
ciális deriváltak megegyeztek. Ez nem véletlen! Fontos tétel következik.

3.7. Tétel. Adott f : S → IR kétváltozós függvény, (x, y)ϵ intS. Ha a pont
egy környezetében léteznek az f ′′xy és f ′′yx másodrend¶ parciális deriváltak, és
az adott pontban folytonosak, akkor itt a deriválások sorrendje felcserélhet®:

f ′′xy(x, y) = f ′′yx(x, y).

A deriválási sorrend felcserélhet®ségének messzemen® következményei van-
nak. A megfelel® deriváltak folytonosságát feltéve:

f
′′′
xxy = f

′′′
xyx = f

′′′
yxx.

Tehát ekkor a magasabb rend¶ parciális deriváltak kiszámításakor a derivá-
lások sorrendje tetsz®legesen csoportosítható.

Példa arra, hogy a deriválások sorrendje nem mindig cserélhet® fel. Legyen

f(x, y) :=


x2 − y2

x2 + y2
xy ha (x, y) ̸= (0, 0)

0 ha (x, y) = (0, 0)

Kiszámolható (HF), hogy ebben az esetben

f ′′yx(0, 0) = −1, f ′′xy(0, 0) = 1.

3.4.2. Teljes di�erenciálhatóság

Emlékeztetünk arra, hogy az f egyváltozós függvény esetén a di�erenciálha-
tóság egy xϵ intDf pontban azt jelentette, hogy az adott pontban értelmez-
het® érint® egyenes, ami a "jól közelíti" a függvényt kis elmozdulás esetén

f(x+∆x) = f(x) + f ′(x) ·∆x+ ε(∆x) ·∆x,

ahol lim
∆x→0

ε(∆x) = 0.
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3.8. ábra. A példában szerepl® függvény és vegyes második deriváltja, f ′′yx.

3.9. ábra. Példa. f(x) = x2 érint®je az x0 = 1-ben.

A fenti egyenl®ség a jobboldalon szerepl® maradéktag nagyon kicsi, erre hasz-
náljuk a kisordó elnevezést. Egy h(x) függvény kisordó a 0-ban, ha

lim
x→0

h(x)

x
= 0.

Ennek jelölése h(x) = o(x).

3.22. De�níció. Legyen f : S → IR kétváltozós függvény, és (x, y)ϵ intS.
Az f függvény di�erenciálható (x, y)-ban, ha léteznek olyan A, B, C szá-
mok, melyekre elegend®en kicsi ∆x és ∆y mellett teljesül, hogy

f(x+∆x, y +∆y) = A∆x+B∆y + C + o(
√
∆x2 +∆y2) (3.2)

ahol A,B,C függetlenek ∆x-t®l és ∆y-tól.
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3.8. Tétel. Ha f di�erenciálható az (x, y) pontban, akkor ott folytonos is és
léteznek az adott pontban vett parciális deriváltak. Továbbá a (3.2) képletben
szerepl® konstansokra

C = f(x, y); A = f ′x(x, y); B = f ′y(x, y).

Bizonyítás.

1. Válasszunk ∆x = ∆y = 0-t. Ekkor az (3.2) egyenlet szerint:

f(x, y) = A · 0 +B · 0 + C + 0 = C.

Tehát a C megegyezik a helyettesítési értékkel. Ez alapján könnyen
beláthatjuk a folytonosságot:

lim
∆x→0
∆y→0

f(x+∆x, y +∆y) =

= lim
∆x→0

A∆x+ lim
∆y→0

B∆y + C + lim
∆x→0
∆y→0

o(
√
∆x2 +∆y2) = C.

2. Igazoljuk az A-ra vonatkozó állítást. Legyen ∆y = 0. Ekkor az (3.2)
egyenlet így alakul:

f(x+∆x, y) = A∆x+ f(x, y) + o(|∆x|).

Ez alapján számoljuk ki a parciális deriváltat:

lim
∆x→0

f(x+∆x, y)− f(x, y)

∆x
= lim

∆x→0
(A+

o(|∆x|)
∆x

) = A.

Következmény. Ha az f függvény di�erenciálható az (x, y) pontban, akkor
elegend®en kicsi ∆x, ∆y mellett így írható:

f(x+∆x, y +∆y) = f(x, y) + f ′x(x, y)∆x+ f ′y(x, y)∆y + o(
√
∆x2 +∆y2).

(3.3)

A derivált geometriai jelentése is hasonló az egydimenziós esethez. Ha a
függvény di�erenciálható egy pontban, akkor a pont közelében a függvény
értékét az érint®sík segítségével közelíthetjük. A sík megadásához megadjuk
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egy pontját - ez (x0, y0, f(x0, y0)) - és megadjuk a sík meredekségét, ami a
két parciális derivált. Az érint®sík egyenlete tehát ez lesz:

z = f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0). (3.4)

Ezt az egyenletet írjuk át abba a megszokott alakba, ahogy a sík egyenletét
fel szoktuk írni:

f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0) + (−1)(z − z0) = 0,

ahol z0 = f(x0, y0). Err®l leolvasható, hogy a sík (egyik) normálvektora

n = (f ′x(x0, y0), f
′
y(x0, y0),−1).

Példa. Határozzuk meg a z = 2x2 + y2 elliptikus paraboloid érint®síkját az
(1, 1, 3) pontban.

A parciális deriváltak:

f ′x(x, y) = 4x f ′y(x, y) = 2y =⇒ f ′x(1, 1) = 4 f ′y(1, 1) = 2.

A (3.4) képlet alapján az érint®sík egyenlete:

z − 3 = 4(x− 1) + 2(y − 1) =⇒ z = 4x+ 2y − 3

Normálvektor: cn = (4, 2,−1).

3.23. De�níció. Ha az f függvény di�erenciálható az (x, y) pontban, akkor
ebben a pontban a derivált egy kétdimenziós vektor lesz, melyet gradiensnek
nevezünk:

grad f(x, y) = ∇f(x, y) = (f ′x(x, y), f
′
y(x, y)).

Ha az f függvény egy S0 halmaz minden pontjában di�erenciálható, akkor a
deriváltfüggvény

grad f : S0 → IR2

típusú lesz.

Ha a parciális derivált függvények folytonosak, akkor a függvény deriválható.
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3.4.3. Iránymenti derivált

A teljesen di�erenciálható függvények egy fontos tulajdonsága, hogy nem
csak az x és y szerinti parciális deriváltak léteznek - azaz az x és y irányban
deriválhatók - hanem tetsz®leges α irányban is.

3.24. De�níció. Legyen αϵ[0, 2π). Az α irányú iránymenti derivált az
alábbi határérték, ha létezik és véges:

Dαf(x, y) =
∂

∂α
f(x, y) = lim

h→0

f(x+ h cos(α), y + ϱ sin(α))− f(x, y)

h
.

Ez azt jelenti, hogy az f(x + ∆x, y + ∆y) fügvényértéket csak megadott
irányban nézzük, nevezetesen:

∆x = h cos(α), ∆y = h sin(α), hϵIR

3.4. Állítás. Tegyük fel, hogy az f di�erenciálható (x, y)-ban. Ekkor itt
tetsz®leges αϵ[0, 2π) esetén létezik az iránymenti derivált, és

Dαf(x, y) = f ′x(x, y) cos(α) + f ′y(x, y) sin(α).
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Bizonyítás∗. A di�erenciálhatóság miatt

f(x+h cos(α), y+h sin(α)) = f(x, y)+f ′x(x, y)h cos(α)+f
′
y(x, y)h sin(α)+o(h).

Ebb®l következik, hogy

f(x+ h cosα, y + h sinα)− f(x, y)

h
= f ′x(x, y) cos(α)+f

′
y(x, y) sin(α)+

o(h)

h
,

melynek határértékeként az állítást kapjuk.

Megjegyzés. Speciális α = 0 ill. α = π/2-re a parciális deriváltakat kapjuk:

D0f(x, y) = f ′x(x, y), Dπ/2f(x, y) = f ′y(x, y).

Általában az iránymenti derivált:

3.25. De�níció. Adott vϵIR2 irány, melyre ∥v∥ =
√
v21 + v22 = 1. A v

iránymenti deriváltat (x, y)- ban így értelmezzük, ha ez a határérték lé-
tezik:

Dvf(x, y) = lim
h→0

f(x+ h v1, y + h v2)− f(x, y)

h
.

A Dvf(x, y) iránymenti derivált valós szám.

Következmény. A Dvf(x, y) iránymenti derivált kiszámítása:

Dvf(x, y) = v1 f
′
x(x, y) + v2 f

′
y(x, y).

Példa. Legyen

f(x, y) =
√
x2 + y2,

azaz a függvény egy ponthoz hozzárendeli az origótól vett távolságát.

Adott α irányhoz tartozó irányvektor v = (cosα, sinα). Határozzuk meg a
Dαf(x, y) iránymenti deriváltat. Els®ként a parciális deriváltak:

f ′x(x, y) =
x√

x2 + y2
= cos(θ),

f ′y(x, y) =
y√

x2 + y2
= sin(θ),
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3.10. ábra. A Példabeli eredmény illusztrációja

ahol θ az (x, y) pont második polárkoordinátája. Ekkor:

Dαf(x, y) = f ′x(x, y) cosα+ f ′y(x, y) sinα =

= cos θ cosα+ sin θ sinα = cos(θ − α).

Látható, hogy ha α = θ, akkor az iránymenti derivált maximális abszolút
érték¶, míg θ − α = π/2 esetén az iránymenti derivált 0. (Vajon hogyan
értelmezhetjük geometriailag ezt a tényt?)

3.4.4. Lagrange-féle középértéktétel

3.9. Tétel. Legyen f : S → IR olyan kétváltozós függvény, mely di�erenciál-
ható az (x0, y0)ϵ intS egy δ sugarú környezetében, melyet U jelöljön. Legyen
(x1, y1)ϵU . Ekkor létezik θϵ(0, 1), melyre:

f(x1, y1)−f(x0, y0) = f ′x(xθ, yθ)∆x+f
′
y(xθ, yθ)∆y = grad f(xθ, yθ)·

(
∆x

∆y

)
,
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ahol

∆x = x1 − x0, ∆y = y1 − y0, (xθ, yθ) = (x0 + θ ·∆x, y0 + θ ·∆y).

Bizonyítás. A Tételt általános esetben bizonyítjuk majd.

3.4.5. Magasabb rend¶ deriváltak

3.26. De�níció. Adott f : S → IR kétváltozós függvény, és legyen (x0, y0)

bels® pontja S-nek. f kétszer di�erenciálható ebben a pontban, ha a függ-
vény di�erenciálható a pont egy környezetében, és az f ′x(x, y) és az f ′y(x, y)
parciális derivált függvények is di�erenciálhatóak az (x0, y0) pontban.

Ha f kétszer di�erenciálható az (x, y) pontban, akkor itt

f ′′xy(x, y) = f ′′yx(x, y).

3.27. De�níció. Ha a függvény kétszer di�erenciálható (x0, y0)-ban, akkor
függvény második deriváltja az alábbi mátrix:

H(x0, y0) =

 f ′′xx(x0, y0) f ′′yx(x0, y0)

f ′′xy(x0, y0) f ′′yy(x0, y0)

 .

Ez az (x0, y0) ponthoz tartozó Hesse mátrix.

Kétszer di�erenciálható függvény Hesse mátrixa szimmetrikus mátrix.

Megjegyzés. Ne felejtsük el, hogy egy kétváltozós függvény els® deriváltja 2
dimenziós sorvektor, második deriváltja 2× 2 dimenziós mátrix.

3.4.6. Összetett függvény

Ismétlés. A láncszabály összefett függvények (függvények kompóziciójának)
deriválására vonatkozik. Valós függvényekre ezt állítja:

(f ◦ g)′ (x) = f ′ (g(x)) g′(x).

f a küls® függvény, g a bels® függvény, mindkett® egyváltozós.
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Láncszabály, 1. speciális eset

A küls® függvény egyváltozós f : D → IR, D ⊂ IR.

A bels® függvény kétváltozósϕ : S → IR, S ⊂ IR2, ahol Rϕ ⊂ Df .

Ekkor az összetett függvény kétváltozós függvény, mely így értelmezhet®:

F = f ◦ ϕ : S → IR, F (x, y) = f(ϕ(x, y)).

Ha ϕ di�erenciálható a (x, y)-ban, és f di�erenciálható az u = ϕ(x, y)-ban,
akkor F (x, y) = f(ϕ(x, y)) is di�erenciálható, és a parciális deriváltak:

F ′
x(x, y) = f ′(ϕ(x, y))ϕ′x(x, y),

F ′
y(x, y) = f ′(ϕ(x, y))ϕ′y(x, y).

Példa. Legyen F (x, y) = f2(x, y), ahol f di�erenciálható. Ekkor

F ′
x(x, y) = 2f(x, y) f ′x(x, y) és F ′

y(x, y) = 2f(x, y) f ′y(x, y).

Láncszabály, 2. speciális eset

A küls® függvény kétváltozós f : S → IR, S ⊂ IR2.

Két bels® függvény van, mindkett® egyváltozós: φ,ψ : D → IR, D ⊂ IR.
Feltesszük, hogy Rφ ×Rψ ⊂ S.

Ekkor az összetett függvény egyváltozós függvény:

F : D → IR, F (t) = f(φ(t), ψ(t)).

3.10. Tétel. Tegyük fel, hogy φ és ψ di�erenciálhatóak a tϵ intD pontban,
és f di�erenciálható az (x, y) = (φ(t), ψ(t)) pontban. Ekkor az összetett
függvény is di�erenciálható, és deriváltja:

F ′(t) = f ′x(φ(t), ψ(t))φ
′(t) + f ′y(φ(t), ψ(t))ψ

′(t).

Megjegyzés. A könnyebb átláthatóság kedvéért a fenti formula argumentu-
mok nélkül: (

f ◦ (φ,ψ)
)′
= f ′xφ

′ + f ′yψ
′
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El®adáson elmondom a bizonyítást. Aki nem jegyzeteli le, bizonyítsa be (nem
nehéz HF).

Példa. Kétváltozós f függvény α irány menti deriváltját számoljuk az (x, y)
pontban. Ehhez az f(x, y) függvénybe behelyettesítjük a

φ(t) = x+ t · cosα, ψ(t) = y + t · sinα

változókat, és a deriváltat nézzük a t = 0 helyen. A fenti tétel alapján:

F (t) = f(x+ t cosα, y + t sinα)

deriváltja a t = 0 helyen:

F ′(0) = f ′x(x+0, y+0)φ′(0)+f ′y(x+0, y+0)ψ′(0) = f ′x(x, y) cosα+f
′
y(x, y) sinα.

Ez a jól ismert formulát adja.

Láncszabály, 3. speciális eset

Adott f(u, v) kétváltozós függvény, ahol az u és v változók helyére kétváltozós
függvényeket helyettesítünk:

u = ϕ(x, y), v = Ψ(x, y).

Legyenek ψ, ϕ : R→ IR, R ⊂ IR2 adott kétváltozós függvények. Jelölje:

S := {(u, v) : u = ϕ(x, y), v = ψ(x, y), (x, y)ϵR}.

Ekkor az összetett függvény az alábbi F : R→ IR kétváltozós függvény:

F (x, y) = f(ϕ(x, y), ψ(x, y))

Példa. Legyen
F (x, y) = exysin(x+ y).

Ezt a függvényt így tudjuk összetett függvényként értelmezni. Legyenek

u = ϕ(x, y) = xy v = ψ(x, y) = x+ y

f(u, v) = eu sin(v).

A de�nícióból könnyen adódik az alábbi állítás:
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3.5. Állítás. Ha ϕ, ψ folytonosak (x, y)-ban, és f folytonos az

(u, v) =
(
ϕ(x, y), ψ(x, y)

)
pontban, akkor F is folytonos (x, y)-ban.

3.11. Tétel. (Láncszabály.) Tegyük fel, hogy ϕ, ψ di�erenciálhatók (x, y)-
ban, és f is di�erenciálható az (u, v) = (ϕ(x, y), ψ(x, y)) pontban. Ekkor F
is di�erenciálható (x, y)-ban, és parciális deriváltjai:

F ′
x(x, y) = f ′u (ϕ(x, y), ψ(x, y))ϕ

′
x(x, y) + f ′v (ϕ(x, y), ψ(x, y))ψ

′
x(x, y),

F ′
y(x, y) = f ′u (ϕ(x, y), ψ(x, y))ϕ

′
y(x, y) + f ′v (ϕ(x, y), ψ(x, y))ψ

′
y(x, y).

Bizonyítás∗. Írjuk fel az F összetett függvény megváltozását:

F (x+∆x, y +∆y)− F (x, y) =

= f (ϕ(x+∆x, y +∆y), ψ(x+∆x, y +∆y))− f (ϕ(x, y), ψ(x, y)) =

= f ′u(ϕ(x, y), ψ(x, y))∆ϕ+ f ′v(ϕ(x, y), ψ(x, y))∆ψ + ε1(x, y),

ahol ε1(x, y) = o(
√
(∆x)2 + (∆y)2), mert a küls® függvény di�erenciálható.

A bels® függvények megvátozásait így írhatjuk:

∆ϕ = ϕ(x+∆x, y +∆y)− ϕ(x, y) = ϕ′x(x, y)∆x+ ϕ′y(x, y)∆y + ε2(x, y),

∆ψ = ψ(x+∆x, y +∆y)− ψ(x, y) = ψ′
x(x, y)∆x+ ψ′

y(x, y)∆y + ε3(x, y),

ahol ε2(x, y) és ε3(x, y) is o(
√
(∆x)2 + (∆y)2). Mindezeket visszahelyette-

sítve megkapjuk F di�erenciálhatóságát és parciális deriváltjait.

Példa. (folytatás) A fenti függvény x szerinti parciális deriváltja:

F ′
x(x, y) = eu sin(v)y + eu cos(v) = exy (sin(x+ y)y + cos(x+ y)) .

Példa. Legyen
f(x, y) = x2 + y2.

Helyettesítsük be x és y helyére a polárkoordinátákat, legyenek tehát

x = x(r, θ) = r cos(θ)

y = y(r, θ) = r sin(θ).
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Ekkor az összetett függvény

F (r, θ) = f(r cos(θ), r sin(θ)) = r2 cos2(θ) + r2 sin2(θ) = r2.

Számoljuk ki F θ szerinti parciális deriváltját a láncszabály alapján. A kép-
let, amit használnunk kell:

∂F

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
.

Ezek a parciális deriváltak:

∂f

∂x
= 2x

∂x

∂θ
= r(− sin(θ))

∂f

∂y
= 2y

∂y

∂θ
= r cos(θ).

Így ezekb®l összerakva a deriváltat ezt kapjuk:

∂F

∂θ
(r, θ) = 2xr(− sin(θ)) + 2yr cos(θ)

= 2r cos(θ)r(− sin(θ)) + 2r sin(θ)r cos(θ) = 0.

A fent megfogalmazott Tételek csak egy-egy lehetséges formái a láncszabály-
nak. Általános esetben a küls® és bels® függvények fajtái változhatnak.

3.4.7. Implicit függvény tétel∗

Példa feladat: Adott a síkban egy görbe, melyet az F (x, y) = 0 implicit alakú
függvény ír le. Adott a görbének egy pontja (x0, y0), ahol F (x0, y0) = 0 . A
pont környezetében keressük a görbét megadó függvény explicit alakját. Egy
olyan y = f(x) függvényt keresünk, melyre F (x, f(x)) = 0 és f(x0) = y0.

3.12. Tétel. (Implicit függvény tétel) Tegyük fel, hogy az F kétváltozós függ-
vény di�erenciálható (x0, y0) egy környezetében, és ebben a pontban

F (x0, y0) = 0, továbbá F ′
y(x0, y0) ̸= 0.

Ekkor létezik egy kétdimenziós intervallum,

I = I1 × I2 = (x0 − α, x0 + α)× (y0 − β, y0 + β),
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hogy minden xϵI1 esetén az F (x, y) = 0 egyenletnek pontosan egy y = f(x)

megoldása van, és yϵI2. Tehát létezik egy

f : I1 → I2

valós függvény, mely a következ® tulajdonságokkal rendelkezik:

- f(x0) = y0.

- f(x)ϵI2, ∀xϵI1.

- F (x, f(x)) = 0, ∀xϵI1.

- F ′
y(x, f(x)) ̸= 0, ∀xϵI1.

Továbbá f di�erenciálható I1-ben, és deriváltja így számolható:

f ′(x) = −F
′
x(x, f(x))

F ′
y(x, f(x))

.

Megjegyzés. Az implicit függvény tétel a görbe lokális tulajdonságát fogal-
mazza meg. Másrészt csak egzisztenciáról van szó, tehát annyit állít a Tétel,
hogy létezik a megfelel® függvény, de nem adja meg a konstrukciót.

A Tételt nem bizonyítjuk. Ha már tudjuk, hogy f di�erenciálható, akkor
deriváltja kiszámolható. Deriváljuk az F (x, f(x)) = 0 egyenletet x szerint:

F ′
x(x, f(x)) · 1 + F ′

y(x, f(x)) · f ′(x) = 0, (3.5)

ahonnan a Tétel utolsó állítása következik.

Megjegyzés. Az (3.5) összefüggés újabb deriválásával f magasabb rend¶ de-
riváltjait is ki tudjuk fejezni. Például a második derivált:

F ′′
xx(x, f(x)) + F ′′

yx(x, f(x))f
′(x) + F ′′

xy(x, f(x))f
′(x)+

+F ′′
yy(x, f(x))(f

′(x))2 + F ′′
yy(x, f(x))f

′′(x) = 0.

Ebb®l pedig f ′′(x) kifejezhet®.

Példa. Tekintsük az

F (x, y) = x2 + y2 − 1 = 0
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egyenlet megoldását. Ha ebb®l explicit módon megpróbáljuk az y-t kifejezni:

y = ±
√

1− x2,

ami nem egyértelm¶. Konkrét (x0, y0) esetén az implicit függvény segítsé-
gével a körívnek azt a darabját kapjuk meg, ahol az adott pont szerepel.
Három eset lehetséges.

1. Ha x0ϵ(−1, 1) és y0 > 0, akkor a megoldásfügvény f(x) =
√
1− x2.

2. Ha x0ϵ(−1, 1) és y0 < 0, akkor a megoldásfügvény f(x) = −
√
1− x2.

3. Ha x0 = ±1, akkor y0 = 0. Ekkor F ′
y(x0, 0) = 0, és valóban, a megoldás

nem folytatható.

Példa. Tekintsük a Descartes-féle görbét, amelyet az alábbi egyenlet ad meg:

F (x, y) = x3 + y3 − 3axy = 0,

ahol a > 0 egy valós paraméter.

3.11. ábra. A Déscartes-görbe a z = F (x, y) felület és az (x, y) sík metszete.

A parciális deriváltakat kiszámolva azt kapjuk, hogy

F ′
x(x, y) = 3x2 − 3ay, F ′

y(x, y) = 3y2 − 3ax.
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Vagyis F ′
x(0, 0) = F ′

y(0, 0) = 0, a (0, 0) környezetében tehát nem folytatható
(nem egyértelm¶) a megoldás. Bármely más pont a görbén alkalmas kiindu-
lási pontnak. Látható, hogy van olyan x, amihez 1, illetve van olyan, amihez
3 megfelel® y tartozik. Deriváltja:

f ′(x, y) = −3x2 − 3ay

3y2 − 3ax
=
ay − x2

y2 − ax
=
af(x)− x2

f2(x)− ax

3.5. Széls®érték számítás

Legyen f : S → IR kétváltozós függvény, S ⊂ IR2.

3.28. De�níció. (x0, y0)ϵS lokális maximum (ill. minimum), ha létezik
a pontnak olyan U környezete, hogy

f(x, y) ≤ f(x0, y0) (ill . f(x, y) ≥ f(x0, y0)) ∀(x, y)ϵU ∩Df .

(x0, y0) globális maximum (ill. minimum), ha minden

f(x, y) ≤ f(x0, y0) (ill . f(x, y) ≥ f(x0, y0)) ∀(x, y)ϵDf .

Megjegyzés. A Weierstrass tételb®l következik, hogy ha S korlátos és zárt
tartomány, akkor biztosan létezik globális minimum és maximum.

Példa. Tekintsük az f(x, y) = x2+y2 függvényt az S = {(x, y) : x2+y2 ≤ 1}
tartományon. A függvény globális maximumhelyei a {(x, y) : x2 + y2 = 1}
körvonal pontjai, és egyetlen globális minimumhelye a (0, 0) pont.

3.13. Tétel. (Szükséges feltétel a széls®érték létezésére) Tegyük fel, hogy az
f di�erenciálható függvénynek (x0, y0)-ban lokális széls®értéke van. Ekkor
f ′x(x0, y0) = 0,és f ′y(x0, y0) = 0 , azaz

grad f(x0, y0) = (0, 0).

Bizonyítás. Jelölje f1(x) = f(x, y0) a kétváltozós függvény egyik metszet-
függvényét. Ekkor x0 lokális széls®értéke f1-nek, ezért f ′1(x0) = 0. Másrészt
f ′1(x) = f ′x(x, y0), ebb®l a Tétel állítása küvetkezik.



64 3. FEJEZET. TÖBBVÁLTOZÓS VALÓS FÜGGVÉNYEK

3.29. De�níció. Ha grad f(x0, y0) = (0, 0), akkor (x0, y0) stacionárius

pont (vagy kritikus). Ha nincs itt széls®érték, akkor ez nyeregpont.

Példa. A fenti tételben szerepl® feltétel valóban csak szükséges, mint ez a
következ® példából is látszik. Legyen

f(x, y) = xy, (x, y)ϵIR2.

Parciális deriváltjai:

f ′x(x, y) = y, f ′y(x, y) = x.

A (0, 0)-ban mindkét parciális deriváltja elt¶nik, azaz

f ′x(0, 0) = 0, f ′y(0, 0) = 0,

mégis ez a pont nem széls®érték. Ez onnan is látható, hogy a függvény el®jele
az 1. és 3. síknegyedben pozitív, a 2. és 4. síknegyedben negatív. Ezért az
origó bármely környezetében van a függvénynek pozitív és negatív értéke is.

3.12. ábra. Az f(x, y) = xy felülete az origó közelében.
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Példa. Határozzuk meg, hogy milyen háromszög esetén lesz a szögek sinusai-
nak a szorzata maximális. Ha a háromszög két szöge x és y, akkor a harmadik
szög π − x− y. Így a minimalizálandó függvény f : [0, π]× [0, π] → IR.:

f(x, y) = sinx sin y sin(π − x− y) = sinx sin y sin(x+ y).

El®zetesen megállapíthatjuk, hogy ha 0 < x, y < π, akkor f(x, y) > 0,
egyébként a határon f(x, y) = 0. Ezért Df belsejében f pozitív, a ∂Df -en
az f = 0. Tehát a függvény maximuma létezik (mivel Df korlátos és zárt)
és bels® pontban van.

Meghatározzuk a stacionárius pontokat.

f ′x(x, y) = cosx sin y sin(x+ y) + sinx sin y cos(x+ y) = 0,

f ′y(x, y) = sinx cos y sin(x+ y) + sinx sin y cos(x+ y) = 0.

A fenti egyenleteket egymásból kivonva azt kapjuk, hogy tg y = tg x, vagyis
a stacionárius pontban x = y. Ezt visszahelyettesítve azt kapjuk, hogy

cosx sinx sin 2x+ sin2 x cos 2x = 0,

amib®l trigonometrikus azonosságok felhasználásával, és sinx ̸= 0 miatt:

cosx sin 2x+ sinx cos 2x = sin 3x = 0

adódik. Ebb®l azt kapjuk, hogy

x = y =
π

3
,

tehát a háromszög egyenl® oldalú.

3.14. Tétel. (Elégséges feltétel a széls®érték létezésére) Tegyük fel, hogy az
(x0, y0) pont stacionárius pontja f -nek, és itt f kétszer di�erenciálható. Hes-
se mátrixa:

H0 =

 f ′′xx(x0, y0) f ′′yx(x0, y0)

f ′′xy(x0, y0) f ′′yy(x0, y0)

 .

1. Ha ebben a pontban
det (H0) > 0,

akkor a pontban lokális széls®érték van.
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(a) Ha emellett f ′′xx(x0, y0) > 0, akkor ez lokális minimum.

(b) Ha pedig f ′′xx(x0, y0) < 0, akkor lokális maximum.

2. Ha ebben a pontban
det (H0) < 0,

akkor a pontban nincs lokális széls®érték.

3. Ha ebben a pontban
det (H0) = 0,

akkor a széls®érték eldöntéséhez további vizsgálat szükséges.

Tétel (Az el®z® tétel átfogalmazása.) Tegyük fel, hogy (x0, y0) egy stacioná-
rius pontja f -nek. Ekkor ha a H(x0, y0) Hesse mátrix

- pozitív de�nit, akkor itt a függvénynek lokális minimuma van,

- negatív de�nit, akkor lokális maximuma van,

- inde�nit, akkor nincs széls®értéke,

- szemide�nit, akkor még nem eldönthet® a lokális széls®érték létezése

A Tételeket nem bizonyítjuk.

Példaként tekintsük az

A =

 1 0

0 1

 , B =

 −1 0

0 −1

 , C =

 1 0

0 −1


mátrixokat. Nyilván A > 0 (pozitív de�nit), B < 0 (negatív de�nit) és C
inde�nit.

Speciális esetként vizsgáljuk meg, hogy n = 2-re mit jelent a de�nitség.

3.6. Állítás. Legyen H0 = H(x0, y0) egy kétváltozós függvény Hesse mátrixa
az (x0, y0) pontban:

H0 =

 f ′′xx(x0, y0) f ′′yx(x0, y0)

f ′′xy(x0, y0) f ′′yy(x0, y0)

 .

Ekkor
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1. H0 > 0 ⇐⇒ det (H0) > 0 és f ′′xx(x0, y0) > 0

2. H0 < 0 ⇐⇒ det (H0) > 0 és f ′′xx(x0, y0) < 0

3. H0 inde�nit ⇐⇒ det (H0) < 0

4. H0 ≤ 0 vagy H0 ≥ 0 ⇐⇒ det(H0) = 0

Megjegyzés. A fenti Állítás 1. és 2. pontjában f ′′yy(x0, y0)-ra vonatkozó
feltétel is írható.

Példa. Legyen

f(x, y) = x2 − 3xy + y2, (x, y)ϵIR2.

Lokális széls®érték meghatározáshoz számoljuk ki a gradiensét:

f ′x(x, y) = 2x− 3y, f ′y(x, y) = −3x+ 2y.

A gradiens-vektor egyetlen pontban t¶nik el, ez a (0, 0) pont. A Hesse mátrix
minden pontban ugyanaz:

H =

 f ′′xx(x, y) f ′′yx(x, y)

f ′′xy(x, y) f ′′yy(x, y)

 =

 2 −3

−3 2

 .

Mivel det H = −5 < 0, ezért a mátrix inde�nit, tehát a függvénynek nincs
lokális széls®értéke.

Példa. Legyen

f(x, y) = x2 + xy + y2 + x+ y, (x.y)ϵIR2.

A stacionárius pontokat meghatározó egyenletrendszer:

f ′x(x, y) = 2x+ y + 1 = 0, f ′y(x, y) = x+ 2y + 1 = 0,

ennek egyetlen megoldása, mint lehetséges széls®érték

(x0, y0) = (−1

3
,−1

3
).

A második deriváltak konstansok:

f ′′xx(x, y) = 2, f ′′yy(x, y) = 2, f ′′xy(x, y) = 1.
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A Hesse mátrix

H =

 2 1

1 2


pozitív de�nit, ezért az (x0, y0) stacionárius pont lokális minimum.

3.6. Feltételes széls®érték

Minta feladat: Adott IR2-ben egy ϕ(x, y) = 0 görbe. Vajon a görbe melyik
pontja van az origóhoz a legközelebb? Más szóval határozzuk meg a

min(x2 + y2)

értékét, ahol a változók nem függetlenek, hanem fennáll a ϕ(x, y) = 0 össze-
függés. Els® megoldásként a ϕ(x, y) = 0 alakból explicit módon kifejezzük
az egyik változót: y = F (x), és minimalizáljuk az

x2 + (F (x))2, xϵDF

kétváltozós függvényt. Ennek hátránya, hogy egyrészt egyáltalán nem biztos,
hogy explicit megoldás létezik, másrészt önkényesen részesítjük el®nyben az
egyik változót. Második megoldásként közvetlenül optimalizálunk. Ez azt
jelenti, hogy az f(x, y) = x2 + y2 függvény megszorítását tekintjük az

{(x, y) : ϕ(x, y) = 0}

halmazon, és itt keressük a széls®értéket. A gondot az okozza, hogy a fenti
halmaznak általában nincs bels® pontja, tehát a korábbi fejezet tételeit nem
alkalmazhatjuk.

A feltétles optimalizálás feladatát a következ®képpen értelmezzük.

3.30. De�níció. Legyen f : S → IR kétváltozós di�erenciálható függvény.
Ennek tekintjük megszorítását azon a halmazon, melyet egy implicit függvény
ad meg, ahol a ϕ(x, y) = 0 összefüggés teljesül. Tömören a feladat tehát:

min
{(x,y): ϕ(x,y)=0}

f(x, y). (3.6)
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3.13. ábra. Az f = c szintvonalak és a ϕ = 0 szintvonal egyszerre

A szükséges feltétel el®tt lássuk szemléletesen, hogy mit várhatunk. Képzel-
jünk el egy olyan ábrát, ahol egyszerre látható a ϕ(x, y) = 0 feltétel, és az
f(x, y) = c szintvonalak, különböz® c értékek mellett.

Amely c-re van közös pont, ott van megoldása az egyenletrendszernek:

ϕ(x, y) = 0, f(x, y) = c.

Mivel f folytonos (hiszen di�erenciálható), ezért a szintvonalak is monoton
módon változnak. Így azt a szintvonalat keressük, ami "utoljára" metszi a
ϕ(x, y) = 0 görbét. Ebben a pontban görbék érintik egymást, az érint®k
megegyeznek, azaz

f ′x(x, y)

f ′y(x, y)
=
ϕ′x(x, y)

ϕ′y(x, y)
.

Ezt a képletet az implicit függvény deriválásakor láttuk. Egy kicsit másképp
átrendezve azt kapjuk, hogy van egy olyan λ valós szám, melyre

f ′x(x, y)

ϕ′x(x, y)
=
f ′y(x, y)

ϕ′y(x, y)
= λ.

Tehát szemléletesen azt várjuk, hogy ha (x, y) feltételes széls®érték, akkor
létezik olyan λ, melyre teljesül:

f ′x(x, y)− λϕ′x(x, y) = 0,

f ′y(x, y)− λϕ′y(x, y) = 0.

Err®l szól a következ® tétel, melyet nem bizonyítunk.
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3.15. Tétel. (Szükséges feltétel feltételes széls®értékre) Tegyük fel, hogy az
f(x, y) és ϕ(x, y) függvények di�erenciálhatók, és (x0, y0) pont a (3.6) feltéte-
les optimalizálás megoldása. Tegyük fel, hogy grad ϕ(x0, y0) ̸= (0, 0). Ekkor
létezik olyan λ0ϵIR konstans, melyre

f ′x(x0, y0)− λ0ϕ
′
x(x0, y0) = 0,

f ′y(x0, y0)− λ0ϕ
′
y(x0, y0) = 0.

A fenti tételt átfogalmazva kimondjuk a Lagrange-féle multiplikátor szabályt.
De�niáljuk az F : Df × IR → IR háromváltozós függvényt:

F (x, y, λ) = f(x, y)− λϕ(x, y).

Ha (x0, y0) megoldása a feltételes széls®érték feladatnak, akkor van olyan λ0,
melyre (x0, y0, λ0) stacionárius pontja F (x, y, λ)-nak.

Tekinsük az alábbi feltételes optimalizálási feladatot:

min
{ϕ(x,y)=0}

f(x, y) vagy max
{ϕ(x,y)=0}

f(x, y).

Ehelyett tekinthetjük az

F (x, y, λ) = f(x, y)− λϕ(x, y), (x, y)ϵDf , λϵIR

függvény feltétel nélküli széls®érték feladatát.

Fontos hangsúlyozni, hogy a fenti Lagrange-féle multiplikátor szabály csak
szükséges feltételt ad a feltételes széls®érték helyére. Tehát az F függvény
stacionárius pontja lehetséges feltételes széls®érték, és minden esetben to-
vábbi meggondolás szükséges.

Példa. Legyen f(x, y) = xy, és ennek szeretnénk meghatározni feltételes
széls®értékét az x2 + y2 − 1 = 0 görbe mentén. (A görbe mentén nincs
bels® pont!). Alkalmazzuk a Lagrange-féle multiplikátor szabályt. Eszerint
az alábbi függvény stacionárius pontjait keressük:

F (x, y, λ) = xy − λ(x2 + y2 − 1).

Megjegyezzük, hogy az x2 + y2 − 1 = 0 feltételb®l adódó halmaz korlátos és
zárt, tehát biztosan létezik széls®érték. A függvényértékek nagyságrendjére
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egy el®zetes becslést kaphatunk a számtani-mértani közép közti összefüggés
alkalmazásával, hiszen

x2 + y2

2
≥
√
x2y2 = |xy|.

Emiatt a feltételi halmazon

|f(x, y)| ≤ 1

2
,

azaz
−1

2
≤ f(x, y) ≤ 1

2
. (3.7)

A Lagrange függvény gradiense:

F ′
x(x, y, λ) = y − 2λx,

F ′
y(x, y, λ) = x− 2λy,

F ′
λ(x, y, λ) = −(x2 + y2 − 1).

A grad F (x, y, λ) = 0 egyenletrendszer megoldásaként ez adódik:

λ1 = 0.5, vagy λ2 = −0.5.

Így visszahelyettesítve a λ-kat négy stacionárius pontot kapunk:

(x1, y1) = (
1√
2
,
1√
2
), (x2, y2) = (− 1√

2
,− 1√

2
),

(x3, y3) = (− 1√
2
,
1√
2
), (x4, y4) = (

1√
2
,− 1√

2
).

A megfelel® függvényértékek:

f(x1, y1) = 0.5, f(x2, y2) = 0.5,

f(x3, y3) = −0.5, f(x4, y4) = −0.5.

A (3.7) összefüggést felhasználva azt kapjuk, hogy f(x1, y1) és f(x2, y2) fel-
tételes maximumok, f(x3, y3) és f(x4, y4) pedig feltételes minimumok.
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3.14. ábra. Példa feltételes széls®érték számításra.

3.7. Függvényrendszerek

Ebben a fejezetben egyszerre több függvényt tekintünk. Speciálisan, a függ-
vények száma megegyezik a változók számával. R ⊂ IR2 egy tartomány, ahol
adott két valós függvény, Φ,Ψ : R→ IR. A függvényrendszer amit tekintünk:

ξ = Φ(x, y)

η = Ψ(x, y). (3.8)

Ezt úgy értelmezzük, mint IR2 térbeli leképezés, mely az (x, y) ponthoz a
(ξ, η) = F (x, y) pontot rendeli hozzá. Ezt a F : R → IR2 leképezést szokás
vektormez®nek is nevezni.

Példa. Az a�n leképezést így de�niáljuk:

ξ = ax+ by

η = cx+ dy.
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Ezzel már korábban találkoztunk, mint IR2-beli lineáris leképezés. Tömören
így írhatjuk: (

ξ

η

)
= A

(
x

y

)
, A =

(
a b

c d

)
.

3.7.1. Invertálhatóság

Függvényrendszerekkel kapcsolatosan felmerül® els® kérdés, hogy vajon -
mint egy IR2-beli leképezés - invertálható-e? Legyen B a képtér:

B = {(ξ, η) : ξ = Φ(x, y), η = Ψ(x, y)) : (x, y)ϵR}.

Tegyük fel, hogy a leképezés injektív, azaz különböz® R-beli pontokhoz a
képtérben különböz® (ξ, η) pontok tartoznak. Ekkor a (3.8) rendszer inver-
tálható. Az inverz rendszer ilyen alakú lesz:

x = g(ξ, η)

y = h(ξ, η). (3.9)

3.7.2. Az inverz leképezés di�erenciálhatósága

Tegyük fel, hogy a kiinduló (3.8) rendszer függvényei és az inverz (3.9) rend-
szer függvényei is di�erenciálhatók.

3.31. De�níció. A (3.8) rendszer tartozó Jacobi mátrixát így de�niáljuk:

J (x, y) :=

 Φ′
x(x, y) Φ′

y(x, y)

Ψ′
x(x, y) Ψ′

y(x, y)

 =

 grad Φ(x, y)

grad Ψ(x, y)

 .

A fenti mátrix determinánsát Jacobi determinánsnak hívjuk:

D(x, y) := det J (x, y) = Φ′
x(x, y)Ψ

′
y(x, y)−Ψ′

x(x, y)Φ
′
y(x, y).

A Jacobi determinánst szokás így is jelölni:

D(x, y) =
d(ξ, η)

d(x, y)
.



74 3. FEJEZET. TÖBBVÁLTOZÓS VALÓS FÜGGVÉNYEK

Megjegyezzük, hogy ez valóban csak formális jelölés.

Az inverz rendszer Jacobi mátrixát így jelöljük:

K(ξ, η) :=

 g′ξ(ξ, η) g′η(ξ, η)

h′ξ(ξ, η) h′η(ξ, η)

 .

3.16. Tétel. Tegyük fel, hogy a Jacobi determináns nem 0, azaz az (3.8)
rendszer Jacobi mátrixa nem szinguláris az ÉT egy (x0, y0) bels® pontjában.
Ekkor az (x0, y0) egy környezetében a vektormez® invertálható. Továbbá, az
inverz rendszer Jacobi mátrixa így számítható:

K(ξ, η) = (J (x, y))−1 ,

ahol (x, y) és (ξ, η) egymás képei.

Speciálisan, az inverz függvényrendszer Jacobi determinánsa reciproka az ere-
deti függvényrendszer Jacobi determinánsnak:

d(ξ, η)

d(x, y)
=

1

d(x, y)

d(ξ, η)

.

Bizonyítás∗. A (3.9) egyenleteket (3.8)-be helyettesítve az alábbi azonossá-
gokat kapjuk:

ξ = Φ(g(ξ, η), h(ξ, η)) (3.10)

η = Ψ(g(ξ, η), h(ξ, η)) (3.11)

Deriváljuk mindkét egyenletet ξ szerint, majd η szerint. Az áttekinthet®bb
jelölés kedvéért az argumentumokat nem írjuk ki. Ezt kapjuk:

1 = Φ′
xg

′
ξ +Φ′

yh
′
ξ (3.12)

0 = Ψ′
xg

′
ξ +Ψ′

yh
′
ξ (3.13)

0 = Φ′
xg

′
η +Φ′

yh
′
η

1 = Ψ′
xg

′
η +Ψ′

yh
′
η

A (3.12) egyenletet szorozzuk meg Ψ′
x-vel, és a (3.13) egyenletet szorozzuk

meg Φ′
x-vel, majd vonjuk ki egymásból az egyenleteket. Azt kapjuk, hogy

h′ξ =
Ψ′
x

Φ′
yΨ

′
x − Φ′

xΨ
′
y

.
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Teljesen hasonlóan kapjuk a többi deriváltat is:

g′ξ =
Ψ′
y

Φ′
xΨ

′
y − Φ′

yΨ
′
x

,

h′η =
Φ′
x

Φ′
xΨ

′
y − Φ′

yΨ
′
x

,

g′η =
Φ′
y

Φ′
yΨ

′
x − Φ′

xΨ
′
y

.

Vezessük be azt a jelölést, hogy

D = Φ′
xΨ

′
y − Φ′

yΨ
′
x.

Ekkor a fenti képletek röviden így írhatók:

g′ξ =
Ψ′
y

D
, g′η = −

Φ′
y

D
, h′ξ = −Ψ′

x

D
, h′η =

Φ′
x

D
. (3.14)

Az inverz függvény deriváltjára vonatkozó képletek könnyebb memorizálása
érdekében vegyük észre az egydimenziós esettel való analógiát. Ha f egyvál-
tozós di�erenciálható függvény, melynek deriváltja nem 0, akkor inverzének
deriváltja így írható:

(f−1)′(y) =
1

f ′(x)
, y = f(x).

Most a kétváltozós függvényrendszer ilyen alakú:(
Φ

Ψ

)
: R→ S,

és ennek derivált-mátrixa:

J (x, y) =

 Φ′
x(x, y) Φ′

y(x, y)

Ψ′
x(x, y) Ψ′

y(x, y)

 .

Az inverzfüggvény (
g

h

)
: S → R,
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és ennek derivált-mátrixa:

K(ξ, η) =

 g′ξ(ξ, η) g′η(ξ, η)

h′ξ(ξ, η) h′η(ξ, η)

 .

Emlékeztetünk arra, hogy 2× 2 mátrix inverzét hogyan számoljuk ki: a b

c d


−1

=
1

ad− bc

 d −b

−c a

 .

Példa. Tekintsük a polárkoordináták esetét a fels® félsíkban, kivéve az origót.
Ekkor a függvényrendszer:

r =
√
x2 + y2 ( = Φ(x, y) )

θ = arctan
y

x
( = Ψ(x, y). )

Ennek Jacobi mátrixa:

J (x, y) =


x√

x2 + y2
y√

x2 + y2

−y
x2 + y2

x

x2 + y2

 .

Ezért a Jacobi determináns:

D =
x2

(x2 + y2)3/2
+

y2

(x2 + y2)3/2
=

1√
x2 + y2

=
1

r
.

Az inverz rendszer

x = r cos θ ( = g(r, θ) )

y = r sin θ ( = h(r, θ) )

Az inverz rendszer Jacobi mátrixa

K =

 g′r g′θ

h′r h′θ

 =

 cos θ r(− sin θ)

sin θ r cos θ

 .
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Ennek determinánsa

det (K) = r cos2 θ + r sin2 θ = r.

Számoljuk ki a J −1 inverz mátrixot:

J −1 =
1

det J


x

x2 + y2
−y√
x2 + y2

y

x2 + y2
x√

x2 + y2

 =

=


x√

x2 + y2
−y

y√
x2 + y2

x

 =

 cos θ −r sin θ

sin θ r cos θ

 = K.

3.8. Kitekintés n dimenzióra

3.8.1. IRn pontjai

IRn elemeit a rendezett szám n-esek jelentik: P = (x1, . . . , xn)ϵIR
n, P ′ = (x′1, . . . , x

′
n)ϵIR

n.
Ezek az n dimenziós tér pontjai.

3.32. De�níció. A két pont távolsága:

∥P−P ′∥ = ρ(P, P ′) =

√√√√ n∑
i=1

(xi − x′i)
2 =

(
(x1 − x′1)

2 + (x2 − x′2)
2 + · · ·+ (xn − x′n)

2
)1/2

.

3.33. De�níció. Egy P = (x1, . . . , xn)ϵIR
n pont környezetei n-dimenziós

gömbök, melyeket így értelmezünk:

S(P, ε) =

{
Q = (x′1, . . . , x

′
n)ϵIR

n :
n∑
k=1

(xk − x′k)
2 < ε2

}
.
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3.8.2. Parciális derivált, teljes derivált

3.34. De�níció. Legyen S⊂IRn egy tartomány, f : S → IR, x = (x1, . . . , xn)ϵ intS

egy bels® pont. Az i-dik változó szerinti parciális derivált:

f ′xi(x) =
∂

∂xi
f(x) = lim

ξ→xi

f(x1, . . . , xi−1, ξ, xi+1 . . . , xn)− f(x1, . . . , xn)

ξ − xi
,

feltéve, hogy a fenti határtérték létezik és véges.

3.35. De�níció. f : S → IR n-változós valós függvény, S ⊂ IRn. Legyen
x bels® pontja S-nek. Az f függvény di�erenciálható x-ben, ha elegend®en
kicsi ∆x = (∆x1, . . . ,∆xn) megváltozás esetén, melyre x+∆xϵS, teljesül az
alábbi összefüggés:

f(x+∆x) = f(x) +A ·∆x+ o(∥∆x∥), (3.15)

ahol AϵIRn független ∆x-t®l, ∥∆x∥ =
√

∆x21 + . . .+∆x2n.

A kétváltozós esethez hasonlóan igazolhatóak az alábbi állítások:

3.17. Tétel. Ha f di�erenciálható egy aϵS bels® pontban, akkor az (3.15)
képletben szerepl® konstans vektor a parciális deriváltakból áll:

A = (f ′x1(a), . . . , f
′
xn(a)) = grad f(a).

3.18. Tétel. Tegyük fel, hogy az f függvény parciális derivált függvényei
léteznek és folytonosak egy adott x pontban. Ekkor f teljesen di�erenciálható.

3.36. De�níció. Tegyük fel, hogy az f függvény parciális derivált függvényei
di�erenciálhatóak. Ebben az esetben a második derivált, a Hesse mátrix,
olyan n× n dimenziós mátrix, melynek (i, j)-dik eleme:

Hij(x) =
∂2f

∂xi∂xj
(x).
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3.8.3. Iránymenti derivált

3.37. De�níció. Adott az f : S → IR függvény, xϵ intS bels® pontja S-nek.
Adott egy v irány, v = (v1, . . . , vn)ϵIR

n, mely egységnyi hosszú vektor,

(
n∑
i=1

v2i

)1/2

= 1.

Ekkor az f függvény v irányú deriváltja, ha a határérték létezik és véges:

Dvf(x) := lim
ϱ→0

f(x+ ϱv)− f(x)

ϱ
,

3.19. Tétel. Ha f di�erenciálható x-ben, akkor ∀v irányban létezik Dvf(x)

és

Dvf(x) = v1f
′
x1(x) + . . .+ vnf

′
xn(x) =

n∑
i=1

vif
′
xi(x).

3.8.4. Összetett függvény

Legyen f(u1, . . . , un) n-változós függvény, és adottak a ϕ1(x, y), . . . , ϕn(x, y)
kétváltozós függvények közös Dϕi = R ⊂ IR2 értelmezési tartománnyal.

Az összetett függvény kétváltozós függvény, amely így írható:

F (x, y) = f(ϕ1(x, y), . . . ϕn(x, y)).

Ha f és ϕi, i = 1, . . . , n di�erenciálhatóak, akkor F is di�erenciálható, és

F ′
x(x, y) =

n∑
i=1

∂f

∂ui
(ϕ1(x, y), . . . ϕn(x, y))

∂ϕi
∂x

(x, y).

F ′
y(x, y) =

n∑
i=1

∂f

∂ui
(ϕ1(x, y), . . . ϕn(x, y))

∂ϕi
∂y

(x, y).
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3.8.5. Széls®érték

3.20. Tétel. (Szükséges feltétel) Legyen f n-változós di�erenciálható függ-
vény, f : S → IR, S ⊂ IRn. Ha az értelmezési tartomány x0ϵ int(S) bels®
pontjában lokális széls®értéke van a függvénynek, akkor grad f(x0) = 0.

3.21. Tétel. (Elégséges feltétel) Legyen S ⊂ IRn, f : S → IR n-változós
függvény, kétszer di�erenciálható az x0ϵ int(S) pontban. Tegyük fel, hogy
grad f(x0) = 0. Jelölje H0 a pontbeli Hesse mátrixot.

1. Ha H > 0, azaz pozitív de�nit, akkor x0 lokális minimum.

2. Ha H < 0, azaz negatív de�niy, akkor x0 lokális maximum.

3. Ha H inde�nit, akkor nincs széls®érték.

4. Ha H szemide�nit, akkor további vizsgálat szükséges.

Emlékeztet®: Az A n × n-es szimmetrikus mátrix pozitív (negatív) de�nit,
ha minden xϵIRn, x ̸= 0 esetén xTAx > 0 (< 0). Ezt úgy jelöljük, hogy
A > 0, (A < 0). Ha létezik xϵIRn, melyre xTAx > 0 és létezik yϵIRn,hogy
yTAy < 0, akkor a mátrix inde�nit.

3.8.6. Lagrange-féle középértéktétel n dimenzióban

3.22. Tétel. Legyen f : S → IR olyan n-változós függvény, mely di�eren-
ciálható valamely rögzített xϵS egy U környezetében. Legyen hϵIRn olyan
megváltozás, melyre (x+ h)ϵU . Ekkor létezik θϵ(0, 1):

f(x+ h)− f(x) = grad f(x+ θh) · h =
n∑
i=1

f ′xi(ξx)hi,

ahol ξx = x+ θh és 0 < θ < 1.

Megjegyezzük, hogy a fenti tételben grad f(x + θh) sorvektor, h pedig osz-
lopvektor. A képletben szerepl® · skaláris szorzást jelöl.
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Bizonyítás∗. Vezessük be az alábbi egyváltozós függvényt:

F (t) := f(x+ th) = f(x1 + th1, . . . , xn + thn).

Ekkor F : [0, 1] → IR di�erenciálható valós függvény, továbbá F (0) = f(x) és
F (1) = f(x+h). Erre a függvényre alkalmazzuk az egyváltozós Lagrange-féle
középértéktételt. Eszerint létezik θϵ(0, 1), melyre:

F (1)− F (0) = F ′(θ) · 1.

Mivel a láncszabály alkalmazásával rögzített t-re

F ′(t) = f ′x1(x+ th) h1 + . . .+ f ′xn(x+ th) hn,

ezért
F ′(θ) = f ′x1(ξx) h1 + . . .+ f ′xn(ξx) hn, ξx = x+ θh

és ebb®l az állítás következik.

3.2. Következmény. Legyen S ⊂ IRn konvex tartomány (vagyis bármely
két pontját összeköt® szakasz is benne van S-ben), és adott f : S → IR.
Feltesszük, hogy f di�erenciálható és grad f(x) = 0 minden xϵS-re. Ekkor
a függvény konstans.

Bizonyítás∗. Teljesen hasonló az egyváltozós esethez.

Megjegyzés. A fenti állítás összefügg® tartományon értelmezett függvényre
is igaz, a konvexitás nem szükséges. (HF: Miért?)

3.8.7. Taylor-formula∗

Feladat. Legyen f : S → IR kétváltozós függvény, amely elegend®en sokszor
di�erenciálható valamely (x0, y0) pontban. Adjunk becslést az

f(x, y)− f(x0, y0)

különbségre az (x0, y0) pontbeli deriváltak felhasználásával.

A fenti feladatra egy megoldást az érint® sík alapján tudunk adni, eszerint

f(x, y) ≈ f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0).
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Ez megfelel az els®fokú Taylor-polinomnak.

Magasabb fokú Taylor polinomhoz vezessük vissza a feladatot az egyváltozós
esetre.

Legyen

F (t) = f(x0 + t∆x, y0 + t∆y),

ahol

∆x = x− x0, ∆y = y − y0.

Ekkor F : [0, 1] → IR elegend®en sokszor di�erenciálható valós függvény,
F (0) = f(x0, y0), F (1) = f(x, y). Az F függvény t = 0 pont körüli Taylor-
formuláját fogjuk használni. Ehhez szükségünk lesz a deriváltakra:

F (0) = f(x0, y0)

F ′(t) = f ′x(x0 + t∆x, y0 + t∆y)∆x+ f ′y(x0 + t∆x, y0 + t∆y)∆y

F ′′(t) = f ′′xx(x0 + t∆x, y0 + t∆y)(∆x)2 + 2f ′′xy(x0 + t∆x, y0 + t∆y)∆x∆y +

+ f ′′yy(x0 + t∆x, y0 + t∆y)(∆y)2.

Ha feltesszük, hogy F (t) n-szer di�erenciálható, akkor indukcióval belátható,
hogy:

F (n)(t) =

n∑
k=0

(
n

k

)
∂nf

∂xk∂yn−k
(x0 + t∆x, y0 + t∆y) (∆x)k(∆y)n−k.

A Taylor formula alapján ezt kapjuk:

f(x, y)− f(x0, y0) = F (1)− F (0) =

= (f ′x∆x+ f ′y∆y) + · · ·+ 1

n!

n∑
k=0

(n
k

)
(∆x)k(∆y)n−k

∂nf

∂xk∂yn−k
(x0, y0) +Ln,

ahol Ln a Lagrange-féle maradéktag.

Speciálisan n = 2 esetén kiírjuk pontosan a tagokat:

f(x, y) = f(x0, y0)+grad f(x0, y0)·
(
∆x

∆y

)
+
1

2
(∆x, ∆y)·H(x0, y0)·

(
∆x

∆y

)
+L2,

ahol H(x0, y0) a Hesse-mátrix.
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Általános másodrend¶ Taylor-formula. Legyen f n-változós, kétszer
di�erenciálható függvény S-ben, S ⊂ IRn. Ekkor tetsz®leges x, (x + h)ϵS

esetén
f(x+ h) = f(x) + grad f(x) · h+ L1,

ahol
hT = (h1, . . . , hn), grad f(x) = (f ′x1 , . . . , f

′
xn),

továbbá a Lagrange-féle maradéktag így írható:

L1 =
1

2
hT
(∫ 1

0
(1− t) H(x+ th) dt

)
h.
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4. fejezet

Többes integrálok
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4.1. Az integrál értelmezése

Ismétlés. Egyváltozós függvény esetén a Riemann integrált határértékként
értelmeztük. Adott f : [a, b] → IR korlátos függvény. Az [a, b] intervallum
egy felosztását véges sok pontjával adtuk meg, a = x0 < x1 < · · · < xn = b.
Bevezettük az adott felosztáshoz tartozó alsó- és fels® közelít® összegeket:

sn =
n∑
i=1

mi · (xi − xi−1), Sn =
n∑
i=1

Mi · (xi − xi−1),

ahol mi = inf{f(x), xϵ[xi−1, xi]}, Mi = sup{f(x), xϵ[xi−1, xi]}. Ha az alsó
közelít® összegek supremuma és a fels® közelít® összegek in�muma egyenl®,
akkor a függvény Riemann-integrálható.

4.1.1. Kett®s integrál

Legyen R ⊂ IR2 korlátos és zárt tartomány. f : R → IR+ folytonos függ-
vény. Célunk, hogy meghatározzuk az f(x, y) felülete alatti térrész, azaz a
következ® három dimenziós tartomány térfogatát, V (S)-t:

S = {(x, y, z) : (x, y)ϵR, 0 ≤ z ≤ f(x, y)},

Tekintsük az R halmaz felosztását olyan halmazokra, melyeknek nincs közös
bels® pontjuk: R = R1 ∪ . . . ∪Rn. Az R halmaz területét jelölje A(R).

Az i-dik halmazon a függvény in�muma mi és suprémuma Mi:

mi = inf{f(x, y) : (x, y)ϵRi}, Mi = sup{f(x, y) : (x, y)ϵRi}.

Ekkor a felosztáshoz tartozó alsó- és fels® közelít® összegek:

sn =

n∑
i=1

miA(Ri) és Sn =
n∑
i=1

MiA(Ri) =⇒ sn ≤ V (S) ≤ Sn.

4.1. De�níció. Egy R ⊂ IR2 halmaz átmér®je két legtávolabbi pontjának
távolsága:

δ(R) = sup{∥P1 − P2∥ : P1, P2ϵR}.
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4.1. ábra. A kett®s integrál közelítése

Legyen a fenti felosztás �nomsága

δ = max
i=1,...,n

δ(Ri).

Mivel f folytonos R-en, ezért az egyenletesen folytonosság miatt ∀ε > 0-hoz
∃δ > 0, hogy ha a felosztás �nomsága ennél kisebb, akkor

Mi −mi < ε.

Ekkor

Sn − sn =
n∑
i=1

A(Ri)(Mi −mi) ≤
n∑
i=1

A(Ri)ε = εA(R).

Ezért
Sn − sn → 0 ha max

1≤i≤n
δ(Ri) → 0.

Íly módon az integrál értelmezhet®. Az imént de�niált térfogatot így jelöljük:

V (S) =

∫∫
R

f(x, y) dR.

Általános esetben a függvényr®l nem tesszük fel sem a folytonosságot sem a
nem-negativitást. Az integrált a Riemann-féle közelít® összegek segítségével
fogjuk de�niálni.
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4.2. De�níció. Legyen f : R → IR korlátos függvény (nem feltétlenül nem-
negatív), R korlátos tartomány IR2-ben. Legyen (ξi, ηi)ϵRi az i-dik tartomány
tetsz®leges pontja, a hozzá tartozó függvényérték fi := f(ξi, ηi). A felosztás-
hoz tartozó Riemann-féle közelít® összeg:

Vn =
n∑
i=1

fi A(Ri).

Az f függvény Riemann-integrálható, ha létezik az alábbi határérték:

lim
n→∞,

max δ(Ri)→0

Vn = V,

ahol V értéke független a (ξi, ηi) pontok választásától. Ekkor ezt így jelöljük:∫∫
R

f(x, y) dR =

∫∫
R

f(x, y) d(x, y).

4.1. Következmény. Ha az f folytonos egy R korlátos és zárt tartományon,
akkor f ezen a tartományon integrálható is.

Példa. Legyen f(x, y) = 1 minden (x, y)ϵR esetén. Ekkor∫∫
R

1 dR = A(R).

Speciális esetként tekintsünk egy R téglalapot, R = [a, b]×[c, d]. Az interval-
lumokban legyenek a felosztások egyenletesek: az [a, b] intervallumot osszuk
n részre, a [c, d] intervallumot m részre. Az x tengelyen egy részintervallum

hossza ∆x =
b− a

n
, az y tengelyen egy részintervallum hossza ∆y =

d− c

m
,

és N = nm. Ekkor a közelít® összeg

VN =
n∑
i=1

m∑
j=1

f(ξi, ηj)∆x∆y.

Példa. Legyen R = [0, 1] × [0, 1], f(x, y) = x. A kiszámítandó tartomány
egy félkocka, a 4.2. ábrán látható.
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4.2. ábra. Az f(x, y) = x függvény alatti tartomány, félkocka.

A függvény folytonos, korlátos és zárt tartományon van értelmezve, ezért

integrálható. Geometriai meggondolás alapján V =
1

2
-et várunk.

Egyenletes felosztást tekintünk mindkét irányban, N = n2. Az (i, j)-dik
résztartományon, [xi−1, xi]× [yj−i, yj ]-n a Riemann összegben használt függ-
vényérték legyen xi = i/n. Így a megfelel® Riemann-összeg, és határértéke:

VN = n
n∑
i=1

1

n2
xi =

1

n2
n(n+ 1)

2
=

1

2
+

1

2n
, lim

N→∞
VN =

1

2
.

Példa. Legyen R = [a, b]× [c, d] kétdimenziós intervallum. Tegyük fel, hogy
f(x, y) = F (x)G(y), azaz a függvény szeparálható. Határozzuk meg az∫∫

R

F (x)G(y) d(x, y)

kett®s integrál értékét. Egyenletes felosztásokat használva

VN =

n∑
i=1

m∑
j=1

f(ξi, ηj)∆x∆y =

n∑
i=1

m∑
j=1

F (ξi)G(ηj)∆x∆y =

=

n∑
i=1

F (ξi)∆x ·
m∑
j=1

G(ηj)∆y −→
b∫
a

F (x)dx ·
d∫
c

G(y)dy.



90 4. FEJEZET. TÖBBES INTEGRÁLOK

Ezért ebben az esetben a kett®s integrál két integrál szorzata:

∫∫
R

F (x)G(y) d(x, y) =

b∫
a

F (x)dx ·
d∫
c

G(y)dy.

Példa. Legyen az integrálandó függvény f(x, y) = ex−y, az integrálási tarto-
mány R = [0, 1]× [1, 2]. Ekkor

∫∫
R

ex−ydR =

1∫
0

exdx

2∫
1

e−ydy = (e− 1)[−(e−2 − e−1)] =

= (e− 1)(
1

e
− 1

e2
) = (e−1 − 1)2.

4.1.2. A kett®s integrál alaptulajdonságai

A de�nícióból látható, hogy f ≥ 0 nem szükséges az integrál értelmezéséhez.
Általános esetben ún. el®jeles térfogatról beszélünk.

4.1. Állítás. Tegyük fel, hogy f integrálható R-en. Ekkor

1. Tetsz®leges cϵIR esetén cf is integrálható, és∫∫
R

cf(x, y)dR = c

∫∫
R

f(x, y)dR.

2. Ha g is integrálható R-en, akkor f + g is, és∫∫
R

(f + g)dR =

∫∫
R

fdR+

∫∫
R

gdR.

3. Ha R = R1 ∪R2, ahol R1, R2 nem átfed®ek, akkor∫∫
R

fdR =

∫∫
R1

fdR1 +

∫∫
R2

fdR2.
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3a. Ha feltesszük, hogy A(R2) = 0, akkor:∫∫
R

fdR =

∫∫
R1

fdR1.

Ez azt jelenti, ha f(x, y) értékét egy 0 mérték¶ halmazon megváltoztat-
juk, akkor az integrál értéke nem változik.

4. Ha f ≥ 0, akkor ∫∫
R

fdR ≥ 0.

5. Ha f(x, y) ≥ g(x, y) minden (x, y)ϵR-re és g integrálható, akkor∫∫
R

fdR ≥
∫∫
R

gdR.

Következmény. (Háromszög egyenl®tlenség) Ha f integrálható, akkor

∫∫
R

|f |dR ≥

∣∣∣∣∣∣
∫∫
R

fdR

∣∣∣∣∣∣ .
Valóban, |f(x, y)| ≥ f(x, y) és |f(x, y)| ≥ −f(x, y).

4.1. Tétel. (Integrál középértéktétel) Tegyük fel, hogy a függvény korlátos,
éspedig m ≤ f(x, y) ≤M minden (x, y)ϵR esetén. Ekkor

m ·A(R) ≤
∫∫
R

fdR ≤M ·A(R).

Továbbá ha f folytonos és R összefügg®, akkor létezik (ξ, η)ϵR, hogy∫∫
R

fdR = f(ξ, η) ·A(R).
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4.1.3. Kett®s integrál kiszámítása

Integrálás téglalap tartományon

Legyen R kétdimenziós intervallum, R = [a, b] × [c, d] és f : R → IR integ-
rálható függvény (nem feltétlenül szeparábilis).

4.2. Tétel. Minden yϵ[c, d] esetén értelmezzük a Φ : [c, d] → IR függvényt:

Φ(y) =

b∫
a

f(x, y)dx.

Ekkor Φ integrálható, és

d∫
c

Φ(y)dy =

∫∫
R

f(x, y)dR.

Fordítva is igaz, ha de�niáljuk a Ψ : [a, b] → IR függvényt, mint

Ψ(x) =

d∫
c

f(x, y)dy,

akkor Ψ is integrálható és

b∫
a

Ψ(x)dx =

∫∫
R

f(x, y)dR.

Bizonyítás∗. Vázlat. Mivel f integrálható, ezért az egyenletes felosztásokat
tekintve tetsz®leges ∀ε > 0-hoz ∃N küszöbindex, hogy ha n,m > N , akkor

|
n∑
i=1

m∑
j=1

f(xj , yi)
(b− a)

m

(d− c)

n
−
∫∫
R

f(x, y)dR| < ε.

Ha a fenti egyenletben m → ∞, akkor az els® tag integrál közelít® összeg,
ezért

m∑
j=1

f(xj , yi)
(b− a)

m
→ Φ(yi).
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Ezért n→ ∞-re az egész összeg határértéke

n∑
j=1

Φ(yi)
(d− c)

n
→

d∫
c

Φ(y)dy.

Tehát ha R = [a, b]× [c, d] téglalap-tartományon integrálunk, akkor

∫∫
R

fdR =

b∫
a

d∫
c

f(x, y)dydx =

d∫
c

b∫
a

f(x, y)dxdy.

Megjegyzés. Az integrál kiértékelése "belülr®l-kívülre" megy, azaz

b∫
a

d∫
c

f(x, y)dydx =

b∫
a

 d∫
c

f(x, y)dy

 dx.

Példa. Legyen f(x, y) = x2 + 4y, és R = [−2, 2]× [1, 3]. Ekkor

2∫
−2

3∫
1

(x2 + 4y)dydx =

2∫
−2

[
x2y + 2y2

]y=3

y=1

dx =

=

2∫
−2

(2x2 + 16)dx = 2(
16

3
+ 32).

A fordított sorrendben elvégezve az integrálást ugyanez az eredmény jön ki.

Integrálás normáltartományon

4.3. De�níció. R ⊂ IR2 egy x szerinti normáltartomány, ha ∃[a, b] inter-
vallum és ∃Φ1,Φ2 : [a, b] → IR szakaszonként folytonos függvények, melyekre
Φ1(x) ≤ Φ2(x) minden x-re, és

R = {(x, y) : a ≤ x ≤ b, Φ1(x) ≤ y ≤ Φ2(x)}.
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Hasonlóan, R ⊂ IR2 y szerinti normáltartomány, ha létezik [c, d] intervallum
és léteznek Ψ1,Ψ2 : [c, d] → IR szakaszonként folytonos függvények, melyekre
Ψ1(y) ≤ Ψ2(y) minden y-ra, és

R = {(x, y) : c ≤ y ≤ d, Ψ1(y) ≤ x ≤ Ψ2(y)}.

4.3. Tétel. Ha R x szerinti normáltartomány, f : R → IR integrálható,
akkor ∫∫

R

f(x, y)dR =

b∫
a

Φ2(x)∫
Φ1(x)

f(x, y) dy dx,



4.1. AZ INTEGRÁL ÉRTELMEZÉSE 95

Ha R y szerinti normáltartomány, f : R→ IR integrálható, akkor

∫∫
R

f(x, y)dR =

d∫
c

Ψ2(y)∫
Ψ1(y)

f(x, y) dx dy.

Példa. Legyen R háromszög alakú tartomány, melynek csúcsai a (0, 0), (a, 0)
és (a, a) pontok. Ekkor R mindkét változó szerint normáltartomány, éspedig

R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ x},
R = {(x, y) : 0 ≤ y ≤ a, y ≤ x ≤ a}.

Adott f(x, y) : R→ IR, ezen értelmezett függvény. Ekkor∫∫
R

f(x, y)dR =

a∫
0

x∫
0

f(x, y)dydx =

a∫
0

a∫
y

f(x, y)dxdy.

Ha speciálisan f(x, y) = ϕ(y) alakú, akkor

a∫
0

a∫
y

ϕ(y)dxdy =

a∫
0

ϕ(y)(a− y)dy.

Példa. Mennyi f(x, y) = xy integrálja a fenti háromszögtartományon?∫∫
R

xy d(x, y) =

a∫
0

 x∫
0

xydy

 dx =

a∫
0

(
x · y

2

2

∣∣∣∣y=x
y=0

)
dx =
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a∫
0

x3

2
dx =

a4

8
.

Integrálás kör alakú tartományon

1. Példa. Legyen R1 az egységkör:

R1 = {(x, y) : x2 + y2 ≤ 1}.

Ez tekinthet® például x szerinti normáltartományként.

R1 = {(x, y) : −1 ≤ x ≤ 1, −
√
1− x2 ≤ y ≤

√
1− x2}

Ekkor az integrál így számolható:

∫∫
R1

f(x, y)dR =

1∫
−1

√
1−x2∫

−
√
1−x2

f(x, y) dy dx. (4.1)

Látható, hogy "belülr®l kifelé" végezve a számolást, tipikusan nehéz számolás
várható.

2. Példa. Legyen R2 az alábbi körgy¶r¶:

R2 = {(x, y) : 1 ≤ x2 + y2 ≤ 4}.
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Ez a tartomány nem normáltartomány. De fel tudjuk osztani olyan részekre,
amelyek már normáltartományok, és ott elvileg tudunk integrálni.

Ekkor az integrál, ha f(x, y)-ban az (x, y) argumentumokat nem írjuk ki:

∫∫
R2

fdR =

−1∫
−2

√
4−x2∫

−
√
4−x2

f dydx+

1∫
−1

−
√
1−x2∫

−
√
4−x2

f dydx+

1∫
−1

√
4−x2∫

√
1−x2

f dydx+

2∫
1

√
4−x2∫

−
√
4−x2

f dydx.

Ez már "reménytelenül nehéz" számolás bármely tipikus függvény esetén.

4.2. Koordináta transzformáció

Áttérés polárkoordinátákra

A fenti példákban szerepl® R1 és R2 tartományokon az integrálás tipikusan
rendkívül nehéz sza �molásra vezetnek, ha azokat az (x, y) síkon normáltarto-
mányként írjuk fel.

Nézzük meg, polárkoordinátákat használva mit kapunk? Itt felhasználjuk,
hogy

x = r cos(θ) és y = r sin(θ). (4.2)

Ekkor átírva polárkoordinátákra ezt kapjuk:

R1 = {(x, y) : x2 + y2 ≤ 1} =⇒ R′
1 = {(r, θ) 0 ≤ r ≤ 1, 0 ≤ θ < 2π}.
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R2 = {(x, y) : 1 ≤ x2+y2 ≤ 4} =⇒ R′
2 = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ < 2π}.

Látható, hogy a polárkoordinátákat használva R1 és R2 téglalap tartomány:

R′
1 = [0, 1]× [0, 2π), R′

2 = [0, 1]× [0, 2π).

Téglalap tartományon pedig könnyen integrálhatunk. Érdemes tehát az in-
tegrálban helyettesíteni.

4.4. Tétel. Adott egy f : R → IR integrálható függvény, ahol R korlátos
tartomány. Tekintsük a (4.2) polárkoordináta helyettesítést. Legyen továbbá

R′ = {(r, θ) : (r cos θ, r sin θ)ϵR}.

Ekkor ∫∫
R

f(x, y) d(x, y) =

∫∫
R′

f(r cos θ, r sin θ)r d(r, θ).

Vegyük észre, hogy a jobboldalon az integráljel mögött egy extra r tényez®
jelent meg!

Példa. Legyen f(x, y) = x2 − y2, az integrálási tartomány egy nyolcadkör.

A fenti R tartomány megfelel®jét így tudjuk leírni polárkoordinátákkal:

R′ = {(r, θ) : 0 ≤ r ≤ 4, 0 ≤ θ ≤ π

4
}.

Látható, hogy a tartomány az (r, θ) síkon téglalap lesz. Ekkor

∫∫
R

(x2 − y2)d(x, y) =

4∫
0

π/4∫
0

r2(cos2 θ − sin2 θ)rdθdr =

=

4∫
0

r3dr

π/4∫
0

(cos2 θ − sin2 θ)dθ =

[
r4

4

]4
0

·
[
sin(2θ)

2

]π/4
0

= 32.
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Általános helyettesítés

Polárkoordináták helyettesítése után általános helyettesítéseket fogunk te-
kinteni.

Ismétlés: Helyettesítés egyváltozós függvényekre.

b∫
a

f(x)dx =

β∫
α

f(ϕ(u))ϕ′(u)du,

ha az integrálban a x = ϕ(u) helyettesítést végezzük, ahol ϕ szigorúan mo-
noton di�erenciálható függvény, ϕ(α) = a és ϕ(β) = b.

4.5. Tétel. Adott egy f : R → IR integrálható függvény, ahol R korlátos
tartomány. Tekintsünk egy transzformációt:

x = Φ(u, v)

y = Ψ(u, v),

, melyr®l feltesszük, hogy Jacobi mátrixa sehol sem szinguláris, azaz

J(u, v) =

 Φ′
u(u, v) Φ′

v(u, v)

Ψ′
u(u, v) Ψ′

v(u, v)

 .

jelöléssel det J(u, v) ̸= 0 R-ben. Legyen továbbá

R′ = {(u, v) : (Φ(u, v),Ψ(u, v))ϵR}.

Ekkor ∫∫
R

f(x, y) d(x, y) =

∫∫
R′

f(Φ(u, v),Ψ(u, v))D(u, v) d(u, v).

Az átalános tételben speciális esetként tekinsük a polárkoordinátákat. Az
(x, y) helyett az új koordináták (r, θ):

x = r cos θ,

y = r sin θ.
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A Jacobi determináns:

D(r, θ) = det

 cos θ −r sin θ

sin θ r cos θ

 = r cos2 θ + r sin2 θ = r.

Így a megfelel® integrál-transzformáció valóban:∫∫
R

f(x, y)d(x, y) =

∫∫
R′

f(r cos θ, r sin θ) r d(r, θ).

Példa. Legyen f(x, y) = xy, az integrálási tartomány egy félkör:

R = {(x, y) : y ≥ 0, (x− 2)2 + y2 ≤ 4}.

Polárkoordináták segítségével

R′ = {(r, θ) : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 4 cos θ}.

4.3. ábra. Félkör alakú integrálási tartomány.

Láthatóan ez θ szerinti normáltartomány. Így

∫∫
R

xy d(x, y) =

π/2∫
0

4 cos θ∫
0

r2 cos θ sin θ r drdθ =

= 64

π
2∫

0

cos5 θ sin θ dθ =
32

3
.
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4.3. Kitekintés a hármas integrálokra

Tekintsük egy három dimenziós S ⊂ IR3 tartományt és egy ezen értelmezett
f : S → IR, f(x, y, z) függvényt. A kett®s integrálhoz hasonlóan de�niálható
a hármas integrál: ∫∫∫

S

f(x, y, z)dS.

4.3.1. Az integrál értelmezése

1. lépés. Legyen S korlátos tartomány, f ezen értelmezett háromváltozós
függvény. Tekintsük egy nem átfed® mérhet® felosztását:

S = ∪ni=1Si.

Legyen (ξi, ηi, ζi)ϵSi tetsz®leges pont. De�niáljuk a felosztáshoz tartozó
egyik Riemann közelít® összeget:

In =

n∑
i=1

f(ξi, ηi, ζi)A(Si).

A függvény integrálható, ha van határérték, független a felosztássorozattól:

lim
n→∞,

max(δ(Si))→0

In.

Ez a határérték az integrál, melynek jelölése∫∫∫
S

f(x, y, z)dS =

∫∫∫
S

f(x, y, z)d(x, y, z).

Pozitív érték¶ függvény esetén a hármas integrál �zikai interpretációja 'tö-
meg' lehet. Adott egy szilárd test, melyet az S térrész határoz meg, és ennek
s¶r¶sége pontonként változik. Az (x, y, z) pontbeli s¶r¶ség f(x, y, z). Ekkor
a test tömegét így adhatjuk meg:∫∫∫

S

f(x, y, z) d(x, y, z)

Speciálisan, f(x, y, z) ≡ 1 esetén a térfogat mér®számát kapjuk vissza.
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Speciálisan legyen S = [a, b]× [c, d]× [e, g] háromdimenziós téglalap, azaz

S = {(x, y, z) : xϵ[a, b], yϵ[c, d], z ϵ[e, g]},

ahol a < b, c < d, e < gϵIR. Legyen f : R→ IR korlátos függvény.

4.6. Tétel. A fenti feltételek mellett

∫∫∫
R

f(x, y, z)dR =

b∫
a

d∫
c

g∫
e

f(x, y, z)dz dy dx,

ahol az integrálások sorrendje felcserélhet®.

Most kicsit általánosabb esetet tekintünk. Legyen S ⊂ IR2 mérhet® tarto-
mány az (x, y) síkon.

4.4. De�níció. Az S tartomány (x, y) sík szerinti normáltartomány, ha a
következ® alakú:

S = {(x, y, z) : (x, y)ϵR, F1(x, y) ≤ z ≤ F2(x, y)},

ahol R ⊂ IR2, F1, F2 : R→ IR olyan folytonos függvények, melyekre F1(x, y) ≤
F2(x, y) minden (x, y)ϵS esetén.

4.2. Állítás. Legyen S a fenti de�nícióban szerepl® normáltartomány, és
f : S → IR integrálható függvény. Ekkor

∫∫∫
S

f(x, y, z)dS =

∫∫
R

F2(x,y)∫
F1(x,y)

f(x, y, z)dz d(x, y).

Példa. Határozzuk meg egy ellipszoid térfogatát. Az ellipszoid:

S =
{
(x, y, z) :

x2

a2
+
y2

b2
+
z2

c2
≤ 1
}
.

Ez egy háromdimenziós normáltartomány

S = {(x, y, z) : (x, y)ϵR, |z| ≤ c

√
1− x2

a2
− y2

b2
},
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ahol

R = {(x, y) : x2

a2
+
y2

b2
≤ 1}.

Így a fél ellipszoid térfogata∫∫
R

c

√
1− x2

a2
− y2

b2
d(x, y).

Új koordinátákat vezetünk be

x = r a cos(θ),

y = r b sin(θ),
rϵ[0, 1] θϵ[0, 2π).

A koordináta transzformáció Jacobi determinánsa

d(x, y)

d(r, θ)
= det

 a cos(θ) −ra sin(θ)

b sin(θ) rb cos(θ)

 = abr.

Ezért a fél-térfogat

c

∫∫
R

√
1− x2

a2
− y2

b2
d(x, y) = abc

1∫
0

2π∫
0

√
1− r2r dθdr =

= abc 2π

[
−(1− r2)3/2

3/2

1

2

]1
0

=
2

3
πabc.

4.3.2. Gömbi koordináták IR3-ban.

4.5. De�níció. IR3-ban. Egy (x, y, z) pont gömbi koordinátái (r, θ, φ),
melyeket a következ®képpen de�niálunk.

1. r a pontba mutató vektorhossza. r =
√
x2 + y2 + z2, r ≥ 0. .

2. θ a pontba mutató vektor (x, y) síkra vett vetületének az x tengely pozitív
részével bezárt szöge. θϵ[0, 2π)

3. φ a pontba mutató vektor és a z tengely pozitív részének a szöge. φϵ[0, π]
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4.4. ábra. A gömbi polárkoordináták.

A gömbi koordinátákkal az (x, y, z) pont így írható le:

x = r sinφ cos θ

y = r sinφ sin θ

z = r cosφ.

Határozzuk meg az (r, θ, φ) 7→ (x, y, z) transzformáció Jacobi mátrixát:

J(r, θ, φ) =


sinφ cos θ r cosφ cos θ −r sinφ sin θ

sinφ sin θ r cosφ sin θ r sinφ cos θ

cosφ −r sinφ 0

 .

Könnyen látható, hogy a fenti mátrix determinánsa

det J = r2 sinφ.

Koordináta transzformáció hármas integrálban

Adott f(x, y, z) 3-változós függvény, értelmezési tartománya R ⊂ IR3. Átté-
rünk új koordinátarendszerre, az (x, y, z) változók helyett az (u, v, w) válto-
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zókat tekintjük, ahol a transzformációt leíró függvényrendszer:

x = F1(u, v, w)

y = F2(u, v, w) (4.3)

z = F3(u, v, w).

A transzformáció hatására egy R tartomány képe R′ ⊂ IR3 lesz:

R′ = {(u, v, w) : F (u, v, w)ϵR}.

4.7. Tétel. Legyen R ⊂ IR3 korlátos tartomány és f : R → IR integrálható
függvény. Tekintsük a fenti (4.3) koordinátatranszformációt, melyr®l fel-
tesszük hogy Jacobi mátrixa nemszinguláris, azaz

J(u, v, w) =

 grad F1

grad F2

grad F3

 , D(u, v, w) = det J(u, v, w) ̸= 0.

Ekkor∫∫∫
R

f(x, y, z)d(x, y, z) =

∫∫∫
R′

f
(
F1(·), F2(·), F3(·)

)
·D(u, v, w) d(u, v, w).

Példa. Az el®z® fejezetben láttuk a gömbi polárkoordinátákat, ez egy le-
hetséges koordinátatranszformáció. Számoljuk ki az egységgömb térfogatát.
Legyen

R = {(x, y, z) : x2 + y2 + z2 ≤ 1}.

A gömbi koordinátákkal R′ téglalap-tartomány:

R′ = {(r, φ, θ) : r ≤ 1, 0 ≤ φ ≤ π, 0 ≤ θ < 2π}.

Ekkor ∫∫∫
R

1 d(x, y, z) =

1∫
0

π∫
0

2π∫
0

r2 sinφ dθ dφ dr =

= 2π

1∫
0

r2dr

π∫
0

sinφ dφ =
4π

3
.



106 4. FEJEZET. TÖBBES INTEGRÁLOK

Példa. Hengerkoordináták. Egy (x, y, z) pont hengerkoordinátái (r, θ, z), me-
lyeket a következ®képpen adunk meg: (r, θ) a pont (x, y) síkra vett vetüle-
tének polárkoordinátái, z pedig a harmadik Descartes koordináta:

x = r cos θ

y = r sin θ

z = z.

4.5. ábra. A hengerkoordináták szemléletesen.

Ennek Jacobi mátrixa

J(r, θ, z) =

 cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

 ,

tehát a megfelel® Jacobi determináns

D(r, θ, z) = r.

4.4. Improprius kett®s integrálok

Eddig feltettük, hogy f : R → IR korlátos függvény, és R is korlátos. Két
típusú általánosítást tekintünk, nagyon hasonló lesz a megközelítés mindkét
esetben.
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4.4.1. Nem korlátos függvény integrálja

Els®ként tegyük fel, hogy R ⊂ IR2 korlátos, és f : R → IR folytonos néhány
pontot kivéve, ahol nincs véges határértéke.

Tekintsük olyan tartomány-sorozatot melyre

R1 ⊂ R2 ⊂ . . . Rn ⊂ . . . ⊂ R, lim
n→∞

A(Rn) = A(R)

és f folytonos az Rn tartományon.

4.6. De�níció. A függvény improprius értelemben integrálható, ha az
alábbi határérték létezik:

I = lim
n→∞

∫∫
Rn

f(x, y)d(x, y),

és értéke független az (Rn) halmaz-sorozat megválasztásától.

4.8. Tétel. Tegyük fel, hogy ∃(Rn) halmaz-sorozat, melyre

1. f folytonos Rn-en,

2. Rn ⊂ Rn+1 minden n-re,

3. lim
n→∞

A(Rn) = A(R),

4. és ∃M > 0 melyre∫∫
Rn

|f(x, y)|d(x, y) < M, ∀n.

Ekkor f improprius értelemben integrálható.

Példa. Legyen f(x, y) = ln
√
x2 + y2 és az integrálási tartomány

R = {(x, y) : 0 < x2 + y2 ≤ 1)}.

Gondot okozhat, hogy a függvény a (0, 0)-ban nincs értelmezve, és környe-
zetében nem korlátos.
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Tekintsük R közelítését:

Rn =
{
(x, y) :

1

n
≤
√
x2 + y2 ≤ 1

}
.

A halmaz megfelel®je polárkoordinátákban:

R′
n =

{
(r, θ) : 0 ≤ θ < 2π;

1

n
≤ r ≤ 1

}
.

Az Rn halmazon a függvény integrálható, és

∫∫
Rn

|f(x, y)|d(x, y) =
2π∫
0

1∫
1/n

| ln r| r dr dθ =

= 2π

1∫
1/n

| ln r|r dr ≤ 2π

1∫
0

| ln r|r dr =M.

Felhasználtuk, hogy a g(r) = r ln r-nek 0-ban van véges határértéke, emiatt
integrálható. Az improprius integrál értéke

I =

∫∫
R

ln
√
x2 + y2d(x, y) = 2π

1∫
0

r ln rdr = −1

2
π,

melyet parciális integrálással számoltunk ki.

Példa. (Hatványfüggvény integrálja.) Legyen

f(x, y) =
1

(
√
x2 + y2)α

,

valamely α > 0 mellett, és az integrálási tartomány

R = {(x, y) : 0 < x2 + y2 ≤ 1}.

A függvény a (0, 0) pontban nincs értelmezve, környezetében nem korlátos.

Az R tartományt közelítsük az alábbi módon:

Rn = {(x, y) : 1
n
≤
√
x2 + y2 ≤ 1}.
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4.6. ábra. A hatványfüggvény az origó közelében α = 1 esetén.

Ekkor∫∫
Rn

f(x, y)d(x, y) =

1∫
1/n

2π∫
0

r−αrdθdr = 2π

1∫
1/n

1

rα−1
< 2π

1∫
0

1

rα−1
dr.

Ez az utóbbi improprius integrál akkor konvergens, ha α−1 < 1, azaz α < 2.
Ebb®l az következik, hogy a hatványfüggvény α < 2 esetben improprius
értelemben integrálható a lyukas egységkörön.

Ebb®l következik az alábbi elégséges feltétel improprius integrál létezésére.

4.9. Tétel. Tegyük fel, hogy az f : R→ IR folytonos függvény nem korlátos
az R korlátos tartomány valamely pontjának környezetében, legyen ez például
az origó. Tegyük fel, hogy ∃αϵ(0, 2) és ∃M > 0, melyre

|f(x, y)| ≤ M

(
√
x2 + y2)α

∀(x, y)ϵR.

Ekkor f improprius értelemben integrálható.

4.4.2. Integrálás nem korlátos tartományon

Tegyük fel, hogy R nem korlátos és f : R→ IR folytonos függvény.
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4.7. De�níció. Tegyük fel, hogy létezik R-nek olyan közelítése, melyre Rn
korlátos, és

R1 ⊂ R2 . . . ⊂ R továbbá
∞⋃
n=1

Rn = R.

Ekkor tudjuk, hogy ∀n-re létezik az
∫∫
Rn

f(x, y)d(x, y) integrál. Ha az alábbi

határérték létezik és független az (Rn) halmaz-sorozat megválasztásától:

lim
n→∞

∫∫
Rn

f(x, y)d(x, y),

akkor f improprius értelemben integrálható, és∫∫
R

f(x, y)dR = lim
n→∞

∫∫
Rn

f(x, y)d(x, y).

4.10. Tétel. Tegyük fel, hogy létezik egy olyan - a de�nícióban szerepl® -
(Rn) sorozat és M szám, melyre∫∫

Rn

|f(x, y)|d(x, y) ≤M, ∀n,

azaz az integrálok egyenletesen korlátosak. Ekkor f improprius értelemben
integrálható, és tetsz®leges másik (Sn) tartomány-sorozat esetén, mely kielé-
gíti a fenti feltételeket

lim
n→∞

∫∫
Sn

f(x, y)dSn =

∫∫
R

f(x, y)dR.

Példa. Legyen f(x, y) = e−x
2−y2 , az integrálási tartomány R = IR2. Vá-

lasszuk az alábbi tartomány-sorozatot:

Rn = {(x, y) : x2 + y2 ≤ n2}.

Nyilván Rn korlátos és

R1 ⊂ · · · ⊂ Rn ⊂ . . . IR2,

∞⋃
n=1

Rn = IR2.
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A megfelel® tartomány polárkoordinátákkal:

R′
n = {(r, θ) : 0 ≤ θ < 2π, 0 ≤ r ≤ n}.

Ekkor∫∫
Rn

e−x
2−y2d(x, y) =

∫∫
R′

n

re−r
2
dr dθ = 2π

n∫
0

re−r
2
dr < 2π

∞∫
0

re−r
2
dr.

Így az improprius integrál értéke:

∫∫
IR2

e−x
2−y2d(x, y) = 2π

∞∫
0

re−r
2
dr = 2π

[
−e−r2

2

]∞
0

= π.

A fenti tëtel alapján más közelít® tartományokon keresztül is ugyanezt az
eredményt kapjuk. Legyen tehát

Sm = {(x, y) : |x| ≤ m, |y| ≤ m}.

Nyilván

S1 ⊂ · · · ⊂ Sm ⊂ . . . IR2,

∞⋃
m=1

Sm = IR2.
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Így az improprius integrál közelítése∫∫
Sm

e−x
2−y2d(x, y) =

m∫
−m

e−x
2
dx

m∫
−m

e−y
2
dy = (

m∫
−m

e−x
2
dx)2 → π.

Ebb®l azonnal következik az azösszefüggés, hogy
∞∫

−∞

e−x
2
dx =

√
π.

Az e−x
2
függvény gráfját haranggörbének hívjuk. Az integrál kiszámítása

elemi eszközökkel rendkívül hosszadalmas lenne.

Példa. (Hatványfüggvény integrálja.) Legyen

f(x, y) =
1

(
√
x2 + y2)α

,
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valamely α > 0 mellett, és az integrálási tartomány

R = {(x, y) : 1 ≥ x2 + y2}.

A függvény folytonos az értelmezési tartományán, amely most nem korlátos.

Az R tartományt közelítsük az alábbi módon:

Rn = {(x, y) : 1 ≤
√
x2 + y2 ≤ n}.

Ekkor

∫∫
Rn

f(x, y)d(x, y) =

n∫
1

2π∫
0

r−αr dθdr = 2π

n∫
1

1

rα−1
→ 2π

∞∫
1

1

rα−1
dr.

Ez az utóbbi improprius integrál akkor konvergens, ha α−1 > 1, azaz α > 2.
Ebb®l az következik, hogy a hatványfüggvény α > 2 esetben improprius
értelemben integrálható az egységkört nem tartalmazó IR2 síkon.

4.11. Tétel. Legyen R olyan nem korlátos tartomány, melynek lezárása az
origót nem tartalmazza. Legyen f : R→ IR olyan függvény, melyre valamely
α > 2 mellett

|f(x, y)| ≤ M

(
√
x2 + y2)

α

minden (x, y)ϵR esetén, ahol M konstans. Ekkor f improprius értelemben
integrálható.

Bizonyítás. Azonnal következik abból a tényb®l, hogy a fenti tartományon
α > 2 esetén a hatványfüggvény improprius értelemben integrálható.

Következmény. Az

f(x, y) =
1

(
√
x2 + y2)

α

függvényt tekintjük az R = IR2 tartományon. Ez semmilyen α > 0 esetén
nem integrálható, még impropriusan sem.
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4.5. Vonalintegrál

4.5.1. Valós függvény vonalintegrálja

4.8. De�níció. C ⊂ IR2 egy (Jordan) görbe, ha megadható egy γ : [a, b] → IR2

függvény értékkészleteként:

C = {γ(t) | tϵ[a, b]}, γ(t) = (x(t), y(t)).

A C görbe sima, ha x, y : [a, b] → IR koordináta függvények di�erenciálha-
tók.

Adott R ⊂ IR2 tartomány, mely tartalmazza a C görbét, és f : R −→ IR+

függvény. A feladat az, hogy meghatározzuk az alábbi felület nagyságát:

S = {(x(t), y(t), z) | 0 ≤ z ≤ f(x(t), y(t)) és tϵ[a, b]}

Ez az a felület, amit úgy kapunk, hogy a görbe minden (x, y) pontjára állí-
tunk f(x, y) magasságú mer®leges szakaszt.

4.7. ábra. Valós függvény vonalintegráljának szemléletes jelentése

Értelmezni fogjuk az alábbi integrált:

I =

∫
C

f(x, y) ds.
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Vegyük észre, hogy egyetlen integráljel van az f(x, y) függvény el®tt!

Közelítjük a felületet. Az [a, b] intervallum egy felosztása:

a = t0 < t1 . . . < tn = b

A C görbe megfelel® pontjai:

Pi = (xi, yi) ahol xi = x(ti)és yi = y(ti) i = 0, 1, 2, . . . n.

Ekkor a felület felszíne közelítve:

I ≈
n∑
i=1

f(xi, yi) · ∥(xi, yi)− (xi−1, yi−1)∥ =
n∑
i=1

f(xi, yi) · s(P̂i−1Pi),

ahol a jobboldal utolsó tagjában a P̂i−1Pi ívdarab hossza szerepel. Ez alapján
a vonalintegrál határátmenettel megkapható:

I =

∫
C

f(x, y) ds :=

b∫
a

f(x(t), y(t)) ·
√
x′2(t) + y′2(t) dt.

A de�níció nem csak pozitív érték¶ integrálható függvényre alkalmazható.

4.9. De�níció. Az f függvény vonalintegrálja a C görbe mentén:

∫
C

f(x, y)ds =

b∫
a

f(x(t), y(t))
√
x′(t)2 + y′(t)2dt.

Példa. Speciális esetként legyen f(x, y) ≡ 1. Ekkor a vonalintegrál értéke a
görbe ívhossza: ∫

Γ

1ds = s(Γ).

Megjegyzés. Az ilyen típusu vonalintegrálnak megfelel® �zikai mennyiség az
energia.
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4.5.2. Vektormez® vonalintegrálja

4.10. De�níció. (Térbeli Jordan görbe) Adott egy [a, b] ⊂ IR intervallum,
és ezen az intervallumon három valós függvény x, y, z : [a, b] → IR, melyek
folytonosan di�erenciálhatók az (a, b)-ban. Legyen γ : [a, b] → IR3 az a
vektorérték¶ függvény, melynek ezek a koordináta függvényei,

γ(t) =

 x(t)

y(t)

z(t)

 , a ≤ t ≤ b.

A γ függvény értékkészlete a Γ ⊂ IR3 háromdimenziós Jordan görbe:

Γ = {γ(t) : tϵ[a, b]}.

Legyen F egy háromdimenziós vektormez® F : D → IR3, ahol D ⊂ IR3. F

koordináta függvényeit jelölje f1, f2, f3 : D → IR.

F (x, y, z) =

 f1(x, y, z)

f2(x, y, z)

f3(x, y, z)

 .

Feltesszük, hogy F di�erenciálható D-ben. Felteszük azt is, hogy Γ ⊂ D.

Vonalintegrál matematikai modelljének �zikai hátterét így képzelhetjük el:
Adott egy vektortér, ami a tér pontjaiban megadja az ott ható er® nagysá-
gát és irányát. Feltesszük, hogy egy egységnyi tömeg¶ részecske a Γ görbe
mentén mozog. Mekkora munkát végez?

Az egyszer¶ség kedvéért IR3 pontjait röviden így jelöljük

r = (x, y, z)

A görbe mentén vett vonalintegrált így jelöljük:∫
Γ

F (r)dr.

Ezt közelít® összegek határértékeként fogjuk értelmezni.

Legyen az [a, b] intervallum egy F felosztása

a = to < t1 < · · · < tn = b,



4.5. VONALINTEGRÁL 117

és a Γ görbe megfelel® pontjai legyenek

ri = (x(ti), y(ti), z(ti)), i = 0, . . . , n.

Az F felosztáshoz tartozó közelít® összeg

In(F) =
n∑
i=1

〈
F (ri), (ri − ri−1)

〉
,

ahol a jobboldalon a szumma mögött a vektorok skalárszorzata szerepel.
Feltesszük, hogy n→ ∞ esetén a felosztások �nomsága 0-hoz tart:

δ(F) = max
i=1,...n

(ti − ti−1) → 0.

Ezek után a vonalintegrál így de�niálható::∫
Γ

F (r)dr = lim
n→∞

In(F),

feltéve hogy a határérték létezik, véges és független a felosztás-sorozattól.

4.11. De�níció. A fenti jelölésekkel és feltételekkel vektormez® vonalintegrálja:

∫
Γ

F (r)dr =

b∫
a

〈
F (γ(t)), γ̇(t)

〉
dt =

=

b∫
a

(
f1(γ(t)) ẋ(t) + f2(γ(t)) ẏ(t) + f3(γ(t)) ż(t)

)
dt,

ahol γ̇ jelöli a γ függvény koordinátánkénti deriváltját.

Példa. Legyen a vektormez® F (r) = 2r, azaz

f1(x, y, z) = 2x,

f2(x, y, z) = 2y,

f3(x, y, z) = 2z.

A görbe legyen egy csavarvonal:

γ(t) = (cos(t), sin(t),
t

2π
), tϵ[0, 2π].
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Határozzuk meg a vonalintegrál értékét:∫
Γ

F (r)dr =?

4.8. ábra. A példában szerepl® vonal és vektormez®.

Kiszámoljuk a görbe menti deriváltat:

γ̇(t) = (− sin(t), cos(t),
1

2π
).

Így a vonalintegrál:

∫
Γ

F (r)dr =

2π∫
0

(
2 cos(t)(− sin(t)) + 2 sin(t) cos(t) + 2

t

2π

1

2π

)
dt =

=

2π∫
0

1

(2π)2
2tdt =

1

(2π)2

[
t2
]2π
0

= 1.
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Potenciál keresés

Adott egy háromváltozós, valós érték¶ f(x, y, z) függvény f : R → IR, ahol
R ⊂ IR3. Ha a függvény di�erenciálható a tartományban, akkor gradiense
vektormez®:

grad f : R→ IR3.

Ennek 'fordítottját' kérdezzük. Ha adott egy

F : R→ IR3

vektormez®, akkor vajon létezik-e olyan f : R→ IR di�erenciálható függvény,
melyre F = grad f?

4.12. De�níció. Adott egy F : R → IR3 vektormez®. Az F a vektormez®

potenciálos, más szóval van primitív függvénye, ha ∃f : R → IR valós
függvény, melyre F = grad f .

Tegyük fel, hogy F -nek van potenciálja. Legyen Γ egy olyan sima görbe,
mely Γ ⊂ R. Ekkor a görbe mentén vett vonalintegrál∫

Γ

F (r)dr =

∫ b

a
⟨F (γ(t)), γ̇(t)⟩dt =

=

∫ b

a
⟨grad f(γ(t)), γ̇(t)⟩dt =

∫ b

a

d

dt
f(γ(t))dt =

= f(γ(b))− f(γ(a)),

a Newton-Leibniz formulát alkalmazva. Ezért a vonalintegrál értéke csak
a görbe végpontjain felvett függvényértékekt®l függ, és független a görbe
'útjától'. Ha ráadásul a görbe zárt, akkor γ(a) = γ(b), és így az integrál 0.

4.12. Tétel. Adott az F vektormez® egy R ⊂ IR3 egyszeresen összefügg®
tartományon. F -nek pontosan akkor létezik potenciálja, ha minden R-beli
zárt görbe mentén az F vektormez® vonalintegrálja 0.

A tétel állításának egyik felét láttuk be: ha van potenciál, akkor tetsz®leges
zárt görbe mentén az integrál 0. A másik irányt nem bizonyítjuk.
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Általában egy
∫
Γ
F (r)dr integrál értéke függ a a végpontokon kívül az azo-

kat összeköt® görbét®l is. A fenti tételb®l az következik, hogy potenciálos
vektormez® esetén nincs így. Nevezetesen, ha adott két pont, akkor bármely
®ket összeköt® görbe mentén a vonalintegrál értéke ugyanaz. Más szóval,
potenciálos vektormez®ben a vonalintegrál értéke csak a görbe végpontjaitól
függ.

4.6. Két gyakorlati alkalmazás

4.6.1. A tömegközéppont kiszámítása

A tömegközéppontot két és három dimenzióban hasonlóan kell számolni.
Most csak a kétdimenziós esetre szorítkozunk. Egy R ⊂ IR2 alakú, inhomo-
gén "lemez" tömegközéppontját fogjuk meghatározni.

Adott a ϱ : R → IR+ s¶r¶ségfüggvény az R ⊂ IR2-n tartományon. Fel-
tesszük, hogy ϱ integrálható. A ϱ(x, y) függvény értéke megadja, hogy az
(x, y) pontban mekkora a vizsgált lemez s¶r¶sége. Ez alapján meg tudjuk
határozni a tömegét egy kett®s integrállal

m =

∫∫
R

ϱ(x, y) dR.

A tömegközéppont koordinátáinak meghatározásához el®ször a nyomatéko-
kat számítjuk ki. Az x szerinti nyomaték mx és az y szerinti nyomaték my,
melyeket a következ®képpen kapjuk meg:

mx =

∫∫
R

x · ϱ(x, y) dR, my =

∫∫
R

y · ϱ(x, y) dR.

Ezután a tömegközéppontok koordinátái

Mx =
mx

m
, My =

my

m
.

Példa Egy vaslemez tömegközéppontjának meghatározása

Adott egy háromszög alakú lemez. Csúcsontjainak koordinátái: (0, 1), (2, 1),
(0, 5). Feltesszük, hogy a lemez s¶r¶sége az y koordinátával lineárisan ará-
nyos. Határozzuk meg a lemez tömegközéppontját!
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Megoldás: El®ször írjuk fel a s¶r¶ségfüggvényt:

ϱ(x, y) = k · y

ahol k egy konstans. Ezután a lemez tömege:

m =

∫∫
R

ϱ(x, y) dR =

∫∫
R

ky dR = k ·
∫∫
R

y dR

A háromszöget lerajzolva látható, hogy azt a legegyszer¶bben egy x szerinti
normáltartományként foghatjuk fel.

R = {(x, y) : 0 ≤ x ≤ 2, 1 ≤ y ≤ −2x+ 5}

Az integrálás:

m = k ·
2∫

0

−2x+5∫
1

y dy dx =

= k ·
2∫

0

[
y2

2

]−2x+5

1

dx = k ·
2∫

0

(−2x+ 5)2 − 1

2
dx = . . . =

28

3
k
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Az integrál kiszámításával megkaptuk a tömeget. Az mx és my nyomatékok:

mx =

∫∫
R

x · ky dR = k

2∫
0

−2x+5∫
1

xy dy dx = . . . =
16

3
k

my =

∫∫
R

y · ky dR = k

2∫
0

−2x+5∫
1

y2 dy dx = . . . =
76

3
k

Ezután a tömegközéppont x és y koordinátátája:

Mx =
mx

m
=

4

7
My =

my

m
=

19

7
.

4.6.2. A felszín meghatározása

A felszínt három dimenzióban számoljuk, de az ötlet két dimenzióból szár-
mazik. Ott egy görbe ívhosszát úgy kaptuk meg, hogy közelítettük egyenes
szakaszokkal:

Ahogy láttuk, minél rövidebb vonalakkal közelítettük a görbét, annál ponto-
sabban kaptuk meg az ívhosszt. Felületszámítás esetén az elv ugyanez ma-
rad, de itt egyenesek helyett kis paralelogrammákkal közelítjük a felületet.
(Hasonlóan ahhoz, ahogy 2D-ben a görbét a görbe egyes pontjaiba húzható
érint®egyenesekkel közelítettük, 3D-ben az érint®sík darabkáival közelíthe-
tünk.)
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Legyen adott egy f : R −→ IR, R ⊂ IR2 függvény, mely meghatározza a
mérni kívánt felületet. A felület ezután a következ®képpen néz ki:

S = {(x, y, f(x, y)) : (x, y)ϵR}

4.3. Állítás. A fenti felület mértéke így számolható:

A(S) =

∫∫
R

√
1 + f ′x

2(x, y) + f ′y
2(x, y) d(x, y)

Megjegyzés. Érdemes észrevenni a hasonlóságot a fenti és a Jordan-görbe
ívhosszára vonatkozó képlet között:

s(γ) =

b∫
a

√
1 + f ′2(x) dx, ha y = f(x), xϵ[a, b]

.

Példa: Egységgömb fels® felének felülete

A gömbfelszín pontjai

S3 = {(x, y, z) : x2 + y2 + y2 = 1},

így a fels® félgömböt megadó függvény egyenlete:

f(x, y) =
√

1− x2 − y2, (x, y)ϵS2 = {(x, y) : x2 + y2 ≤ 1}.

A szükséges deriváltak:

f ′x(x, y) = −2x · 1

2
√
1− x2 − y2

=
−x√

1− x2 − y2
,

f ′y(x, y) = −2y · 1

2
√
1− x2 − y2

=
−y√

1− x2 − y2
.

A felszín meghatározásához kiszámoljuk az integrandust:

√
1 + f ′x

2(x, y) + f ′y
2(x, y) =

√
1− x2 − y2 + x2 + y2

1− x2 − y2
=

1√
1− x2 − y2

,
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így

A(S3) =

∫∫
S2

1√
1− x2 − y2

d(x, y) =

1∫
0

π∫
0

1√
1− r2

· r dθdr =

= 2π

1∫
0

r√
1− r2

dr = 2π ·
[
−
√
1− r2

]1
0
= 2π.

Az integrálás kiszámításában áttértünk polárkoordinátákra.
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Fourier sorok elméletében láttuk, hogy ha f : IR → IR egy olyan függvény,
amely

• 2π szerint periodikus,

• szakaszonként kétszer folytonosan di�erenciálható,

• a szakadási pontok els®fajúak, és itt a helyettesítési érték:

f(x) =
f(x+ 0) + f(x− 0)

2
,

akkor el®állítható komplex trigonometrikus sor segítségével.

Nevezetesen,

f(x) =
∞∑

n=−∞
αne

inx,

ahol

αn =
1

2π

π∫
−π

f(x)e−inxdx, n = 0,±1,±2, . . . (5.1)

Ezt a tényt általánosítjuk nem periodikus függvények esetére.

5.1. Fourier transzformáció bevezetése

Tegyük fel, hogy az f : IR → IR valós függvény kielégíti az alábbi feltételeket:

1. Tetsz®leges I ⊂ IR véges intervallum esetén f lesz¶kítése az I interval-
lumra véges sok pontot kivéve folytonosan di�erenciálható.

2. A függvény abszolút integrálható, azaz

∞∫
−∞

|f(x)|dx <∞.

3. Ha x0 szakadási pont, akkor ez a szakadás csak els®fajú lehet, és itt a
függvényérték:

f(x0) =
f(x0 + 0) + f(x0 − 0)

2
.
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5.1. De�níció. Tegyük fel, hogy f teljesíti az 1. 2. feltételeket. f Fourier

transzformáltja az az f̂ : IR → C komplex érték¶ függvény, melyet így
de�niálunk:

f̂(s) =
1√
2π

∞∫
−∞

f(x)e−isxdx. (5.2)

Fourier transzformált másik jelölése

F(f, s) = f̂(s).

Szokásos elnevezés, hogy az f függvény az id®tartomány-ban adott, f̂ pedig
a frekvenciatartomány-ban.

A Fourier transzformált egy komplex függvény integrálja, ezt úgy értelmez-
zük, mint

f̂(s) =
1√
2π

∞∫
−∞

f(x)
(
cos(sx)− i sin(sx)

)
dx =

=
1√
2π

∞∫
−∞

f(x) cos(sx)dx− i√
2π

∞∫
−∞

f(x) sin(sx))dx.

Belátjuk, hogy f̂(s) jól de�niált. Igazoljuk a (5.2) egyenletben szerepl® in-
tegrál abszolút konvergenciáját. Az f -re tett 3. feltételt felhasználva:∣∣∣∣∣∣

∞∫
−∞

f(x)e−isxdx

∣∣∣∣∣∣ ≤
∞∫

−∞

|f(x)e−isx|dx =

∞∫
−∞

|f(x)|dx <∞,

így az improprius integrál létezik.

Megjegyzés. Vegyük észre, hogy majdnem a (5.1) képletet használjuk. Elté-
rés az integrálási tartományban van - hiszen a függvény most nem periodikus
- és a konstansban. Ez utóbbi néhány könyvben esetleg másképp szerepel.

Bár f valós függvény, a Fourier transzformáltja általában komplex érték¶
függvény:

f̂(s) =
1√
2π

∞∫
−∞

f(t) cos(st)dt− i√
2π

∞∫
−∞

f(t) sin(st)dt.
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5.1. Állítás. 1. Ha f páros függvény, akkor Fourier transzformáltja valós:

f̂(s) =
1√
2π

∞∫
−∞

f(t) cos(st)dt =

√
2

π

∞∫
0

f(t) cos(st)dt.

2. Ha f páratlan függvény, akkor Fourier transzformáltja tisztán képzetes:

f̂(s) =
−i√
2π

∞∫
−∞

f(t) sin(st)dt = −i
√

2

π

∞∫
0

f(t) sin(st)dt.

1. Példa. Legyen

f(x) =


1 |x| ≤ 1

0 |x| > 1

Mivel f páros, ezért

f̂(s) =

√
2

π

1∫
0

cos(sx)dx =

√
2

π

sin s

s
.

2. Példa. Legyen f(x) = e−k|x|. Ez páros függvény, ezért Fourier transz-
formáltja:

f̂(s) =

√
2

π

∞∫
0

e−kt cos(st)dt =

√
2

π

k

k2 + s2
.

Itt felhasználtuk azt � a múlt félévben igazolt � összefüggést, hogy

∞∫
0

e−ax cos(bx)dx =

[
e−ax

1

a2 + b2
(−a cos(bx) + b sin(bx))

]∞
0

=
a

a2 + b2
.
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3. Példa. Legyen f(x) = e−
x2

2 . Mivel f páros, ezért Fourier transzformáltja
valós érték¶,

f̂(s) =

√
2

π

∞∫
0

f(x) cos(sx)dx =

√
2

π

∞∫
0

e−
x2

2 cos(sx)dx =: g(s). (5.3)

Ennek az integrálnak a kiszámítása analitikus eszközökkel közvetlenül nem
végezhet® el. Mivel az (5.3) összefüggés igaz ∀s-re, ezért deriválhatunk s

szerint. Ezután a parciálisan integrálunk x szerint:

g′(s) =

√
2

π

∞∫
0

e−
x2

2 (−x) sin(sx) dx =

=

√
2

π

[
e−

x2

2 sin(sx)

]∞
0

−
√

2

π

∞∫
0

e−
x2

2 s cos(sx) dx = 0− s · g(s).

Az alábbi di�erenciálegyenlethez jutunk:

g′(s) = −sg(s).

Ennek általános megoldása

g(s) = ce−
s2

2 , cϵIR.

c értékét g(0) alapján tudjuk meghatározni:

c = g(0) =

√
2

π

∞∫
0

e−
x2

2 cos(0x)dx =
2√
π

∞∫
0

e−y
2
dy = 1.
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Az utolsó lépésben az y = x/
√
2 helyettesítést hajtottuk végre. Tehát a

Fourier transzformált:

g(s) = e−
s2

2 .

Összefoglalva:

f(x) = e−
x2

2 =⇒ F(f, s) = f̂(s) = e−
s2

2 .

Ez az egyetlen olyan valós függvény (konstans szorzótól eltekintve), amely
megegyezik Fourier transzformáltjával.

5.2. A Fourier transzformáció tulajdonságai

5.2. Állítás. A Fourier transzformált alaptulajdonságai:

1. A hozzárendelés lineáris, azaz

F(cf, s) = cF(f, s), F(f + g, s) = F(f, s) + F(g, s).

2. Ha f folytonos, akkor F(f) folytonos függvény.

3. (Átskálázás)

F(f(ax), s) =
1

a
F(f(x),

s

a
), ha a > 0.

4. (Id® megfordítása)

F(f(−x), s) = F(f(x),−s).

5. (Id® eltolás)

F(f(x− x0), s) = e−ix0sF(f(x), s).

6. (Frekvencia eltolás)

F(eikxf(x), s) = F(f(x), s− k).

Bizonyítás∗.
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1. Ez könnyen látható, hisz az intergál lineáris operátor.

3.

F(f(ax), s) =
1√
2π

∞∫
−∞

f(ax)e−isxdx =
1√
2π

∞∫
−∞

f(y)e−i
s
a
y 1

a
dy.

Az integrálásban az y = ax helyettesítést hajtottuk végre.

4.

F(f(−x), s) = 1√
2π

∞∫
−∞

f(−x)e−isxdx =
1√
2π

−∞∫
∞

f(y)eisy(−dy) =

=
1√
2π

∞∫
−∞

f(y)e−i(−s)ydy.

Az integrálban az y = −x helyettesítést hajtottuk végre.

5.

F(f(x− x0), s) =
1√
2π

∞∫
−∞

f(x− x0)e
−isxdx =

=
1√
2π

∞∫
−∞

f(y)e−is(y+x0)dy.

Az integrálásban az y = x− x0 helyettesítést hajtottuk végre.

6.

F(eikxf(x), s) =
1√
2π

∞∫
−∞

eikxf(x)e−isxdx =
1√
2π

∞∫
−∞

f(x)e−i(s−k)xdx.

5.3. Az alaptétel

5.1. Tétel. Tegyük fel, hogy f teljesíti az 1.-2.-3. feltételeket. Ekkor f
el®állítható Fourier transzformáltja segítségével:

f(x) =
1√
2π

∞∫
−∞

f̂(s)eisxds. (5.4)
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Ez az inverz Fourier transzformáció.

Az inverz Fourier transzformáció során az el®állítás általában nem egyenletes.
Egy elégséges feltétel az egyenletes konvergenciához:

∞∫
−∞

|f ′(x)|dx <∞,

∞∫
−∞

|f”(x)|dx <∞. (5.5)

5.3. Állítás. Ha az 1. és 2. feltételek teljesülnek a (5.5) feltétellel együtt,
akkor az inverz Fourier transzformáció egyenletes konvergenciával állítja el®
a függvényt. Ez azt jelenti, hogy ha

fA(x) :=
1√
2π

A∫
−A

f̂(s)eisxds,

akkor egyenletesen teljesül, hogy

lim
A→∞

fA(x) = f(x).

5.2. Tétel. (Parseval egyenlet) Ha az 1. 2. feltételek teljesülnek a (5.5)
feltétellel együtt akkor:

∞∫
−∞

|f(x)|2dx =

∞∫
−∞

|f̂(s)|2ds.

A fenti tétel másik elnevezése Rayleigh-féle energia megmaradási törvény.
Egy jel négyzetének integrálja a �zikában az energiának felel meg.

Bizonyítás. Induljunk ki a fenti egyenl®ség baloldalából, és az 'egyik f(x)'
helyére beírjuk az inverz Fourier transzformációs el®állítást:

∞∫
−∞

f2(x)dx =

∞∫
−∞

f(x)
1√
2π

∞∫
−∞

f̂(s)eisxds dx.
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Felcserélhetjük az integrálás sorrendjét, mert az itt szerepl® integrálok egyen-
letesen konvergensek. Így azt kapjuk, hogy

∞∫
−∞

f2(x)dx =

∞∫
−∞

f̂(s)
1√
2π

∞∫
−∞

f(x)eisxdx ds =

=

∞∫
−∞

f̂(s)f̂(−s)ds =
∞∫

−∞

|f̂(s)|2ds,

hiszen f̂(s) = f̂(−s).

5.4. Állítás. A Fourier transzformált további tulajdonságai:

7. Tegyük fel, hogy
∞∫

−∞

|x||f(x)|dx <∞.

Ekkor

F(xf(x), s) = i
d

ds
F(f(x), s).

8. Ha
∞∫

−∞

|f ′(x)|dx <∞,

akkor
F(f ′, s) = isF(f, s).

Bizonyítás∗.

7.

d

ds
F(f(x), s) =

d

ds

 1√
2π

∞∫
−∞

f(x)e−isxdx

 =

=
1√
2π

∞∫
−∞

f(x)
d

ds

(
e−isx

)
dx,



134 5. FEJEZET. FOURIER ANALÍZIS II. RÉSZ

hiszen az egyenletes konvergencia miatt az integrálás és deriválás sor-
rendjét felcserélhetjük. A fenti egyenletet folytatva

d

ds
F(f(x), s) =

1√
2π

∞∫
−∞

f(x)(−ix)e−isxdx = (−i)F(xf(x), s).

8. Parciálisan integrálva

1√
2π

∞∫
−∞

f ′(x)e−isxdx =

=
1√
2π

[
f(x)e−isx

]∞
−∞

+
is√
2π

∞∫
−∞

f(x)e−isxdx = 0 + isF(f, s).

Az els® tag 0, hiszen a függvény abszolút integrálhatósága miatt:

lim
x→±∞

|f(x)e−isx| = lim
x→±∞

|f(x)| = 0.

Megjegyezzük, hogy ez a 8. tulajdonság az, ami miatt a Fourier transzfor-
máció igen hasznos a m¶szaki irodalomban. Ez azt jelenti, hogy az id®tar-
tománybeli deriválás a frekvenciatartományban egy is tényez®vel való szor-
zásnak felel meg.

5.4. Konvolúció

Adott két valós függvény, f, g : IR → IR. Feltesszük, hogy mindkett® abszolút
integrálható:

∞∫
−∞

|f(x)|dx <∞,

∞∫
−∞

|g(x)|dx <∞.

5.2. De�níció. A két függvény konvolúciója az f ∗ g : IR → IR függvény,
melyet így értelmezünk:

(
f ∗ g

)
(x) =

∞∫
−∞

f(y)g(x− y)dy.
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5.5. Állítás. A konvolúció alaptulajdonságai:

1. f ∗ g jól értelmezett, azaz az improprius integrál létezik és véges:

∞∫
−∞

f(y)g(x− y)dy <∞ ∀xϵIR.

Továbbá f ∗ g is abszolút integrálható, és

∞∫
−∞

∣∣(f ∗ g
)
(x)
∣∣ dx < ∞∫

−∞

|f(x)|dx ·
∞∫

−∞

|g(x)|dx.

2. Kommutatív: f ∗ g = g ∗ f.

3. Asszociatív: (f ∗ g) ∗ h = f ∗ (g ∗ h).

4. Disztributív tulajdonság: (f + g) ∗ h = f ∗ h+ g ∗ h.

Ezek közvetlen számolással igazolhatóak (HF).

Példa. Legyen

f(x) =


1 ha xϵ[0, 1]

0 egyébként

Ekkor tetsz®leges g függvény esetén:

(
f ∗ g

)
(x) =

1∫
0

g(x− y)dy,

tehát a konvolúció hatása: a g függvény x el®tti értékeit kiátlagolja.

5.5. Konvolúció és Fourier transzformáció

5.6. Állítás. Konvolúció az id®tartományban és a frekvenciatartományban
így változik meg:

F(f ∗ g, s) =
√
2π F(f, s) · F(g, s),

F(f, s) ∗ F(g, s) =
1√
2π

F(f · g, s).
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Bizonyítás∗. Id®tartományban látjuk be. (A frekvenciatartományban tel-
jesen hasonlóan igazolható.)

F(f ∗ g, s) =
1√
2π

∞∫
−∞

(f ∗ g)(x) · e−isxdx =

=
1√
2π

∞∫
−∞

 ∞∫
−∞

f(y) · g(x− y)dy

 · e−isxdx =

=
1√
2π

∞∫
−∞

f(y) · e−isy
∞∫

−∞

g(x− y) · e−is(x−y)dx dy =

=
1√
2π

∞∫
−∞

f(y) · e−isy
∞∫

−∞

g(u) · e−isudu dy =

=
1√
2π

∞∫
−∞

g(u) · e−isudu · 1√
2π

∞∫
−∞

f(y) · e−isydy ·
√
2π =

=
√
2π · F(g, s) · F(f, s)

5.6. Dirac-delta függvény

Legyen ε > 0 tetsz®leges, és minden ε-ra de�niáljuk az alábbi függvényt:

δε(x) =



0, ha x = 0,

1

2ε
, ha 0 < |x| < ε,

0, ha |x| ≥ ε.

Ekkor minden ε-ra

∞∫
−∞

δε(x)dx = 1.

Kiszámoljuk, mi lesz a δε(x) függvények Fourier transzformáltjának határ-
értéke ε→ 0 esetén.
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Általában, tetsz®leges f folytonos függvény mellett:
∞∫

−∞

f(x)δε(x)dx =
1

2ε

ε∫
−ε

f(x)dx =
1

2ε
f(ξ) · 2ε = f(ξ),

ahol ξϵ(−ε, ε) létezését az integrál-középérték tétel biztosítja. Ezért tehát

lim
ε→0

∞∫
−∞

f(x)δε(x)dx = lim
ε→0

f(ξ) = f(0).

Összefoglalva az el®z®ket, ha létezne a határértékfüggvény, δ(x) = lim
ε→0

δε(x),

akkor ez ilyen tulajdonságú lenne:

1.

∞∫
−∞

δ(x)dx = 1,

2. Tetsz®leges folytonos, abszolút integrálható függvény esetén
∞∫

−∞

δ(x)f(x)dx = f(0).

Másrészt δ(x) = 0 lenne ∀x ̸= 0 esetén és δ(0) = +∞, aminek "nincs
értelme".

Ez a Dirac-delta függvény létezik, bár de�níciója kivezet abból a fogalom-
rendszerb®l, amellyel eddig foglalkoztunk. Ilyen általánosított függvények a
disztribúcióelméletben fordulnak el®, de formálisan mi is használni fogjuk
(egy kicsit legalábbis).

A Dirac-delta függvény konvolúciója tetsz®leges f függvénnyel:

(
δ ∗ f

)
(x) =

∞∫
−∞

δ(y)f(x− y)dy = f(x)

Tehát a Dirac-delta a konvolúció m¶velet egysége.

A Dirac-delta függvény Fourier transzformáltja:

F(δ, s) =
1√
2π

∞∫
−∞

e−ixsδ(x)dx =
1√
2π
e−0 =

1√
2π

minden s-re. Fourier transzformáltja tehát konstans.
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6. fejezet

Di�erenciálegyenletek
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6.1. Di�erenciálegyenletek általános leírása

Di�erenciálegyenletek osztályozása

Els®rend¶ di�erenciálegyenletek legegyszer¶bb eseteivel már foglalkoztunk
az el®z® félévben. A szeparábilis és lineáris di�erenciálegyenletek megol-
dásait vizsgáltuk. Most folytatjuk, azokat az általánosabb eseteket fogjuk
tekinteni, melyek a további tanulmányokhoz feltétlenül szükségesek.

Ebben a kurzusban csak közönséges di�erenciálegyenlettel foglalkozunk, mely-
ben az ismeretlen egy egyváltozós valós függvény, és annak deriváltja(i) sze-
repelnek az egyenletben. Például a rezg®mozgást leíró DE:

y′′(x) + y(x) = 0.

A DE-ket osztályozhajuk rend és speciális tulajdonságai alapján:

• A DE rendje n, ha az egyenletben az ismeretlen függvény legmagasabb
rend¶ deriváltja n.

• Egy DE lineáris, ha az egyenletben y, y′, . . . , y(n) lineáris kifejezése
szerepel:

a1(x)y
(n) + a2(x)y

(n−1) + . . .+ an+1(x)y = f(x),

ahol az ak(x) együtthatók az x változó függvényei. A lineáris DE ho-
mogén f(x) = 0 esetén, egyébként pedig inhomogén. Ha az ak együtt-
hatók valós számok, akkor állandó együtthatós DE-r®l beszélünk.

6.2. Els®rend¶ di�erenciálegyenletek

Egy els®rend¶ DE általános alakja:

y′ = f(x, y), ahol D ⊂ IR2, f : D → IR.

ADEmegoldása azt jelenti, hogy egy ∃(a, b) ⊂ IR intervallum, és ∃y : (a, b) → IR

valós függvényt, melyre

y′(x) = f(x, y(x)) ∀xϵ(a, b).
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Geometriai reprezentációt a következ®képpen képzelhetünk el: Az f kétvál-
tozós függvény értelmezési tartományának minden (x, y) pontjában adott
egy f(x, y) iránytangens¶ pici szakasz. Ez a DE-hez tartozó iránymez®.

A DE megoldása olyan görbe megadását jelenti a síkon, melynek minden
pontjában az érint® megegyezik az adott pontbeli kijelölt iránnyal. Ez az in-
tegrálgörbe. Ha kijelölünk egy (x0, y0) kezd®pontot, akkor eleve olyan görbét
keresünk, mely átmegy ezen a ponton. Ekkor a feladat:

y′ = f(x, y), y(x0) = y0, (6.1)

ez egy kezdeti érték feladat, vagy Cauchy-probléma.

Ha adott (x0, y0) kezd®pont ⇒ az ezen átmen® görbét keressük.

Példa. Az y′ = x + y DE-hez tartozó iránymez®, és az y(0) = 1 kezdetiér-
tékhez tartozó integrálgörbe.

A Cauchy feladat megoldhatóságáról szól az alábbiEgzisztencia és unicitás
tétel.

6.1. Tétel. Tegyük fel, hogy D egy (x0, y0) körüli tartomány és f : D → IR

folytonos függvény második változójában teljesíti a Lipschitz feltételt:

∃L > 0 |f(x, y1)− f(x, y2)| < L|y1 − y2| ∀(x, y1) , (x, y2)ϵD.

Ekkor az (6.1) feladatnak létezik megoldása valamely I = (x0 − α, x0 + α)

intervallumon, és ez a megoldás egyértelm¶.
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Az els® félév során láttunk néhány speciális els®rend¶ di�erenciálegyenletet.
Nagyon röviden átismételjük ezeket:

1. Szeparábilis DE. Ekkor a jobboldalon szerepl® függvény speciális alakú:

y′ = h(x)g(y).

Ennek megoldásai kelégítik az alábbi összefüggést:∫
1

g(y)
dy =

∫
h(x)dx.

2. Szeparábilisra visszavezethet® DE. Tegyük fel, hogy a DE alakja:

y′ = f
(y
x

)
.

Ekkor az u =
y

x
helyettesítéssel a DE így transzformálódik:

u′ =
f(u)− u

x
.

Ez egy szeparábilis DE.

3. Lineáris DE. Ekkor a jobboldalon szerepl® függvény az y változóban
lineáris

y′ = a(x)y + f(x).

A DE homogén, ha f ≡ 0 és inhomogén, ha f ̸≡ 0.

4. Lineáris helyettesítéssel megoldható DE. Tegyük fel, hogy a jobboldal
f(ax+ by) alakú. Ekkor u = ax+ by helyettesítéssel szeparábilis DE-t
kapunk:

u′ = a+ bf(u).

1. Példa. Tekintsük az alábbi DE-t:

y′ =
2y2 + x2

xy
x ̸= 0, y ̸= 0.

A jobboldal
y

x
függvénye, hiszen

2y2 + x2

xy
= 2

y

x
+
x

y
.
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Vezessük be egy új változót:

u(x) =
y(x)

x
.

Ekkor a di�erenciálegyenlet:

u′ =
1

x

u2 + 1

u
.

Ez szeparábilis, melynek megoldása:∫
u

u2 + 1
du =

∫
1

x
, =⇒ 1

2
ln(u2 + 1) = lnx+ c,

azaz
u2 + 1 = x2e2c = kx2, k > 0.

Az u2 =
y2

x2
kifejezést visszahelyettesítve azt kapjuk, hogy

y2

x2
+ 1 = kx2,

tehát a megoldás
y2 = kx4 − x2, ahol k > 0.

2. Példa. Tekintsük az alábbi kezdeti érték problémát:

y′ = e2y+x − 1

2
, y(0) = 0.

Lineáris helyettesítést alkalmazva legyen u = 2y + x. Ekkor

u′ = 2y′ + 1 = 2(eu − 1

2
) + 1 = 2eu.

Az u′ = 2eu egyenlet megoldása:∫
e−udu =

∫
2dx,

−e−u = 2x+ c, e−2y−x = −2x− c.

A kezdeti értéket behelyettesítve e0 = 0− c, vagyis c = −1, így a megoldás

y =
−x− ln (1− 2x)

2
.
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6.3. Magasabb rend¶ di�erenciálegyenletek

6.3.1. Lineárisan független függvények

Els®ként bevezetjük a lineáris függetlenség fogalmát.

6.1. De�níció. Adott n darab függvény, y1, y2, . . . , yn, közös D ⊂ IR értel-
mezési tartománnyal. Ezek lineárisan függetlenek, ha

c1y1(x) + . . .+ cnyn(x) = 0 ∀xϵD, ⇐⇒ c1 = . . . = cn = 0.

1. Példa. Legyenek a függvények:

y1(x) = 1, y2(x) = x, . . . , yn(x) = xn−1, xϵ(a, b).

Ezek lineárisan függetlenek, mert tetsz®leges lineáris kombinációjuk polinom:

c1 + c2x+ . . . cnx
n−1.

Ha egy polinom egy intervallumon elt¶nik, akkor valóban minden együtt-
hatója 0.

2. Példa. Legyen a függvények közös értelmezési tartománya D = [0, π], és

y1(x) = sin(x), y2(x) = sin(2x), . . . yn(x) = sin(nx).

Felhasználjuk a trigonometrikus rendszer ortogonalitását, amelyet a Fourier
sorok bevezetésekor igazoltunk. Ezért valóban lineárisan függetlenek is.

3. Példa. Legyenek a1 < a2 < . . . < an különböz® valós számok. Tekintsük
az alábbi függvényeket valamely I ⊂ IR intervallumon:

y1(x) = ea1x, y2(x) = ea2x, . . . , yn(x) = eanx.

Azt állítjuk, hogy a függvényrendszer lineárisan független. Ez n-re vonatkozó
teljes indukcióval könnyen igazolható. (HF)

6.2. De�níció. Legyenek az y1, . . . , yn : D → IR függvények (n − 1)-szer
di�erenciálhatóak. A Wronski determinánst így de�niáljuk:

W [y1, . . . , yn](x) = det


y1(x) y2(x) . . . yn(x)

y′1(x) y′2(x) . . . y′n(x)
...

...
...

y
(n−1)
1 (x) . . . . . . y

(n−1)
n (x)

 .
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A Wronski determináns W [y1, . . . , yn] : D → IR is egy valós függvény lesz.

6.1. Állítás. Tegyük fel, hogy y1, . . . , yn függvények lineárisan összefügg®ek
és legalább (n− 1)-szer di�erenciálhatók. Ekkor W [y1, . . . , yn] = 0.

Bizonyítás. Mivel a függvények lineárisan összefügg®ek, ezért

c1y1 + . . .+ cnyn = 0,

ahol valamelyik ck ̸= 0. Legyen ez c1. Ekkor y1 kifejezhet® a többi függvény
segítségével:

y1 = −c2
c1
y2 − . . .− cn

c1
yn.

Ugyanígy, deriváltjai is kifejezhet®k, ugyanilyen együtthatókkal:

y′1 = −c2
c1
y′2 − . . .− cn

c1
y′n.

A többi derivált hasonlóképp. Tehát a mátrix els® oszlopa el®áll a többi
oszlop lineáris kombinációjaként, ezért a mátrix szinguláris, determinánsa 0.

Következmény. Ha W [y1, . . . , yn](x) ̸= 0 valamely x-ben, akkor y1, . . . , yn
lineárisan független rendszert alkotnak.

6.2. Állítás. Ha y1, . . . , yn n-szer di�erenciálhatók D-n, akkorW [y1, . . . , yn]

pontosan akkor 0, ha az y1, . . . , yn függvények lineárisan összefügg®ek.

Példa. Tekintsük az alábbi els®rend¶ homogén lineáris di�erenciálegyenletet:

y′(x) + g(x)y(x) = 0.

Legyen ennek két megoldása y1 és y2. Írjuk fel ezek Wronski determinánsát:

W [y1, y2] = det

 y1 y2

y′1 y′2

 = det

 y1 y2

−g(x)y1 −g(x)y2

 = 0.

Ezért a megoldások lineárisan összefügg®ek, tehát y1 = cy2 valamilyen c

valós számmal.

Következmény. Az els®rend¶ homogén lineáris di�erenciálegyenlet megoldá-
sa konstans szorzótól eltekintve egyértelm¶. Ha adott egy megoldása, akkor
az összes többi kifejezhet® ennek konstans-szorosaként. (Ezt már az els®
félévben is láttuk, közvetlenül.)
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6.3.2. n-edrend¶ lineáris di�erenciálegyenlet

Jelölje Cn(D) azon D-n értelmezett folytonos függvények halmazát, melyek
n-szer folytonosan di�erenciálhatók.

Legyen L egy olyan operátor, amely egy n-szer folytonosan di�erenciálható
függvényhez egy folytonos függvényt rendel a következ®képpen:

L[y] := y(n) + a1(x)y
(n−1) + . . .+ an(x)y, (6.2)

ahol a1, . . . , an adott folytonos függvények. Az L operátor lineáris, azaz

L[αy1 + βy2] = αL[y1] + βL[y2]

tetsz®leges y1, y2ϵCn(D) és α, βϵIR esetén.

A homogén lineáris di�erenciálegyenlet (HLDE) esetén az

L[y] = 0

egyenletnek keressük a megoldását. Inhomogén (IH LDE) esetben az

L[y] = f(x)

egyenlet megoldását keressük, ahol f(x) ̸= 0.

Az L operátor linearitásából azonnal következik az alábbi állítás.

6.3. Állítás. Ha y1, y2 megoldásai a

y(n)(x) + a1(x)y
(n−1)(x) + . . .+ an(x)y(x) = 0 (6.3)

HLDE-nek, akkor lineáris kombinációja is megoldás:

y = αy1 + βy2.

6.2. Tétel. (Homogén lineáris DE megoldásainak struktúrája)
1. Az L[y] = 0 egyenletnek létezik n darab lineárisan független megoldása,
ezeket jelölje y1, . . ., yn.
2. Tetsz®leges y megoldás felírható ezek lineáris kombinációjaként,

y = c1y1 + . . .+ cnyn.
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Bizonyítás∗. A tétel els® részét speciális esetben fogjuk belátni.

A tétel második részének bizonyítása. Írjuk fel az y, y1, . . . yn függvények
Wronski determinánsát:

W [y, y1, . . . , yn] = det



y y1 . . . yn

y′ y′1 . . . y′n

...
...

...
...

y(n) y
(n)
1 . . . y

(n)
n


.

Mivel L[y1] = L[y2] = . . . = L[y] = 0, ezért a mátrix utolsó sora el®áll a többi
lineáris kombinációjaként, sorai lineárisan összefügg®ek, tehát a determináns
0. Az utolsó n oszlop azonban lineárisan független, így az els® oszlop felírható
a többi lineáris kombinációjaként.

6.3.3. Homogén lineáris, állandó együtthatós egyenletek

Tekintsük az egyenletet

L[y] = y(n) + a1y
(n−1) + . . .+ any = 0,

ahol a1, . . . , anϵIR adott számok. Speciális megoldásokat keresünk, melyek

y(x) = eλx

alakúak. Ekkor

y′(x) = λeλx . . . y(n)(x) = λneλx.

Ezeket visszahelyettesítve azt kapjuk, hogy

L[y] = eλx(λn + a1λ
n−1 . . .+ an−1λ+ an) = 0.

A jobboldalon álló függvény csak úgy lehet 0, ha

λn + a1λ
n−1 + . . .+ an = 0.
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6.3. De�níció. A DE-hez tartozó karakterisztikus polinom:

P (λ) = λn + a1λ
n−1 + . . .+ an.

P (λ) egy valós együtthatós polinom, melynek a komplex számsíkon n darab
gyöke van, multiplicitásokkal együtt.

Els® eset. Tegyük fel, hogy P (λ) gyökei valósak és mind egyszeresek. Legye-
nek ezek λ1, . . . , λn. Ekkor fel tudjuk írni a homogén egyenlet n megoldását

y1(x) = eλ1x

y2(x) = eλ2x

...

yn(x) = eλnx,

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás:

y(x) =
n∑
k=1

cke
λkx, ckϵIR, k = 1, . . . n.

Speciális esetként tekintsünk egy másodrend¶ DE-t, azaz n = 2. Ekkor

L[y] = y′′ + a1y
′ + a2y =⇒ P (λ) = λ2 + a1λ+ a2.

Ha ennek a polinomnak két különböz® valós gyöke van, akkor a fenti módon
meghatározhatjuk a két alapmegoldást. Tegyük fel, hogy a két valós gyök
egybeesik, λ1 kétszeres gyök. Ekkor

P (λ1) = 0, P ′(λ1) = 0.

Ekkor a fenti gondolatmenetnek megfelel®en egy megoldás:

y1(x) = eλ1x.

6.4. Állítás. Ebben a speciális esetben egy másik megoldása a DE-nek:

y2(x) = xeλ1x

S®t, y2 lineárisan független y1-t®l.
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Bizonyítás∗. Behelyettesítjük a DE-be y2-t.

y′2(x) = λ1xe
λ1x + eλ1x,

y′′2(x) = 2λ1e
λ1x + xλ21e

λ1x,

ezért a DE baloldala

L[y] = xλ21e
λ1x + 2λ1e

λ1x + a1λ1xe
λ1x + a1e

λ1x + a2xe
λ1x =

= xeλ1xP (λ1) + eλ1xP ′(λ1) = 0.

■

Általában, n-edrend¶ DE esetén, ha λ0 a P (λ) polinom k-szoros valós gyöke,
akkor de�niálhatjuk az alábbi függvényeket:

y1(x) = eλ0x

y2(x) = xeλ0x

...

yk(x) = xk−1eλ0x.

Ezek lineárisan függetlenek, és megoldásai az eredeti homogén lineáris di�e-
renciálegyenletnek.

Tekintsük azt az esetet, amikor a P (λ) polinomnak komplex gyökei vannak.
Ha λ = α+ iβ egy gyöke a karakterisztikus polinomnak, akkor konjugáltja,
λ = α− iβ is az. Két alapmegoldást kapunk tehát:

u1(x) = eλx, u2(x) = eλx.

Mivel λ komplex szám, ezért ezek komplex függvények lesznek:

u1(x) = e(α+iβ)x = eαx (cos(βx) + i sin(βx)) ,

u2(x) = e(α−iβ)x = eαx (cos(βx)− i sin(βx)) .

Tudjuk, hogy ezek tetsz®leges lineáris kombinációja ismét megoldás. Kere-
sünk olyan lineáris kombinációt, amely valós érték¶. De�niáljuk a következ®
alapmegoldásokat:

y1(x) =
u1(x) + u2(x)

2
= eαx cos(βx),
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és

y2(x) =
u1(x)− u2(x)

2i
= eαx sin(βx).

Ezek is lineárisan függetlenek, nyilvánvalóan.

Utolsó lehet®ségként tegyük fel, hogy a karakterisztikus polinom gyökei közt
többszörös komplex gyökpárok is vannak. Ha λ = α+iβ és λ k-szoros gyökök,
akkor a megfelel® 2k darab alapmegoldás:

y1(x) = eαx sin(βx),

y2(x) = eαx cos(βx),

...

y2k−1(x) = xk−1eαx sin(βx)

y2k(x) = xk−1eαx cos(βx).

Mivel a P (λ) polinomnak a komplex számtest felett n gyöke van - multiplici-
tásokkal számolva -, a fenti konstrukciók alapján mindegyik gyökhöz tartozik
alapmegoldás, így az n darab független valós alapmegoldás felírható.

1. Példa. Tekintsünk egy harmadrend¶ DE-t:

y′′′ − 2y′′ − 3y′ = 0.

A di�erenciálegyenlet karakterisztikus polinomja

P (λ) = λ3 − 2λ2 − 3λ,

melynek gyökei
λ1 = 0, λ2 = 3, λ3 = −1.

Így az alapmegoldások

y1(x) = 1, y2(x) = e3x, y3(x) = e−x,

és a DE általános megoldása

y(x) = c1 + c2e
3x + c3e

−x, ckϵIR.

2. Példa. Legyen
y′′′ + 2y′′ + y′ = 0.
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A karakterisztikus polinom

P (λ) = λ3 + 2λ2 + λ,

ennek gyökei
λ1 = 0, λ2 = λ3 = −1.

Így az alapmegoldások:

y1(x) = 1, y2(x) = e−x, y3(x) = xe−x,

és az általános megoldás

y(x) = c1 + (c2 + c3x)e
−x, ckϵIR.

3. Példa. (Harmonikus rezg®mozgás egyenlete.) Legyen

y′′ + k2y = 0, kϵIR.

A karakterisztikus egyenlet gyökei

λ1 = ik, λ2 = −ik,

ezért az alapmegoldások

y1(x) = cos(kx) y2(x) = sin(kx).

Az általános megoldás

y(x) = c1 cos(kx) + c2 sin(kx) = r cos(kx+ α),

ahol r és α olyan paraméterek, melyek egy-egyértelm¶en meghatározottak c1
és c2 alapján, (c1, c2) ↔ (r, α) Ebben a felírásban a paramétereknek �zikai
jelentés adható, r a rezgés amplitúdója, α a kezd®fázis, és k a frekvencia.

6.3.4. Inhomogén lineáris di�erenciálegyenletek

Keressük az alábbi inhomogén LDE megoldását:

y(n)(x) + a1(x)y
(n−1)(x) + . . .+ an(x)y(x) = f(x), (6.4)

feltéve, hogy a homogén egyenlet megoldásai ismertek.
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6.5. Állítás. 1. Ha y1, y2 megoldásai a (6.4) inhomogén egyenletnek, ak-
kor y = y1 − y2 a (6.3) homogén egyenlet megoldása.

2. Ha y1 a homogén egynlet, y2 pedig az inhomogén megoldása, akkor
y = y1 + y2 szintén megoldása az IH LDE-nek.

Bizonyítás. Azonnal következik az L[y] operátor linearitásából.

A fenti Állítás alapján megfogalmazhatjuk az Tételt inhomogén lineáris DE
megoldásainak struktúrájáról.

6.3. Tétel. Tegyük fel, hogy az L[y] = f egyenletnek ismert egyetlen yp
megoldása. Akkor az egyenlet összes megoldás felírható ilyen alakban:

y = yp + c1y1 + . . .+ cnyn,

ahol y1, . . ., yn a (6.3) homogén egyenlet n darab lineárisan független alap-
megoldása.

Következmény. Ha a homogén egyenlet alapmegoldásai ismertek, akkor az
inhomogén LDE általános megoldásának felírásához elegend® egyetlen meg-
oldást megtalálni. Ezt fogjuk partikuláris megoldásnak nevezni.

Két módszert mutatunk be partikuláris megoldás meghatározására.

Állandók variálása

Legyen adott az L[y] = 0 homogén egyenlet n darab lineárisan független
megoldása y1, . . . , yn. Ekkor az általános megoldás

y = c1, y1 + c2y2 + . . . cnyn, (6.5)

ahol c1, c2, . . . cnϵIR tetsz®leges konstansok.

A következ® módszert úgy hívjuk, hogy állandók variálása.

Az inhomogén egyenlet egyetlen megoldását a (6.5) felíráshoz hasonló alak-
ban keressük azzal a különbséggel, hogy a ck konstansok helyett függvények
lesznek a szorzók. Tehát a keresett megoldás a következ®:

y(x) = γ1(x)y1(x) + · · ·+ γn(x)yn(x).
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6.6. Állítás. Tegyük fel, hogy fenti megoldásban szerepl® γ1(x), γ2(x), . . . γn(x)
függvények deriváltakjaira az alábbi összefüggések teljesülne:

γ′1y1 + · · ·+ γ′nyn = 0

γ′1y
′
1 + · · ·+ γ′ny

′
n = 0

...

γ′1y
(n−2)
1 + · · ·+ γ′ny

(n−2)
n = 0

γ′1y
(n−1)
1 + . . .+ γ′ny

(n−1)
n = f(x)

Ha ezek a feltételek teljesülnek, akkor

L[y] = f.

Megjegyzés. Az együtthatók deriváltjaira adott n darab lineáris egyenlet. Az
egyenletrendszert kompakt formában így írhatjuk fel:

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n




γ′1
γ′2
...
γ′n

 =


0
...
0

f

 .

A baloldalon szerepl® együttható mátrix az alapmegoldásokWronski-mátrixa.
Mivel ezek az alapmegoldások lineárisan függetlenek, ezért a Wronski-mátrix
nem szinguláris, tehát a fenti egyenletrendszer mindig megoldható.

Bizonyítás∗. Az y függvényt így de�niáltuk:

y =

n∑
k=1

γkyk.

Ennek deriváltja

y′ =
n∑
k=1

γ′kyk +
n∑
k=1

γky
′
k =

n∑
k=1

γky
′
k
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az els® feltétel miatt. Hasonlóan számolható a többi derivált is:

y(j) =
n∑
k=1

γky
(j)
k , j < n.

Végül az n-dik derivált:

y(n) =
n∑
k=1

γ′ky
(n−1)
k +

n∑
k=1

γky
(n)
k = f +

n∑
k=1

γky
(n)
k .

Behelyettesítve az L operátorba azt kapjuk, hogy

L[y] = y(n) +
n∑
k=1

aky
(n−k) = f +

n∑
k=1

γkL[yk] = f.

Az utolsó lépésben felhasználtuk, hogy yk a homogén egyenlet megoldása,
ezért L[yk] = 0 minden k = 1, . . . , n mellett. ■

Speciálisan n = 2 esetben írjuk fel az egyenletrendszert. Legyen a di�eren-
ciálegyenlet:

y′′ + a1y
′ + a2y = f.

A homogén egyenlet alapmegoldásait jelölje y1, y2. Az inhomogén egyenlet
partikuláris megoldását ilyen alakban keresssük:

y(x) = γ1(x)y1(x) + γ2(x)y2(x),

ahol γ1, γ2 egyel®re ismeretlen függvények. Ezek deriváltjaira tett feltételek:

γ′1y1 + γ′2y2 = 0

γ′1y
′
1 + γ′2y

′
2 = f(x).

Így a megoldandó egyenletrendszer: y1 y2

y′1 y′2

 ·

 γ′1

γ′2

 =

 0

f

 .

Példa. Harmonikus rezgés esetén a másodrend¶ egyenlet

y′′ + k2y = f.
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A homogén egyenlet alapmegoldásai y1 = cos(kx) és y2 = sin(kx). A meg-
oldandó egyenletrendszer: cos(kx) sin(kx)

−k sin(kx) k cos(kx)

 ·

 γ′1(x)

γ′2(x)

 =

 0

f(x)

 .

Az együttható mátrix és inverze

M =

 cos(kx) sin(kx)

−k sin(kx) k cos(kx)

 =⇒ M−1 =

 cos(kx) − 1
k sin(kx)

sin(kx) 1
k cos(kx)

 .

Így az együtthatók deriváltjaira ez adódik:

γ′1(x) = −1

k
sin(kx)f(x)

γ′2(x) =
1

k
cos(kx)f(x).

Megjegyzés. Az állandók variálásának módszere akkor is használható, ha a
lineáris di�erenciálegyenlet együtthatói nem konstansok, hanem adott foly-
tonos függvények. Erre mutatunk be egy példát.

Példa. Tekintsük az alábbi lineáris di�erenciálegyenletet:

y′′ − 2

x
y′ +

2

x2
y = xex.

Az eddigi jelöléseink szerint most tehát

a1 = a1(x) = −2

x
, a2 = a2(x) =

2

x2
, f(x) = xex.

Els® lépés. Meghatározzuk a homogén di�erenciálegyenlet megoldásait. Köny-
nyen ellen®rizhet®, hogy két alapmegoldás

y1(x) = x, y2(x) = x2.

Így a homogén egyenlet általános megoldása

yh(x) = c1x+ c2x
2, c1, c2ϵIR.
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Második lépés. Az inhomogén egyenlet megoldását

y(x) = γ1(x)x+ γ2(x)x
2

alakban keressük, ahol γ1 és γ2 egyel®re ismeretlen függvények. A fenti tétel
értelmében ezek deriváltjaira a következ® feltételek teljesülnek:

γ′1(x)x+ γ′2(x)x
2 = 0

γ′1(x) + γ′2(x)2x = xex.

Az egyenletrendszer megoldására rövid számolással

γ1(x) = ex − xex, γ2(x) = ex

adódik. Így az inhomogén egyenlet egy megoldása

y(x) = (ex − xex)x+ exx2 = xex,

általános megoldása pedig

ya = xex + c1x+ c2x
2, c1, c2ϵIR.

Próbafüggvények alkalmazása

A fent bemutatott módszer mindig alkalmazható. Azonban ha az állandó együtthatós
lineáris DE-nek speciális jobboldala van, akkor érdemes az inhomogén egyen-
let megoldását speciális alakban keresni. A megoldandó egyenlet:

L[y] = y(n)(x) + a1y
(n−1)(x) + . . .+ any(x) = f(x).

A teljesség igénye nélkül felsorolunk néhány alapesetet.

- Ha f(x) = Keαx, αϵIR, akkor a megoldást y(x) = Aeαx alakban keres-
sük, A ismeretlen.

- Ha f(x) = amx
m+ · · ·+a0, akkor a megoldást y(x) = Amx

m+ · · ·+A0

alakban keressük, A0, ... Am az ismeretlen paraméterek.

- Ha f(x) = K sin(αx) vagy f(x) = K cos(αx), akkor a megoldást
y(x) = A sin(αx) + B cos(αx) alakban keressük, ahol A és B az is-
meretlen paraméterek.
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Ha f(x) ezen speciális függvények összege, akkor a próbafüggvényt is összeg-
ként keressük.

Példa. Tekintsük az alábbi másodrend¶ di�erenciálegyenletet:

y′′ − 3y′ + 2y = e3x + x2 + x.

A homogén egyenlet általános megoldása

y = c1e
2x + c2e

x.

Az inhomogén rész megoldását próbafüggvénnyel keressük,

yp = Ae3x +Bx2 + Cx+D

alakban. Ennek deriváltjai

y′p = 3Ae3x + 2Bx+ C

y′′p = 9Ae3x + 2B.

Ezeket visszahelyettesítve megkapjuk az ismeretlen együtthatókat:

A =
1

2
= B, C = 2, D =

5

2
,

tehát az inhomogén rész egy partikuláris megoldása:

yp =
1

2
e3x +

1

2
x2 + 2x+

5

2
.

6.4. De�níció. Ha a homogén DE alapmegoldásai közt létezik olyan függ-
vény, mint ami a DE jobboldalán szerepel. akkor rezonanciáról beszélünk.

Rezonancia esetén a megfelel® próbafüggvényt x egy hatványával szorozzuk.

Példa. (Folytatás) Az el®z® DE -t tekintsük más jobboldallal:

y′′ − 3y′ + 2y = e2x.

Itt a jobboldalon álló függvény alapmegoldása a homogén DE-nek. Ezért
próbafüggvényként az

yp(x) = Axe2x
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függvényt tekintjük. Ennek deriváltjai

y′(x) = Ae2x + 2Axe2x

y′′(x) = 4Ae2x + 4Axe2x.

Innen A = −1 adódik, tehát az inhomogén DE egy partikuláris megoldása

yp(x) = xe2x,

általános megoldása pedig

y(x) = c1e
2x + c2e

x + xe2x.

6.4. Di�erenciálegyenlet-rendszerek∗

Ez a fejezet kiegészít® tananyagot tartalmaz.

6.4.1. Alapfeladat

Els®ként csak kétdimenziós rendszerekkel foglalkozunk. Keressünk olyan
y(x) és z(x) függvényeket, melyek deriváltjai egymástól is függhetnek. Ez
azt jelenti, hogy kielégítenek egy ilyen típusú di�erenciálegyenlet rendszert:

y′(x) = f(x, y(x), z(x))

z′(x) = g(x, y(x), z(x)),

ahol f és g adott három változós függvények.

6.4. Tétel. Legyen T ⊂ IR3 egy tartomány, (x0, y0, z0) ennek bels® pontja.
Adottak az f, g : T → IR függvények, melyekr®l feltesszük, hogy a második és
harmadik változókban Lipschitz folytonosak, azaz

∃M > 0 |f(x, y, z)− f(x, y, z)| ≤M(|y − y|+ |z − z|),

Ekkor az

y′ = f(x, y, z)

z′ = g(x, y, z),

y(x0) = y0, z(x0) = z0
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kezdetiérték feladatnak létezik egyértelm¶ megoldása valamely (x0−α, x0+α)
intervallumban.

A tétel igaz általános n-dimenziós di�erenciálegyenlet rendszerre is. Ekkor
n db függvényt keresünk, melyekre

y′1 = f1(x, y1, . . . , yn)

...

y′n = fn(x, y1, . . . , yn)

y1(x0) = y10, . . . yn(x0) = yn0,

ahol x0 és y10, . . . yn0 adott valós számok.

6.4.2. Lineáris, állandó együtthatós homogén DER

A könnyebb áttekinthet®ség kedvéért most n = 3 dimenzióban dolgozunk.
(Minden ugyanígy elmondható általános n dimenziós lineáris rendszerekre
is.) Tekintsük az alábbi háromdimenziós rendszert:

y′1 = a11y1 + a12y2 + a13y3

y′2 = a21y1 + a22y2 + a23y3

y′3 = a31y1 + a32y2 + a33y3,

a hozzá tartozó kezdeti feltétellel

y1(0) = y01, y2(0) = y02, y3(0) = y03.

A keresett függvényeket rendezzük el egy vektorba:

Y (x) =

 y1(x)

y2(x)

y3(x)

 ,
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ennek deriváltja

Y ′(x) =

 y′1(x)

y′2(x)

y′3(x)

 .

Az együtthatókat gy¶jtsük egy mátrixba:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

A di�erenciálegyenlet rendszer tehát kompakt módon így írható

Y ′(x) = AY (x), Y (0) = Y0. (6.6)

6.5. Tétel. A (6.6) lineáris egyenletrendszer megoldása

Y (x) = eAxY0.

Az eA mátrix értelmezése az ex függvény sorfejtése alapján történik.

eA :=

∞∑
k=0

1

k!
Ak.

Ez általában nehezen számolható. Ha A szimmetrikus mátrix, akkor felírható

A = UDUT

alakban, ahol U ortogonális, D pedig diagonális. Ez azt jelenti, hogy

UTU = UUT = I,

ahol I az egységmátrix, és

D =

 λ1 0 0

0 λ2 0

0 0 λ3

 .

Ha például A-nak 3 darab különböz® valós sajátértéke van, λ1, λ2, λ3, akkor
a megfelel® sajátvektorok ortogonális rendszert alkotnak. Ebben az esetben

D =

 λ1 0 0

0 λ2 0

0 0 λ3

 , U = (s1 s2 s3) ,



6.4. DIFFERENCIÁLEGYENLET-RENDSZEREK∗ 161

ahol sk a normalizált sajátvektorokat jelöli.

Folytassuk eA kiszámítását ebben az esetben.

Ak = UDUT · UDUT . . . UDUT = UDkUT ,

ezért
eA = UeDUT ,

ahol eD diagonális mátrix, f®átlójának elemei eλ1 , eλ2 , eλ3 .

6.6. Tétel. Tegyük fel, hogy A sajátértékei mind különböz®ek, legyenek ezek
λ1, λ2, λ3. Ekkor a különböz® sajátértékekhez tartozó sajátvektorok egymásra
mer®legesek, ezeket jelölje s1, s2, s3.

Ekkor a lineáris di�erenciálegyenlet rendszer lineárisan független megoldás-
rendszere

Yk = eλkxsk.

Ezen felül tetsz®leges Y (0) = Y0 kezdetiértékhez létezik egyértelm¶en Y meg-
oldás és ez felírható

Y = c1Y1 + c2Y2 + c3Y3

alakban megfelel® c1, c2, c3 konstans együtthatókkal.

Bizonyítás∗. A megoldások lineárisan függetlenek, hiszen eλkx-k is lineári-
san függetlenek, és sk-k is. A fenti függvény deriváltja

Y ′
k(x) = λke

λkxsk, k = 1, 2, 3.

A DE jobboldala

AYk(x) = Aeλkxsk = eλkxAsk = eλkxλksk.

Tehát valóban megoldás.

Megjegyzés. A tétel akkor is igaz lesz, ha nem különböz®ek a sajátértékek,
de teljesül az a feltétel, hogy minden többszörös sajátértékhez lineárisan
független sajátvektor-rendszer tartozik.

Példa. Legyen

A =

 1 0 0

0 1 1

0 0 3

 .
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Ekkor a megfelel® di�erenciálegyenlet rendszer:

y′1 = y1

y′2 = y2 + y3

y′3 = 3y3

A megoldáshoz határozzuk meg A sajátértékeit, (I az egységmátrix):

0 = |A− λI| = det

 1− λ 0 0

0 1− λ 1

0 0 3− λ

 ,

ahonnan azt kapjuk, hogy a sajátértékek

λ1 = λ2 = 1, λ3 = 3.

A sajátvektorok meghatározása. Tekintsük a λ1 = 1 sajátértéket. Meg kell
oldani az alábbi egyenletet 0 0 0

0 0 1

0 0 2


 a

b

c

 = 0.

Ennek megoldása c = 0, illetve a és b tetsz®legesek. Ezért létezik λ1-hez két
ortogonális sajátvektor, ezek

s1 =

 1

0

0

 , s2 =

 0

1

0

 .

Tekintsük most a λ3 = 3 sajátértéket. A megoldandó egyenlet: −2 0 0

0 −2 1

0 0 0


 a

b

c

 = 0.

Innen azt kapjuk, hogy

−2a = 0, −2b+ c = 0
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és c tetsz®leges. Így egy sajátvektor

s3 =

 0

1

2

 .

Tehát a lineáris rendszer alapmegoldásai

Y1 = ex

 1

0

0

 , Y2 = ex

 0

1

0

 , Y3 = e3x

 0

1

2

 .

Így az általános megoldás:

Y =

 c1e
x

c2e
x + c3e

3x

2c3e
3x

 .

Koordinátánként kiírva a megoldást:

y1(x) = c1e
x

y2(x) = c2e
x + c3e

3x

y3(x) = 2c3e
3x,

ahol c1, c2, c3ϵIR tetsz®leges.
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7.1. Komplex számok, sorozatok

Röviden felsorolom a komplex számok bevezet® alapfogalmait. i az imagi-
nárius egység, i2 = −1. A komplex számok halmazát C-vel jelöljük.

7.1. De�níció. Egy z komplex szám kanonikus alakja

z = x+ iy,

ahol x = Re(z) a valós rész, y = Im(z) a képzetes rész. Egy komplex
szám konjugáltja

z = x− iy.

Komplex szám abszolút értéke:

|z| =
√
x2 + y2 =

√
zz.

A z komplex szám trigonometrikus alakja

z = r(cos(ϕ) + i sin(ϕ)) = reiϕ, r = |z|.

7.1.1. Komplex számsorozatok

A valós számsorozatokhoz hasonlóan komplex számsorozatokat tekintünk.
Ezt (zn) jelöli, ahol minden nϵIN esetén znϵC.

7.2. De�níció. A (zn) számsorozat korlátos, ha az abszolút értékekb®l álló
(|zn|) valós számsorozat korlátos. (zn) konvergens és határértéke a zϵC
komplex szám, azaz lim

n→∞
zn = z, ha

lim
n→∞

|zn − z| = 0.

Másképp fogalmazva: ∀ε > 0-hoz ∃N küszöbindex, hogy

|zn − z| < ε ∀n > N.

Ha (zn) komplex számsorozat, akkor de�niáljuk az elemek valós és képzetes
részéb®l álló valós számsorozatokat

xn = Re(zn), yn = Im(zn).
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7.1. Állítás. (zn) pontosan akkor korlátos, ha (xn) és (yn) is korlátosak.
(zn) pontosan akkor konvergens, ha (xn) és (yn) is konvergensek. Ekkor

lim
n→∞

xn = x0, és lim
n→∞

yn = y0 =⇒ lim
n→∞

zn = x0 + iy0.

1. Példa. Legyen a sorozat zn = (1 + i)n, nϵIN. Ennek elemei

z1 = 1 + i, z2 = 2i, z3 = −2 + 2i . . .

A tagok abszolút értékeib®l álló sorozat:

|z1| =
√
2, |z2| = 2, |z3| =

√
8, . . . , |zn| = 2

n
2 .

Mivel |zn| → ∞, ezért a sorozat nem korlátos.

2. Példa. Legyen a sorozat n-dik tagja

zn = cos(
2π

n
) + i sin(

2π

n
).

Ekkor

z1 = 1, z2 = −1, z3 = cos(
2π

3
) + i sin(

2π

3
) . . .

Látható, hogy |zn| = 1 minden n-re, tehát a sorozat korlátos.

Nyilván (zn) pontosan akkor konvergens, ha (zn) konvergens.

Ha (zn) konvergens, akkor (|zn|) is konvergens. Fordítva nem igaz.

Példa. Legyen zn = cos(n) + i sin(n) = ein. Ekkor (zn) nem konvergens,
viszont |zn| ≡ 1.

7.1.2. Komplex számsorok

Valós számsorokhoz hasonlóan tekinthetünk komplex számokból álló végte-
len összeget:

∞∑
n=1

zn = lim
N→∞

N∑
n=1

zn.

Minden komplex számsorhoz két valós számsor tartozik; a valós és képzetes
részekb®l álló számsorok:

∞∑
n=1

xn,

∞∑
n=1

yn.
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7.2. Állítás. A komplex elem¶
∞∑
n=1

zn sor pontosan akkor konvergens, ha a

∞∑
n=1

xn és
∞∑
n=1

yn sorok konvergensek. Ekkor

∞∑
n=1

zn =
∞∑
n=1

xn + i
∞∑
n=1

yn.

Példa. (Végtelen mértani sor) Legyen zn = zn, ahol zϵC rögzített. A szám-
sor:

1 + z + z2 + . . . =

∞∑
n=0

zn.

Ez csak akkor konvergens, ha |z| < 1. Tekintsük ekkor a sor részletösszegeit:

N∑
n=1

zn =
1− zN+1

1− z
=⇒ lim

N→∞

1− zN+1

1− z
=

1

1− z
∀|z| < 1.

7.1.3. Komplex hatványsorok

Legyen a sor n-dik tagja zn = cn(z − z0)
n, ahol z0ϵC rögzített komplex

szám, és cnϵC. Tetsz®leges z esetén de�niáljuk az alábbi függvényt, ha a sor
konvergens:

f(z) =
∞∑
n=0

cn(z − z0)
n.

Legyen az egyszer¶ség kedvéért z0 = 0. A valós hatványsorokra már megis-
mert tétel mintájára itt is jellemezhetjük a konvergencia halmazt.

7.1. Tétel. Tegyük fel, hogy a fenti hatványsor konvergens valamely ξϵC-re.
Akkor tetsz®leges olyan z-re, melyre |z| < |ξ|, szintén konvergens.

Következmény. A konvergencia halmaz a komplex számsíkon egy körlemez.

Következmény. A már megismert elemi függvények kiterjeszthet®k komplex
argumentumra. Például f(z) = ez-re:

ez =

∞∑
n=0

zn

n!
.
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7.2. Komplex függvények

Legyen D ⊂ C egy tartomány a komplex számsíkon. f : D → C függvényt
tekintünk. A független változót z = x + iy, a függ® változót w = u + iv

jelöli. Tehát a hozzárendelés w = f(z) = u+ iv.

1. Példa. Legyen f(z) = z2. Ekkor

w = z2 = (x+ iy)2 = (x2 − y2) + i(2xy),

ezért a függ® változók

u = x2 − y2, v = 2xy.

A függvény mindenütt értelmezve van, f : C → C.

2. Példa. Legyen f(z) =
1

z
. Ekkor

1

z
=

1

x+ iy

x− iy

x− iy
=

x− iy

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
.

A függvény minden z ̸= 0 esetén értelmezve van.

Geometriai leírás

A komplex függvények pontos ábrázolására négy dimenzióra lenne szüksé-
günk - ez nem megy. Így megelégszünk azzal, hogy két komplex számsíkot
rajzolunk: az egyiken az ÉT-t, a másikon az ÉK-t ábrázoljuk. Azt tudjuk
megadni, hogy egy-egy konkrét komplex számhoz mit rendel hozzá a leké-
pezés, illetve bizonyos speciális alakzatokat - például kört vagy egyenest -
hogyan transzformál.

7.2.1. Komplex függvény kanonikus alakja

Legyen D ⊂ C tartomány, és adott ezen egy f : D → C hozzárendelés

z 7→ f(z) = Re(f(z)) + i Im(f(z)).

7.3. De�níció. A függvény kanonikus alakja két valós érték¶ kétváltozós
függvény megadását jelenti, f(z) = u(x, y) + iv(x, y):

u(x, y) = Re(f(x+ iy)), v(x, y) = Im(f(x+ iy)).
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Példa. Legyen f(z) = z2. Mivel

f(x+ iy) = (x+ iy)2 = (x2 − y2) + 2ixy,

ezért ennek kanonikus alakja

u(x, y) = x2 − y2, v(x, y) = 2xy.

Fordítva, ha adott két kétváltozós valós függvény u(x, y) és v(x, y), akkor
meghatározható az a f(z) komplex függvény, melynek kanonikus felírásában
ezek a függvények szerepelnek

f(z) = u(x, y) + iv(x, y).

Példa. Legyen

u(x, y) = −2xy, v(x, y) = x2 − y2.

Ekkor
f(z) = −2xy + i(x2 − y2) = iz2.

Példa. Tekintsük az alábbi kétváltozós függvényeket:

u(x, y) =
x

x2 + y2
, v =

−y
x2 + y2

, (x, y) ̸= (0, 0).

Ekkor z ̸= 0 esetén

f(z) = f(x+ iy) =
x

x2 + y2
+ i

−y
x2 + y2

=
x− iy

(x+ iy)(x− iy)
=

1

x+ iy
=

1

z
.

7.2.2. Határérték, folytonosság

7.4. De�níció. Az f függvény határértéke a z0 pontban H, ha z0 torlódási
pontja Df -nek, és ∀ε > 0-hoz ∃δ > 0, hogy

zϵDf és 0 < |z − z0| < δ =⇒ |f(z)−H| < ε

.
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7.2. Tétel. Legyen f kanonikus alakja: f(z) = u(x, y) + iv(x, y). Tekint-
sünk Df -nek egy z0 = x0 + iy0 torlódási pontját. Ekkor

lim
z→z0

f(z) = H = U + iV

azzal ekvivalens, hogy léteznek az alábbi határértékek

lim
(x,y)→(x0,y0)

u(x, y) = U lim
(x,y)→(x0,y0)

v(x, y) = V.

7.5. De�níció. f : D → C komplex függvény és z0ϵD. f folytonos z0-ban,
ha ∀ε > 0-hoz ∃δ > 0, hogy ha |z− z0| < δ és zϵD, akkor |f(z)− f(z0)| < ε.

7.3. Tétel. f pontosan akkor folytonos z0 = x0 + iy0-ban, ha u és v is
folytonosak (x0, y0)-ban.

7.2.3. Di�erenciálhatóság

Adott egy T ⊂ C tartomány, és egy f : T → C komplex függvény. Legyen
f kanonikus alakja f(z) = u(x, y) + iv(x, y). Tegyük fel, hogy u és v foly-
tonosan di�erenciálható függvények, azaz léteznek az u′x, u

′
y, v

′
x, v

′
y parciális

deriváltak és folytonosak. Látni fogjuk, hogy meglep® módon ez még nem
elegend® f deriválhatóságához.

7.6. De�níció. Legyen z0 f értelmezési tartományának bels® pontja. f

di�erenciálható z0-ban, ha létezik és véges az alábbi határérték:

lim
h→0

f(z0 + h)− f(z0)

h
. (7.1)

Példa. Legyen f(z) = Re(z) = x. Di�erenciálható-e z0 = 0-ban? A kanoni-
kus alak függvényei, u(x, y) = x és v(x, y) = 0, "szép" függvények. A

lim
h→0

f(h)− f(0)

h

határértéket két speciális irányból számoljuk ki. Legyen h = r + is.

1. Legyen h = r + i · 0, r → 0. Ekkor

lim
h→0

f(h)− f(0)

h
= lim

r→0

r − 0

r
= 1.
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2. Legyen h = 0 + is, s→ 0. Ekkor

lim
h→0

f(h)− f(0)

h
= lim

s→0

0− 0

is
= 0.

Mivel 1 ̸= 0, ezért f(z) = Re(z) nem di�erenciálható a z = 0 pontban.

A matematika egyik legfontosabb eredménye következ®:

Alaptétel a komplex függvény di�erenciálhatóságáról.

7.4. Tétel. Legyen T ⊂ C tartomány, f : T → C, z0ϵ intT . Tegyük fel,
hogy u és v folytonosan di�erenciálható függvények. Ekkor az alábbi két
állítás egymással ekvivalens:

1. f di�erenciálható a z0 = x0 + iy0 pontban

2. Az u és v kétváltozós függvények kielégítik az alábbi összefüggéseket

u′x(x0, y0) = v′y(x0, y0)

u′y(x0, y0) = −v′x(x0, y0).

Az utolsó két egyenletet Cauchy-Riemann egyenleteknek hívjuk.

Ha f di�erenciálható T -n, akkor azt mondjuk, hogy a függvény analitikus
(vagy reguláris) a T tartományon.

Bizonyítás∗. Annyit látunk be, hogy f di�erenciálható z0-ban, akkor telje-
sülnek a C-R egyenletek.

A (7.1) határértéket speciális irányokból nézzük. Legyen h = r + is.

Els®ként s = 0 és r → 0 Ekkor:

f ′(z0) = lim
r→0

u(x0 + r, y0) + iv(x0 + r, y0)− u(x0, y0)− iv(x0, y0)

r
=

= lim
r→0

u(x0 + r, y0)− u(x0, y0)

r
+ i lim

r→0

v(x0 + r, y0)− v(x0, y0)

r
=

= u′x(x0, y0) + iv′x(x0, y0).

Másodszorra tegyük fel, hogy r = 0 és s→ 0. Ekkor:

f ′(z0) = lim
s→0

u(x0, y0 + s)− u(x0, y0)

is
+ i lim

s→0

v(x0, y0 + s)− v(x0, y0)

is
=

= −iu′y(x0, y0) + v′y(x0, y0).
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Mivel a két határértéknek egyenl®nek kell lennie, így

u′x(x0, y0) + iv′x(x0, y0) = −iu′y(x0, y0) + v′y(x0, y0).

Két komplex szám egyenl®sége ekvivalens valós és képzetes részeinek egyen-
l®ségével, és épp a Cauchy-Riemann egyenleteket kapjuk ■

A bizonyításból az is kiderült, hogy ha f di�erenciálható, akkor deriváltja
(legalább) kétféleképpen számolható:

f ′(z) = u′x + iv′x = v′y − iu′y.

1. Példa. Legyen f(z) = ez. Ekkor

f(x+ iy) = ex+iy = exeiy = ex(cos y + i sin y),

ezért
u(x, y) = ex cos y, v(x, y) = ex sin y.

A megfelel® parciális deriváltak:

u′x(x, y) = ex cos y, u′y(x, y) = −ex sin y,
v′x(x, y) = ex sin y = −u′y, v′y(x, y) = ex cos y = u′x.

Tehát a függvény di�erenciálható, és

f ′(z) = u′x(x, y) + iv′x(x, y) = ex cos y + iex sin y = f(z).

2. Példa. Legyen f(z) = z = x − iy. Ennek kanonikus alakját felírva a
parciális deriváltak

u′x = 1, u′y = 0, v′x = 0, v′y = −1 ̸= u′x.

Tehát a függvény nem di�erenciálható.

7.2.4. Elemi függvények

Exponenciális függvény

Az f(z) = ez függvényt komplex számok esetén természetes módon így ér-
telmezzük, kiindulva a z komplex szám z = x+ iy kanonikus alakjából:

ez = ex+iy = ex(cos y + i sin y).
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Ez valóban a valós f(x) = ex függvény kiterjesztése.

|ez| = ex = eRe(z), arc (ez) = y,

ahol arc (z) a z komplex szám trigonometrikus alakjában szerepl® szöget
jelöli.

Példa. Hol teljesül az |ez| = 1 egyenl®ség? Mivel

ex = 1 ⇐⇒ x = 0,

ezért az f(z) = ez függvény hatására az imaginárius tengely (amikor z =

0 + iy) képe az egységkör lesz.

7.3. Állítás. Az f(z) = ez függvény néhány alaptulajdonsága:

1. Analitikus és (ez)′ = ez.

2. Tetsz®leges két z1 és z2 komplex számra

ez1+z2 = ez1ez2 .

3. Az ez függvény 2πi szerint periodikus, azaz

ez = ez+2πi ∀∀zϵC.

Bizonyítás.

1. Már láttuk.

2. Behelyettesítéssel közvetlenül igazolható.

3. ez periodicitása a trigonometrikus függvények periodicitásának követ-
kezménye:

e(x+iy)+2πi = ex(cos(y + 2π) + i sin(y + 2π)).
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Logaritmus függvény

Az exponenciális függvény inverzét keressük. Megvizsgáljuk f(z) = ez ér-
tékkészletét. A w = 0 nem eleme az értékkészletnek, mivel

|ez| = eRe z > 0 ∀zϵIC.

Legyen 0 ̸= wϵC, keressük azt a z-t, melyre w = ez. Ha w trigonometrikus
alakja w = reiθ, akkor

x = ln r, y = θ + 2kπ, kϵZ.

Mivel az f(z) = ez függvény 2πi szerint periodikus, ezért az el®z®ek miatt a
keresett w szám nem egyértelm¶. Tehát

ln(w) = ln |w|+ i(arc (w) + 2kπ), kϵZ

sokérték¶ függvény. A k = 0-hoz tartozó értéket f®értéknek nevezzük, és így
jelöljük:

Ln(w) = ln |w|+ i arc (w).

Példa.

ln(i) = ln 1 + i(
π

2
+ 2kπ) = i(

π

2
+ 2kπ).

7.5. Tétel. A logaritmus függvény alaptulajdonságai:

1. eln(z) = z.

2. Tetsz®leges z1, z2ϵC esetén

ln(z1 · z2) = Ln(z1) + Ln(z2) + i 2kπ, kϵZ.

3. A logaritmus-f®érték függvény z0 = 0-t kivéve mindenütt analitikus és

d

dz
Ln(z) =

1

z
.
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Hatványfüggvény

Értelmezzük az f(z) = zλ, λϵC hatványfüggvényt az exponenciális és loga-
ritmus függvény segítségével az alábbi módon:

zλ = eλ ln z.

Tehát ez is sokérték¶ függvény lesz.

1. Példa.
1i = ei ln 1 = ei(Ln 1+i2kπ) = e−kπ.

Ennek f®értéke k = 0 esetén e0 = 1.

2. Példa.
ii = ei ln(i) = ei·i(

π
2
+2kπ) = e−(π

2
+2kπ),

melynek f®értéke ii = e−
π
2 . (Tessék rácsodálkozni erre az eredményre!)

7.2.5. Harmonikus függvény

7.7. De�níció. Legyen u(x, y) kétváltozós függvény, amely valamely R ⊂
IR2 tartományon van értelmezve. Tegyük fel, hogy itt folytonos és kétszer
di�erenciálható. u(x, y) harmonikus az R tartományon, ha

u′′xx(x, y) + u′′yy(x, y) = 0 ∀(x, y)ϵR.

7.4. Állítás. Tegyük fel, hogy f : T → C komplex függvény di�erenciálha-
tó. Ekkor f(z) kanonikus alakjában szerepl® u(x, y) és v(x, y) függvények
harmonikusak.

Bizonyítás. A bizonyításban feltesszük, hogy u és v kétszer folytonosan
di�erenciálhatóak. (Látni fogjuk, hogy ez nem plusz feltétel, ld. a 7.11 Té-
telt.) A di�erenciálhatóság miatt u′x = v′y és u

′
y = −v′x. Az els® azonosságot

x szerint, a másodikat y szerint deriválva, majd összegezve azt kapjuk, hogy

u′′xx + u′′yy = v′′xy − v′′yx = 0.

7.5. Állítás. Ha u harmonikus a T egyszeresen összefügg® tartományon,
akkor ∃v : T → IR másik harmonikus függvény, hogy az f(z) = u(x, y) +

iv(x, y) komplex függvény di�erenciálható.

Azt mondjuk, hogy v az u függvény harmonikus társa.
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7.3. Komplex vonalintegrálok∗

Ez a fejezet nem része az els®éves törzsanyagnak.

7.3.1. Komplex vonalintegrál de�níciója

7.8. De�níció. L ⊂ C Jordan görbe a komplex számsíkon, ha ∃γ : [α, β] → C
valós intervallumon értelmezett folytonos komplex változós függvény, melyre

L = {γ(t) = x(t) + iy(t) : tϵ[α, β]}.

A görbe kezd®pontja γ(α) = A, és végpontja γ(β) = B.

A görbe tulajdonsága az irányítása, mely megadja a végpontok sorrendjét.
Ha a fenti görbét fordított irányítással adjuk meg, akkor a −L görbét kapjuk:

−L = {γ(t) = x(−t) + iy(−t) : tϵ[−β,−α]}.

7.9. De�níció. A Jordan görbe zárt, ha A = B. Ennek az irányítása
pozitív, ha az óramutató járásával ellentétes irányban haladunk körbe. A
görbe sima, ha az x : [α, β] → IR, y : [α, β] → IR függvények di�erenciálha-
tók.

7.6. Állítás. (Ívhossz kiszámítása.) Legyen L a fent adott Jordan görbe,
melyr®l feltesszük, hogy sima. Ennek ívhossza:

s(L) =

β∫
α

|γ′(t)| dt =
β∫
α

√
(x′(t))2 + (y′(t))2 dt.

Tekintsünk egy L ⊂ C Jordan-görbét és egy ezen értelmezett f komplex
függvényt. De�niálni szeretnénk a vonal menti integrált.∫

L

f(z)dz

Tekintsük a görbe egy felosztását. Ehhez els®ként adjuk meg az [α, β] inter-
vallum felosztását:

α = t0 < t1 < · · · < tn = β.
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A görbe megfelel® pontjait így jelöljük

zk = xk + iyk = γ(tk), k = 0, . . . , n. (7.2)

Legyen a k-dik ívdarab egy tetsz®leges pontja ξk. A felosztáshoz tartozó
közelít® összeg:

n∑
k=1

(zk − zk−1) · f(ξk).

7.10. De�níció. A vonalintegrált az alábbi határérték de�niálja, amennyi-
ben létezik és véges:

lim
n→∞,
δn→0

n∑
k=1

(zk − zk−1) · f(ξk) =
∫
L

f(z)dz,

ahol δn = max
{
s( ̂zk−1, zk), k = 1, . . . n

}
. Ha az L görbe zárt, akkor a vonal-

integrálra ezt a jelölést használjuk:∮
L

f(z)dz.

Példa. Legyen f(z) ≡ c, cϵC. L tetsz®leges zárt görbe.∮
L

c dz = lim
n→∞

n∑
k=1

(zk − zk−1)c = lim
n→∞

c
n∑
k=1

(zk − zk−1) =

= c(z1 − z0 + z2 − z1 + . . .+ zn − zn−1) = 0,

hiszen zárt görbe mentén z0 = zn. Azt kaptuk tehát, hogy∮
L

c dz = 0.

7.7. Állítás. A vonalintegrál alaptulajdonságai:

1. Lineáris hozzárendelés, azaz∫
L

(c1f(z) + c2g(z)) dz = c1

∫
L

f(z)dz + c2

∫
L

g(z)dz,

ahol c1, c2ϵC és f(z), g(z) integrálhatók.
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2. Ha az L görbe két (diszjunkt) részb®l áll, L = L1 + L2, akkor∫
L

f(z)dz =

∫
L1

f(z)dz +

∫
L2

f(z)dz.

3. Ha f folytonos függvény , akkor létezik az
∫
L

f(z)dz vonalintegrál.

5. Ha f korlátos függvény, vagyis:

|f(z)| ≤M ∀zϵL,

akkor ∣∣ ∫
L

f(z)dz
∣∣ ≤M · s(L),

ahol s(L) a görbe ívhossza.

7.3.2. Vonalintegrál kiszámítása

Két olyan módszert adunk vonalintegrálok kiszámítására, melyeket a közön-
séges Riemann integrál kiszámításánál is alkalmaztunk. A tételek bizonyítá-
sa teljesen hasonlóan végezhet®k el, mint a Riemann integrálok esetén.

7.6. Tétel. Legyen az L görbe pontjainak paraméteres megadása:

z(t) = x(t) + iy(t) = r(t)eiθ(t), tϵ[α, β].

Ha x(t), y(t) illetve r(t), θ(t) folytonosan di�erenciálhatóak, akkor

∫
L

f(z)dz =

β∫
α

f(z(t)) z′(t) dt

=

β∫
α

f(x(t) + iy(t)) (x′(t) + iy′(t)) dt

=

β∫
α

f(r(t)eiθ(t)) (r′(t)eiθ(t) + ir(t)eiθ(t)θ′(t)) dt.
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Itt is igaz a Newton-Leibnitz formula:

7.7. Tétel. Adott az f : T → C függvény. Tegyük fel, hogy ∃F : T → C
függvény, mely analitikus és F ′(z) = f(z) ∀z-re. Ekkor minden olyan L ⊂ T

Jordan görbe mentén, melynek végpontjai A és B:∫
L

f(z)dz = F (B)− F (A).

1. Példa. Legyen f(z) = eiz. Tekintsük azt az L görbét (egyenes szakaszt),
mely a 2i pontot köti össze a 2 ponttal. Ekkor a 7.7.Tétel alapján∫

L

eizdz =

[
eiz

i

]2i
2

= i(e2i − e−2).

7.1. ábra. A 2i és 2 pontokat összeköt® szakasz.

2. Példa. L ugyanaz, mintfent, f(z) = eiz. L paraméteres felírása

z(t) = t+ i(2− t), tϵ[0, 2].

Ennek deriváltja z′(t) = 1− i. Ezért:∫
L

eizdz =

2∫
0

ei(t−i(2−t))(1− i)dt = −e2i + e2.

3. Példa. Legyen L az aϵC körüli r sugarú kör, és

f(z) = (z − a)n, �x nϵZ.
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A körvonal paraméteres megadása z(t) = a+ r · eit, tϵ[0, 2π].

Ekkor z′(t) = r · ieit

∮
L

(z − a)ndz =

2π∫
0

(reit)n r · ieitdt = rn+1i

2π∫
0

eit(n+1)dt.

Ha n = −1, akkor ∮
L

f(z)dz = i

2π∫
0

1dt = 2πi.

Ha n ̸= −1, akkor

∮
L

f(z)dz = rn+1i

2π∫
0

eit(n+1)dt =

= rn+1i

 2π∫
0

cos((n+ 1)t)dt+ i

2π∫
0

sin((n+ 1)t)dt

 = 0.

Összefoglalva azt kaptuk, hogy

∮
L

(z − a)ndz =


2πi ha n = −1,

0 ha n ̸= −1.

7.8. Tétel. (Cauchy-féle alaptétel vonalintegrálra) Legyen T ⊂ C egyszeresen
összefügg® tartomány, és ebben G ⊂ T egy sima, zárt görbe. Tegyük fel, hogy
az f : T → C függvény analitikus. Ekkor∮

G

f(z)dz = 0.

A tételt nem bizonyítjuk.

7.9. Tétel. (Cauchy féle alaptétel általánosítása.) Adott egy T ⊂ C össze-
függ® tartomány, melynek határa a G ⊂ T görbe. Feltesszük, hogy T nem
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egyszeresen összefügg®, jelölje G1, . . . , Gn a lyukakat körbevev® görbéket; me-
lyekr®l feltesszük, hogy ugyanolyan irányításúak, mint G. Tegyük fel, hogy
f : T → C analitikus függvény. Ekkor∮

G

f(z)dz =
n∑
k=1

∮
Gk

f(z)dz.

Következmény. Legyen T ⊂ C egyszeresen összefügg® tartomány. f : T →
C analitikus T -ben, kivéve a z0ϵT bels® pontot. Tegyük fel, hogy létezik z0-nak
olyan δ > 0 sugarú környezete, ahol f korlátos:

|f(z)| ≤M, ha 0 < |z − z0| < δ.

Legyen G ⊂ T zárt görbe z0 körül. Ekkor∮
G

f(z)dz = 0.

Bizonyítás∗. Legyen Gε egy ε sugarú kör z0 körül, ahol ε < δ. Vágjuk
ki T -b®l ezt a kis kört, azaz tekintsük a T0 = T \ S(z0, ε) tartományt. Ez
összefügg®, de nem egyszeresen. Ekkor∮

G

f(z)dz =

∮
Gε

f(z)dz.

Ez utóbbit becsülve azt kapjuk, hogy

|
∮
Gε

f(z)dz| ≤M 2πε,

hiszen f korlátos, és a kör kerülete 2πε. Mivel ε tetsz®legesen kicsi, ezért∮
G

f(z)dz = 0.

7.10. Tétel. (Cauchy-féle integrál formula.) Legyen T ⊂ C egyszeresen
összefügg®, és f : T → C analitikus. z0 egy bels® pont T -ben. G ⊂ T



7.3. KOMPLEX VONALINTEGRÁLOK∗ 183

olyan zárt görbe, melynek belseje is T -ben van és a görbe körbeveszi z0-t.
Ekkor

f(z0) =
1

2πi

∮
G

f(z)

z − z0
dz. (7.3)

A fenti integrálban az integrálandó függvénynek

(
f(z)

z − z0
, zϵT

)
, z0-ban

szingularitása van.

Bizonyítás∗. ∮
G

f(z)

z − z0
dz =

∮
G

f(z)− f(z0)

z − z0
dz +

∮
G

f(z0)

z − z0
dz.

Mivel a következ® határérték véges szám,

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0)

ezért az el®z® következmény értelmében∮
G

f(z)− f(z0)

z − z0
dz = 0.

Így azt kaptuk, hogy∮
G

f(z)

z − z0
dz = f(z0)

∮
G

1

z − z0
dz = 2πi f(z0),

ahol felhasználtuk a korábbi 3. Példa eredményét.

Speciálisan, ha G a z0 körüli egységkör, akkor G-t paraméteresen felírhatjuk:

z(t) = z0 + eit, tϵ[0, 2π].

Ekkor dz(t) = ieitdt, ezért z = z(t) helyettesítés után az integrált így szá-
molhatjuk:

f(z0) =
1

2iπ

∮
G

f(z)

z − z0
dz =

1

2iπ

2π∫
0

f(z0 + eit)

eit
ieitdt =

1

2π

2π∫
0

f(z0 + eit)dt,

azaz a a középpontbeli függvényérték a körvonalon vett helyettesítési értékek
átlaga.
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7.11. Tétel. Legyen T ⊂ C egyszeresen összefügg® tartomány, f : T → C
analitikus függvény. Ekkor f akárhányszor di�erenciálható T -ben és minden
z0 bels® pont esetén:

f (n)(z0) =
n!

2πi

∮
G

f(z)

(z − z0)n+1
dz,

ahol G tetsz®leges olyan T -beli zárt görbe, melynek belseje is T -ben van és
körbveszi z0-t.

A tételt nem bizonyítjuk. Ha a deriválhatóságot már tudjuk, akkor z0 szerint
formálisan deriválva a (7.3) egyenletet ezt kapjuk:

f ′(z0) =
1

2πi

∮
G

f(z)

(z − z0)2
dz,

f ′′(z0) =
2

2πi

∮
G

f(z)

(z − z0)3
dz,

és teljes indukcióval következik az n-dik deriváltra vonatkozó összefüggés.

Taylor-sorfejtés analitikus komplex függvényre

Az el®z® tétel alapján tudjuk, hogy egy analitikus függvény akárhányszor is
deriválható, és fel tudjuk írni a deriváltakat zárt görbe mentén vett vonalin-
tegrál segítségével. Ezért kimondhatjuk az alábbi tételt:

7.12. Tétel. Tegyük fel, hogy f : T → C di�erenciálható z0 egy környezeté-
ben. Ekkor ott Taylor sorba fejthet®, és

f(z) = f(z0) +

∞∑
n=1

f (n)(z0)

n!
(z − z0)

n =

∞∑
n=0

cn(z − z0)
n,

ahol

cn =
1

2πi

∮
G

f(z)

(z − z0)n+1
dz,

ahol G olyan zárt görbe, amely része T -nek és körbeveszi z0-t.
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Tegyük fel, hogy f analitikus és f(z0) = 0. Ekkor a függvény felírásából egy
z − z0 tényez® kiemelhet®, és

f(z) = (z − z0)f̃(z)

alakban írható, ahol f̃ analitikus.

Laurent-sorfejtés

7.13. Tétel. Tegyük fel, hogy f analitikus egy körgy¶r¶ben azaz egy

T = {z : r < |z − z0| < R}

halmazon. Ekkor f ebben a körgy¶r¶ben felírható a következ® hatványsorként:

f(z) =

∞∑
k=−∞

ck(z − z0)
k,

ahol

ck =
1

2πi

∮
G

f(z)

(z − z0)k+1
dz,

és G egy olyan z0-t körbevev® zárt görbe, amely a fenti T tartomány része.
Ez az ún. Laurent-sor.

Tegyük fel, hogy f olyan függvény, amelynek z0-ban n-ed rend¶ pólusa van,
egyébként analitikus z0 egy K környezetében. Legyen G ⊂ K egy zárt görbe
ebben a környezetben. Ekkor∮

G

f(z)dz =

∮
G

∞∑
k=−n

ck(z − z0)
kdz =

∞∑
k=−n

ck

∮
G

(z − z0)
kdz = 2πi c−1.

Megjegyzés. Megvizsgáljuk az összefüggést a Laurent- és a Taylor-sorfejtés
között. Tegyük fel, hogy f analitikus z0-ban és ennek egy környezetében.
Ekkor k = −n < 0 esetén a Laurent sorfejtés megfelel® együtthatója

c−n =
1

2πi

∮
G

f(z)

(z − z0)−n+1
dz =

∮
G

f(z)(z − z0)
n−1dz = 0,
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hiszen az integrálandó függvény analitikus. Ezért a Laurent-sorfejtés valójá-
ban a Taylor-sorfejtést adja.
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