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6 1. FEJEZET. HATVANYSOROK
1.1. Hatvanysor értelmezése

Az el6z6 fejezetben lattuk, hogy ha f analitikus az xoeD; pontban, akkor a
pont egy kornyezetében elallithato ilyen alakban:

s (n)
flx) = ;cn(x —xz)", ahol ¢, = fn(!l“o)

A forditott feladatot nézziik: mikor értelmezhets egy ilyen végtelen 6sszeg?

1.1. Definici6. Legyen (cy,) egy szamsorozat, xoeR egy rogzitett szam. Hat-
vdnysor egy ilyen alakid formdlis dsszeget jelent:

o)

> ez — o)™, (cn) C R. (1.1)

n=0

A fenti Ssszeg VxelR esetén egy konkrét szamsor, ami lehet konvergens vagy
divergens. Ezért szerepelt a definiciéban a formdlis jelz6.

Els§ esetként az egyszertiség kedvéért feltessziik, hogy x¢ = 0. Az éltalanos
esettel a fejezet végén foglalkozunk majd. Ekkor a hatvanysor természetes
modon tgy is tekinthetd, mint egy "végtelen foku" polinom:

cot+cx+-+epx” +..

o0

1.2. Definicié. Adott a chx" hatvdnysor. A konvergencia halmaz
n=0

(vagy konvergencia tartomdny) azon xelR szdmok halmaza, ahol a hatvdanysor

konvergens, azaz:
0o

H = {zeR : chx” < o0},
n=0

Ezen a halmazon az 6sszeq jol értelemzett. Az Osszegfiigguény
oo
f:H—-TRR, f(:v):ch:L’".
n=0

1. Példa Legyen ¢, = 1, ekkor a hatvanysor

oo
E z".
n=0
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Ez egy mértani sor. Tudjuk, hogy pontosan akkor konvergens, ha |z| < 1,
ezért a konvergencia halmaz H = (—1,1).
1
2. Példa Legyen ¢, = 5 ekkor a hatvanysor
n!
X ..n

>

n=0

A Taylor sorokrol sz6l6 fejezetben lattuk, hogy ez épp az f(z) = e* fliggvény
Taylor sora minden zelR-r. Ezért most H = R.

3. Példa Legyen ¢, = n", a hatvanysor

oo
g n"x".
n=0

Mivel Vz # 0 esetén |n"z™| — oo, ezért a Divergencia kritérium miatt z # 0
esetén sehol nem konvergens. Tehat H = {0}.

1.1. Allitas. A konvergencia halmaz alaptulajdonsdgai:
1. O€eH.

2. Tegyiik fel, hogy EeH. Akkor minden x, melyre |x| < ||, szintén xeH.

3. Tegyiik fel, hogy néH. Akkor minden x, melyre |z| > |n|, szintén x¢H.

Bizonyitas®.

1. Trivialis, hiszen a végtelen 6sszeg minden tagja 0.
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o0
2. Z €™ < oo miatt IK > 0, melyre |¢,£"| < K minden nelNg indexre.
n=0

Legyen ¢ := |z /£|. Tudjuk, hogy 0 < ¢ < 1. Ekkor

l,TL

é’n

Ezért az allitas kovetkezik a végtelen szdmsorokra vonatkozé majorans-

lenz™| = |ens”| - < Kq".

kritériumbdl.

3. Ha a feltételek mellett mégis zeH teljesiilne, akkor a 2. pont szerint
neH kovetkezne, ami nem igy van.

1.3. Definici6é. A hatvanysor konvergencia sugardt (p) igy definidljuk:
o Tegyiik fel, hogy van & # 0, melyre EeH, és van né¢H. Ekkor
p:=sup{|z|: xeH}, 0<p<oo.
o Tegyiik fel, hogy nincs & # 0, melyre EeH, azaz H = {0}. Ekkor p :=0..

e Tegyiik fel, hogy nincs néH, azaz H = R. Ekkor p := oo.

1.1. Kovetkezmény. A konvergencia halmaz az aldbbi hdrom tipusi lehet:

1. H=1{0}.
2. H=R.
3. H=I[(=p,p)

Megjegyzés. A fenti 3. eset roviden azt jelenti, hogy ha a konvergencia sugar
0-t61 kiilonb6z6 véges szam. Ekkor a konvergencia halmaz végpontjair6l nem
tudunk semmit, tehat a kdvetkezs esetek barmelyike lehetséges:

H= [—,0, P], H= (_pap]a H= [_p> p)a H= (_pa P)~

Példa. Legyen
k

flx) = Z %
k=1
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oo

1
x =1 esetén a hatvé — diver .
n vanysor Z  divergens
k=1
oo
) . gl )
x = —1 esetén a hatvanysor Z(—l) z Leibniz tipust, tehit konvergens.
k=1
Igy a 1.1 Allitds miatt a konvergencia halmaz egyértelmtien H = [—1, 1), és

ezért a konvergencia sugar p = 1.

1.2. A konvergencia sugar meghatarozasa

Emlékeztetiink arra, hogy egy

o0

>

n=1
szamsor esetén a konvergencia eldontésére az un (gyengitett) gyokkritériumot
is hasznalhatjuk. Eszerint, ha létezik az alabbi hatérérték:

A= lim {/|ay|,

n—oo

akkor A > 1 esetén a sor divergens és A < 1 esetén a sor konvergens.

oo
Alkalmazzuk ezt a Z cpx” hatvanysorra konkrét x esetén. Ekkor

n=0

an = ez = Vlan| = Vlenl - |2

Tegyiik fel, hogy az alabbi hatarérték létezik és véges:

lim v/|cp| =: 7.

n—oo

Ekkor lim {/|cpa™| = - |x|, ezért
n—oo

|z| < 1/~ esetén a hatvanysor konvergens,

|z| > 1/~ esetén a hatvanysor divergens.

1.2. Kovetkezmény. Tegyiik fel, hogy létezik az aldbbi hatdrérték:

v:i= lm {/|c,| (1.2)

n—oo
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1. Ekkor ha 0 < v < oo, akkor a hatvdnysor konvergencia sugara:

10:

Bl
Y
2. Ha~v =0, akkor p = 00, azaz a hatvdnysor mindeniitt konvergens.

3. Ezen til, ha
v= lim {/|c,| = 400,
n—oo

akkor p =0, azaz a hatvdnysor csak a 0-ban konvergens.
A végtelen sorokhoz hasonléan itt is megfogalmazhatjuk a fenti allitas meg-
felel6jét a hanyadoskritérium alapjan.

1.3. Kovetkezmény. Tegyiik fel, hogy létezik az aldbbi hatdrérték:

v := lim [ens1]

n—00 ‘cn‘ ’

1. Ekkor ha 0 < v < oo, akkor a hatvdnysor konvergencia sugara:

P= -
Y

2. Ha v =0, akkor p = 00, azaz a hatvdnysor mindeniitt konvergens.

8. Ezen tul, ha

akkor p =0, azaz a hatvdnysor csak a 0-ban konvergens.

1.3. Altalanos eset

Altalaban a hatvanysort egy zoelR pont koriil tekintjiik, alakja:

[e.e]
Z en(z — x0)".
n=0

A konvergencia halmaz itt is csak harom tipusi lehet:
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1. H= {ZCQ},
2. H=R,
3. H=[(zo — p,x0 + p)].

A hatvénysor konvergencia sugarat ugyanugy hatarozhatjuk meg a (¢, ) egyiitt-

hatokbol a (1.2) vagy (1.3) képletek segitségével, mint a specialis (azaz
zo = 0) esetben.

1.4. Osszegfiiggvény derivalasa és integralasa

1.2. Allitas. Adott eqy hatvdnysor, melynek dsszegfigguénye
(0.9]
flx) = Z ez’ xeH.
n=0

1. Ekkor o konvergenciatartomdny belsd pontjaiban f folytonos

2. A hatvdnysor dsszegfiiggvénye konvergencia halmazdnak minden belsé
pontjaban akdrhdnyszor tagonként derivdlhatd, és k-dik deriviltja:

f(k)(x) - in(n —1)...(n—k+1)c, "k,
n==k

3. Ha [, 5] a konvergeciatartomdny belsejének része, akkor feR|a, (], és

Példa. Hatarozzuk meg az alabbi sor Osszegfiiggvényét zart alakban:

o0
g nx" =7
n=1

Elézetesen 1atjuk, hogy konvergencia sugara és konvergencia tartomanya:

y=lim Yn=1 = p=1 = H=(-1,1).
n— o0
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Tudjuk, hogy

> 1
anzl ,  —l<z<l1 (1.4)
n=0 -

A konvergencia tartomany belsejében tagonként derivalhatjuk a (1.4) hat-

— 11—z (1—x)%

Ezért megkapjuk a keresett zart alakot:

vanysort:

oo (e} T
an" = xan”fl = —.

(1—2)
n=1 n=1

1. Gyakorlat. Hasonlé modon hatarozzuk meg az aldbbi hatvanysor dsszeg-
fliggvényét zart alakban:

1.5. Hatvanysor és Taylor sor kapcsolata

1.3. Allitas. (Hatvdnysor elddllitds jellemzése)

1. Ha egy fiigguény hatvdnysor dsszegeként reprezentdlhatd, akkor ez a
reprezentdcid egyértelmd.

2. Ha az elddallitd sa 0 valamely kérnyezetében:

f(l') = Z C’len7
n=0
(o)

akkor az egyiitthatok: c, = '
n!

2.7 Altaldban, ha az xo valamely kérnyezetében:

@)= enla —wo)",
n=0
£ (o) .

akkor az egyiitthatok: ¢, = '
n!
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2.1. Trigonometrikus polinomok és sorok
A Taylor soroknél tanultak soran lattuk, hogy bizonyos fiiggvényeket el6 tu-

dunk allitani polinomok hatarértékeként. Most trigonometrikus polinomokat
tekintiink.

2.1. Definicio. Az f fiigguény n-ed foki trigonometrikus polinom, ha

flx) = % + Z (ay cos(kx) + by sin(kz)) , zeR
k=1
valamely ay, by valds egyitthatokkal. A sin(kx) és cos(kx) figgvények argu-

mentumdban szerepld k konstansokat frekvencianak nevezzik.

Példa. f(z) = sin(2x) + 2 cos(x).

sin(2z) 4+ 2 cos(x)

2.2. Definici6. Adottak az (ax), (bg) valds szamsorozatok, ezek eqyiitthatok.
Az aldbbi formdlis végtelen sort trigonometrikus sornak nevezzik:

0 (0.9]
=3 + ; ay, cos(kx) + by sin(kz)) , zeR.

Az Gsszegfiiggvény 2 szerint periodikus lesz. Emiatt elegendd lesz xe[—m, 7]
pontokat tekinteni. (Barmely mas 27 hossza intervallumot is lehet.)
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2.2. A trigonometrikus fliggvényrendszer

Definialjuk az alabbi alapfiiggvényeket xe[—m, 7] esetén:

¢or—1(x) = sin(kz), ¢ (x) = cos(kz),

2.1. Lemma. Tetszdleges n + m mellett

]¢n(w)¢m(w) =0.

Bizonyitas*. Ha valamelyik trigonometrikus tényez6 frekvencidja 0, akkor

m m

/cos(Oa:)gzﬁn(x)d:v =0, /sin(Ox)gZ)n(a:)da: =0.

—T —T
Egyéb esetekben az alabbi trigonometrikus azonossagokat hasznaljuk fel:

cos(nx) cos(mx) = cos((n + m)z) "; cos((n — m)ﬂf)7

cos(nz)sin(mzx) = sin((n + m)z) ;‘ sin((m — n)x)’

sin(nz) sin(mz) = cos((n — m)z) ; cos((n + m)x)7

ahonnan a Lemma allitdsa kovetkezik.

Megjegyzés. A Lemmaban megfogalmazott tulajdonsagot szokas tigy nevezni,
hogy a (¢n) fiigguényrendszer ortogondlis
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2.2. Lemma. Tetszdleges n mellett

] r () dz =

Bizonyitas*. n = 0 esetén az azonosan 1 fiiggvényt integraljuk a 27 hosszu

2T, ha n =0,

, ha n # 0.

intervallumon. n > 1 esetén egyrészt

/COS2(TL$)dl‘ = /sin2(nx)dx,
masrészt
/ (cos?(nz) + sin?(nx)) dz = / ldz = 2.
Ezért
/cosz(n:v)dx = /sinz(naj)dﬂ: =.

2.3. Fourier sorok

2.1. Tétel. Tegyiik fel, hogy f egy trigonometrikus polinom:

N
= ?0 + Z ay, cos(kx) + by sin(kz)). (2.1)
k=1
Ekkor
1 ™
ar = — /f(:v) cos(kz)dz, k=0,1,2,...N
T

1 ™
b, = /f(a:)sin(k.r)dm, k=1,2,...N.
7r
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Bizonyitas. Belatjuk a képletet a,,-re Szorozzuk meg az (2.1) egyenlet
mindkét oldalat cos(max)-el, majd integraljuk a [—m, 7] intervallumon:

]f(:n) cos(mzx)dx =

™

N
= / <a20 cos(mx) + {Z ay cos(kx) + by, Sin(k’fﬂ)} COS(mm)) dz =

o k=1
™ N ™ ™
ap .
2/cos(m$)d:ﬂ+z ak/cos(k:x) cos(m:r)dx—i—bk/sm(k‘x) cos(mzx)dx | =
- k=1 -7 -7

T

= am / cos?(maz)dx = apy,.

—T

A 2.1. Lemma miatt a szummaban csak egyetlen tag értéke nem O.

Hasonléan igazolhatéak az ag-ra, illetve b,,-re vonatkozé képletek.

2.3. Definicid. Legyen f egy 2w szerint periodikus fiigguény, mely integrdl-
haté [—m,m|-ben. Az f figguény Fourier egyitthatoit igy definidljuk:

ap = i/f(a:)cos(kw)dx, k=0,1,2,... (2.2)
by = i/f(x)sin(ka:)dx, k=1,2,.... (2.3)

2.4. Definicio. A fenti f fiiggvény Fourier sordt igy értelmezzik:
o0
f ~ —+) (agcos(kzx)+ bgsin(kz)),
k=1
ahol ay, és by a fenti (2.2) és (2.3) képletekkel definidlt Fourier egyttthatck.
A Fourier sor kozelitése az n-dik Fourier polinom.:

sp(x) = % + Z (ag cos(kx) + by sin(kx)).
k=1
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1. Példa. Tegyiik fel, hogy f paros fiiggvény. Ekkor f Fourier sordban a by
egyitthatok mind 0-k lesznek, igy

ap = 2 [
PP e, a= | @) costha)d.
= 0

2. Példa. Hasonloképp, ha f péaratlan, akkor Fourier sora:

[~ ibksin(k::c), bkzz/f(ar)sin(kx)dx.
k=1 g

0

3. Példa. Legyen f az a periodikus fiiggvény, mely az elGjelfiiggvény

megszoritasa a [—m, 7| intervallumra.

1, ha O0<zx<m,
f(x)=< 0, ha =0, n, —m,

-1, ha —7m<x<0,

49 19 ©
L L 4 @
-4 -3 -2 -1 0 1 2 3 4 5
e ) -

Lathatoan f paratlan fiiggvény. Fourier egyiitthatoi:

s

by = i/f(a:) sin(kz)dr = i/sin(km)dx = %(1 — (=1)%).
0

0
Ez az egyiitthato 0, ha k paros. Igy f Fourier sora:

o~ %Z sin((2k — 1)x)

2k -1
k=1
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A kovetkezd abrakon bemutatjuk az els§ néhany Fourier polinomot. (Mit
lehet észrevenni?)

2.2. dbra. Az f fiiggvény Fourier polinomja, n = 5.
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0.5 20

2.3. dbra. Az f fiiggvény Fourier polinomja, n = 20.

2.2. Tétel. (Derwdltfigguény Fourier sora) Legyen az f : R — R walds
fiigguény 2w szerint periodikus és tegytik fel, hogy f differencidlhats. Ekkor
az [’ derwdltfiiggvény Fourier sora tagonkénti derivdldssal kiszdmithato:

o~ Z(—akksin(kx) + bk cos(kx)).
k=1

Bizonyitas*. f’ Fourier egyiitthatoit jeldlje ay és Bi. Ekkor f’ Fourier sora:
Qg

I~ 5 + Z(ak cos(kx) + By sin(kx)),

k=1

ahol a definiciot felhasznalva:
17, 1l
ar = — [ f'(z)cos(kx)dx, Br=— [ f(x)sin(kx)dz.
™ ™
Parcidlisan integralva kiszamoljuk ay-t:

a = i/f’(x)cos(k:m)dx:

_ % [f(;p) cos(;m)]:r + % ]r F(x) sin(kz)dz = 0 + Kby,

A fenti egyenlet baloldalan az elsé tag azért tiinik el, mert az f fliggvény 27
szerint periodikus.
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A B egyilitthatokra vonatkozd szamolas hasonlo.

Kovetkezmény. A fenti Tétel dllitdsa akkor is igaz, ha f a [—7,w] interval-
lumban véges sok elséfaji szakadds kivételével folytonos, és [—m,m|-ben véges
sok pont kivételével f differencidlhato.

2.4. Fourier sor komplex alakja

Emlékeztetiink ra, hogy az Fuler formula szerint minden xzelR-re:
e = cos(z) + isin(z). (2.4)
Ebbél kévetkezik, hogy
e™® = ¢'77) = cos(—z) + isin(—z) = cos(z) — isin(z). (2.5)

A (2.4) és (2.5) egyenleteket Gsszeadva ill. kivonva egymasbdl a trigonomet-
rikus fiiggvények kifejezhet6k komplex alakban:
eia: 4 e—iIE eia: . e—ix

cos(z) = — sin(x) = — (2.6)

A Fourier sor kézelitésére szolgalé n-dik Fourier polinom:

sp(z) = % + ];1 a, cos(kz) + ,; by, sin(kzx).

Helyettesitsiik be a (2.6) kifejezések alapjan az alabbi 6sszefiiggéseket:

eikac + e—ik’x eika: . e—ik:c
— sin(kr) = ———

kx) =
cos(kx) 57

Igy azt kapjuk, hogy
n
sn(x) = Z et
k=—n

ahol az egyiitthatok

ap ajp — ibk ap + ibk
Oé():?, A = ——, a_f = ——, k> 0.
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imax

2.3. Lemma. Az e"* xe|—m, 7| fiigguény integrdlja:

m 0 ham#0,
/eimxdm =
—r 2r ham =0.

Bizonyitas. A lemma kovetkezik e/® trigonometrikus alakjabol.

2.3. Tétel. Tegyiik fel, hogy f ilyen alaki:

1 .
ap = — / f(x)e *2dy, —n <k<n. (2.8)

Bizonyitas*. A tétel allitisa kovetkezik a 2.3. Lemmabol. Szorozzuk meg

—ime_g| és integraljunk a [—, 7] intervallumon:

/f e~ mE g = Z ak/ kT e=ime gy — o, - 2.

k=—n

ugyanis az (2.7) egyenletet e

—Tr

2.5. Fourier sor konvergenciija

Kérdés, hogy milyen feltételek mellett all el6 f, mint Fourier sora dsszege,
azaz

= ?0 + ; a, cos(kx) + by sin(kx)).

2.4. Tétel. (Fourier sorok alaptétele) Legyen az f : R — R figguény 27
szerint periodikus. Tegyik fel, hogy f teljesiti az aldbbi feltételeket:

1. Szakaszonként folytonosan differencidlhato [—m, 7]-ben.
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2. Legfeljebb véges sok szakaddsi hely van [—m,w]-ben, amelyek elséfaji
szakaddsok.

8. Ha xqo szakaddsi pont, akkor itl o figgvényérték:

f($0+0)+f($0—0).

f(xo) = 5
Ekkor a figgvényt elddllitja Fourier sora:
o oo )
= ?0 + kzl ay cos(kzx) + by sin(kz)) = kz apee,
= =—00

ahol az ay, by és oy, egyiitthatdkat (2.2), (2.8) ill. (2.8) definidlja.
A Tételt nem bizonyitjuk.

1. Példa. Legyen f(z) = |z|, ha ze[—m, ], egyébként 27 szerint periodikus.
Teljesiilnek az el6zd Tétel feltételei, ezért a fiiggvényt elGallitja Fourier sora.

Mivel f paros, ezért by = 0. A t6bbi egyiitthato:

™

2/ 2[9@2]”
ap = — [xde=—-|—| =m,
T Tl 2],

0

™ ™

2 2 in(kz)]™ 21
ar = /mcos(kx)dx = [msm( m)} - /sin(k:x)da: =
7r s k o Tk
0 0
0 ha k=2n>0,
2 [—cos(kz)|" _
T 7k k 0 4

™
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Igy f Fourier sora:

T 4 cos(3x)  cos(bx)
|z| = 5 7 <cos(1:) + 3 + 52 +.o.., xe(=m, 7).
Specialis esetként vizsgaljuk meg, mit kapunk x = 0 esetén:
™ 4 1 1
0= — —(14 — 4+ —+...
2 7r( * 32 * 52 e
azaz
m? I
g = Tt

2. Példa. Kordabban felirtuk a kovetkezd fiiggvény Fourier sorat:

1, ha O<zxz<m,
glx)=1<2 0, ha z=0, 7w, —m, g(x + 2km) = g(x).

-1, ha —7m<ax<0,

g is teljesiti az el6z6 Tétel feltételeit, ezért Fourier sordnak dsszege az eredeti
g(x) fiiggvény. Mivel x # km esetén f'(x) = g(z), ezért g Fourier sorat
megkaphatjuk tagonkénti derivaléssal:
4 sin(3x sin(bx sin((2k — 1)x
g(x) = — | sin(z) + ( )—i- ( )+...+M o)
T 3 5 2k —1

2.6. Fourier egyiitthaték nagysagrendje

Adott f, mely teljesiti a 2.4 Tétel fetételeit. Ekkor elgallithaté Fourier sora-
nak Gsszegeként:

f(z) = % + Z(ak cos(kz) + by sin(kx)).
k=1

Megvizsgaljuk, hogy mit mondhatunk a fenti végtelen sor konvergecidjanak
sebességérsl.

2.4. Lemma. (Bessel egyenldtlenség) A fenti f fiigguény Fourier egyiittha-
toira

a? - 1 r
?0 + ;(az +b2) < = /fQ(ac)d:U, VnelN.
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Bizonyitas*. Alapdtlet. Induljunk ki az alabbi egyenlétlenségbdl:

n n

2
0< % / (f(x) - % > (ag cos(kz) + by sin(k:x))) dz.

k=1

—T

A jobboldalon a négyzetreemelést elvégezve, behelyettesitve a Fourier egyiitt-
haték definicidjat, "szinte trivialis" szamolassal megkapjuk a fenti Bessel
egynl§tlenséget.

2.1. Kovetkezmény. A Bessel eqyenldtlenség n — oo esetén is igaz:

2 oo 7T
] 2, 32 1 2
5 T E_ (ak+bk)<ﬂ_/f (2)dz.

k

—_

Ennél t6bb is igaz, amit nem bizonyitunk:

2.5. Tétel. (Parseval egyenldség) A Fourier egyiitthatokra teljesil az aldbbi
egyenldség:

2 o 1
% + Z(a% +b3) = - / f2(z)da.

2.7. Altalanos eset*

Eddig olyan fiiggvényekkel foglalkoztunk, amelyek 27 szerint periodikusak, és
bérmely 27 hosszi intervallumon felvett értékeikkel megadhaték. Tekintsiink
most egy olyan f fliggvényt, amely egy véges intervallumon van értelmezve,
és ezen az intervallumon keressiik Fourier sorat. Kz azt jelenti, hogy fel
szeretnénk {rni végtelen trigonometrikus polinom hatartértékeként, mely az
adott intervallumon az adott fiiggvényt 4llitja eld.

2.6. Tétel. Legyen
f: [acg—T,xo—&—T} — R

olyan fiiggvény, amelyk véges sok pont kivételével folytonosan differencidlha-
16, csak elséfaji szakaddsa van, és a szakaddsi helyen velt helyettesitési érték
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a jobb- és baloldali hatdrértékek szdmtani dtlaga. Ekkor

flo)= Y ape*rs,

k=—o00

ahol
xo+T
a = 1 f(x)e kT2 dy
Y '
xo—T



3. fejezet

Tobbvaltozo6s valos fiiggvények

27
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3.1. IR? tér

3.1.1. Pontok és pontsorozatok IR*-ben.

A sik pontjait rogzitett koordindta-rendszerben megadott rendezett szampa-
rokkal jellemezziik: P = (z,y). Ezen pontok halmazat IR?-vel jeloljiik.

3.1. Definicié. Legyen Py = (x1,91) és Py = (22, 12) két pont R%-ben. Ezek
tdvolsdga:

PPy =/(z1 — 22)2 + (y1 — y2)2.

Két pont tdvolsdgdnak jelolésére szokds még az aldbbiakat is haszndlni:
p(PhP?)v ||P1_P2||

Az origobdl az (z,y) pontba mutatd vektor hossza

Iz, 9l = Va? +y>.
Haszndlni fogjuk a linearis algebrabo6l ismert haromszog egyenl&tlenséget:
(@1, 91) + (22, y2) | < [[(@1, y2) [l + [[ (22, y2) -

3.2. Definicié. Legyen adott a CelR? pont, C = (A, B), és az € > 0 valds
szam. A C pont kérili e-sugari gombdt igy definidljuk:

S(C,e) = {PeR? : PC < ¢}.
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Ezzel egy korlemezt kapunk C' kézépponttal.

3.3. Definici6é. Pontsorozat alatt sikbeli pontok sorozatdt értjik:
P, = (Tn,yn), n=12...

1. Példa. Két pontsorozat: piY = (n,n?), illetve pY = ((=1)™,2).

Megjegyzés. A sorozat tagjai nem feltétleniil kiilonboznek.

3.4. Definicié. A (P,) sorozat korldtos, ha 3S(C, ) gomb, amely a sorozat
minden elemét tartalmazza. Tehdt ez azt jelenti, hogy (P,) korldtos, ha 3C =
(A, B) és 3e > 0 hogy VP, = (zn, yn)-1e teljesiil, hogy

V(wy — A2+ (y, — B)? <e.

1. Példa. (folyt.) pY = (n,n?) nem korlatos; p? = ((—=1)",2) korlatos.

3.5. Definicié. A (P,) sorozat konvergens és hatdrértéke Q, ha
lim [|P, — Q|| = 0.
n—oo
Ezt gy jelolyik: lim P, = Q.
n—oo

Fkvivalens megfogalmazds: A (P,) sorozat konvergens és hatdrértéke Q ha
Ve > 0-hoz AN (¢) kiiszobindex:

P, — Q| <e Vn > N(e).



30 3. FEJEZET. TOBBVALTOZOS VALOS FUGGVENYEK

Masképp fogalmazva: Minden € > 0 esetén az S(Q,e) gémbon kiviil csak
véges sok pont van (véges sok indexti).

Kévetkezmény. Ha egy sorozat konvergens, akkor korlatos.

2. Példa. Legyen P, = (e="/*cos(n),e /*sin(n)), n=1,2,....

08
Py

Py @
06

0.4

R; ) 0.2 P7

-0.8 -0.6 -0.4 -0.2 0 O‘ 0.4 0.6 0.8

-0.2

Py P
04

Ekkor ||P, — (0,0)] = /e~"/2cos?(n) + e="/2sin%(n) = Ve—/2 = e~"/4,
gy nh_}ngop = (0,0).

3.1. Allitas. Tekintsik a P, = (zn,yn) elemekbdl dllé sorozatot. Ekkor az
aldabbi két dllitds ekvivalens:

1. A (P,) pontsorozat konvergens és lim P, = Q = (xo,yo).
n—oo
2. Az (xy) és (yn) szamsorozatok konvergensek és ezek hatdrértéke lim x, = xo,

A n—oo
lim y, = yo.
n—oo

Bizonyitas*. 1. = 2. (P,) konvergencidja miatt minden ¢ > 0-hoz létezik
egy N(g) index, hogy ||P, — Q|| < &, han > N(e).

|z, — o] < \/(xn —20)2 4+ (Yn —¥0)? = |zn — 20| <¢,

és hasonloan |y, — yo| < € is teljesiil.
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2. = 1. Minden € > 0-hoz létezik olyan kiiszébindex, hogy minden n > N-re:

3 13
|zn — wo| < ﬁ’ [Yn — yo| < ﬁ

2 2
1Py = Qll = V2P F =3P — [Pa—0Q < m: 5

Cauchy sorozat

3.6. Definicié. (P,) Cauchy sorozat, ha teljesiti a Cauchy-féle feltételt:
Ve > 0-hoz létezik olyan N = N () kiiszobindex, amelyre

| P, — Pl <e Vn,m > N.
3.2. Allitas. (P,) pontosan akkor konvergens, ha Cauchy sorozat.

Bizonyitas. Csak az egyik iranyt bizonyitjuk. Belatjuk, hogy konvergens

sorozat teljesiti a Cauchy-féle feltételt. Tegyiik fel, hogy lim P, = P. Ekkor
n—oo

Ve-hoz létezik N kiiszobindex, amelyre

|P, — P <¢e/2 Vn >N
Ekkor ha n,m > N, akkor a haromszdgegyenl6tlenség miatt

[1Pn = Pl < [|Pn = P+ [P = Pl <e/2+¢/2=e.

3.1. Tétel. (Bolzano-Weierstrass-tétel) Legyen (P,) korldtos pontsorozat a
sitkon. Ekkor létezik konvergens részsorozata.

Bizonyitas. Ha (P,) korlatos és P, = (z,, yn), akkor (x,,) és (y,) is korlatos
sorozatok. Ekkor létezik (z,)-nek konvergens részsorozata, legyen ez (z,,, ),
illetve 1étezik (ym, )-nak is konvergens részsorozata, ez legyen (yy, ). Ekkor
nyilvan ((@n, , Yn,)) is konvergens.



32

Halmazok IR*-ben
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R? részhalmazait tartoméanyoknak is nevezziik.

1. Példa. T C R? téglalap, ha megadhatok a < b és ¢ < d valos szamok,

melyre

T={(z,y): a<z<b,

c<y<d}.

Ez egy kétdimenzids intervallum, melyet direkt szorzat alakban is frhatjuk:

[a,b] X [c,d].

-1

N

2. Példa. Legyen ¢ > 0 valos szam és C = (A, B)eR? sikbeli pont. A C
koézépponta € sugarti gdémb:

S(Cre) = {(x,y) : V(z — A2 + (y — B)? <&}
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IR? topolégiaja

Egydimenziéban az zg pont kornyezetei az xg koézéppontd intervallumok
(xo —&,x0 + €), tetszbleges € > 0 esetén. Ezt altalanositjuk.

3.7. Definicié. Egy P = (x,y) pont kornyezetei azon SCIR? tartomdnyok,
melyek P kézepponti gombok.

3.8. Definicio. Adott S ¢ R? halmaz.

1. QoeS bels6 pontja S-nek, ha U kérnyezete, melyre U C S.
2. Q1€R? kiilsé pontja S-nek, ha U kirnyezete, melyre UN S = ().

3. Q2¢IR? hatarpontja S-nek, ha YU kirnyezetben IP'eU pont melyre
P'eS, és AP"eU melyre P'tS.

3.1. Kovetkezmény. Minden S halmaz a sikot 3 diszjunkt részre osztja:

- kiilsd pontok, ezek halmazdt ext(S) jeloli. (Ez az ’exterior’ sz6bol ered.)
- belsd pontok, ezek halmazdt int(S) jeloli. (Ez az ’interior’ sz6bol ered.)

- hatdrpontok, ezeket halmazdt 0S jeldli. Lehetnek hatdrpontok, amelyek
elemei az adott halmaznak, és lehetnek, amelyek nem elemes.
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3.9. Definicié. Az S halmaz zdrt, ha minden hatdrpontjdt tartalmazza. Az
S halmaz nyilt, h a minden pontja belsé pont. Az S halmaz lezdrdsa:

S =SuUos.

Példa. A gébmb nyilt halmaz. Ennek hatarpontjai:
85(07 T) - {P : ”P - CH - T}?

és igy lezarasa:

S(C,r)y={P: |P-C| <r}.

Példa. Legyen S = {(x,y) : z,yeQ} a sik racionalis koordinataju pontjainak
halmaza. Ekkor a halmaz lezarasa S = R2.

3.10. Definicié. P az S halmaz torléddsi pontja, ha létezik olyan (P,)CS
sorozat, melyre P, # P és lim P, = P.
n—o0

Torlédasi pontok lehetnek belsd pontok és hatarpontok. Zart halmaz minden
torlédasi pontjat tartalmazza.
Vonal a sikon

3.11. Definicié. Legyen P és P’ két R2-beli pont. Ezeket dsszekoto folyto-
nos vonalat egy v : [, 8] — IR? fiiggvénnyel tudunk megadni. A vonal:

L={y(t) : tela,B]},  ~(a)=P, ~(B)=P.

A ~(t)eR? pont koordindtdit jelolje v(t) =: (2(t),y(t)). Feltesszik, hogy ezek
az x(t) és y(t) koordindta-figgvények:

z,y:la, f] = R folytonosak.

3.12. Definici6. Az S C R? tartomdny ésszefiiggs, ha barmely két pontjdt
kivdlasztva tartalmaz eqy ket dsszekdtd folytonos vonalat.
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3.13. Definici6. Legyen P = (x,y) és P' = (2',4) két R>-beli pont. A két
pontot 6sszekitd szakaszt az aldbbi fiigguény irija le:

v:[0,1] = R?* () :=P+t(P' - P).

Specidlisan tehdt v(0) = P, v(1) = P'.

A szakasz is folytonos vonal, mégpedig az alabbi koordinédta-fiiggvényekkel:

z(t) = z+t@ —ux),
y(t) = y+t —y).

3.14. Definicié. Az S C R? tartomdny konvez, ha birmely két pontjdval
egqyitt az Oket dsszekotd szakaszt is tartalmazza.
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3.2. Polarkoordinatak

A sikbeli pontokat nem csak a megszokott Descartes-féle koordinarendszer-
ben tudjuk megadni. Sokszor hasznos lesz a most bevezetésre keriil§ polar-
koordinatak hasznalata.

3.15. Definici6. Egy adott (z,y)elR? pont poldrkoordindtdi (r,0), melye-
ket igy definidlunk:

1. r: a pont origdtdl vett tavolsdga

2. 6: az origébdl az adott pontba mutatd vektornak az x tengely pozitiv
részével bezdrt szdge.

Igy tehdt a poldrkoordindtdkra reR™ U {0}, €0, 27).
Ha r és 6 adottak, akkor
x = rcos(h), y = rsin(6).

A fenti hozzarendelés egy-egyértelmii megfeleltetés, kivéve a (0,0) pontot.

y-axis ,'D

(2] \ X-axis
O X M

© 2011 Encyclopeedia Britannica, Inc.

3.1. abra. A polarkoordinatak értelmezése.

Forditva, ha = és y adottak, akkor a polarkoordinatak:

r=/x2+y2 6 = arctan (%) az 1. siknegyedben.

A f#-ra vonatkozo formulat finomitani kell attél fiiggéen, hogy a pont melyik
stknegyedben van.
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3.3. Kétvaltozos fiiggvények

Adott S C R? tartomsny. f : S — IR kétvaltozos fiiggvény, amely S
elemeihez egy valos szamot rendel. Ertelmezési tartomanyat D 7 -fel jeloljiik
(="domain"), értékkészletét Rs-fel (="range").

Figgvény megadasa azt jelenti, hogy megadjuk az értelmezési tartomanyt és
a hozzéarendelés modjat u = f(x,y).

Elnevezések: (x,y): fiiggetlen valtozo, u: fliggs valtozo.
Legegyszeriibb példak:
1. Linedris fiigguény.
flz,y) = ax + by + ¢,
ahol a, b, ceR rogzitettek. Ertelmezési tartoméanya IR2.

2. Mdsodfoki polinom.
f(x,y) = ax® + by + cy® + da + ey + j,

ahol a,b, ¢, d, e, jeR rogzitettek. Ertelmezési tartomanya IR?.

3. Polinomokat két dimenzidban Ggy definidljuk, mint monomialok Gsszege.
Egy monomial altaldnos alakja:

m, n
AmnT Y -

Egyiitthatéja amneR, foka a benne levé fokok dsszege: m + n. Egy polinom
fokat dgy definidljuk, mint a legmagasabb fokd monomialjanak foka.

Egy polinom homogén, ha a polinomban szereplé monomialok foka ugyanaz.
Példaul egy homogén masodfokd polinom

flz,y) = 2% + 22y + ¥

Tovabbi kétvaltozos fiiggvények konstrukcidja az ismert egyvéltozos fiigg-
vények segitségével torténhet, példaul:

u = sin(xy) vagy  u=1In(y* + cos(x/2)).
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3.3.1. Geometriai reprezentacid

Egyvaltozos fiiggvényt gorbe segitségével lehet reprezentilni, a kétvaltozos
figgvényt feliiletként fogjuk megadni. Tekintjik a haromdimenziés koordi-
natarendszert, melyben a koordindta tengelyek x,y és u. Itt az (x,y) sikot
képzelhetjiik a vizszintes siknak. A fliggvény értelmezési tartomanyanak tet-
sz6leges (x,y) pontja 6lott kijeloljiik azt a P pontot, melynek harmadik
koordinataja u = f(z,y). Ha (x,y) bejarja a fiiggvény értelmezési tartoma-
nyat, akkor a megfelel§ P pontok egy feliiletet fognak megadni.

Tehat az f : S — IR fiiggvényt a térben az alabbi szamharmasok irjak le:

{(.I', Y, f(xa y)) : ($, y)eS} .
Ezek a pontok feliiletet alkotnak a térben.

Példa. Legyen f(z,y) = x® + y%. A feliilet egy darabja:

120
100
80
60
40

20

3.2. abra. Az f(x,y) = 22 + y? fiiggvény feliilete.

Példa. Legyen f(x,y) = 22 —y%. A feliilet egy darabja:

A haromdimenziés dbrazolas nem mindig megfelel§. Egyrészt ezt tobb fiig-
getlen valtozéra nem tudjuk kiterjeszteni. Masrészt még két fiiggetlen valto-
70 esetén is szerencsésebb az (z,y) sikban dolgozni, itt gond nélkiil tudunk
rajzolni. Ehhez adnak segitséget a szintvonalak. Rogzitett kelR mellett
abréazoljuk azokat az (x,y) pontokat, melyekre f(x,y) = k.

Példa. Legyen f(z,y) = 2® + y%. A szintvonalak koncentrikus korok:
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60
40

20
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-40
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3.4. dbra. Az f(x,y) = 2 + y? fiiggvény szintvonalai

Példa. Legyen f(z,y) = 2% — y?. A szintvonalak hiperbolak és egyenesek:

A szintvonalakkal torténd abrazolas kiterjesztheté haromvéltozos f(z,y, 2)
fiiggvényekre. Ekkor szintvonalak helyett &k = f(z,y,2) szintfeliileteket
kapunk, ahol k tetszéleges konstans.
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3.5. abra. Az f(x,y) = 2% — y? fiiggvény szintvonalai

3.3.2. Folytonossag

Heurisztikusan elképzelve azt varjuk, hogy ha (x,y) "kozel van" (xg, yo)-hoz,
akkor f(x,y) is "kozel van" f(xg, yo)-hoz.

3.16. Definici6. Legyen (vo,yo) az f figgvény értelmezési tartomdnydnak
egy pontja. Az f figguény folytonos (xo,yo)-ban, ha f(xzo,yo) tetszdleges
U kornyezetéhez megadhato (xo,yo)-nak olyan V' kornyezete, hogy minden
(,9)eV, (x,y)eDy esetén f(x,y)eU.

Figyelembe véve a kdrnyezet definiciéjat, ezt igy atfogalmazhatjuk:

Definicié.  Legyen (zo,y0) az f fliggvény értelmezési tartomdnydnak egy
pontja. [ folytonos (xo,yo)-ban, ha Ve > 0-hoz 3§ > 0, melyre ¥(x,y)eDy
esetén

Ve =202 +y—y)?<é = |f(z,y)— flxo,m) <e.

3.17. Definicié. Az f figgvény sorozatfolytonos az értelmezési tartomdny
Py pontjdban, ha minden (P,) C Dy sorozatra:

lim P, =P = lim f(P,) = f(R).
n—oo

n—oo
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A kétfajta fogalom ekvivalencidjarol szol az alabbi tétel:
3.2. Tétel. f pontosan akkor folytonos Py-ban, ha ott sorozatfolytonos.

A bizonyitas teljesen analdg az egyvaltozos esettel, az olvasora bizzuk.

Konnyen lathatd a fenti tétel alapjan, hogy folytonos fiiggvények osszege,
szorzata, skalarszorosa is folytonos lesz.

3.18. Definicié. Ha egy fiigguény értelmezési tartomdnydnak egy pontjdban
nem folytonos, akkor ott szakaddsa van.

1. Példa. .
- ha Yy 7& 07
Yy
flz,y) =
0 ha y=0.
A fiiggvény tetszoleges (x, y) pontban folytonos, ha y # 0. Szakadasazy =0
egyenes mentén van.

2. Példa
2xy

m ha (z,y) # (0,0)

flz,y) =
0 ha (z,y) = (0,0)
A fiiggvény folytonos, ha x vagy y nem 0. SGt:

lim f(x,y) =0 Yy # 0.
z—0

lim f(x,y) =0 Yz # 0.
y—0

Tekintsiik az x = y egyenest. Ezen egyenes mentén f(z,z) = 1. Tehat ha
ennek az egyenesnek a mentén egy sorozattal tartunk az origéba, akkor a
filggvényertékek sorozata azonosan 1 lesz. f nem folytonos a (0,0)-ban.
3. Példa. Legyen

22y
z2 4+ y?

ha  (z,y) # (0,0),
flz,y) =

0 ha (z,y) = (0,0).
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Folytonos-e a fiiggvény a (0,0) pontban?

Igen! A sorozatfolytonossigot igazoljuk. Legyen (P,) egy olyan sorozat,

melyre lim P, = (0,0). P, polarkoordinatait jellje (7, 0, ). Ekkor nyilvan
n—oo

lim 7, =0, mig a (,) sorozat barmilyen lehet.
n—oo

A fenti képletnek megfelelen (z,y) # (0,0) esetén f(z,y) igy irhato:

2 0e2(0) 12 qin2
L eos (9); sin”(6) = 12 cos?(6) sin?(6).

f(rcos@,rsinf) = .

Ezért a fliggvény valoban folytonos , mert a fenti sorozat mentén

lim f(P,) =0.

n—o0

3.3. Tétel. (Bolzano tétel) Legyen f : S — R folytonos fiiggvény, mely-
nek értelmezési tartomdmya SCIR? Gsszefiiggs. A tartomdny két tetszéleges
pontja P = (x,y) és P' = (2',y'), melyekre

A= f(z,y) < f(a,y) = B.
Ekkor Vce(A, B) szdmhoz 3Q = (0, y0)eS pont, melyre f(zo,y0) = c.
Bizonyitas*. Alapétlet. Mivel S osszefiiggs, ezért létezik S-ben P-t és P'-t

osszekots y(t) folytonos gérbe. A gorbe mentén F(t) := f(z(t),y(t)) folyto-
nos fiiggvény, és az egyvaltozos Bolzano tétel szerint 3¢, melyre F(§) = c.

3.19. Definici6. Adott f : S — R figguény, SCR?. f egyenletesen foly-
tonos S-ben, ha Ve > 0-hoz 36 > 0, hogy bdarmely két P, P'eS pontra

IP—P<d = [f(P)-f(P) <e.
Az f: S — R fligguény Lipschitz folytonos S-ben, ha AL > 0, melyre
F(P) = F(PY<L-|P-P|  VPPeS.
Az L szdmot Lipschitz-konstansnak hivjuk.
Trividlisan lathato, hogy ha f egyenletesen folytonos S-n, akkor minden

pontjaban folytonos. Ha f Lipschitz folytonos egy tartomanyban, akkor ott
egyenletesen is folytonos.
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Korlatos és zart halmazon folytonos fiiggvények

3.4. Tétel. (Weierstrass 1. tétele) Ha SCIR? korldtos és zirt, f : S — R
folytonos fiiggvény, akkor f korldtos.

A bizonyitas "ugyanaz", mint az egyvaltozos Weierstrass 1. tétel bizonyitasa.
(HF)

3.5. Tétel. (Weierstrass 2. tétele) Korldtos és zdrt tartomdnyon folytonos
fligguény felveszi a mazimumdt és minimumdt.

A bizonyitas teljesen analog az egyvaltozos esettel. (HF')

3.3.3. Hatarérték

3.20. Definicié. Adott f : S — R kétvdltozds valds figguény, Py = (xo,yo)
az ET egy torléddsi pontja. Az f figguény hatdrértéke (xo,yo)-ban L, ha
Ve > 0 -hoz létezik § > 0, hogy ¥(x,y)eS esetén

0<V(@-—w0)?+@y—w)?<d = |flx,y)—L|l<e.
Jelolés

lim x,y) = L.
(mvy)ﬂ(mo,yo)f( 2

Megfogalmazhatd az atviteli elv.

3.3. Allitas. f: S — R, (xg,y0) torldddsi pontja S-nek. Az aldbbi tulaj-

donsdgok ekvivalensek:

1. lim x,y) = L.
(wyy)ﬁ("fo,yo)f( 2

2. VP, = (zp,yn)eS, P, # Py sorozatra:

lim P, =P = lim f(P,)=0L.

n—0o0 n—oo
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1. Példa. Legyen S = {(x,y) : y > 0} a fels¢ felsik, és tekintsiik azt az
f 8 — R fiiggvényt, melyre

flz,y) = e /.
Legyen Py = (z0,0), ahol xg # 0 rogzitett. Ekkor

lim e %/ = lim e %0/Y = 0,
(z,y)—(x0,0) y—0+

ezért itt van hatarérték. Az origo-beli hatarérték létézését vizsggaljuk. Ha az
y = kz? parabola mentén tartunk a (0,0)-ba egy fix k mellett, azaz tekintiink
egy P, = (zn, k2?) sorozatot, melyre lim z, = 0, akkor minden n-re

n—oo

lim f(P,) = lim e~ wn/ken — g=1/k,
n—oo n—oo

ez a hatarérték fiigg a sorozat vilasztasatol. Ezért a fiiggvény hatarértéke
nem létezik a (0,0) pontban.

2. Példa. Legyen

2
§+ Y ha 3r—y#0
r—y
fla,y) =
0 ha 3z—y=0

Legyen a, = 1/n, és az egyik pontsorozat
P, = (an,a2) = lim P, = (0,0)
n—oo

Ekkor 5 1
FP) = o E2 0 — lim f(P) = <.

Legyen egy masik pontsorozat

P, =(d?,a,) = lim P, =(0,0).

n—o0

Ekkor

142
T im (P = -2

3—n n—00

f(P) =

Ezért az origdéban nincs hatarértéke a fiiggvénynek.
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Itt az tortént, hogy a (0,0)-beli hatarértéket két kozelitéssel probaltuk meg
kiszamolni. Egyrészt

1
lim lim =lim — = —.
z—=0y—0 3x —y 20 3z 3

MaAsrészt

lim lim
y—=0zx—0 31 — Yy y—0 —y

—2 # 1/3 ezért nincs hatarérték. Figyelem! A hatarértékek egyenlésége nem
lenne elég a kétdimenziés hatarérték létezéséhez.

3.6. abra. A 2. példaban szerepld fliggvény az origd koriil

3.4. Differencidlszamitas

3.4.1. Parcialis derivaltak

3.21. Definicié. Legyen f : S — R kétvdltozds valds fiigguény. Legyen
(x0,y0) az S halmaz belsd pontja. A fiiggvény x szerinti parcidlis derivdltja
az (xo,y0) pontban az aldbbi hatdrérték, ha létezik és véges:

fa/c(xoayo) = (%f(:vo,yo) = lim [z, y0) — f(@“O?yo)'

T—T0 T — X0
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Hasonldan, a figgvény y szerinti parcidlis derivdltja (zo, yo)-ban az aldbbi
véges hatdrérték, ha létezik:

f:L//(fL'anU) - ;yf(x()?yo) ylig/lo f(l'O?y; : 50(1'0)3/0)

A parcialis derivalast értelmezhetjiik a kovetkezoképpen is. Rogzitett yo
mellett definialjuk az fi(z) = f(x,y0) egyvéltozos valos fiiggvényt. Ekkor

;Cf(l’o,yo) = fi(wo).

Hasonloan, fix zo-ra definidljuk az fa(y) = f(zo,y) egyvaltozos fiiggvényt.
Ekkor

(%f(ﬂfoyyo) = f5(y0)-

A fenti fi és fy fliggvények az eredeti fiiggvény metszetfiiggvényei.

3.7. dbra. f(x,y) = xy rogzitett y = 1 mellett egyvaltozos fiiggveny.

Ha a fliggvény parcidlis derivaltjai egy S tartomény minden pontjaban lé-
teznek, akkor értelmezhet§ a parcidlis derivdlt fiigguény. Ha a parcialis
derivaltfiiggvénynek létezik parcidlis derivaltja, akkor masodrendi parcialis
derivaltat kaphatunk. Példaul:

g 0 82 " fé(.%',y—i—h)—f;:(l',y)
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Példa. f(z,y) = 32> + y%. Az els6rendii parcidlis derivéltak

filey) = o fley) =6

fi(zy) = aayf(m,y) 9y,

A mésodrendi parcialis derivaltak

ve(x,y) =6 vy (T,7) =2
foe(@,y) =0 Sy (x,y) = 0.
Példa.
z+2)%y
OID 0 ot ba (ny)#(0,0)

3 ha  (z,y) = (0,0)

Léteznek-e a parcialis derivaltak a (0,0) pontban?
Szamoljuk ki a f2(0,0) parcialis derivaltat a definici6 alapjan:

7(0,0) = i T ZIOD) gy, ZHEIZI

Ekkor az x szerinti parciélis derivalt létezik.
Probaljuk meg kiszamitani fy(0,0)-t a definici6 alapjan.

1,(0,0) = Jim h T 0 h?

és ez a hatarérték nem létezik.

2.

47

(3.1)

Lattuk, hogy ha egyvaltozds valos fliggvény differencidlhato egy a pontban,

akkor ott folytonos is. Kérdés, hogy a ha a parcidlis derivaltak léteznek,

akkor vajon folytonos-e a fliggvény az adott pontban? Nem feltétleniil.

Példa. Legyen

Ty

2242 ha (z,y) # (0,0)

0 ha (z,y) = (0,0)
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Lattuk, hogy f nem folytonos az origoban. Mégis, a parcialis derivaltak
léteznek a (0,0) pontban:

£0.0) = Jim ZE2TED
/ . f(0,h) — f(0,0
70,0 = Jim TGO

Szemléletesen, a probléma abbél ad6dik, hogy a parcialis derivaltak a fiiggvény
simasagat csak az «x ill. az y tengelyek mentén adjak meg.

Egy elégséges feltétel a folytonossigra a parciélis derivaltak korlatossaga. Az
alabbi tételt bizonyitas nélkiil kimondjuk.

3.6. Tétel. f:S — R kétvdltozés fiigguény, (xo,yo)e intS. Tegyiik fel, hogy
az fl. és fl// parcidlis deriwdltak léteznek (xo, yo) valamely UCS kornyezetében.
Tegyiik fel tovdbbd, hogy a parcidlis derivdltak itt korldtosak, azaz

|folz, )l <M, |fi(z,y)| <M V(z,y)eU.

Ekkor az f figguény folytonos az (xo,yo)-ban.

Az el6z6 példa folytatdsa. Ha (x,y) # (0,0), akkor

-
f(xvy)_ x2—|—y2'

Ennek példaul = szerinti parcialis derivaltja:

, Cy(@® +y?) —ay(2z) P -2ty
Lo ="—mpp  ~@rep

Ez a fliggvény az origd kozelében nem korlatos, hiszen példaul y = 2x esetén

3z 3
e, 22) = — = —
Jol@,20) = 9507 = 5
ami tetsz6legesen nagy lehet, ha x kdzel van 0-hoz. Tehat nem meglepd,
hogy a fiiggvény az origdban nem folytonos.
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Parcialis derivaltak felcserélhet&sége

Korabban egy példaban azt lattuk a (3.1) szamolsasban, hogy a vegyes par-
cidlis derivaltak megegyeztek. Ez nem véletlen! Fontos tétel kovetkezik.

3.7. Tétel. Adott f : S — R kétvdltozds figguény, (x,y)e intS. Ha a pont

egy kornyezetében léteznek az fy, és f,,

az adott pontban folytonosak, akkor itt a derivdldsok sorrendje felcserélhetd:

mdasodrendd parcidlis derivdltak, és

;/y(xa y) = g:/x(xa y)

A derivalési sorrend felcserélhetségének messzemend kovetkezményei van-
nak. A megfelel§ derivaltak folytonossagat feltéve:

1" n nr
fx:py = fmy:p = fyxm'

Tehat ekkor a magasabb rendii parciélis derivaltak kiszamitasakor a deriva-
lasok sorrendje tetszélegesen csoportosithaté.

Példa arra, hogy a derivalasok sorrendje nem mindig cserélhet6 fel. Legyen

" Vey ha (5,9) £ (0,0)

—=xy a (r,y 0,0
f(z,y) = Ty

0 ha (z,y) = (0,0)

Kiszamolhato (HF'), hogy ebben az esetben

;’z(o,o) =1, ;’y(o,o) =1.

3.4.2. Teljes differencialhatésag

Emlékeztetiink arra, hogy az f egyvaltozos fiiggvény esetén a differencidlha-
tosag egy e int Dy pontban azt jelentette, hogy az adott pontban értelmez-
hets érint6 egyenes, ami a "jol kozeliti" a fiiggvényt kis elmozdulas esetén

flz+ Az) = f(z) + f'(z) - Az + e(Az) - Az,

ahol lim e¢(Azx)=0.

Az—0
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3.9. abra. Példa. f(x) = 2?2 érintéje az x9 = 1-ben.

A fenti egyenldség a jobboldalon szerepld maradéktag nagyon kicsi, erre hasz-
naljuk a kisords elnevezést. Egy h(x) fliggvény kisordo a 0-ban, ha

lim M) _ .

z—0 X
Ennek jelolése h(z) = o(x).
3.22. Definicid. Legyen f : S — R kétvdltozds figguény, és (x,y)e intS.

Az f fiigguény differencidlhato (x,y)-ban, ha léteznek olyan A, B, C szd-
mok, melyekre elegendden kicsi Ax és Ay mellett teljestil, hogy

flx + Az,y + Ay) = AAzx + BAy + C + o(n/Az? + Ay?) (3.2)

ahol A, B, C fiiggetlenek Ax-tdl és Ay-tdl.
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3.8. Tétel. Ha f differencidlhaté az (z,y) pontban, akkor ott folytonos is és
léteznek az adott pontban vett parcidlis derivdltak. Tovdbbd a (3.2) képletben
szerepld konstansokra

C=f(zy); A=filz,y);  B=fy(zy).
Bizonyitas.
1. Valasszunk Az = Ay = 0-t. Ekkor az (3.2) egyenlet szerint:
flz,y)=A-0+B-0+C+0=C.

Tehat a C megegyezik a helyettesitési értékkel. Ez alapjan kénnyen
belathatjuk a folytonossagot:

Ali‘r_r}O flx+ Az,y + Ay) =
A'gybao

= lim AAz + lim BAy+C+ lim o(y/Az? + Ay?) = C.
Az—0 Ay—0 Az—0

Ay—0

2. Igazoljuk az A-ra vonatkozo allitast. Legyen Ay = 0. Ekkor az (3.2)
egyenlet igy alakul:

f(z+ Azy) = ADx + f(z,y) + of|A]).
Ez alapjan szamoljuk ki a parciélis derivaltat:
o(|Ax|)

Alglgo Az N AI;:IEO(A T A =4

Kovetkezmény. Ha az f fliggvény differencidlhaté az (x,y) pontban, akkor
elegend@en kicsi Ax, Ay mellett {gy irhatd:

flo+ Az,y + Ay) = f(z,y) + fr(@,9) Az + f(z,y) Ay + o(\/ Az? + Ay?).
(3.3)

A derivalt geometriai jelentése is hasonld az egydimenzids esethez. Ha a
fliggvény differencidlhatd egy pontban, akkor a pont kézelében a fiiggvény
értékét az érintdsik segitségével kozelithetjiik. A stk megadasahoz megadjuk
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egy pontjat - ez (zo, yo, f(z0,%0)) - és megadjuk a sik meredekségét, ami a
két parcialis derivalt. Az érint6sik egyenlete tehét ez lesz:

z = f(zo0,90) + fz(z0,%0)(x — 20) + fy(x0,%0) (¥ — Yo)- (3.4)

Ezt az egyenletet irjuk at abba a megszokott alakba, ahogy a sik egyenletét
fel szoktuk irni:

fr(@o,y0) (@ — x0) + f (w0, 0) (¥ — yo) + (=1)(2 — 20) = 0,

ahol zo = f(xo,yo). Errdl leolvashato, hogy a sik (egyik) normalvektora
n = (fz(z0,%0), fy (w0, %0), —1).

Példa. Hatérozzuk meg a z = 22 + 2 elliptikus paraboloid érintésikjat az
(1,1,3) pontban.

A parcialis derivaltak:
felzy) =42 fylz,y) =2y = f1,1)=4 fi11)=2
A (3.4) képlet alapjan az érintSsik egyenlete:
z—3=4(z—-1)+2y—-1) = z=4r+2y—3
Normalvektor: cn = (4,2, —1).
3.23. Definicié. Ha az [ fiigguény differencidlhaté az (x,y) pontban, akkor

ebben a pontban a derivdlt egy kétdimenzids vektor lesz, melyet gradiensnek
nevezink:

grad f(z,y) = Vf(z,y) = (frlz.y), f;(2,9)).

Ha az f fiiggvény egy So halmaz minden pontjdban differencidlhatd, akkor a
derivdltfiiggvény
grad f: Sy — R?

tipusi lesz.

Ha a parciilis derivalt fliggvények folytonosak, akkor a fiiggvény derivalhato.
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3.4.3. Iranymenti derivalt

A teljesen differencidlhato fliggvények egy fontos tulajdonsiga, hogy nem
csak az z és y szerinti parcidlis derivaltak léteznek - azaz az x és y irdnyban
derivalhatok - hanem tetszéleges « irdnyban is.

3.24. Definicid. Legyen «el0,27). Az «a irdnyi irdnymenti derivdlt az
aldbbi hatdrérték, ha létezik és véges:
f(x + hcos(a),y + gsin(a)) — f(z,y)

0 .
Daf(x7y) = a_af(x7y) = ’lll_r)% h .

Ez azt jelenti, hogy az f(z + Ax,y + Ay) fiigvényertéket csak megadott
irdnyban nézziik, nevezetesen:

Az = hcos(a), Ay = hsin(a), helR

3.4. Allitas. Tegyiik fel, hogy az f differencidlhato (x,vy)-ban. Ekkor itt
tetszdleges a0, 2m) esetén létezik az irdnymenti derivdlt, és

Daf(x,y) = fr(w,y) cos(@) + fy(x,y) sin(a).
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Bizonyitas*. A differencialhatésag miatt
flz+hcos(a),y+hsin(a)) = f(z,y)+fy(z, y)hcos(a)+f, (z,y)hsin(a)+o(h).

Ebbél kévetkezik, hogy

f(z+hcosa,y+ hsina) — f(x,y)
h

= i) cosla) gy ) i)+ 20,

melynek hatarértékeként az allitast kapjuk.

Megjegyzés. Specidlis o = 0 ill. o« = 7/2-re a parcialis derivaltakat kapjuk:
DUf(xvy) :fI/E(I7y)7 D7r/2f(xvy) :fg/;(xvy)

Altalaban az irdanymenti derivalt:

3.25. Definici6. Adott veR? irdny, melyre ||v|| = /oI +v3 = 1. A w
tranymenti derivdltat (x,y)- ban igy értelmezzik, ha ez a hatdrérték lé-
tezik:

Duf(@,y) = lim fl@+hvy +hh v) — f(z,y)

A D, f(z,y) iranymenti derivélt valos szam.

Kovetkezmény. A D, f(x,y) irdnymenti derivdll kiszdmitdsa:
Dyf(z,y) = v1 fo(z,y) +v2 fy(z,y).

Példa. Legyen
fl@,y) = Va? + 2,
azaz a fliggvény egy ponthoz hozzarendeli az origotdl vett tavolsagat.

Adott « irdnyhoz tartozo irdnyvektor v = (cos a, sin ). Hatarozzuk meg a
D, f(x,y) iranymenti derivaltat. Els6ként a parcialis derivaltak:

’ T

fo(w,y) = \/ﬁ = cos(f),
fyl,y) = ——2— = sin(0),
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3.10. abra. A Példabeli eredmény illusztracioja

ahol 0 az (z,y) pont mésodik polarkoordinataja. Ekkor:
Do f(z,y) = fo(z,y)cosa+ f,(z,y)sina =

= cosf cosa +sinf sina = cos(d — a).

Lathato, hogy ha o = 6, akkor az irdnymenti derivalt maximalis abszolut
értekd, mig 0 — a = 7/2 esetén az iranymenti derivalt 0. (Vajon hogyan
értelmezhetjik geometriailag ezt a tényt?)

3.4.4. Lagrange-féle kozépértéktétel

3.9. Tétel. Legyen f: S — R olyan kétvdltozds fiigguény, mely differencidl-
haté az (xo,yo)e intS eqy 0 sugard kérnyezetében, melyet U jeloljon. Legyen
(x1,y1)eU. Ekkor létezik 0e(0,1), melyre:

A
Far, )= F oo ) = Foan, 1)+ o )y = o FGa): (37 ).
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ahol

Az = 21 — 29, Ay = y1 — Yo, (zo,yp) = (zo + 0 - Az, yo + 0 - Ay).

Bizonyitas. A Tételt altalanos esetben bizonyitjuk majd.

3.4.5. Magasabb rendi derivaltak

3.26. Definicié. Adott f : S — R kétvdltozds fiigguény, és legyen (xo,yo)
belsd pontja S-nek. f kétszer differencidlhaté ebben a pontban, ha a fiigg-
vény differencidlhatd a pont egy kirnyezetében, és az fr(x,y) és az f,(x,y)
parcidlis derivdlt figgvények is differencidlhatéak az (xo,yo) pontban.

Ha f kétszer differencidlhat6 az (x,y) pontban, akkor itt

fay(@,y) = fop(2,y).
3.27. Definicié. Ha a fiiggvény kétszer differencidlhaté (xo,yo)-ban, akkor
fiigguény mdsodik derivdltja az oldbbi mdtriz:

22(70,90)  fyz(Z0,Y0)
H(wo,y0) =
gy(xoayo) f;//,y(xovyo)

Ez az (z0,y0) ponthoz tartozé Hesse madtriz.

Kétszer differencidlhat6 fliggvény Hesse méatrixa szimmetrikus matrix.

Megjegyzés. Ne felejtsiik el, hogy egy kétvaltozos fliggvény elsé derivaltja 2
dimenzids sorvektor, masodik derivaltja 2 x 2 dimenziés méatrix.

3.4.6. Osszetett fiiggvény

Ismétlés. A lancszabaly osszefett fiiggvények (fliggvények kompoziciojanak)
derivalasara vonatkozik. Valés fiiggvényekre ezt llitja:

(fog) (z) = f(9(x)) ¢ (x).

f a kiils6 fiiggvény, g a belss fliggvény, mindkettd egyvaltozos.
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Lancszabaly, 1. specialis eset

A kilsé fiiggvény egyvaltozos f: D — IR, D C R.

A belsé fiiggveny kétvaltozoss : S — R, S C R?, ahol Ry C Dy.

Ekkor az osszetett fliggvény kétvaltozos fiiggvény, mely igy értelmezhets:
F=fo¢:S=R,  Flx,y) = flo(z,y))

Ha ¢ differencidlhato a (x,y)-ban, és f differencialhaté az u = ¢(x, y)-ban,
akkor F(x,y) = f(¢(x,y)) is differencidlhato, és a parcialis derivaltak:

F;:(.I,y) = f’(qb(w,y)) QS;:(J:?y)u

Példa. Legyen F(x,y) = f?(x,y), ahol f differencialhat6. Ekkor

F;(ﬂf?y) =2f(z,y) f:;(:zr,y) és F;(:E,y) =2f(z,y) fg/;(xvy)

Lancszabaly, 2. speciilis eset

A kiilsé fiiggvény ketvéltozos f: S — R, S ¢ R2

Két belsg fiiggvény van, mindketts egyvaltozos: ¢,v : D — R, D C IR.
Feltessziik, hogy R, x Ry, C S.

Ekkor az 6sszetett fliggvény egyvaltozos fliggvény:
F:D—=R,  F(t) = fe(t), v(t)).

3.10. Tétel. Tegyiik fel, hogy ¢ és ¥ differencidlhatéak a te intD pontban,
és f differencidlhato az (xz,y) = (p(t),¥(t)) pontban. Ekkor az ésszetett
fligguény is differencidlhatd, és derivdltja:

F'(t) = fo.(0(t), ()& (1) + f(0(t), ()0 (2).

Megjegyzés. A kdénnyebb atlathatosidg kedvéért a fenti formula argumentu-
mok nélkiil:

(fo(o,v) = fod + fiu'
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Eléaddson elmondom a bizonyitdst. Aki nem jegyzeteli le, bizonyitsa be (nem
nehéz HF).

Példa. Kétvaltozos f fiiggvény « irany menti derivéltjat szamoljuk az (z,y)
pontban. Ehhez az f(z,y) fliggvénybe behelyettesitjiik a
p(t) =z +t-cosa, Y(t) =y+t-sina
valtozdkat, és a derivaltat nézziik a t = 0 helyen. A fenti tétel alapjan:
F(t) = f(zx+tcosa,y +tsinw)
derivaltja a t = 0 helyen:
F'(0) = fr(2+0,y+0)¢'(0)+f, (40, y+0)¢'(0) = f.(x,y) cos oz+f;(ﬂs, y) sin a.

Ez a jol ismert formulat adja.

Lancszabaly, 3. specialis eset

Adott f(u,v) kétvaltozos fiiggvény, ahol az u és v valtozok helyére kétvéaltozos
fliggvényeket helyettesitiink:

u=¢(r,y), v="V(y),
Legyenek ¢, ¢ : R — R, R C R? adott kétvaltozos fiiggvények. Jeldlje:
S=A{(w,v) 1 u=9(z,y), v="v(z,y), (z,y)eR}.
Ekkor az sszetett fliggvény az aldbbi F': R — R kétviltozos fliggvény:

F($7y) - f(¢($7y)7w(xay))

Példa. Legyen
F(z,y) = e"sin(z +y).

Ezt a fiiggvényt igy tudjuk Gsszetett fliggvényként értelmezni. Legyenek

u=(z,y) =y v=9a,y) =z +y
flu,v) = e"sin(v).

A definiciébol konnyen adédik az aldbbi allitéas:
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3.5. Allitas. Ha ¢, ¥ folytonosak (x,y)-ban, és f folytonos az

(u,0) = (¢(2,9),9(2,y))
pontban, akkor F is folytonos (x,y)-ban.
3.11. Tétel. (Ldncszabdly.) Tegyiik fel, hogy ¢, differencidlhaték (x,vy)-

ban, és f is differencidlhaté az (u,v) = (¢(z,y),¥(x,y)) pontban. Ekkor F
is differencidlhaté (z,y)-ban, és parcidlis derivdltjai:

Fy(z,y) = fu (o(z, ), ¥(x,y)) & (x,9) + £, (8(x,y), (2, 9)) ¥y (2, y).

Bizonyitas*. Irjuk fel az F Gsszetett fiiggvény megvaltozasat:

= f(o(x + Az, y + Ay), ¥(z + Az, y + Ay)) — f (o(2,y),¥(z,y)) =

= fu(o(z,y), ¥(x,y)Ad + f,(d(x,y), v (x,y)) A + e1(x,y),

ahol e1(x,y) = o(\/(Ax)? + (Ay)?), mert a kiils6 fuggvény differencialhato.
A belsg fliggvények megvatozédsait igy irhatjuk:

A¢p = d(x + Az, y + Ay) — ¢(z,y) = ¢,(z,y) Az + ¢ (z,y) Ay + e2(x, ),

Ap = (x + Az, y + Ay) — (x,y) = (2, y) Az + ¢y (2, y) Ay + e3(z, y),

ahol eo9(z,y) és e3(z,y) is o(v/(Ax)? + (Ay)?). Mindezeket visszahelyette-
sitve megkapjuk F differencialhatosagat és parcialis derivaltjait.

Példa. (folytatas) A fenti fliggvény x szerinti parcidlis derivaltja:
Fl(z,y) = e"sin(v)y + €" cos(v) = €™ (sin(z + y)y + cos(z + y)) .
Példa. Legyen
fla,y) =2 +y°.
Helyettesitsiik be = és y helyére a polarkoordinatakat, legyenek tehéat
x = x(r,0) =rcos(f)
y = y(r,0)=rsin(0).
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Ekkor az Gsszetett fliggvény
F(r,0) = f(rcos(f),rsin(8)) = r? cos?() + r? sin?(9) = r2.

Szamoljuk ki F' 6 szerinti parcialis derivaltjat a lancszabaly alapjan. A kép-
let, amit hasznalnunk kell:

OF 9fdx _Ofdy

00 — 9x 90 ' Oy oo

Ezek a parcialis derivaltak:

of or
% =2z % = 7"(— Sln(e))
of _ 9y _

o =2y 20 = rcos(f).

Igy ezekbdl ésszerakva a derivaltat ezt kapjuk:

Z—Z(r, 0) = 2xr(—sin()) + 2yr cos(d)
= 2rcos(f)r(—sin(f)) + 2rsin(f)r cos(f) = 0.

A fent megfogalmazott Tételek csak egy-egy lehetséges formai a lancszabaly-
nak. Altaldnos esetben a kiilsG és bels6 fiiggvények fajtai valtozhatnak.

3.4.7. Implicit fiiggvény tétel*

Példa feladat: Adott a sikban egy gorbe, melyet az F'(x,y) = 0 implicit alaka
fiiggvény ir le. Adott a gorbének egy pontja (xg,yo), ahol F(xg,y0) =0 . A
pont kornyezetében keressiik a gérbét megado fiiggvény explicit alakjat. FEgy
olyan y = f(x) fiiggvényt keresiink, melyre F(z, f(z)) = 0 és f(zo) = yo.

3.12. Tétel. (Implicit fiigguény tétel) Tegyiik fel, hogy az F kétvdltozos figg-
vény differencidlhato (xo,yo) egy kérnyezetében, és ebben a pontban

F(xo,y0) =0, tovdbbd F,(xo,y0) # 0.
Ekkor létezik eqy kétdimenzids intervallum,

I:IIXIQZ(*%.O_@’J:O—’_OC) X (y0—57y0+5)7
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hogy minden xely esetén az F(z,y) = 0 egyenletnek pontosan egy y = f(x)
megolddsa van, és yelo. Tehdt létezik eqy

f:[1—>12

valds fiigguény, mely a kivetkezd tulajdonsdgokkal rendelkezik:

- f(o0) = wo.
- f(a:)dg, Va:e[l.
- F(z, f(x)) =0, Vxel;.

- Fy(x, f(x)) #0, Vael;.

Tovdbbd f differencidlhatd I1-ben, és derivdltja igy szamolhatd:

Fi(z, f(z))

F@ =5 fa)

Megjegyzés. Az implicit fiiggvény tétel a gorbe lokdlis tulajdonsdgat fogal-
mazza meg. Masrészt csak egzisztenciarol van szo, tehat annyit allit a Tétel,
hogy létezik a megfelels fiiggvény, de nem adja meg a konstrukciot.

A Tételt nem bizonyitjuk. Ha mar tudjuk, hogy f differencidlhato, akkor
derivaltja kiszamolhat6. Derivaljuk az F'(x, f(x)) = 0 egyenletet x szerint:

Fy(z, f(z)) - 1+ Fy(z, f(z)) - f'(z) =0, (3.5)
ahonnan a Tétel utolso allitdsa kovetkezik.
Megjegyzés. Az (3.5) sszefiiggés ujabb derivalasaval f magasabb rendi de-
rivaltjait is ki tudjuk fejezni. Példaul a mésodik derivalt:

Frp (2, f(x)) + Fp (@, f (@) f'(2) + Py (z, f(2)) ' (2)+

+Eyy (2, (@) (F' (@) + Fyy (@, f(2) " (x) = 0.
Ebbdl pedig f”(x) kifejezhets.

Példa. Tekintsik az
Flr,y)=2>+y" —1=0
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egyenlet megoldasat. Ha ebbdl explicit médon megprobaljuk az y-t kifejezni:
y=+\1-— 22,

ami nem egyértelmi. Konkrét (xg,yo) esetén az implicit fliggvény segitsé-
gével a korfvnek azt a darabjat kapjuk meg, ahol az adott pont szerepel.
Héarom eset lehetséges.

1. Ha zpe(—1,1) és yo > 0, akkor a megoldasfiigvény f(z) = V1 — 22,
2. Ha xpe(—1,1) és yo < 0, akkor a megoldasfiigveny f(x) = —v1 — z2.

3. Hawzg = %1, akkor yo = 0. Ekkor F}(z0,0) = 0, és valoban, a megoldas
nem folytathato.

Példa. Tekintsiik a Descartes-féle gorbét, amelyet az alabbi egyenlet ad meg:
F(.’E,y) = x3+y3 — 3azy =0,

ahol a > 0 egy val6s parameéter.

11y gy 8
I

3.11. abra. A Déscartes-gorbe a z = F(z,y) feliilet és az (x,y) sik metszete.

A parcidlis derivaltakat kiszamolva azt kapjuk, hogy

F!(z,y) = 322 — 3ay, Fy(z,y) = 3y% — 3az.
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Vagyis F;(0,0) = F;(0,0) =0, a (0,0) kdrnyezetében tehat nem folytathato
(nem egyértelmii) a megoldas. Barmely mas pont a gorbén alkalmas kiindu-
lasi pontnak. Lathato, hogy van olyan x, amihez 1, illetve van olyan, amihez
3 megfelels y tartozik. Derivaltja:

3x2—3ay_ay—x2 af(z) — x?

f(x,y) =

3y2 —3ax Y2 —ax  f%(z) —ax

3.5. Széls6érték szamitas
Legyen f: S — R kétvaltozos fiiggvény, S C IR

3.28. Definicié. (xg,yo)eS lokdlis mazimum (ill. minimum), ha létezik
a poninak olyan U kérnyezete, hogy

f@,y) < f(wo,o)  (dl. f(z,y) = f(zo,90))  V(z,y)eU N Dy.
(z0,y0) globdlis mazimum (ill. minimum), ha minden

f(x7y) < f(x07y0) (le f<$,y) > f(ﬂﬁo,yo)) V(.%',y)GDf

Megjegyzés. A Weierstrass tételbdl kovetkezik, hogy ha S korlatos és zart
tartomany, akkor biztosan létezik globalis minimum és maximum.

Példa. Tekintsiik az f(x,y) = x?+y? fiiggvényt az S = {(z,y) : 22 +y? < 1}
tartomanyon. A fiiggvény globalis maximumhelyei a {(z,y) : 22 +y? = 1}
kérvonal pontjai, és egyetlen globalis minimumbhelye a (0,0) pont.

3.13. Tétel. (Sziikséges feltétel a szélsdérték létezésére) Tegyiik fel, hogy az
f differencidlhato fiiggvénynek (xo,yo)-ban lokdlis szélséértéke van. Ekkor

f(x0,90) = 0,és f,(w0,90) =0 , azaz

grad f(zo,y0) = (0,0).

Bizonyitas. Jelolje f1(z) = f(x,y0) a kétvaltozos fliggvény egyik metszet-
fiiggvényét. Ekkor xq lokélis szélsGértéke fi-nek, ezért fi(zg) = 0. Masrészt
f1(x) = fi(x,y0), ebbdl a Tétel allitasa kiivetkezik.
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3.29. Definicio. Ha grad f(zo,y0) = (0,0), akkor (xo,y0) stactondrius
pont (vagy kritikus). Ha nincs itt szélséérték, akkor ez nyeregpont.

Példa. A fenti tételben szerepld feltétel valéban csak sziikséges, mint ez a
kovetkezs példabdl is latszik. Legyen

flay)=ay,  (z,y)eR%
Parcidlis derivaltjai:
fol@y) =y,  flz,y) ==
A (0,0)-ban mindkét parcialis derivaltja elttinik, azaz
£:(0,0) =0,  £,(0,0) =0,

mégis ez a pont nem szélsGérték. Ez onnan is lathatd, hogy a fliggvény eljele
az 1. és 3. sfknegyedben pozitiv, a 2. és 4. stknegyedben negativ. Ezért az
origd barmely kérnyezetében van a fiiggvénynek pozitiv és negativ értéke is.

3.12. 4dbra. Az f(x,y) = xy feliilete az origo kozelében.
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Példa. Hatarozzuk meg, hogy milyen haromszog esetén lesz a szdgek sinusai-
nak a szorzata maximaélis. Ha a haromszog két szoge x és y, akkor a harmadik
sz6g ™ — x — y. Igy a minimalizélando fiiggvény f : [0, 7] x [0, 7] — R.:

f(z,y) =sinzsinysin(r — z — y) = sinxsinysin(x + y).
Elézetesen megallapithatjuk, hogy ha 0 < z, y < m, akkor f(z,y) > 0,
egyébként a hataron f(z,y) = 0. Ezért Dy belsejében f pozitiv, a dDs-en

az f = 0. Tehat a fiiggvény maximuma létezik (mivel D korlatos és zart)
és belsd pontban van.

Meghatarozzuk a stacionéarius pontokat.
fi(z,y) = coszsinysin(z + y) + sinzsiny cos(z + y) = 0,
f;(ac, y) =sinz cosysin(x + y) + sinx siny cos(x + y) = 0.

A fenti egyenleteket egyméasbol kivonva azt kapjuk, hogy tg y = tg x, vagyis
a stacionérius pontban x = y. Ezt visszahelyettesitve azt kapjuk, hogy

2xcos2$:0,

cos T sin x sin 2z + sin
amibdl trigonometrikus azonossagok felhasznalasaval, és sinx # 0 miatt:

coszsin2x +sinz cos2x =sin3x =0

adddik. Ebbél azt kapjuk, hogy
ey T
=Yy= 3

tehat a haromszog egyenld oldalu.

3.14. Tétel. (Elégséges feltétel a szélséérték létezésére) Tegyiik fel, hogy az
(z0,Yyo) pont staciondrius pontja f-nek, és itt f kétszer differencidlhats. Hes-

se mdtriza:
22 (20590)  fyz(205 %0)
Hy =

fay(@o.y0)  fyy(To, yo)

1. Ha ebben a pontban
det (Hp) > 0,

akkor a pontban lokdlis szélséérték van.
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(a) Ha emellett fI (xo,y0) > 0, akkor ez lokdlis minimum.

(b) Ha pedig f2 . (x0,y0) <0, akkor lokdlis mazimum.

2. Ha ebben a pontban
det (Hp) <0,

akkor a pontban nincs lokdlis szélséérték.

5. Ha ebben a pontban
det (Hp) =0,

akkor a szélsdérték eldontéséhez tovdbbi vizsgdlat sziikséges.

Tétel (Az el6z6 tétel dtfogalmazdsa.) Tegyiik fel, hogy (xo,y0) egy staciond-
rius pontja f-nek. Ekkor ha a H(xo,y0) Hesse mdtriz

pozitiv definit, akkor itt a figgvénynek lokdlis minimuma van,

negativ definit, akkor lokdlis mazimuma van,

indefinit, akkor nincs szélséértéke,

szemidefinit, akkor még nem eldonthetd a lokdlis szélsGérték létezése

A Tételeket nem bizonyitjuk.
Példaként tekintsiik az

1 0 -1 0 1 0
A= , B= , C =
0 1 0 -1 0 -1
métrixokat. Nyilvan A > 0 (pozitiv definit), B < 0 (negativ definit) és C
indefinit.

Specidlis esetként vizsgdljuk meg, hogy n = 2-re mit jelent a definitség.

3.6. Allitas. Legyen Ho = H(xq,v0) egy kétvdltozds fiigguény Hesse mdtriza
az (o, yo) pontban:

22(70,%0)  fyw(T0, o)
Hy =

1"

2y (70, 90) [y (70, Y0)
Ekkor
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1. Hy>0 < det (Hp) >0 és f (xo,50) >0
2. Hy <0 <= det (Hp) >0 és fI (x0,y0) <O
3. Hy indefinit <= det (Hp) <0

4. Hy<O0wagy H)>0 <= det(Hy) =0

Megjegyzés. A fenti Allitas 1. és 2. pontjaban fyy (%0, y0)-ra vonatkozo
feltétel is irhato.

Példa. Legyen
flay) =a® =3ey+4%,  (z,y)eR
Lokalis szélsGérték meghatarozashoz szamoljuk ki a gradiensét:
fole,y) =22 =3y,  f(z,y) = =3z +2y.

A gradiens-vektor egyetlen pontban tiinik el, ez a (0,0) pont. A Hesse matrix
minden pontban ugyanaz:

élx(mv y) g/J/:c(xa y) 2 -3
H == =
gy(xv y) ?;,y(xa y) -3 2

Mivel det H = —5 < 0, ezért a matrix indefinit, tehat a fliggvénynek nincs
lokalis szélsGértéke.

Példa. Legyen
flz,y) =2* +ay +y* +x+ v, (z.y)eR?.
A stacionérius pontokat meghatarozé egyenletrendszer:
fi(z,y)=2z+y+1=0, fo@,y) =z +2y+1=0,

ennek egyetlen megoldasa, mint lehetséges szélsGérték

(xﬂv yO) = (_57 _g)

A masodik derivaltak konstansok:

fa,clx(xvy) =2, fg//,y(xvy) =2, f:gy(xay) =1



68 3. FEJEZET. TOBBVALTOZOS VALOS FUGGVENYEK

A Hesse matrix
H =
1 2

pozitiv definit, ezért az (xg, yp) stacionarius pont lokéalis minimum.

3.6. Feltételes szélsGérték

Minta feladat: Adott IR%-ben egy ¢(x,y) = 0 gorbe. Vajon a gorbe melyik
pontja van az origéhoz a legkdzelebb? Més szdval hatarozzuk meg a

min(z? 4 y?)

értékét, ahol a valtozok nem fiiggetlenek, hanem fennall a ¢(z,y) = 0 Ossze-
fiiggés. Els6 megoldéasként a ¢(x,y) = 0 alakbol explicit modon kifejezziik
az egyik valtozot: y = F(x), és minimalizaljuk az

22+ (F(x))?, xeDp

kétvaltozods fiiggvényt. Ennek hatranya, hogy egyrészt egyaltalan nem biztos,
hogy explicit megoldas létezik, mésrészt énkényesen részesitjiik elényben az
egyik valtozot. Masodik megoldasként kozvetleniil optimalizalunk. Fz azt
jelenti, hogy az f(x,y) = 22 + y? fiiggvény megszoritasat tekintjiik az

{(z,y): ¢(x,y) =0}

halmazon, és itt keressiik a szélsGértéket. A gondot az okozza, hogy a fenti
halmaznak altalaban nincs bels§ pontja, tehat a korébbi fejezet tételeit nem
alkalmazhatjuk.

A feltétles optimalizaléds feladatat a kévetkezGképpen értelmezziik.

3.30. Definicié. Legyen f : S — R kétvdltozds differencidlhato fligguény.
Ennek tekintyik megszoritdsdt azon a halmazon, melyet eqy implicit fiiggvény
ad meg, ahol a ¢(x,y) = 0 dsszefiiggés teljesil. Tomdoren a feladat tehdt:

min z,y). 3.6
{(@y): ¢(ﬂc,y):0}f( v) (3.6)
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/ ﬂ'o

P=0

3.13. dbra. Az f = c szintvonalak és a ¢ = 0 szintvonal egyszerre

A sziikséges feltétel eltt lassuk szemléletesen, hogy mit varhatunk. Képzel-
jiink el egy olyan abrat, ahol egyszerre lathato a ¢(z,y) = 0 feltétel, és az
f(z,y) = ¢ szintvonalak, kiilonb6z6 ¢ értékek mellett.

Amely c-re van koz0s pont, ott van megoldésa az egyenletrendszernek:

¢(x7y) =0, f(:v,y) =c.

Mivel f folytonos (hiszen differencidlhato), ezért a szintvonalak is monoton
moédon valtoznak. Igy azt a szintvonalat keressiik, ami "utoljara" metszi a
¢(x,y) = 0 gorbét. Ebben a pontban gorbék érintik egymadst, az érinték
megegyeznek, azaz

folz,y) _ ¢h(z,y)
filxy)  dy(x,y)

Ezt a képletet az implicit fliggvény derivalasakor lattuk. Egy kicsit masképp

atrendezve azt kapjuk, hogy van egy olyan A valds szam, melyre

fi(zy) _ fy@y)
o (x,y) O (xy)

Tehat szemléletesen azt varjuk, hogy ha (x,y) feltételes szélssérték, akkor
létezik olyan A, melyre teljesiil:

fe(@,y) = A (2,y) =0,

Err6l szél a kdvetkezs tétel, melyet nem bizonyitunk.
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3.15. Tétel. (Sziikséges feltétel feltételes szélsdértékre) Tegyiik fel, hogy az
f(z,y) és op(x,y) figguények differencidlhatok, és (xo,yo) pont a (3.6) feltéte-
les optimalizdlds megolddsa. Tegyiik fel, hogy grad ¢(xo,yo) # (0,0). Ekkor
létezik olyan AoelR konstans, melyre

fa(x0,Y0) — Xodh(xo,yo) = 0,

Fo (o, 90) — Modi, (w0, yo) = 0.

A fenti tételt atfogalmazva kimondjuk a Lagrange-féle multiplikdtor szabdlyt.
Definidljuk az F': Dy x R — IR hdromuvdltozos fiigguényt:

Ha (xo,y0) megolddsa a feltételes szélséérték feladatnak, akkor van olyan N,
melyre (2o, Yo, No) staciondrius pontja F(x,y, \)-nak.

Tekinsiik az alabbi feltételes optimalizalasi feladatot:

min z, va, max z,Y).
{¢(w7y):0}f( v) & {¢(z7y):0}f( v)

Ehelyett tekinthetjiik az

F(ac,y,)\):f(x,y)—)\qﬁ(a:,y), (m7y>6Df7)‘dR

fiiggvény feltétel nélkili szélsGérték feladatat.

Fontos hangsilyozni, hogy a fenti Lagrange-féle multiplikidtor szabaly csak
sziikséges feltételt ad a feltételes szélsGérték helyére. Tehat az F' fiiggvény
stacionarius pontja lehetséges feltételes szélsGérték, és minden esetben to-
vabbi meggondolas sziikséges.

Példa. Legyen f(x,y) = wxy, és ennek szeretnénk meghatarozni feltételes
szélsGértékét az 2 + y?> — 1 = 0 gorbe mentén. (A gdrbe mentén nincs
belss pont!). Alkalmazzuk a Lagrange-féle multiplikitor szabélyt. Eszerint
az alabbi fliggvény stacionarius pontjait keressiik:

F(z,y,\) = xy — /\(.%'2 +9% —1).

Megjegyezziik, hogy az 22 + y? — 1 = 0 feltételbél adédé halmaz korlatos és
zart, tehat biztosan létezik szélsGérték. A fliggvényértékek nagysagrendjére
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egy el6zetes becslést kaphatunk a szamtani-mértani kozép kozti dsszefliggés
alkalmazésaval, hiszen

x2+y2
2

>\ x?y? = |yl
Emiatt a feltételi halmazon

[f(z,y)| <

)

| =

azaz

. (3.7)

N |

—%gﬂmwg

A Lagrange fliggvény gradiense:

F;(.’I},y,)\) - y_2)\xa
Fé(xvyv)‘) = 33*2)\3/,
Fi(z,y,A) = —(@®+y° —1).

A grad F(z,y,\) = 0 egyenletrendszer megoldasaként ez adodik:
A1 = 0.5, vagy Ao = —0.5.

Igy visszahelyettesitve a A-kat négy stacionarius pontot kapunk:

1 1 1 1

(17173/1) = (727 E)y (1?,3/2) = (_\ﬁ7 _E)’
1 1 1 1

(373>y3) = (_57 \ﬁ)a (:c4,y4) = (ﬁa —E)

A megfelels fiiggvényértékek:
f(z1,y1) =05,  f(z2,y2) = 0.5,

f(x3,y3) = —0.5, f(xq,y4) = —0.5.

A (3.7) osszefliggeést felhasznélva azt kapjuk, hogy f(z1,y1) és f(x2,y2) fel-
tételes maximumok, f(x3,ys3) és f(x4,ys) pedig feltételes minimumok.
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3.14. abra. Példa feltételes szélsGérték szamitasra.

3.7. Fuggvényrendszerek

Ebben a fejezetben egyszerre t6bb fliggvényt tekintiink. Specidlisan, a fligg-
venyek szama megegyezik a valtozok szaméaval. R C R? egy tartomany, ahol
adott két valds fiiggvény, &, ¥ : R — R. A fiiggvényrendszer amit tekintiink:

= U(x,y). (3.8)

Ezt tgy értelmezziik, mint IR? térbeli leképezés, mely az (x,y) ponthoz a
(€,m) = F(x,y) pontot rendeli hozza. Ezt a F : R — R? leképezést szokas
vektormezdnek is nevezni.

Példa. Az affin leképezést igy definialjuk:

= ax+by
n = cx+dy.
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Ezzel mar korabban talalkoztunk, mint IR%-beli linearis leképezés. Témaoren

()=2(0) a2

3.7.1. Invertalhatbsag

igy irhatjuk:

Figgvényrendszerekkel kapcsolatosan felmeriil§ els6 kérdés, hogy vajon -
mint egy IR?-beli leképezés - invertalhato-e? Legyen B a képtér:

B={(mn): {=2(x,y),n=VY(z,9)) : (z,y)eR}.

Tegyiik fel, hogy a leképezés injektiv, azaz kiillonb6z6 R-beli pontokhoz a
képtérben kiilonbozé (€, 1) pontok tartoznak. Ekkor a (3.8) rendszer inver-
tdlhatd. Az inverz rendszer ilyen alaku lesz:

r = g(&n)
y = hmn). (3.9)

3.7.2. Az inverz leképezés differencidlhatosaga

Tegyiik fel, hogy a kiindul6 (3.8) rendszer fiiggvényei és az inverz (3.9) rend-
szer fiiggvényei is differencialhatok.

3.31. Definicié. A (3.8) rendszer tartozé Jacobi mdirixdt igy definidljuk:

(2, y) Py (z,y) grad ®(z,y)
J(z,y) = =
o(zy) Py(z,y) grad ¥(z,y)

A fenti mdtriz determindnsdt Jacobi determindnsnak hivjuk:

D(x,y) := det J(z,y) = @ (2, ), (2, y) — U (2,y) P (x,y).

A Jacobi determinénst szokas igy is jeldlni:

-3
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Megjegyezziik, hogy ez valoban csak formalis jel6lés.

Az inverz rendszer Jacobi métrixat {gy jeldljiik:

9¢(&m)  gn(&m)
K& n) =
he(&:m) Ry (€,m)

3.16. Tétel. Tegyiik fel, hogy a Jacobi determindns nem 0, azaz az (3.8)
rendszer Jacobi mdtriza nem szinguldris az ET egy (xo,10) belsé pontjdban.
FEkkor az (xo,y0) egy kirnyezetében a vektormezd invertdlhato. Tovdbbd, az
mverz rendszer Jacobi mdtriza igy szdmithato:

K& m) = (T (@),
ahol (x,y) és (&,m) eqymds képei.

Specidlisan, az inverz fiigguényrendszer Jacobi determindnsa reciproka az ere-

deti fiiggvényrendszer Jacobi determindnsnak:

d§m) _ 1
d(z,y)  d(z,y)
d(§,n)

Bizonyitas*. A (3.9) egyenleteket (3.8)-be helyettesitve az alabbi azonossé-
gokat kapjuk:

= ®(g(&m), & m)) (3.10)
n o= Y(g(&mn), h(&mn) (3.11)

Derivaljuk mindkét egyenletet £ szerint, majd 7 szerint. Az attekinthetsbh
jelolés kedvéért az argumentumokat nem irjuk ki. Ezt kapjuk:
= O g+ Py (3.12)
= Woge+ W hy (3.13)

1
0

_ o BN
0 = dg, +dh
1

x
o /] BN,
= Vg, + Yy h,
A (3.12) egyenletet szorozzuk meg W!-vel, és a (3.13) egyenletet szorozzuk
meg @/ -vel, majd vonjuk ki egymasbol az egyenleteket. Azt kapjuk, hogy
hy = W .
CT o, - 0L
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Teljesen hasonléan kapjuk a tobbi derivaltat is:

P -
¢ LW — O T
q)/
/
hﬂ = o’ P! _m@/\l,/’
xr y y x
q)/
g, = .

LW, — @;\I’QJ'
Vezessiik be azt a jelolést, hogy
D= @Q% — @;\Iffp

Ekkor a fenti képletek réviden igy irhatok:

\Il/ @/ \I// q)/
! Y ! Y ! !
Ge=—0 =g Me=-—7 M= (3.14)

Az inverz fiiggvény derivaltjara vonatkozo képletek kdnnyebb memorizalasa
érdekében vegyiik észre az egydimenzids esettel valé analégiat. Ha f egyval-
tozos differencidlhat6 fliggvény, melynek derivaltja nem 0, akkor inverzének
derivaltja igy irhaté:

y = f(x).

Most a kétvaltozos fliggvényrendszer ilyen alaku:

P
<\D>'R_>S’

P (z,y)  Py(z,y)

és ennek derivalt-matrixa:

J(z,y) =
U (z,y) Py(z,y)

g
:S— R

Az inverzfiiggvény
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és ennek derivalt-matrixa:

9¢(&m) gn(&m)

K&, n) =
he(§,m)  hyy(&,m)

Emlékeztetiink arra, hogy 2 x 2 matrix inverzét hogyan szamoljuk ki:

b\ d —b
@ 1

:ad—bc

Példa. Tekintsiik a polarkoordinatak esetét a fels§ félsikban, kivéve az origét.

Ekkor a fiiggvényrendszer:
r=va+y? ( =%(y))
§ = arctan 2 ( =Y(z,y).)
x

Ennek Jacobi méatrixa:
z Y

Vatty? P

.%'2 + yQ x? + yQ

j(l’,y) =

Ezért a Jacobi determinéns:
2 y2 1 1

T

= — + = = —.
@2+ 232 " (@2 1232 ety v

Az inverz rendszer

r = rcosf ( =g
y = rsinf ( =h(r0))

Az inverz rendszer Jacobi méatrixa
g, gy cosf r(—sinf)

IC = =
h;.  hy sinf  rcosf
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Ennek determinansa
det (K) = rcos? 6 + rsin 0 = r.

Szamoljuk ki a J ! inverz métrixot:

z —Y
2 2 2 2
P 1 2 +y 24y B
~det J y z a
z? + y2 N x? + y2
_r
Va? 4+ y? Y cosf —rsinf
_ ¥y sinf rcos6
Va2 +y?
3.8. Kitekintés n dimenziéra
3.8.1. IR" pontjai
R" elemeit a rendezett szam n-esek jelentik: P = (x1,...,x,)eR", P' = (2),...,2})eR".

Ezek az n dimenziés tér pontjai.
3.32. Definicié. A két pont tdvolsdga:

2\1/2
/ ) ) .

|P=P'|| = p(P, P') = Rl G

3.33. Definicié. Egqy P = (x1,...,x,)eR"™ pont kirnyezetei n-dimenzids
gombok, melyeket igy értelmeziink:

S(P,e) = {Q = (z,...,2})eR" : Z(mk —x3)? < 52} .
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3.8.2. Parcialis derivalt, teljes derivalt

3.34. Definicid. Legyen SCIR" egy tartomdny, f : S — R, x = (z1,...,x,)€ intS
eqy belsd pont. Az i-dik vdltozo szerinti parcidlis derivdlt:

7 (@) o () = lim f@r, @i, & miga ) — f(@r, . @)

- 8561 E—x; f — X ’

feltéve, hogy a fenti hatdrtériék létezik és véges.

3.35. Definicio. f: S — R n-vdltozds valés figgvény, S C R™. Legyen
x belsd pontja S-nek. Az f fligguény differencidlhatd x-ben, ha elegendden
kicsi Ax = (Axy, ..., Axy) megudltozds esetén, melyre x + AxeS, teljesil az
aldbbi dsszefliggés:

f(x +Azx) = f(z) + A- Az + o(||Az])), (3.15)

ahol AeR™ fiiggetlen Ax-tdl, | Az| = /Az? + ... + Ax2.
A kétvaltozos esethez hasonléan igazolhatéak az alabbi allitasok:

3.17. Tétel. Ha f differencidlhatd egy acS belsé pontban, akkor az (3.15)
képletben szerepld konstans vektor a parcidlis derivdltakbol dll:

A= (fz,(a),.... fz,(a)) = grad f(a).

3.18. Tétel. Tegyiik fel, hogy az f figguény parcidlis derivdlt fliggvényei
léteznek és folytonosak eqy adott x pontban. Ekkor [ teljesen differencidlhatd.

3.36. Definicid. Tegyiik fel, hogy az f fliggvény parcidlis derivdlt fliggvényei
differencidlhatdak. Ebben az esetben a mdsodik derivdlt, o Hesse mdtriz,
olyan n X n dimenzids mdtriz, melynek (i, j)-dik eleme:

B .
_8:Eiaxj '

H;j(z)
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3.8.3. Irdnymenti derivalt

3.37. Definicié. Adott az f : S — R fiiggvény, xe intS belsd pontja S-nek.
Adott egy v irdny, v = (vi,...,v,)eR", mely egységnyi hosszi vektor,

n 1/2
(Z vf) =1.
i=1

Ekkor az f fiiggvény v irdnyd derivdltja, ha a hatdrérték létezik és véges:

Do) ot T 20) — 1(x)

0—0 0

3.19. Tétel. Ha f differencidlhatd x-ben, akkor Yv irdanyban létezik D, f(x)
és
n

Dyf(z) = vrfy, (@) + ... Foufy, (@) = D vifs, (2).

=1

3.8.4. Osszetett fiiggvény

Legyen f(uq,...,u,) n-valtozos fiiggvény, és adottak a ¢1(x,y),. .., on(z,y)
kétvaltozos fliggvények kozos Dy, = R C R? értelmezési tartomannyal.

Az Osszetett fliggvény kétvaltozos fliggvény, amely igy irhato:

F($,y) = f(¢1($7y)7 ce qbn(x,y))

Ha f és ¢;, © = 1,...,n differencialhatéak, akkor F' is differencidlhato, és

n

P =35 ) on(e ) 22 o).
=1
Flla,y) ) Bulan) o w2,
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3.8.5. SzélsGérték

3.20. Tétel. (Sziikséges feltétel) Legyen f n-vdltozds differencidlhatd figg-
vény, f: S — IR, S C R". Ha az értelmezési tartomdny zoe int(S) belsd
pontjaban lokdlis szélséértéke van a fiiggvénynek, akkor grad f(xzo) = 0.

3.21. Tétel. (Elégséges feltétel) Legyen S C R"™, f : S — R n-vdltozds
fiiggvény, kétszer differencidlhaté az xoe int(S) pontban. Tegyiik fel, hogy
grad f(xo) = 0. Jeldlje Hy a pontbeli Hesse mdtrizot.

1. Ha H > 0, azaz pozitiv definit, akkor xo lokdlis minimum.

2. Ha H <0, azaz negativ definiy, akkor xq lokdlis mazimum.

3. Hao H indefinit, akkor nincs szélsdérték.

4. Ha H szemidefinit, akkor tovdbbi vizsgdlat sziikséges.
Emlékeztets: Az A n x n-es szimmetrikus matrix pozitiv (negativ) definit,
ha minden zelR", x # 0 esetén 7 Az > 0 (< 0). Ezt ugy jeldljiik, hogy

A >0, (A <0). Ha létezik zeR™, melyre 7 Az > 0 és létezik yeR™ hogy
yT' Ay < 0, akkor a matrix indefinit.

3.8.6. Lagrange-féle k6zépértéktétel n dimenziéban

3.22. Tétel. Legyen f : S — R olyan n-vdltozds fligguény, mely differen-
cidglhato valamely rogzitett xeS egy U kérnyezetében. Legyen heR™ olyan
megudltozds, melyre (x + h)eU. Ekkor létezik 0e(0,1):

fle+h) = f(z) = grad f(z+0h)-h=> f.(&)hi,
=1

ahol £z =x+60h és 0 <6 < 1.

Megjegyezziik, hogy a fenti tételben grad f(xz 4 6h) sorvektor, h pedig osz-
lopvektor. A képletben szerepld - skalaris szorzast jelol.
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Bizonyitas*. Vezessiik be az alabbi egyvaltozos fiiggvényt:
F(t) := f(z+th) = f(z1 +thi,...,Tn + thy).

Ekkor F': [0,1] — IR differencialhato valos fiiggvény, tovabba F'(0) = f(x) és
F(1) = f(xz+h). Erre a fiiggvényre alkalmazzuk az egyvaltozos Lagrange-féle
kozépértéktételt. Eszerint létezik Oe(0, 1), melyre:

F(1)-F(0)=F'(0)-1.
Mivel a lancszabaly alkalmazasaval rogzitett t-re
F'(t) = fo (x+th) hy + ...+ f, (x+th) hy,

ezért

F/(e):f;1<£ac) h1+--~+fa/cn(£x) by, §o =z +0h

és ebbdl az allitads kovetkezik.

3.2. Koévetkezmény. Legyen S C IR" konvex tartomdny (vagyis bdrmely
két pontjat Gsszekitd szakasz is benne wvan S-ben), és adott f : S — RR.
Feltessziik, hogy f differencidlhato és grad f(z) = 0 minden xeS-re. Ekkor
a fliggvény konstans.

Bizonyitas*. Teljesen hasonld az egyvaltozos esethez.

Megjegyzés. A fenti allitas Osszefliged tartomanyon értelmezett fliggvényre
is igaz, a konvexitas nem sziikséges. (HF: Miért?)

3.8.7. Taylor-formula*

Feladat. Legyen f: S — R kétvaltozos fiiggvény, amely elegendGen sokszor
differencidlhato valamely (zg,y0) pontban. Adjunk becslést az

f(SU, y) - f(liﬂv yO)

kiilénbségre az (xo,yo) pontbeli derivaltak felhasznalasaval.

A fenti feladatra egy megoldast az érintd sik alapjan tudunk adni, eszerint

f(x,y) = f(x0,90) + fr(o,y0)(x — z0) + f, (0, Y0)(y — vo)-
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Ez megfelel az els6foka Taylor-polinomnak.

Magasabb foku Taylor polinomhoz vezessiik vissza a feladatot az egyvaltozos
esetre.

Legyen

F(t) = f(zo + tAz, yo + tAy),
ahol

Az = x — x0, Ay =y — yo.

Ekkor F' : [0,1] — IR elegendGen sokszor differencialhat6 valos fiiggvény,
F(0) = f(xo,%0), F(1) = f(z,y). Az F fiiggvény t = 0 pont koriili Taylor-
formulajat fogjuk hasznéalni. Ehhez sziikségiink lesz a derivaltakra:

F0) = f(zo,v0)

F'(t) = fu(zo+ tAz,yo + tAy) Az + fy(xo + tAz,yo + tAy) Ay
F'(t) = f!(xo+tAz, yo +tAy)(Ax)* + 2 [y (w0 + tAz, yo + tAy) AzAy +

+ f (o + tAT, Yo + tAy) (Ay)?.

Ha feltessziik, hogy F'(t) n-szer differencialhaté, akkor indukciéval belathato,
hogy:

([ n a" e
FO(t) = Z ( A ) (Wy{l—k(wo +tAz, yo + tAy) (Az)F(Ay)"F
k=0

A Taylor formula alapjin ezt kapjuk:

f(z,y) — f(xo0,90) = F(1) = F(0) =

0
= (fzAz + fyAy) + ,Z( ) Ay W($07y0)+lzn,

ahol L,, a Lagrange-féle maradéktag.

Specialisan n = 2 esetén kiirjuk pontosan a tagokat:

) = flao ) terad flaow) (‘30 ) +5(Ae o)) (37 )+1a

ahol H(zg,yo) a Hesse-méatrix.
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Altalanos masodrendi Taylor-formula. Legyen f n-véiltozos, kétszer
differencialhato fiiggvény S-ben, S C R". Ekkor tetszéleges x, (x + h)eS
esetén
f(z+h) = f(x) +grad f(z)-h+ Ly,
ahol
AT = (h1,....hy),  grad f(z) = (fh,--\ [2),

tovabba a Lagrange-féle maradéktag igy irhato:

leéhT (/01(1—75) H(z + th) dt)h.
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4.1. Az integral értelmezése

Ismétlés. Egyvaltozos fiiggvény esetén a Riemann integralt hatarértékként
értelmeztiitk. Adott f : [a,b] — R korlatos fiiggvény. Az [a,b] intervallum
egy felosztasit véges sok pontjaval adtuk meg, a =zo <1 <--- <z, =b.
Bevezettiik az adott felosztashoz tartozd alsé- és felsg kozelits sszegeket:

n n
Sn= mi-(wi—xi1),  Sp=Y_ M- (zi— i),
i=1 1=1

ahol m; = inf{f(z), ve[x;_1,z;]}, M; = sup{f(z), xe[z;—1,x;]}. Ha az also6
kozelits Osszegek supremuma és a felsé kozelité 6sszegek infimuma egyenld,
akkor a fiiggvény Riemann-integralhato.

4.1.1. Kettds integral

Legyen R C R? korlatos és zart tartomany. f : R — RY folytonos fiigg-
vény. Célunk, hogy meghatarozzuk az f(z,y) feliilete alatti térrész, azaz a
kévetkez6 harom dimenzioés tartomany térfogatat, V(.5)-t:

S={(z,y,2): (z,y)eR, 0< 2 < f(z,y)},

Tekintsilik az R halmaz felosztasat olyan halmazokra, melyeknek nincs kdzos
bels6 pontjuk: R = R; U...UR,. Az R halmaz teriiletét jelolje A(R).

Az i-dik halmazon a fiiggvény infimuma m,; és suprémuma M;:

m; = inf{f(z,y): (z,y)eR;}, M; = sup{f(z,y): (z,y)eR;}.

Ekkor a felosztashoz tartozé also- és felsG kozelits Gsszegek:

$n=Y miA(R) é Sp=> MAR) = s, <V(S) < Sy
=1 =1

4.1. Definicié. Fgy R C R? halmaz dtméréje két legtdvolabbi pontjinak
tdvolsdga:
(5(R) = Sup{HP1 — PQH . Pl,PgﬁR}.
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4.1. abra. A kett@s integral kozelitése

Legyen a fenti felosztas finomsaga

§ = max O(R;).

i=1,...,n

Mivel f folytonos R-en, ezért az egyenletesen folytonossig miatt Ve > 0-hoz
36 > 0, hogy ha a felosztas finomsaga ennél kisebb, akkor

M, —m; <e.

Ekkor

Ezért

S, —s, =0 ha max J(R;) — 0.
1<i<n

fly médon az integral értelmezhets. Az imént definialt térfogatot igy jeldljiik:
ves) = [[ s
R

Altaldnos esetben a fiiggvényrsl nem tessziik fel sem a folytonossagot sem a
nem-negativitast. Az integralt a Riemann-féle kozelit§ 6sszegek segitségével
fogjuk definidlni.
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4.2. Definicid. Legyen f: R — R korldtos figgvény (nem feltétlenil nem-
negativ), R korldtos tartomdny R*-ben. Legyen (&, m;)eR; azi-dik tartomdny
tetszdleges pontja, a hozzd tartozd figguényérték f; := f(&,m:). A felosztds-
hoz tartozd Riemann-féle kézelité dsszeg:

V,, = Z; fi A(Ry).

Az f fiiggvény Riemann-integrdlhato, ha létezik az aldbbi hatdrérték:

lim V., =1V,
n—oo,
max §(R;)—0

ahol V' értéke figgetlen a (&§,m;) pontok vilasztdsdtdl. Ekkor ezt igy jeléljik:

[ 1@wir= [[ e ey,
R R

4.1. Kovetkezmény. Ha az f folytonos eqy R korldtos és zdrt tartomdnyon,
akkor f ezen a tartomdnyon integrdlhato is.

Példa. Legyen f(x,y) = 1 minden (z,y)eR esetén. Ekkor

J[ 1ar=awm.

R

Specialis esetkeént tekintsiink egy R téglalapot, R = [a,b] x [¢,d]. Az interval-
lumokban legyenek a felosztasok egyenletesek: az [a, b] intervallumot osszuk
n részre, a [c, d| intervallumot m részre. Az = tengelyen egy részintervallum

b—a d—c

hossza Az = , az y tengelyen egy részintervallum hossza Ay = ,
m

n
és N = nm. Ekkor a kozelit§ Osszeg

Vv = > (& m)AzAy.

i=1 j=1

Példa. Legyen R = [0,1] x [0,1], f(z,y) = =. A kiszamitandé tartomany
egy félkocka, a 4.2. dbran lathato.
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4.2. abra. Az f(z,y) = z fliggvény alatti tartomany, félkocka.

A fliggvény folytonos, korlatos és zart tartomanyon van értelmezve, ezért
integralhatd. Geometriai meggondolas alapjan V = i—et varunk.
Egyenletes felosztast tekintiink mindkét irdanyban, N = n?. Az (i,5)-dik

résztartomanyon, [z;_1, ;] X [yj—i, y;]-n a Riemann 6sszegben hasznalt fiigg-
veényérték legyen x; = i/n. Igy a megfelels Riemann-6sszeg, és hatarértéke:

n
1 lam+1) 1 1 1
= Sy SP  2 lim Vy = —.
Vi n;nQ% 2 2 2 "o N TN T g
-

Példa. Legyen R = [a,b] X [c,d] kétdimenzios intervallum. Tegyiik fel, hogy
f(z,y) = F(z)G(y), azaz a fiiggvény szeparalhato. Hatérozzuk meg az

[ rocw .y
R

kettds integral értékét. Egyenletes felosztasokat hasznalva

Viv =D > flGm)AzAy =Y > F(&)G(n)AzAy =

i=1 j=1 i=1 j=1
d

n m b
=) F(&)Az-Y Gnj)dy — /F(:c)da:-/(;(y)dy.
1 j=1 2

1= c
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Ezért ebben az esetben a kettds integral két integral szorzata:

[ F@6t) ) - /b F)ds - /d G(y)dy.
R a c

Példa. Legyen az integralando fiiggvény f(x,y) = e* ¥, az integralasi tarto-
many R = [0,1] x [1,2]. Ekkor

// " VdR = jemdxje_ydy =(e—1[-(e2—eh) =
0 1

R

4.1.2. A kettss integral alaptulajdonsagai

A definiciobdl lathatd, hogy f > 0 nem sziikséges az integral értelmezéséhez.
Altalanos esetben tn. eldjeles térfogatrél beszéliink.

4.1. Allitas. Tegyiik fel, hogy f integrdlhaté R-en. Ekkor

1. Tetszbleges ceR esetén cf is integrdlhatd, és

// of (z,y)dR = c// F(ay)dR.
R R

2. Ha g is integrdlhaté R-en, akkor f + g is, és

/R/(f+g)dR:/R/de+/R/ng.

3. Hao R = Ry U Ry, ahol Ry, Ry nem dtfedéek, akkor

//de:é[fd]ﬁ—l-é[deg.

R
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3a. Ha feltessziik, hogy A(R2) =0, akkor:

//de:é[del.

R

Ez azt jelenti, ha f(x,y) értékét egy O mértékd halmazon megvdltoztal-
guk, akkor az integrdl értéke nem vdltozik.

/R/dez 0.

5. Ha f(xz,y) > g(x,y) minden (z,y)eR-re és g integralhatd, akkor

//de>/ gdR.

R R

4. Ha f >0, akkor

Kovetkezmény. (Hdromsziog egyenlétlenség) Ha f integralhato, akkor

JE /chm .

R

Valoban, |f(x,y)| > f(z,y) és |f(z,y)] > —f(z,y).

4.1. Tétel. (Integrdl kiozépértéktétel) Tegyiik fel, hogy a figguény korldtos,
éspedig m < f(z,y) < M minden (z,y)eR esetén. Ekkor

m- A(R) < //deg M- A(R).
R

Tovdbbd ha f folytonos és R dsszefiiggd, akkor létezik (§,m)eR, hogy

/ fAR = f(€.n) - A(R).

R
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4.1.3. Kettds integral kiszamitasa
Integralas téglalap tartomanyon

Legyen R kétdimenzios intervallum, R = [a,b] X [¢,d] és f : R — R integ-
ralhato fiiggvény (nem feltétleniil szeparabilis).

4.2. Tétel. Minden yelc,d] esetén értelmezziik a @ : [c,d] — R figgvényt:

b

B(y) = / f(xy)dz.

a

Ekkor ® integrdlhato, és

/d ®)dy = [[ f(e.0)dR.

R
Forditva is igaz, ha definidljuk a VU : [a,b] = R fiiggvényt, mint

d

() = / f(x.y)dy,

[

akkor U is integrdlhato és

Bizonyitas*. Vdzlat. Mivel f integralhato, ezért az egyenletes felosztasokat
tekintve tetsz6leges Ve > 0-hoz dN kiiszébindex, hogy ha n,m > N, akkor

IZZf(xj,yi)(bma) (dnc) - //f(a:,y)dR| <e.
R

i=1 j=1

Ha a fenti egyenletben m — oo, akkor az els§ tag integral kozelits Osszeg,
ezért

> 1Y )

j=1
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Ezért n — oco-re az egész Osszeg hatarértéke

Z@yl d—c) —>/

Tehat ha R = [a, b] X [c, d] téglalap-tartomanyon integrélunk, akkor

| rar- /b /d f (. y)dyda = /d /b f (@, y)dady.
) J .

Megjegyzés. Az integral kiértékelése "belilrgl-kiviilre" megy, azaz

b d b d
//f(w,y)dydx:/ /f(:c,y)dy dz.

Példa. Legyen f(z,y) = 2> + 4y, és R = [-2,2] x [1, 3]. Ekkor
2 3 2 y=3

// z? + 4y)dydr = / {ny + ZyQ} dr =
Z21 2 -

2
16
= /(2#’ +16)dz = 2(5° +32).
-2
A forditott sorrendben elvégezve az integralast ugyanez az eredmény jon ki.

Integralas normaltartomanyon

4.3. Definicié. R C R? egy x szerinti normdltartomdny, ha J[a, b] inter-
vallum és 3P1, Py : [a,b] — R szakaszonként folytonos figguények, melyekre
O (x) < Po(x) minden x-re, és

R={(z,y):a<z<b, &i(x) <y < Dy(z)}.
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X Vv

Hasonldan, R C R? y szerinti normdltartomdny, ha létezik [c, d] intervallum
és léteznek W1, Vg : [c,d] — R szakaszonként folytonos figguények, melyekre
Uy (y) < Wy(y) minden y-ra, és

R={(z,y):c<y<d, ¥i(y) <z < Vy(y)}.

4.3. Tétel. Ha R x szerinti normdltartomdny, f : R — IR integrdlhatd,

akkor
b ®a(z)

J[1wwir=[ [ s iy iz,
R

a <I>1(a:)
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Ha R y szerinti normdltartomdny, f: R — IR integrdlhato, akkor

d Ya(y)

J[1@wir=[ [ sty doay
R

¢ Ui(y)

Példa. Legyen R haromszog alaki tartomany, melynek csucsai a (0,0), (a,0)
és (a,a) pontok. Ekkor R mindkét valtozo szerint norméaltartomany, éspedig

R = {(z,y): 0<z<a, 0<y <z},
R = {(v,y): 0<y<a, y<z<al
y
|
[
-——--
|
I X
r=a

Adott f(z,y) : R — R, ezen értelmezett fliggvény. Ekkor

/!f(x,y)dRzD/ajf(x,y)dydx:jy/af(x,y)d:cdy.

Ha specialisan f(z,y) = ¢(y) alaka, akkor
| [ etwdsdy= [ otwia - ya.
0y 0

Példa. Mennyi f(x,y) = zy integralja a fenti hdromszogtartoméanyon?

a X a y2 y=x
//wyd(w,y):/ /wydy d:n:/ Y dr =
R 0 \0 0 v=0
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Integralas kor alakda tartomanyon

1. Példa. Legyen R; az egységkor:
Ry ={(z,y): «®+y* <1},

Ez tekinthets példaul x szerinti norméaltartomanyként.

Ri={(z,y): —1<z2<1, —V/1—-22<y<+1-2?}

Ekkor az integral {gy szdmolhato:

//f(x,y)dR:/l mf(x,y) dy da. (A1)
Ry 1A

Lathato, hogy "beliilrdl kifelé" végezve a szdmolést, tipikusan nehéz szamolas
varhato.

2. Példa. Legyen Ry az alabbi korgytird:

Ro={(z,y): 1<2?+y? <4}
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ey

Ez a tartomény nem normaltartomany. De fel tudjuk osztani olyan részekre,
amelyek mar normaltartomanyok, és ott elvileg tudunk integralni.

Ekkor az integrél, ha f(z,y)-ban az (z,y) argumentumokat nem irjuk ki:

-1 viA—22 1 —v/1—22 1 Va—
/ fdR = / / f dydx—i—/ / f dydx—i—/ / fdydaH—/ / fdydz.
Ry Via? Y N _Via?

Ez mar "reményteleniil nehéz" szamolas barmely tipikus fiiggvény esetén.

4.2. Koordinata transzformacio

Attérés polarkoordinatakra

A fenti példakban szereplé R; és Ry tartomanyokon az integralas tipikusan
rendkiviil nehéz szarholasra vezetnek, ha azokat az (z,y) sikon normaltarto-
manykeént irjuk fel.

Nézziik meg, polarkoordinatakat hasznalva mit kapunk? Itt felhasznaljuk,

hogy
x=rcos(f) és y=rsin(0). (4.2)

Ekkor atirva polarkoordinatdkra ezt kapjuk:

Ri={(z,y): *+9y°<1} = Ri={(r0)0<r<1, 0<6<2n}.
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Ry={(z,y): 1<a’+y* <4} = Ry={(r,0): 1<r<2, 0<6<2r}.
Lathato, hogy a polarkoordinatdkat hasznédlva Ry és Re téglalap tartomany:
R} =10,1] x [0, 27), Ry =1[0,1] x [0, 27).

Téglalap tartoméanyon pedig konnyen integralhatunk. Erdemes tehat az in-
tegralban helyettesiteni.

4.4. Tétel. Adott eqy f : R — R integrdlhats figguény, ahol R korldtos
tartomdny. Tekintsik a (4.2) poldrkoordindta helyettesitést. Legyen tovdbbd

R' ={(r,0): (rcosf,rsinf)eR}.

//f(:z:,y)d(x,y)://f(rcos@,rsinH)rd(r,H).
R R

Vegyiik észre, hogy a jobboldalon az integraljel mogdtt egy extra r tényez6

FEkkor

jelent meg!
Példa. Legyen f(z,y) = 2° — y?, az integraldsi tartomany egy nyolcadkor.

3

A fenti R tartomany megfelel§jét igy tudjuk leirni polarkoordinatakkal:
R ={(r6): 0<r<4, ogegg}.

Lathato, hogy a tartomény az (r,0) sikon téglalap lesz. Ekkor

4 w/4

// (22 — yH)d(z,y) = / / 2(cos? 0 — sin® 0)rdfdr =
R 00
4 4
:/rgdr
0

474 : w/4
(cos2 0 — sin? 0)do = {T} . {sm(%)} =392,
0

o2
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Altalanos helyettesités

Polarkoordinatak helyettesitése utén altalanos helyettesitéseket fogunk te-
kinteni.

Ismétlés: Helyettesités egyvaltozos fiiggvényekre.

b

JECCE f F(6(w) (u)du,

a

ha az integralban a = = ¢(u) helyettesitést vegezziik, ahol ¢ szigoruan mo-
noton differencialhato fiiggvény, ¢p(a) = a és ¢(5) = b.

4.5. Tétel. Adott eqy f : R — R integrdlhats fliggvény, ahol R korldtos
tartomdny. Tekintstink egy transzformdciot:

x = D(u,v)
Yy = qj(uav)a

, melyrdl feltessziik, hogy Jacobi mdtriza sehol sem szinguldris, azaz

P, (u,v) D4 (u,v)
J(u,v) =
U (u,v) Wl (u,v)

jeloléssel det J(u,v) # 0 R-ben. Legyen tovdbbd
R = {(u,v) : (®(u,v),¥(u,v))eR}.
Ekkor

J[ e = [ 1@, 0w 0D, o).
R R’

Az atalanos tételben specidlis esetként tekinsiik a polarkoordinatakat. Az
(z,y) helyett az uj koordinatak (r,0):

r = rcosb,

y = rsinf.
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A Jacobi determinéans:

cos@ —rsinf
D(r,0) = det = rcos’f 4 rsin?f = r.
sinf rcoséf

Igy a megfelels integral-transzforméacio valoban:

//f(;v,y)d(x,y)://f(rcosﬁ,rsinH) r d(r, ).
)

R
Példa. Legyen f(x,y) = xy, az integralasi tartoméany egy félkor:
R={(z,y):y>0,(z—2)*+y* <4}.

Polarkoordinatéak segitségével

4.3. dbra. Félkor alaki integralasi tartomany.

Lathatoan ez 0 szerinti normaltartomany. Igy

7/24cos @
//xy d(z,y) = / / r? cosO sinf r drdf =
R 0 0

32

=64 | cos® 6 sinfdh = 3

O\wh\
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4.3. Kitekintés a harmas integralokra

Tekintsiik egy harom dimenzios S C R? tartomanyt és egy ezen értelmezett
f:S =R, f(z,y, z) fliggvéenyt. A kettds integralhoz hasonloan definidlhato

a harmas integral:
JJ] t@ s
S

4.3.1. Az integral értelmezése

1. lépés. Legyen S korlatos tartomany, f ezen értelmezett haromvaltozos
fiiggvény. Tekintsiik egy nem 4tfed§ mérhets felosztésat:

Legyen (&;,m;,(;)eS; tetsz6leges pont. Definidljuk a felosztashoz tartozo
egyik Riemann kozelits 6sszeget:

=1

A fiiggvény integralhatd, ha van hatarérték, fiiggetlen a felosztassorozattol:

lim I,.
n—oo,
max(8(S;))—0

Ez a hatarérték az integril, melynek jeldlése

///f(x’y’z)dsz///f(%yaz)d(%y,z).
o s

Pozitiv értéki fliggvény esetén a harmas integrél fizikai interpretacidja 'to-
meg’ lehet. Adott egy szilard test, melyet az S térrész hataroz meg, és ennek
stirtisége pontonként valtozik. Az (z,y, z) pontbeli stirtség f(z,y, z). Ekkor
a test tomegét igy adhatjuk meg:

J|] #a.2) diap.2
S

Specialisan, f(z,y,z) = 1 esetén a térfogat mérdszamat kapjuk vissza.
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Specidlisan legyen S = [a, b] X [¢,d] X [e, g] haromdimenzios téglalap, azaz

S ={(x,y,2) : xe[a,b], ye[c,d], z €[e, g]},

ahol @ < b, ¢ <d, e < gelR. Legyen f: R — IR korlatos fiiggvény.

4.6. Tétel. A fenti feltételek mellett

b d g
/é f(x,y,z)dR:a/c/e/f(:z,y,z)dz dy dz,

ahol az integrdldsok sorrendje felcserélhetd.

Most kicsit altalanosabb esetet tekintiink. Legyen S C IR? mérhet6 tarto-
mény az (x,y) sikon.

4.4. Definicié. Az S tartomdny (x,y) sik szerinti normdltartomdny, ha a
kévetkezd alaku:

S = {(x,y,z) : (x,y)eR, F1($,y) <z< FZ(%@/)L

ahol R C R?, Fy, Fy : R — R olyan folytonos fiigguények, melyekre Fy(z,y) <
Fy(z,y) minden (z,y)eS esetén.

4.2. Allitas. Legyen S a fenti definicidban szerepld normdltartomdny, és
f S = R integrdlhatd fiiggvény. FEkkor

Fo(z,y)

//fxy, as= [ [ s dey.

R Fi(zy)

Példa. Hatarozzuk meg egy ellipszoid térfogatat. Az ellipszoid:
2?2 2 22

Ez egy haromdimenziés norméltartomany

S:{(x,y,z): (.T y)eR |Z|<C 1-—-=
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ahol
x
R={(x,y): =+ <1}

Igy a fél ellipszoid térfogata

22 g2
//C\llasz d(z,y).
R

Uj koordinatakat vezetiink be

= racos(f),
0,1] 6Ge€l0,27).
y = 7 bsin(0), rel0,1) 0€[0,2m)

A koordinata transzformacio Jacobi determinansa

acos(f) —rasin(0)
= det = abr.
bsin(f)  rbcos(d)

Ezért a fél-térfogat

27

1
\/ —abc// 1 —r2r dOdr =
0 0

1
_.2)3/2
= abc 27 [—(13;2);] = z7mbc.
0

4.3.2. GOmbi koordinatak IR3-ban.

4.5. Definicié. R3-ban. Egy (x,y,z) pont gémbi koordindtdi (r,0,p),
melyeket a kovetkezdképpen definidlunk.

1. r a pontba mutaté vektorhossza. r = \/x%2 +y2+ 22, r > 0. .

2. 0 a pontba mutatd vektor (x,y) sikra vett vetiletének az x tengely pozitiv
részével bezdrt szége. 6e[0,2m)

3. ¢ a pontba mutats vektor és a z tengely pozitiv részének a szoge. @el0, 7]
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x(1,0,0)

X
|
|
|
]
|
|
|
|
|
]
|
|
|
|
1
]
i
|
|
]
|

~

4.4. dbra. A gdmbi polarkoordinitak.

A gombi koordinatakkal az (z,y, z) pont igy irhato le:

xr = rsinp cosf
y = rsiny sinf
zZ = rcosp.

Hatarozzuk meg az (r,0,¢) — (z,y, 2) transzformaci6 Jacobi métrixat:
singpcosf rcospcos —rsinpsind
J(r,0,0) = | sinpsinf rcosesin® rsinpcosd
CoS —rsinp 0
Kénnyen lathato, hogy a fenti matrix determinansa

det J = r? sin .

Koordinata transzforméacié harmas integralban

Adott f(x,vy,2) 3-valtozos fiiggvény, értelmezési tartoméanya R C IR3. Atte-
riink 1j koordinatarendszerre, az (z,y, z) valtozok helyett az (u, v, w) valto-
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zokat tekintjiik, ahol a transzformaciot leir6 fliggvényrendszer:

x = Fi(u,v,w)
y = Fa(u,v,w) (4.3)
z = Fs(u,v,w).

A transzformacio hatésara egy R tartomany képe R’ C IR? lesz:

R = {(u,v,w): F(u,v,w)eR}.

4.7. Tétel. Legyen R C R? korldtos tartomdny és f : R — R integrdlhatd
fiiggvény. Tekintsik a fenti (4.3) koordindtatranszformdcidt, melyrdl fel-
tessziik hogy Jacobi mdtriza nemszinguldris, azaz

grad F
J(u,v,w)=| grad F |, D(u,v,w)=det J(u,v,w) # 0.
grad F3

Ekkor

// F@ . 2)d(z, y, > //fF1 ) Fo(), F5()) - D, v, w) d(u, v, w).

Példa. Az el6z§ fejezetben lattuk a gémbi polarkoordinatékat, ez egy le-
hetséges koordinatatranszformacié. Szamoljuk ki az egységgdmb térfogatét.
Legyen

R={(z,y,2): 2* + 9>+ 22 < 1}.

A gombi koordinatakkal R’ téglalap-tartomany:
R ={(r,p,0) : r<1,0<p<m 0<6 <27}

Ekkor

21

/rQSingo df dy dr =
0

fffraess - |
R 0

™

i
47

7'2dr/sing0 dp = 5
0

I
o

O\H O\q
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Példa. Hengerkoordindtik. Egy (z,vy, z) pont hengerkoordindtdi (r, 0, z), me-
lyeket a kovetkezdképpen adunk meg: (r,0) a pont (x,y) sikra vett vetiile-
tének polarkoordinatai, z pedig a harmadik Descartes koordinata:

r = rcosf
y = rsinf
= z.

ZA‘

\

x Q

4.5. abra. A hengerkoordinatak szemléletesen.

Ennek Jacobi matrixa

cosf —rsinf 0
J(r,0,z) = sinf rcosf 0 |,
0 0 1

tehat a megfelels Jacobi determinans

D(r,0,z) =r.
4.4. Improprius kettds integralok
Eddig feltettiik, hogy f : R — IR korlatos fiiggvény, és R is korlatos. Két

tipust altalanositast tekintiink, nagyon hasonlé lesz a megkozelités mindkét

esetben.
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4.4.1. Nem korlatos fiiggvény integralja

Elscként tegyiik fel, hogy R C IR? korlatos, és f : R — IR folytonos néhany
pontot kivéve, ahol nincs véges hatarértéke.

Tekintsiik olyan tartomany-sorozatot melyre
RiCRy;C...R,C...CR, lim A(R,) = A(R)

n—00

és f folytonos az R, tartoményon.

4.6. Definicié. A figgvény improprius értelemben integrdlhatd, ha az
aldbbi hatdrérték létezik:

1=t [ ey
Rn

és értéke figgetlen az (Ry) halmaz-sorozat megudlasztasdtol.

4.8. Tétel. Tegyiik fel, hogy 3(R,) halmaz-sorozat, melyre

1. f folytonos Ry -en,
2. R, C Ry4+1 minden n-re,

8. lim A(R,) = A(R),

n—oo

4. és AM > 0 melyre

[ <o

R'n

Ekkor f improprius értelemben integrdlhatd.

Példa. Legyen f(z,y) =Iny/22 + y? és az integréalasi tartoméany
R={(r,y): 0<a® +4% <1}

Gondot okozhat, hogy a fiiggvény a (0,0)-ban nincs értelmezve, és kornye-
zetében nem korlétos.
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Tekintsiik R kozelitését:
<Va?+y? <1}

A halmaz megfelelGje polarkoordindtakban:

1
n

R, = {(a:,y) :

1
R;:{(r,ﬁ): 0<6 < 2m,; Egrgl}.
Az R, halmazon a fiiggvény integralhato, és
2 1
/\fxyda;y //\lnr]rdrdé?—
0 1/n
= 277/ |Inr|r dr < 277/1nr|r dr =

1/n

Felhasznaltuk, hogy a g(r) = rInr-nek 0-ban van véges hatarértéke, emiatt
integralhatd. Az improprius integral értéke

1

= / In a2+ y2d(z,y) = 27T/rlnrdr = —*7'[',
R

0
melyet parcialis integraléssal szdmoltunk ki.
Példa. (Hatvanyfiiggveny integralja.) Legyen

1

VeEmn

valamely a > 0 mellett, és az integrilasi tartomany

f(z,y) =

R={(z,y): 0<2®+¢> <1}

A fiiggvény a (0,0) pontban nincs értelmezve, kornyezetében nem korlatos.

Az R tartomanyt kozelitsiik az alabbi médon:

<Va2+y? <1}

Ry = {(2,9) :

3\*—‘
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4.6. abra. A hatvanyfiiggvény az orig6 kozelében oo = 1 esetén.

Ekkor
1 27 1 1 1 1
J[t@wden = [ [rordoar=2n [ o <on [ ar
Rn 1/n O 1/n 0

Ez az utébbi improprius integral akkor konvergens, ha a—1 < 1, azaz a < 2.
Ebbdl az kovetkezik, hogy a hatvanyfliggvény o < 2 esetben improprius
értelemben integralhaté a lyukas egységkoron.

Ebbdl kovetkezik az alabbi elégséges feltétel improprius integral létezésére.

4.9. Tétel. Tegyiik fel, hogy az f : R — R folytonos fiiggvény nem korldtos
az R korldtos tartomdny valamely pontjdnak kérnyezetében, legyen ez példdul
az origd. Tegyiik fel, hogy Jae(0,2) és IM > 0, melyre

|f(z,y)] < V(z,y)eR.

M
VP

Ekkor f improprius értelemben integrdlhatd.

4.4.2. Integralas nem korlatos tartomanyon

Tegyiik fel, hogy R nem korlatos és f: R — IR folytonos fiiggvény.
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4.7. Definicid. Tegyiik fel, hogy létezik R-nek olyan kiozelitése, melyre R,
korldtos, és

RiCRs...CR  tovdbbd UanR.

Ekkor tudjuk, hogy Vn-re létezik az / f(z,y)d(z,y) integrdl. Ha az aldbbi

hatarérték létezik és figgetlen az (R ) halmaz sorozat megudlasztdsdtol:
lim //f x,y)d(x,y),
n—oo
R'IL

akkor f improprius értelemben integrdlhato, és
J[ @i =[] 1@
R Ry

4.10. Tétel. Tegyiik fel, hogy létezik eqy olyan - o definicidban szerepld -
(Ry) sorozat és M szdm, melyre

J[ 1@l <31, vn

RTL

azaz az integrdlok egyenletesen korldatosak. Ekkor [ improprius értelemben
integrdlhatd, és tetszdleges mdsik (Sy) tartomdny-sorozat esetén, mely kielé-
giti a fenti feltételeket

hm//f:rde —//fxy

Példa. Legyen f(x,y) = e*‘”Q*yQ, az integralasi tartomany R = IR?. Va-
lasszuk az aladbbi tartomany-sorozatot:

Ry ={(z,y) : 2 +y* <n}.

Nyilvan R, korlatos és

RiC--CR,C...IR? URn:]R2.

n=1
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A
P

R

A megfelel§ tartomany polarkoordinatakkal:
R, ={(r,0): 0<60<2m 0<r<n}.

Ekkor

n [e.o]

// e*x27y2d(x,y) = // re " dr df = 27r/7"e’"2d7" < 27T/rer2d7°.
R 0 0

n

Igy az improprius integrél értéke:

o0 —1"2 o0
// e_”2_y2d($,y) = 27r/re_7"2dr =27 [_62 ] =T.

R? 0

A fenti tétel alapjan mas kozelitd tartoményokon keresztiil is ugyanezt az
eredményt kapjuk. Legyen tehéat

Sm = A{(2,9) : 2| <m, |y| <m}.

Nyilvan
Sic-CSpc.. R, | Sm=TR%

m=1
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S
S
S3
Igy az improprius integral kozelitése
m m m
//ex2y2d(a:,y) = /erdx /eyzdy: (/ e*xzdx)2 — 7.
Sm —-m —-m —-m
Ebbél azonnal kévetkezik az azdsszefiiggés, hogy
oo
/ e dy = N
—0o0

Az e fliggvény grafjit haranggorbének hivjuk. Az integral kiszdmitasa
elemi eszkozokkel rendkiviil hosszadalmas lenne.

Példa. (Hatvanyfuggvény integrélja.) Legyen

floy) = — e
RENVZETRT
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valamely o > 0 mellett, és az integralasi tartomény
R={(z,y): 1>2?+¢°}.

A fiiggvény folytonos az értelmezési tartomanyan, amely most nem korlatos.

Az R tartomanyt kozelitsiik az alabbi médon:

R, ={(z,y): 1 < a2 +y? <n}.

Ekkor

n 27 n 00

1 1
[ @iy = [ [rerdoir=on [ o [
R, 1 0 1

1

Ez az utébbi improprius integral akkor konvergens, ha a—1 > 1, azaz a > 2.
Ebbél az kovetkezik, hogy a hatvanyfliggvény o > 2 esetben improprius
értelemben integralhato az egységkort nem tartalmazé IR? sikon.

4.11. Tétel. Legyen R olyan nem korldtos tartomdny, melynek lezdrdsa az
origot nem tartalmazza. Legyen f : R — R olyan fiiggvény, melyre valamely

a > 2 mellett
M

(Va2 +y2)"

minden (z,y)eR esetén, ahol M konstans. Ekkor f improprius értelemben

f(z,y)] <

integralhato.

Bizonyitas. Azonnal kovetkezik abbdl a ténybdl, hogy a fenti tartoméanyon
a > 2 esetén a hatvanyfiiggvény improprius értelemben integralhato.

Kovetkezmény. Az
1

(Va2 + )"

fiiggvényt tekintjitk az R = IR? tartomanyon. Ez semmilyen o > 0 esetén

flz,y) =

nem integralhat6, még impropriusan sem.
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4.5. Vonalintegral

4.5.1. Valés fiiggvény vonalintegralja

4.8. Definicié. C C R? egy (Jordan) gérbe, ha megadhatd ey~ : [a, b — IR?
fiigguény értékkészleteként:

C={yt) | tefa, b}, ()= (x(t),y(t))
A C gérbe sima, ha x, y : [a,b] = R koordindta figgvények differencidlha-

tok.

Adott R ¢ R? tartomany, mely tartalmazza a C gorbét, és f : R — R™T
fiiggvény. A feladat az, hogy meghatéarozzuk az alabbi feliilet nagysagat:

S={(z(t),yt),z) | 0=<z< f(z(t)y(t)) és te[a, b}

Ez az a feliilet, amit ugy kapunk, hogy a gérbe minden (z,y) pontjara alli-
tunk f(z,y) magassigt merdleges szakaszt.

4.7. 4bra. Valos fiiggvény vonalintegraljanak szemléletes jelentése

Ertelmezni fogjuk az alabbi integralt:

I:/f(:v,y)ds.
C
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Vegyiik észre, hogy egyetlen integraljel van az f(x,y) fiiggvény eldtt!

Kozelitjiik a feliiletet. Az [a,b] intervallum egy felosztésa:
a=tyg<ty...<tn=0
A C gorbe megfelel6 pontjai:
P, = (x;,y;) ahol z; =x(t;)ésy; =y(t;) i=0,1,2,...n.

Ekkor a feliilet felszine kozelitve:

I~ o) Wz y) — (@ionyi)l = Y F@iy) - s(B1P),
=1

i=1

ahol a jobboldal utolsé tagjaban a PZ/_FDZ fvdarab hossza szerepel. Ez alapjan
a vonalintegral hatardtmenettel megkaphato:

b
f—/fmwda—/ﬂamwm-wﬁawwﬁww
C a

A definicid nem csak pozitiv értékd integralhato fliggvényre alkalmazhato.

4.9. Definicio. Az f fiigguény vonalintegrdlja o C gérbe mentén:
b
[ s = [ sato.0) V@ 0
C a

Példa. Speciélis esetként legyen f(x,y) = 1. Ekkor a vonalintegral értéke a

/1ds = s(I).

r

gbrbe {vhossza:

Megjegyzés. Az ilyen tipusu vonalintegralnak megfelels fizikai mennyiség az
energia.
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4.5.2. Vektormez6 vonalintegralja

4.10. Definici6. (Térbeli Jordan girbe) Adott egy [a,b] C R intervallum,
és ezen az intervallumon hdarom valds figgvény x,y,z : [a,b] = R, melyek
folytonosan differencidlhatdk az (a,b)-ban. Legyen v : [a,b] — R az a
vektorértékd fiiggvény, melynek ezek a koordindta fliggvényet,

yit) =1 y(t) |, a<t<b.

A v fiigguény értékkészete a T C R® hdromdimenziés Jordan gorbe:
L= {9(t) : tela,b]}.

Legyen F egy haromdimenziés vektormezs F : D — IR?, ahol D C R3. F
koordinata fiiggvényeit jeldlje fi1, fo, f3: D — IR.

fl(-rayvz)
F(‘rvyaz): fQ(*rvva)
fg(a:,y,z)

Feltessziik, hogy F' differencidlhaté D-ben. Feltesziik azt is, hogy I' C D.

Vonalintegral matematikai modelljének fizikai hatterét igy képzelhetjiik el:
Adott egy vektortér, ami a tér pontjaiban megadja az ott hat6 er6 nagysa-
gat és iranyat. Feltessziik, hogy egy egységnyi tomegi részecske a I' gorbe
mentén mozog. Mekkora munkat végez?

Az egyszeriiség kedvéert IR? pontjait roviden igy jeloljiik
r= (.T, Y, Z)
A gbrbe mentén vett vonalintegralt igy jeloljiik:

/ F(r)dr.

r
Ezt kozelit§ osszegek hatérértékeként fogjuk értelmezni.

Legyen az [a, b] intervallum egy F felosztasa

a=t, <t <---<ty,=0>,
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és a I' gbrbe megfelels pontjai legyenek

ry = (x(ts),y(t:), 2(t;)), i=0,...,n.

Az F felosztashoz tartozo kozelits Osszeg

n

I.(F) = Z (F(ry), (r; — i),

i=1
ahol a jobboldalon a szumma mogdtt a vektorok skalarszorzata szerepel.

Feltessziik, hogy n — oo esetén a felosztasok finomsaga 0-hoz tart:

5(]:) = maXx (ti — tifl) — 0.

i=1,..n

Ezek utan a vonalintegral igy definialhato::

[ P = tim 1,(7)

n—oo
r
feltéve hogy a hatarérték létezik, véges és fliggetlen a felosztas-sorozattol.

4.11. Definicié. A fenti jelolésekkel és feltételekkel vektormezd vonalintegrdlja:

b

/ Fr)dr — / ( F(y(t)),4(t) Yt =
I

a
b

= / <f1(7(t)) w(t) + fa(y(2) 9(t) + f(v(1)) 2(t)>dt7

a

ahol v jeloli a ~ fiigguény koordindtdnkénti derivdltjdt.

Példa. Legyen a vektormezs F(r) = 2r, azaz

filz,y,2) = 2z,
f2($,y7z) = 23/7
fg(a:,y,z) = 2z

A gorbe legyen egy csavarvonal:

Ly ko, 2m).

v(t) = (cos(t), sin(t), By
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118

Hatarozzuk meg a vonalintegral értékét:

/F(r)dr =7

r

4.8. dbra. A példaban szerepld vonal és vektormezd.

Kiszamoljuk a gérbe menti derivaltat:

A(t) = (—sin(t), cos(t), %)
Igy a vonalintegral:
2
/F(r)dr = / <2 cos(t)(—sin(t)) + 2sin(t) cos(t) + 22t7rQl7r>dt =

r 0
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Potencial keresés

Adott egy haromvéltozos, valos értéki f(z,y, z) figgvény f: R — IR, ahol
R C R3. Ha a fiiggvény differencialhat6 a tartoméanyban, akkor gradiense
vektormez6:

grad f: R — R3.
Ennek forditottjat’ kérdezziik. Ha adott egy
F:R— R

vektormezd, akkor vajon létezik-e olyan f : R — IR differencidlhaté fiiggvény,
melyre F' = grad f7

4.12. Definicié. Adott eqy F : R — R? vektormezé. Az F a vektormezd
potencialos, mds széval van primitiv fliggvénye, ha 3f : R — R valds
fiigguény, melyre F' = grad f.

Tegyiik fel, hogy F-nek wan potencidlja. Legyen I' egy olyan sima gorbe,
mely I' C R. Ekkor a gérbe mentén vett vonalintegral

b
[Fwir = [Faw).m -
g b b d
= [ emad 210 A0t = [ LI =
= f((0) = f(v(a)),
a Newton-Leibniz formulat alkalmazva. FEzért a vonalintegral értéke csak

a gorbe végpontjain felvett fliggvényértékektsl fiigg, és fiiggetlen a gorbe
atjatol’. Ha raadéasul a gorbe zart, akkor v(a) = v(b), és igy az integral 0.

4.12. Tétel. Adott az F vektormez6 eqy R C R® egyszeresen dsszefiiggd
tartomdnyon. F-nek pontosan akkor létezik potencidlja, ha minden R-beli
zart gorbe mentén az F vektormezd vonalintegrdlja 0.

A tétel allitasanak egyik felét lattuk be: ha van potencial, akkor tetszéleges
zart gérbe mentén az integral 0. A masik irdnyt nem bizonyitjuk.
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Altaldban egy / F(r)dr integral értéke fiigg a a végpontokon kiviil az azo-

kat Gsszek6td gérrbét()’l is. A fenti tételbdl az kovetkezik, hogy potenciélos
vektormez§ esetén nincs igy. Nevezetesen, ha adott két pont, akkor barmely
Gket Gsszekdts gorbe mentén a vonalintegral értéke ugyanaz. Més széval,
potencialos vektormezében a vonalintegral értéke csak a gorbe végpontjaitol

fligg.

4.6. Két gyakorlati alkalmazas

4.6.1. A tomegkozéppont kiszamitasa

A tomegkdzéppontot két és harom dimenziéban hasonléan kell szémolni.
Most csak a kétdimenzios esetre szoritkozunk. Egy R C IR? alaku, inhomo-
gén "lemez" tomegkozéppontjat fogjuk meghatarozni.

Adott a o : R — RT siirtisegfiiggvény az R C IR?-n tartomanyon. Fel-
tessziik, hogy o integralhato. A o(z,y) fliggvény értéke megadja, hogy az
(x,y) pontban mekkora a vizsgalt lemez stirtisege. Ez alapjan meg tudjuk
hatarozni a tomegét egy kettds integrallal

m=[[ etw.v)ar
R

A tdémegkozéppont koordinatainak meghatarozasdhoz elészor a nyomatéko-
kat szamitjuk ki. Az x szerinti nyomaték m, és az y szerinti nyomaték m,,
melyeket a kévetkez6képpen kapjuk meg:

mo= [[ o owpyar. my,= [[ - o dr
R R

Ezutan a témegkozéppontok koordinatai
zy

szﬁ, Myzi_

Példa Egy vaslemez tomegkozéppontjanak meghatarozasa

Adott egy haromszog alaku lemez. Csucsontjainak koordinatai: (0, 1), (2,1),
(0,5). Feltessziik, hogy a lemez siirtisége az y koordinataval linedrisan ara-
nyos. Hatarozzuk meg a lemez témegkozéppontjat!
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Megoldds: Fl6szor rjuk fel a strtségfiiggvényt:

ox,y) =k-y

ahol k egy konstans. Ezutan a lemez témege:

m—//g(m,y)dR—//kydR—k‘//ydR
R R R

-{-
\\3

A héaromszoget lerajzolva lathato, hogy azt a legegyszertibben egy x szerinti
norméaltartomanyként foghatjuk fel.

R={(z,y) : 0<x<2,1<y<-2x+5}

Az integralés:

2
m:k-/ / ydydr =
0 1
2 2
99 —2x+5 2
-2 -1 2
:k/[y] dac:k:-/( z +5) dr = ... = 23
2 |4 2 3
0 0
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Az integral kiszamitasaval megkaptuk a témeget. Az m, és m, nyomatékok:

2 —2z+5 16
mg;://x%ydR:k/ / a:ydydac:...:gk
R 0 1
2 —21+45
9 76
my = y-kydR==k ydydx:...:§k
R 0 1
Ezutan a tomegkozéppont x és y koordinatataja:
m, 4 my 19
M,=—=— M,=—=—
Tom 7 Yoom 7

4.6.2. A felszin meghatarozasa

A felszint harom dimenzidban szamoljuk, de az 6tlet két dimenziobdl szar-
mazik. Ott egy gorbe ivhosszat gy kaptuk meg, hogy kozelitettiik egyenes
szakaszokkal:

= X

Ahogy lattuk, minél révidebb vonalakkal kozelitettiik a gérbét, annal ponto-
sabban kaptuk meg az ivhosszt. Feliiletszamitas esetén az elv ugyanez ma-
rad, de itt egyenesek helyett kis paralelogrammakkal kozelitjiik a feliiletet.
(Hasonléan ahhoz, ahogy 2D-ben a gorbét a gorbe egyes pontjaiba hizhato
érintGegyenesekkel kozelitettiik, 3D-ben az érint6sik darabkaival kozelithe-
tiink.)
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Legyen adott egy f : R — R, R C IR? fiiggvény, mely meghatarozza a
mérni kivant feliiletet. A feliilet ezutan a kévetkezSképpen néz ki:

S=A{(z,y, f(z,y)) : (z,y)eR}

4.3. Allitas. A fenti felilet mértéke igy szimolhatd:

A(S) =// VI 2@ y) + 2y d(,y)
R

Megjegyzés. Erdemes észrevenni a hasonlésagot a fenti és a Jordan-gorbe
ivhosszara vonatkozé képlet kozott:

b
s(7) :/\/1+f’2(m)dx, ha y= f(z), z€la,b]

Példa: Egységgdomb felsé felének feliilete
A gdmbfelszin pontjai
S ={(z.y,2) + & +y’ +y* =1},
igy a fels6 félgombot megadd fliggvény egyenlete:
flay)=vVi-a? =y (2,9)e8” = {(z,y) : 2* +y* < 1}.

A sziikséges derivaltak:

1 —x
folz,y) = =2z - = ;
+(@y) 21 —a2 —y2 /1 —a2—92

1 -y
folx,y) = =2y - =

21 — a2 — 2 \/1—x2—y2.

A felszin meghatarozasidhoz kiszamoljuk az integrandust:

1—a2—y2 422492 1
1 /2 /2 — = 5
\/ + [ (zy) + f (2, y) \/ e Ny
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igy
1 1 =
A(S3 —//d:c, :// -rdfdr =
(5%) T2 2 (z,9) -
S2 0 0
! 1
T
— — ol 22 —
QWO/mdr%r [ V1 7’}0 o

Az integralas kiszamitasaban attértiink polarkoordindtakra.
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Fourier sorok elméletében lattuk, hogy ha f : IR — R egy olyan fiiggvény,
amely

e 27 szerint periodikus,
e szakaszonként kétszer folytonosan differencialhato,

e a szakadasi pontok elséfajaak, és itt a helyettesitési érték:

flx+0)+ flz—-0)

fla) = . ,

akkor elallithat6 komplex trigonometrikus sor segitségével.

Nevezetesen,
o
f(aj) g Z anelnl‘7
n=-—oo
ahol
™
1 .
Qp = 27 / f(x)eilnxdxy n= 07 j:]-a j:27 e (51)
T
—T

Ezt a tényt altalanositjuk nem periodikus fiiggvények esetére.

5.1. Fourier transzformacié bevezetése

Tegyiik fel, hogy az f : R — IR valés fliggvény kielégiti az alabbi feltételeket:

1. Tetszdleges I C IR véges intervallum esetén f lesziikitése az I interval-
lumra véges sok pontot kivéve folytonosan differencialhato.

2. A fiiggvény abszolut integralhato, azaz
00
/ | ()|dz < oo,
—o0

3. Ha x( szakadasi pont, akkor ez a szakadas csak els6faju lehet, és itt a

fliggvényérték:

Fag) = f(zo —1—0)—;—]‘(:130 - 0).
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5.1. Definicid. Tegyiik fel, hogy f teljesiti az 1. 2. feltételeket. f Fourier
transzformdltja az az f : R — C komplex értékd figguény, melyet gy
definidlunk:

Y 1 7 —isx
f(s) = \/%_4 flz)e "**dx. (5.2)

Fourier transzformdlt mdsik jeldlése

~

F(f,5) = [(s).

Szokésos elnevezés, hogy az f fiiggvény az iddtartomdny-ban adott, fpedig
a frekvenciatartomdny-ban.

A Fourier transzformalt egy komplex fiiggvény integralja, ezt agy értelmez-
ziik, mint

17 y
f(s) = \/ﬂ_/ f(x)(cos(sz) — isin(sz))dx =

1 T 1 Vi .
= \/%_4 f(ac)cos(sa:)dx—\/%_é f(x)sin(sx))dz.

-~

Belatjuk, hogy f(s) jol definialt. Igazoljuk a (5.2) egyenletben szerepld in-
tegral abszolut konvergencidjat. Az f-re tett 3. feltételt felhasznélva:

/ f(@)e i vdz| < / F(@)e " |dz = / 1 (@)]dz < oo,

igy az improprius integral létezik.
Megjegyzés. Vegyiik észre, hogy majdnem a (5.1) képletet hasznaljuk. Elté-

rés az integralasi tartomanyban van - hiszen a fiiggvény most nem periodikus
- és a konstansban. Ez utébbi néhany kényvben esetleg masképp szerepel.

Bar f valos fiiggvény, a Fourier transzformaltja altaldban komplex értékd
fliggvény:

[e.9] [e.9]

1 )

f(s):m_/ f(t)cos(st)dt—m_/ f(t) sin(st)dt.
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5.1. Allitas. 1. Ha f pdros fiigguény, akkor Fourier transzformdltja valds:

F(s) = \/12? /OO F(t) cos(st)dt = \/z 7 F(t) cos(st)dt
—0o0 0

2. Ha f pdratlan fliggvény, akkor Fourier transzformdltja tisztdan képzetes:

- \/_;TT 70 F(t) sin(st)dt = —i\/z /OO F(t) sin(st)dt
e 0

1. Példa. Legyen

f(s)

1 jz| <1
fx) =
0 |z[>1
2
- -
-4 -3 -2 -1 0 1 2 3 4

Mivel f paros, ezért

m

1
2 sins
cos(sz)dx = ] — .
T S
0

2. Példa. Legyen f(z) = e ¥l Ez paros fiiggvény, ezért Fourier transz-

\/7/ cos (st)dt = \/7 k
k2 4+ s2°

Itt felhasznaltuk azt — a mult félévben igazolt — Osszefiiggést, hogy

formaltja:

oo

/ea"” cos(bx)dr = [eax
0

o]
a

(—acos(bx) + bsin(bx))]

a? + b2 RN
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IN)

T

3. Példa. Legyen f(x) = e~ 2z . Mivel f paros, ezért Fourier transzformaltja
valos értéki,

_ \/Z 7 F(x) cos(sz)dx = \/3 /Ooe—”f cos(sz)dz =: g(s).  (5.3)
0 0

Ennek az integralnak a kiszamitasa analitikus eszkozokkel kozvetleniil nem
végezhets el. Mivel az (5.3) oOsszefiiggés igaz Vs-re, ezért derivalhatunk s

szerint. Ezutan a parcidlisan integralunk x szerint:

g'(s) = \/>/ % )sin(sx) dx =
2 22 © 37 e
= — [6_2 sin(sx)} —\/— / e 2scos(sz) dr=0—s-g(s).
T 0 ™)

Az alabbi differencidlegyenlethez jutunk:

g/(s) = —sg(s).

Ennek altalanos megoldasa

»

s

g(s) =ce” 7, ceRR.

c értékét ¢(0) alapjan tudjuk meghatérozni:

\f/% s(0z)d ;%7(3 dy = 1.
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Az utolso léepésben az y = x/v/2 helyettesitést hajtottuk végre. Tehat a
Fourier transzformalt:

Osszefoglalva:

Ez az egyetlen olyan valos fliggvény (konstans szorzotol eltekintve), amely
megegyezik Fourier transzformaltjaval.

5.2. A Fourier transzforméacié tulajdonsagai
5.2. Allitas. A Fourier transzformdlt alaptulajdonsdgai:
1. A hozzdrendelés linedris, azaz
Flef,s)=cF(f,s),  F(f+g,5)=F(f,s)+ Flg,s)

2. Ha f folytonos, akkor F(f) folytonos figguény.

3. (Atskdldzds)

4. (1d6 megforditisa)
F(f(=x),s) = F(f(x), —s).

5. (1dd eltolds)
F(f(w —m0),5) = e F(f (), 5)-

6. (Frekvencia eltolds)

F(e* f(z),5) = F(f(x),s — k).

Bizonyitas*.



5.3. AZ ALAPTETEL 131

1. Ez koénnyen lathato, hisz az intergal linearis operétor.

3.
F(f(az),s) = L 7f(ax)e_isxdx b 7f( )e_iéy}d
7 V2T s Y a v
Az integraldsban az y = ax helyettesitést hajtottuk végre.
4.
F(f(-a),5) = —— 7]‘(—3:)6‘“%%' - _/Oof( )ei*V(~dy) =
’ V2T V2T Y Y
— o [ ey
V2
Az integralban az y = —x helyettesitést hajtottuk végre.
5.
Flfe—w0)5) = — 7f( e
T —1x0),8) = — T — x0)e x =
= 71 / f(y)e_ls(y""m[))dy
V2T
Az integralasban az y = x — x( helyettesitést hajtottuk végre.
6.

F(e*e f(x),s) = \/12? / R f(x)e T dr = \/12? / flx)e =Rz gy

5.3. Az alaptétel

5.1. Tétel. Tegyiik fel, hogy [ teljesiti az 1.-2.-3. feltételeket. FEkkor f
elddllithato Fourier transzformdltja segitségével:

1 Ji n isxw
flx) = \/%_ZO f(s)e*ds. (5.4)
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Ez az inverz Fourier transzformacio.

Az inverz Fourier transzformécio sordn az elgéallitas altaldban nem egyenletes.
Egy elégséges feltétel az egyenletes konvergenciahoz:

/ |f/(x)|dx < oo, / |7 (2)|dz < oc. (5.5)

5.3. Allitas. Ha az 1. és 2. feltételek teljesiilnek a (5.5) feltétellel egyiitt,
akkor az inverz Fourier transzformdcid egyenletes konvergencidval dllitja eld
a fiigguényt. Ez azt jelenti, hogy ha

A
falz) = \/12? / f(s)eisxds,
iy

akkor egyenletesen teljesil, hogy

lim fa(x) = f(2).

A—o00

5.2. Tétel. (Parseval egyenlet) Ha az 1. 2. feltételek teljesiilnek a (5.5)
feltétellel egyiitt akkor:

7!f(w)|2dx = 7!f(s)|2ds.

A fenti tétel masik elnevezése Rayleigh-féle energia megmaraddsi térvény.
Egy jel négyzetének integralja a fizikaban az energianak felel meg.

Bizonyitas. Induljunk ki a fenti egyenléség baloldalabol, és az ’egyik f(z)’
helyére beirjuk az inverz Fourier transzformacios elgallitést:

7 fP(x)dx = 7 f(x)\/lz? 7 f(s)eisxds dz.

—0o0
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Felcserélhetjiik az integralas sorrendjét, mert az itt szerepld integralok egyen-
letesen konvergensek. Igy azt kapjuk, hogy

7f2(x)dx = 7?(3)\/127T 7 f(2)e™dz ds =

- 7f<s>f<s>ds - 7|f<s>12ds,

5.4. Allitas. A Fourier transzformdlt tovdbbi tulajdonsdgai:
7. Tegyiik fel, hogy

/ 12| f(2)|dz < oo.

Ekkor p
8. Ha -
[ 1#@)de < .
akkor
F(f',s) = isF(f,s).
Bizonyitas*.
7.
d d 1 r —18T _
SF@s = Tl [ e | -

1 i d —1ST
= \/ﬂ_/ f(@% (6 )dx,
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hiszen az egyenletes konvergencia miatt az integralas és derivalas sor-
rendjét felcserélhetjiik. A fenti egyenletet folytatva

d 1 r . —1isx _ .
2.7 f(2),5) = \/ﬁ/ f(@)(—iz)e™ de = (=i) F(xf (), s)-

8. Parcidlisan integrilva

1 r / —iST _
\/ﬂ/ fiz)e *dx =

o0 .

! v /f(x)eisxdx20+is]:(f,s).
7T—oo

- L[]

V2r

Az els6 tag 0, hiszen a fiiggvény abszolut integralhatosiga miatt:

lim |f(z)e”™| = lim |f(z)| =0.

r—+o0o r—+oo

Megjegyezziik, hogy ez a 8. tulajdonsdg az, ami miatt a Fourier transzfor-
macié igen hasznos a miiszaki irodalomban. Ez azt jelenti, hogy az idétar-
tomanybeli derivalas a frekvenciatartoményban egy is tényezével val6 szor-
zasnak felel meg.

5.4. Konvolucid

Adott két valos fliggvény, f, g : IR — R. Feltessziik, hogy mindketts abszolat
integralhato:

7 |f(2)]dx < oo, 7 () |dz < oo.

5.2. Definici6. A két fiigguény konvolicidja az fx g : R — R fiigguény,
melyet igy értelmeziink:

(fxg) (x) = / fW)g(z —y)dy.
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5.5. Allitas. A konvolicié alaptulajdonsdgai:

1. fxg jol értelmezett, azaz az improprius integrdl létezik és véges:
/ fly y)dy < oo VzeR.

Tovdbbd f * g is abszoliit integrdlhatd, és

7 [(£29) @)] do< 7|f<z>|dx- 7rg<x>|dx.

2. Kommutativ: fxg=g=* f.
3. Asszociativ: (f xg)*xh = fx*(gxh).

4. Disztributiv tulajdonsdg: (f +g)*h = f*h+ gx*h.

Ezek kozvetlen szamolassal igazolhatoak (HF).

Példa. Legyen
1 ha z€[0,1]
fz) =
0 egyébkent

Ekkor tetsz6leges g fiiggvény esetén:

1
(f*g) /g y)dy,
0

tehat a konvolucié hatdsa: a g fiiggvény x el6tti értékeit kidtlagolja.

5.5. Konvolucid és Fourier transzformacio

5.6. Allitas. Konvolicié az idétartomdnyban és a frekvenciatartomdnyban
19y valtozik meg:

F(fxgs) = Ff(ﬁ) F(g,s),

f(f,S)*]:(g,S) = \/7277'(‘ ]:(f'gas)'
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Bizonyitas*. Idtartomanyban latjuk be. (A frekvenciatartomanyban tel-
jesen hasonloéan igazolhato.)

Fifrg.s) = o= [ (0@ =

= \/12? /°° 7f(y) gz —y)dy | - e dx =

- \/12? / Fly) e / gle —y) -V dpdy =

L [t [ ) -

= \/12—77 /g(U)'@‘““du-\/z—ﬂ/f(y)-e_“ydyw/ﬂ:

= \/ﬂ"’r(978)"’r(f75)

5.6. Dirac-delta fiiggvény

Legyen € > 0 tetszSleges, és minden e-ra definialjuk az alabbi fliggvényt:

0, ha z =0,

1
de(z) = 2 ha 0<|z| <e,

0, ha |z|>e

o0
Ekkor minden e-ra / de(x)dx = 1.
— 00

Kiszamoljuk, mi lesz a d.(x) figgvények Fourier transzformaltjanak hatar-
értéke € — 0 esetén.
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Altaldban, tetszéleges f folytonos fiiggvény mellett:
o 15
1 1
[ t@@de = o [ farde= 5 1) 22 = £(6)
—00 —€
ahol {e(—e,e) létezését az integral-kozépérték tétel biztositja. Ezért tehat

lim / F(@)e()dz = lim 7(€) = £(0).

e—0

Osszefoglalva az el6zéket, ha létezne a hatarértékfiiggvény, 6(z) = ilg(l] 0 (),
akkor ez ilyen tulajdonsigi lenne:
o0
1. / d(z)dx =1,

—0o0

2. Tetszbleges folytonos, abszolut integralhato fiiggvény esetén

[ s@) @ = f00)
Masrészt 0(z) = 0 lenne Vo # 0 esetén és 6(0) = o0, aminek "nincs

értelme".

Ez a Dirac-delta fiigguény létezik, bar definicidja kivezet abbdl a fogalom-
rendszerbdl, amellyel eddig foglalkoztunk. Ilyen altalanositott fiiggvények a
disztribtciéelméletben fordulnak els, de formadlisan mi is hasznalni fogjuk
(egy kicsit legalabbis).

A Dirac-delta fliggvény konvolicioja tetszdleges f fliggvénnyel:
(6+1) @) = [ 3wl =)y = 1)

Tehét a Dirac-delta a konvoltcié miivelet egysége.

A Dirac-delta fiiggvény Fourier transzformaéltja:

1 T 1 1
F(d,s8) = — 55(x)dr = 0=
(9, 5) Vor / ‘ (v)de \/27re v 2T

minden s-re. Fourier transzformaltja tehat konstans.
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6.1. Differencialegyenletek altalanos leirasa

Differencidlegyenletek osztalyozasa

Els6rendt differencialegyenletek legegyszertibb eseteivel mar foglalkoztunk
az el6zd feéléevben. A szeparabilis és lineéaris differencidlegyenletek megol-
dasait vizsgaltuk. Most folytatjuk, azokat az altaldnosabb eseteket fogjuk
tekinteni, melyek a tovabbi tanulmanyokhoz feltétleniil sziikségesek.

Ebben a kurzusban csak kdzdnséges differencidlegyenlettel foglalkozunk, mely-
ben az ismeretlen egy egyvéltozos valos fiiggvény, és annak derivaltja(i) sze-
repelnek az egyenletben. Példaul a rezgémozgést leir6 DE:

y"(x) +y(z) =0.
A DE-ket osztélyozhajuk rend és specialis tulajdonségai alapjan:

e A DE rendje n, ha az egyenletben az ismeretlen fiiggvény legmagasabb
rendd derivéltja n.

e Egy DE linedris, ha az egyenletben v, v, ...,y linearis kifejezése
szerepel:

a1(2)y™ + az(2)y" Y + .+ a4 (v)y = f(@),

ahol az ai(z) egyiitthatok az x valtozo fliggvényei. A linearis DE ho-
mogén f(x) = 0 esetén, egyébként pedig inhomogén. Ha az ay, egyiitt-
hatok valos szamok, akkor dllando egyiitthatos DE-r6] beszéliink.

6.2. Els6rendi differencialegyenletek
Egy els6rend DE altalanos alakja:
v = f(x,y), ahol DcR?> f:D—R.

A DE megoldésa azt jelenti, hogy egy 3(a,b) C R intervallum, és Jy : (a,b) - R
valos fiiggvényt, melyre

Yy (@)= f(z,y(x))  Vae(a,b).
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Geometriai reprezentaciot a kovetkezoképpen képzelhetiink el: Az f kétval-
tozos fliggvény értelmezési tartoményanak minden (x,y) pontjaban adott
egy f(z,y) irAnytangensd pici szakasz. Ez a DE-hez tartozo6 irdnymezd.

A DE megoldasa olyan goérbe megadasat jelenti a sfkon, melynek minden
pontjaban az érinté megegyezik az adott pontbeli kijel6lt irdnnyal. Ez az in-
tegralgorbe. Ha kijeloliink egy (xo, yo) kezdGpontot, akkor eleve olyan gorbét
keresiink, mely a4tmegy ezen a ponton. Ekkor a feladat:

y, = f(xvy)a y(:UO) = Yo, (6]‘)
ez egy kezdeti érték feladat, vagy Cauchy-probléma.
Ha adott (zo,yo) kezd6pont = az ezen atmend gorbét keressiik.

Példa. Az y' = x + y DE-hez tartoz6 iranymezs, és az y(0) = 1 kezdetiér-
tékhez tartozd integralgorbe.

YA

) 0 17 27 %

VN Nk =SS
-

N~ — —

VN~ —

A Cauchy feladat megoldhatdsagarol szol az alabbi Egzisztencia és unicitas
tétel.

6.1. Tétel. Tegyik fel, hogy D egy (xo,yo) korili tartomdny és f: D — R
folytonos fiigguény mdsodik vdltozdjdban teljesiti a Lipschitz feltételt:

3L >0 lf(z,y1) — f(z,92)| < Lly1 —y2| V(x,y1), (z,y2)eD.

FEkkor az (6.1) feladatnak létezik megolddsa valamely I = (xg — o, 29 + )
wntervallumon, és ez a megoldds egyértelmd.
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Az els§ félév soran lattunk néhany specialis elsérendii differencidlegyenletet.
Nagyon réviden atismételjiik ezeket:

1. Szepardbilis DE. Ekkor a jobboldalon szereplé fiiggvény specidlis alaku:

y' = h(x)g(y).

Ennek megoldasai kelégitik az alabbi 6sszefiiggést:

/ g(ly)dy ~ [ @)z

2. Szepardbilisra visszavezethetd DE. Tegyiik fel, hogy a DE alakja:
-5
x

Ekkor az u = 2 helyettesitéssel a DE igy transzformalédik:
x

/ f(u)_u

u =
x
Ez egy szeparabilis DE.
3. Linedris DE. Ekkor a jobboldalon szerepld fliggvény az y valtozoban
lineéris
Yy =a(z)y + f(2).
A DE homogén, ha f =0 és inhomogén, ha f Z 0.
4. Linedris helyettesitéssel megoldhats DE. Tegyiik fel, hogy a jobboldal
f(az + by) alakn. Ekkor u = ax + by helyettesitéssel szeparabilis DE-t

kapunk:
u =a+bf(u).

1. Példa. Tekintsiik az alabbi DE-t:

92 2 2
y =TTz, y 40
Yy
A jobboldal g fiiggvénye, hiszen
x
9 2 2
Pt Ly @
Ty r oy
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Vezessiik be egy 4j valtozot:

_ y(=)
ufw) = £
Ekkor a differencidlegyenlet:
, lu?+1
u o= — .
U

Ez szeparabilis, melynek megoldésa:
1 1
/u2u—|—1duz/$’ == §ln(u2+1) =Inz +c,
azaz
u? + 1 = 2% = ka?, k> 0.

2
Az u? = y—Q kifejezést visszahelyettesitve azt kapjuk, hogy
x

2
y—2+1:kx2,
x

tehat a megoldés
y? = kat — 22, ahol k > 0.

2. Példa. Tekintsiik az aldbbi kezdeti érték problémét:

+ 1
y =X — 3 y(0) = 0.

Lineé4ris helyettesitést alkalmazva legyen u = 2y 4+ x. Ekkor

1
u':2y'+1:2(e“—§)—|—1:2e“.

Az v = 2e% egyenlet megoldasa:

/e“du: /de,

—e 4 =2r+c, e = 2z —¢.
A kezdeti értéket behelyettesitve e = 0 — ¢, vagyis ¢ = —1, igy a megoldas

—z —In(1 —2x)
5 .

y:
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6.3. Magasabb rendi differencidlegyenletek

6.3.1. Linearisan fiiggetlen fiiggvények
Elssként bevezetjiik a linearis fliggetlenség fogalmét.

6.1. Definicié. Adott n darab figgvény, yi,y2,...,Yn, kézds D C IR értel-
mezési tartomdnnyal. Ezek linedrisan fuggetlenek, ha

ayi(z) + ...+ cpyn(z) =0 VzeD, — ci=...=c¢c, =0.

1. Példa. Legyenek a fiiggvények:
yl(l') =1, y2($) =Ty ey yn(x) :xn—l’ xe(a,b).

Ezek linearisan fiiggetlenek, mert tetsz6leges linedris kombinacidjuk polinom:

1+ cox + .. .epr™ L

Ha egy polinom egy intervallumon eltéinik, akkor valé6ban minden egyiitt-
hatéja 0.

2. Példa. Legyen a fiiggvények kozos értelmezési tartoméanya D = [0, 7], és
yi1(z) =sin(z), ya2(z) =sin(2x), ... yn(z) = sin(nz).
Felhasznaljuk a trigonometrikus rendszer ortogonalitdsit, amelyet a Fourier

sorok bevezetésekor igazoltunk. Ezért valéban linedrisan fiiggetlenek is.
3. Példa. Legyenek a1 < az < ... < ay kiilonb6z6 valds szamok. Tekintsiik
az alabbi fiiggvényeket valamely I C R intervallumon:

anT

yi(z) = ™", yo(x) =™, ..., yp(x)=ce

Azt allitjuk, hogy a fiiggvényrendszer linearisan fiiggetlen. Ez n-re vonatkozo
teljes indukcioval konnyen igazolhato. (HF)

6.2. Definicidé. Legyenek az yi,...,yn : D — R fiiggvények (n — 1)-szer
differencidlhatdak. A Wronski determindnst igy definidljuk:

yi(x)  gp(z) o yn(2)
() ) .o yu(@)

y W@y o gY@

Wiy, ..., yn|(x) = det
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A Wronski determindns Wy, ...,yn] : D — R is egy valds figgvény lesz.

6.1. Allitas. Tegyiik fel, hogy y1,. .., yn figguények linedrisan ésszefiggdek
és legaldbb (n — 1)-szer differencidlhatok. Ekkor Wiyy,...,yn] = 0.

Bizonyitas. Mivel a fliggvények linearisan tsszefiiggéek, ezért
cyr+ ...+ cpyn =0,

ahol valamelyik ¢ # 0. Legyen ez ¢1. Ekkor y; kifejezhets a tébbi fiiggvény
segitségeével:

Ugyanigy, derivaltjai is kifejezhet6k, ugyanilyen egyiitthatokkal:
r_ % _Cn
Y1 = 613/2 Clyn-
A t6bbi derivalt hasonloképp. Tehat a matrix els6 oszlopa elGall a t6bbi

oszlop linearis kombinaciojaként, ezért a méatrix szingularis, determinansa 0.

Kovetkezmény. Ha Wlyr,...,yn|(x) # 0 valamely a-ben, akkor yi,...,y,
linearisan fiiggetlen rendszert alkotnak.

6.2. Allitas. Hayy,...,y, n-szer differencidlhatok D-n, akkor Wlyy, . .., yn]
pontosan akkor 0, ha az y1,...,Yyn flggvények linedrisan dsszefliggdek.

Példa. Tekintsiik az aldbbi elsérendd homogén linearis differencidlegyenletet:

y' () + g(x)y(x) = 0.
Legyen ennek két megoldasa y; és yo. Irjuk fel ezek Wronski determinansat:

y1o Y2 1 Y2
Wlyi,y2] = det = det =0.

/

Y1 s —g(x)y1 —g(@)y2

Ezért a megoldasok linearisan Osszefliggéek, tehat y; = cys valamilyen ¢
val6s szdmmal.

Kévetkezmény. Az els6rendd homogén linearis differencidlegyenlet megolda-
sa konstans szorzotol eltekintve egyértelmii. Ha adott egy megoldasa, akkor
az Osszes tObbi kifejezhet6 ennek konstans-szorosaként. (Ezt mar az els6
felevben is lattuk, kozvetleniil.)
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6.3.2. n-edrendi linearis differencialegyenlet

Jelolje C"(D) azon D-n értelmezett folytonos fiiggvények halmazét, melyek
n-szer folytonosan differencialhatok.

Legyen L egy olyan operator, amely egy n-szer folytonosan differencialhato
fliggvényhez egy folytonos fliiggvényt rendel a kovetkezSképpen:

Lly) = g™ + ar(@)y™ ) + ..+ an(@)y, (6.2)
ahol aq,...,a, adott folytonos fiiggvények. Az L operator linearis, azaz
Lloyr + Bya| = aL[y1] + BL[y,]

tetszoleges y1, y2eC™ (D) és «, BelR esetén.
A homogén linedris differencidlegyenlet (HLDE) esetén az

Lly]=0

egyenletnek keressiik a megoldasat. Inhomogén (IH LDE) esetben az

egyenlet megoldéasat keressiik, ahol f(x) # 0.
Az L operétor linearitasabol azonnal kovetkezik az alabbi allitas.
6.3. Allitas. Ha vy, yo megolddsai a
Yy (2) + a1 (@)y" V(@) + ..+ an(x)y(z) = 0 (6.3)
HLDE-nek, akkor linedris kombindcidja is megoldds:

y = ayi + fyo.

6.2. Tétel. (Homogén linedris DE megolddsainak struktirdja)

1. Az Lly] = 0 egyenletnek létezik n darab linedrisan figgetlen megolddsa,
ezeket jeldlje y1, ..., yn.

2. Tetszdleges y megoldds felirhato ezek linedris kombindcidjaként,

Yy=cyiy+...+ culyn-
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Bizonyitas*. A tétel els6 részét specialis esetben fogjuk beléatni.

A tétel méasodik részének bizonyitasa. Irjuk fel az y, i, ... yn fliggvények
Wronski determinansat:

Y Y1 Un,
v oon Yn
Wy, y1,- -, yn] = det
Y™y e
Mivel L{y1] = L[ys] = ... = L[y] = 0, ezért a matrix utolso sora elgall a tobbi

linearis kombindciéjaként, sorai linedrisan Osszefiigg@ek, tehéat a determinans
0. Az utols6 n oszlop azonban linearisan fliggetlen, igy az els6 oszlop felirhato
a tobbi linearis kombinaciéjaként.
6.3.3. Homogén linearis, allandé egyiitthatds egyenletek
Tekintsiik az egyenletet

Ly = y™ + a1y™ ™V + .. 4+ a,y =0,

ahol aq,...,apcR adott szdmok. Specidlis megoldasokat keresiink, melyek

y(x) = e

alakuak. Ekkor
y(x) =X oy () = Amel
Ezeket visszahelyettesitve azt kapjuk, hogy
Ly] = em()\” +a N a, A+ ap) = 0.
A jobboldalon all6 fliggvény csak tugy lehet 0, ha

AN+ a N+ +a, =0.
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6.3. Definicié. A DE-hez tartozd karakterisztikus polinom:

PA) = A"+ \" L+ +a,.

P()) egy valos egyiitthatos polinom, melynek a komplex szamsikon n darab
gyoke van, multiplicitasokkal egytitt.

Elsé eset. Tegyiik fel, hogy P(\) gyokei valosak és mind egyszeresek. Legye-
nek ezek Aq, ..., A\y. Ekkor fel tudjuk irni a homogén egyenlet n megoldasat

yi(z) = eM*
yQ(x) — e)\gx
yn(x> - eAnI’

és ezek linearisan fiiggetlen rendszert alkotnak. Ekkor az altaldnos megoldas:
n
y(x) = ZCke’\”, ckeR, k=1, ...n.
k=1

Specialis esetként tekintsiink egy masodrendd DE-t, azaz n = 2. Ekkor

Liyl=y"+ a1y +asy = PA) =N +a1)+a.

Ha ennek a polinomnak két kiillénbozs valés gydke van, akkor a fenti médon
meghatarozhatjuk a két alapmegoldéast. Tegyiik fel, hogy a két valds gyok
egybeesik, A\ kétszeres gyok. Ekkor

P(\1) =0, P'(\) =0.
Ekkor a fenti gondolatmenetnek megfelelGen egy megoldas:

yi(z) =e

6.4. Allitas. Ebben a specidlis esetben egy mdsik megolddsa a DE-nek:

ya(z) = reM®

S6t, yo linedrisan figgetlen y1-tdl.
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Bizonyitas*. Behelyettesitjiikk a DE-be ys-t.
yh(x) = Mwe? 4 M7
yh () = 2)\16)‘196 + SL‘)\%GAlm,
ezért a DE baloldala

Lly] = aX2eM® 4+ 20,eM% 4+ ai A xeM? + a1eM® 4 agze® =
2eMTP(\;) + eMTP/(\) = 0.

Altalaban, n-edrendt DE esetén, ha Ao a P()\) polinom k-szoros valos gydke,
akkor definialhatjuk az alabbi fiiggvényeket:

n (I) — e)\om
ya(z) = welo?
yp(xz) = xh—letoT

Ezek linearisan fiiggetlenek, és megoldédsai az eredeti homogén linearis diffe-
rencidlegyenletnek.

Tekintsiik azt az esetet, amikor a P(\) polinomnak komplex gyokei vannak.
Ha A = a + if egy gydke a karakterisztikus polinomnak, akkor konjugéltja,
A =a —if is az. Két alapmegoldast kapunk tehat:

ui(z) = e, ug(z) =e
Mivel A komplex szamn, ezért ezek komplex fiiggvények lesznek:
uy(z) = @B = 9% (cos(Bx) + isin(fx)),

ug(z) = @)% = % (cos(Bx) — isin(fx)).

Tudjuk, hogy ezek tetszbleges linearis kombinacioja ismét megoldas. Kere-
siink olyan linearis kombinaciét, amely valds értékd. Definidljuk a kovetkezé
alapmegoldasokat:

uy () + uz(x)

yi1(z) = — = e“? cos(fr),
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és

yo(z) = W = e sin(fz).

Ezek is linearisan fliggetlenek, nyilvanvaldan.
Utolso lehetdségként tegyiik fel, hogy a karakterisztikus polinom gyokei kozt

tobbszoros komplex gyokpdrok is vannak. Ha A\ = a+1i3 és \ k-szoros gydkok,
akkor a megfelel§ 2k darab alapmegoldas:

yi(x) = €e*sin(fx),
ya(x) = € cos(fx),
yor—1(z) = zF 1 sin(Bx)
yor(z) = 2" 1e® cos(Bz).

Mivel a P(\) polinomnak a komplex szamtest felett n gyoke van - multiplici-
tésokkal szamolva -, a fenti konstrukciok alapjan mindegyik gytkhoz tartozik
alapmegoldas, igy az n darab fliggetlen valds alapmegoldas felirhato.

1. Példa. Tekintsiink egy harmadrendd DE-t:
y/// o 2y// o 3y/ — 0
A differencialegyenlet karakterisztikus polinomja

P(\) = X3 =22 — 3\,

melynek gyokei

yi(z) =1, Yo () = €, y3(z) = e 7,
és a DE altalanos megoldasa
y(r) =c1 + coe™® + cze, crelR.

2. Példa. Legyen
y/// + 2y// + y/ — 0
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A karakterisztikus polinom
P(A\) = A3 + 202 + )\,

ennek gyokei
A =0, Ay = A3 =—1.

Igy az alapmegoldasok:

és az altalanos megoldas

y(x) =c1 + (co + czz)e™™, creR.

3. Példa. (Harmonikus rezgémozgas egyenlete.) Legyen

Y+ K%y =0, keR.
A karakterisztikus egyenlet gyokei

A o= ik, Ao = —ik,
ezért az alapmegoldésok

y1(x) = cos(kx) ya(x) = sin(kz).
Az altalanos megoldas
y(x) = ¢y cos(kx) + casin(kx) = rcos(kx + a),

ahol r és « olyan paraméterek, melyek egy-egyértelmiien meghatarozottak c;
és co alapjan, (c1,c2) <> (r,) Ebben a felirasban a paramétereknek fizikai
jelentés adhatd, r a rezgés amplitadéja, o a kezdéfazis, és k a frekvencia.

6.3.4. Inhomogén linearis differenciilegyenletek

Keressiik az alabbi inhomogén LDE megoldasat:
y™ (@) + ar(2)y" V(@) + .+ an(2)y(@) = f(2), (6.4)

feltéve, hogy a homogén egyenlet megoldésai ismertek.
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6.5. Allitas. 1. Ha w1, yo megolddsai a (6.4) inhomogén egyenletnek, ak-
kor y =y1 —y2 a (6.3) homogén egyenlet megolddsa.

2. Ha y1 o homogén egynlet, yo pedig az inhomogén megolddsa, akkor

Yy = y1 + y2 szintén megolddsa az IH LDE-nek.

Bizonyitas. Azonnal kovetkezik az L[y] operétor linearitasabol.

A fenti Allitas alapjan megfogalmazhatjuk az Tételt inhomogén linedris DE

megolddsainak struktirdjdrol.

6.3. Tétel. Tegyik fel, hogy az Lly] = f egyenletnek ismert egyetlen y,
megolddsa. Akkor az egyenlet dsszes megoldds felirhatd ilyen alakban:

Y=yYp+ciyr+...+ culn,

ahol y1, ..., Yn a (6.3) homogén egyenlet n darab linedrisan figgetlen alap-

megolddsa.

Kovetkezmény. Ha a homogén egyenlet alapmegoldasai ismertek, akkor az
inhomogén LDE altaldanos megoldasénak felirdsahoz elegendd egyetlen meg-
oldast megtalalni. FEzt fogjuk partikuldris megolddsnak nevezni.

Két médszert mutatunk be partikularis megoldés meghatarozasara.

Allandoék varialasa

Legyen adott az L[y] = 0 homogén egyenlet n darab linearisan fiiggetlen

megoldasa y1, ..., yn. Ekkor az altalanos megoldas
Y =c1,yY1 + oYz + ...CnYn, (6.5)
ahol ¢, ca, ...cpelR tetszbleges konstansok.

A kovetkezd modszert agy hivjuk, hogy allandok varidlasa.

Az inhomogén egyenlet egyetlen megoldasat a (6.5) felirashoz hasonléd alak-
ban keressiik azzal a kiilonbséggel, hogy a ¢ konstansok helyett fiiggvények
lesznek a szorzok. Tehat a keresett megoldés a kovetkezd:

y(@) =@y (@) + -+ m(@)yn(@).
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6.6. Allitas. Tegyiik fel, hogy fenti megolddsban szerepld v1(z), v2(z), ... yn(x)
fiiggvények derivdltakjaira az aldbbi dsszefiiggések teljesiilne:

MY+ + WY = 0
NYL+ o+l = 0
_9 _
Yo"yt = 0
1 _
Yo"V Y = f(@)

Ha ezek a feltételek teljesiilnek, akkor

Lly] = f.

Megjegyzés. Az egyiitthatok derivaltjaira adott n darab linearis egyenlet. Az
egyenletrendszert kompakt formaban igy irhatjuk fel:

Y1 Y2 Yn 24 0
/ / / /

Y1 Y2 Yn 72 _ :
: : 0
1 1 1

A SR i A4 f

A baloldalon szerepld egyiitthatdé matrix az alapmegoldasok Wronski-matrixa.
Mivel ezek az alapmegoldasok linearisan fiiggetlenek, ezért a Wronski-matrix
nem szinguléris, tehat a fenti egyenletrendszer mindig megoldhato.

Bizonyitas*. Az y fiiggvényt igy definialtuk:

n
Y= Z VkYk-
k=1

Ennek derivéltja

n n n
Y =D WUk YWYk = > Wk
k=1 k=1 k=1
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az els6 feltétel miatt. Hasonloan szamolhato a tobbi derivalt is:
n .
y D=3, j<n
k=1

Végiil az n-dik derivalt:

n

g™ =3 = £y
k=1 k=1 k=1

Behelyettesitve az L operatorba azt kapjuk, hogy

Liyl =y™ + Y axy™ ™ = F+ ) wLlyl = f.
k=1 k=1

Az utolso lépésben felhasznaltuk, hogy yr a homogén egyenlet megoldasa,
ezért Llyg] = 0 minden k£ =1,...,n mellett. B

Specialisan n = 2 esetben irjuk fel az egyenletrendszert. Legyen a differen-
cidlegyenlet:
y' +ary’ +ay = f.

A homogén egyenlet alapmegoldésait jeldlje y1, y2. Az inhomogén egyenlet
partikularis megoldéasat ilyen alakban keresssiik:

y(@) = n(z)y (@) + 72(2)y2(2),
ahol v1, 7o egyeldre ismeretlen fiiggvények. Ezek derivaltjaira tett feltételek:

Ny +1y2 = 0
M+ vy = f(@)

Igy a megoldandé egyenletrendszer:
Y1 Y2 7 0
oY 7 f
Példa. Harmonikus rezgés esetén a masodrendd egyenlet

y' + Ky = f.
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A homogén egyenlet alapmegoldasai y; = cos(kz) és yo = sin(kx). A meg-
oldandé egyenletrendszer:

cos(kx) sin(kx) 71 (x) 0
—ksin(kz) kcos(kx) | v (x) f(z)
Az egyiitthatdé méatrix és inverze
cos(kx) sin(kx) cos(kz) —1 sin(kz)
—ksin(kx) kcos(kx) sin(kz) % cos(kz)

Igy az egyiitthatok derivaltjaira ez adodik:

() = - sin(ke)f(2)

hie) = coska)f(@).

Megjegyzés. Az allandok varidlasanak modszere akkor is hasznalhato, ha a
linearis differencidlegyenlet egyiitthat6i nem konstansok, hanem adott foly-
tonos fliggvények. Erre mutatunk be egy példat.

Példa. Tekintsiik az alabbi linedaris differencidlegyenletet:

2 2
y”—fy’—l—jyzzvex.
X X

Az eddigi jeldléseink szerint most tehét

ap = ai(z) = - az = az(x) = oy f(x) = ze®.

Elsd lépés. Meghatarozzuk a homogén differencidlegyenlet megoldasait. Kény-
nyen ellenérizhets, hogy két alapmegoldés

Igy a homogén egyenlet altalanos megoldasa

yn(z) = 1z + cor?, c1, coelR.
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Madsodik lépés. Az inhomogén egyenlet megoldasat

y(z) = n(2)z +y2(z)z?

alakban keressiik, ahol v1 és o egyel6re ismeretlen fiiggvények. A fenti tétel
értelmében ezek derivaltjaira a kovetkez§ feltételek teljesiilnek:
N @)z +y3(z)2? = 0
(@) +h(a)2e = ae.
Az egyenletrendszer megoldasara rovid szamolassal

7(2) =" —we”,  ya(z) =€"

adodik. Igy az inhomogén egyenlet egy megoldasa
y(x) = (e — ze®)x + e“2% = ze®,

altalanos megoldasa pedig

Yo = 2€° + 12 + cox?, c1, coelR.

Prébafiiggvények alkalmazasa

A fent bemutatott modszer mindig alkalmazhat6. Azonban ha az allandé egyiitthatos

linearis DE-nek specidlis jobboldala van, akkor érdemes az inhomogén egyen-

let megoldasat specialis alakban keresni. A megoldand6 egyenlet:
Lly) = " (@) + a1y V(@) + ... + any(x) = f(2).

A teljesség igénye nélkiil felsorolunk néhany alapesetet.

- Ha f(z) = Ke**, aelR, akkor a megoldast y(z) = Ae*” alakban keres-
siik, A ismeretlen.

- Ha f(z) = ama™+- - - +ap, akkor a megoldast y(x) = A,x™+- -+ A
alakban keressiik, Ag, ... A, az ismeretlen paraméterek.

- Ha f(z) = Ksin(ax) vagy f(z) = K cos(ax), akkor a megoldast
y(x) = Asin(ax) + Bcos(az) alakban keressiik, ahol A és B az is-

meretlen paraméterek.
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Ha f(x) ezen specidlis fiiggvények Osszege, akkor a probafiiggvényt is Osszeg-
ként keressiik.

Példa. Tekintsiik az alabbi masodrendd differencidlegyenletet:
" ! _ 3z 2
Yy =3y +2y=e" +2° + .
A homogén egyenlet altaldnos megoldasa
_ 2z T
Yy =cre” + coe”.
Az inhomogén rész megoldasat probafiiggvénnyel keressiik,
yp:A63x+Bm2+Cm+D
alakban. Ennek derivaltjai

Y, = 3Ae¢’*+2Bx+C
y;’ = 94e%® +2B.

Ezeket visszahelyettesitve megkapjuk az ismeretlen egyiitthatokat:

1 5
A=-=B, (C=2 D=-
2 ) ) 27

tehat az inhomogén rész egy partikuléris megoldéasa:

1 1 S
Yp = 5639”—1—5302—1—2304—5.

6.4. Definicio. Ha a homogén DE alapmegolddsai kozt létezik olyan fiigg-
vény, mint ami a DE jobboldaldn szerepel. akkor rezonancidrol beszéliink.

Rezonancia esetén a megfelel§ probafiiggvényt = egy hatvanyaval szorozzuk.
Példa. (Folytatas) Az el6z6 DE -t tekintsiik més jobboldallal:
Y — 3y + 2y = e*.

Itt a jobboldalon all6 fiiggvény alapmegoldasa a homogén DE-nek. FEzért
probafiiggvényként az
yp(z) = Aze?”
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fliggvényt tekintjiik. Ennek derivéltjai
y(r) = Ae* 4 2Axe™
y'(z) = 4Ae*® + 4Azxe.

Innen A = —1 adodik, tehat az inhomogén DE egy partikularis megoldésa

yp(x) = $€2$,

altalanos megoldasa pedig

y(z) = c1€** + coe® + ze®”.

6.4. Differenciilegyenlet-rendszerek”

Ez a fejezet kiegészitd tananyagot tartalmaz.

6.4.1. Alapfeladat

Elstként csak kétdimenziés rendszerekkel foglalkozunk. Keressiink olyan
y(z) és z(z) fuggvényeket, melyek derivaltjai egymastol is fiigghetnek. Ez
azt jelenti, hogy kielégitenek egy ilyen tipusta differencidlegyenlet rendszert:
y'(x) = flz,y() 2(2))
Z(@) = glz,y(2),2(v)),

ahol f és g adott harom valtozos fiiggvények.
6.4. Tétel. Legyen T C R? egy tartomdny, (zo,v0,20) ennek belsé pontja.

Adottak az f,g: T — R fiiggvények, melyekrdl feltesszik, hogy a mdsodik és
harmadik vdltozokban Lipschitz folytonosak, azaz

IM >0 |f(x,y,2) — f(2,7,2)] < M(ly — 9] + [z — Z|),
Ekkor az
y/ = f($7yvz)

= g(z,v,2),

y(zo) = vo, 2(x0) = 20
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kezdetiérték feladatnak létezik eqyértelmd megolddsa valamely (xo— o, xo+ )
intervallumban.

A tétel igaz altalanos n-dimenzios differencidlegyenlet rendszerre is. Ekkor
n db fiiggvényt keresiink, melyekre

yi — fl('rayla"'ayn)
v = falz,y,-- o Yn)
yi(zo) = Y10, .- Yn(z0) = Yno,

ahol xg és y10, - - - Yno adott valds szamok.

6.4.2. Lineéaris, alland6 egyiitthatés homogén DER

A koénnyebb attekinthetség kedvéért most n = 3 dimenzioban dolgozunk.
(Minden ugyanigy elmondhaté altaldnos n dimenzios linearis rendszerekre
is.) Tekintsiik az alabbi haromdimenzios rendszert:

y’1 = a11yY1 + a12y2 + ai3ys
?//2 = a21y1 + a22y2 + a3y3
y§ = a31y1 + as2y2 + aszys,

a hozza tartozé kezdeti feltétellel
y1(0) = wo1, y2(0) = vo2, y3(0) = yos.
A keresett fliggvényeket rendezziik el egy vektorba:
yi(z)

Y(z)=| wpl) |,
y3(z)
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ennek derivaltja

~

yi(z)
Y'(2) = | vhlx)

Y3

Az egylitthatokat gydjtsiik egy métrixba:

~

—~
8

~—

ay;p a2 a3
A= az1 ag2 @23

asy asz ass
A differencidlegyenlet rendszer tehat kompakt médon igy frhato

Y'(z) = AY (z), Y (0) = Y. (6.6)

6.5. Tétel. A (6.6) linedris egyenletrendszer megolddsa

Y(.’E) = €AIY0.

Az e” matrix értelmezése az e fliggvény sorfejtése alapjan torténik.

1
A _ I L
e’ = Z k!A .
k=0
Ez altalaban nehezen szdmolhaté. Ha A szimmetrikus matrix, akkor felirhaté
A=UDU"
alakban, ahol U ortogondlis, D pedig diagonalis. Ez azt jelenti, hogy
vt =uut =1,

ahol I az egységmétrix, és

A1 0 0
D = 0 X O
0 0 A3

Ha példaul A-nak 3 darab kiillénb6z6 valos sajatértéke van, A1, Ao, Az, akkor
a megfelels sajatvektorok ortogonélis rendszert alkotnak. Ebben az esetben

A0 0

D= 0 X O , U= (s1 s2 53),
0 0 As
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ahol s, a normalizéalt sajatvektorokat jeloli.
Folytassuk e kiszamitasat ebben az esetben.
A*=upuT .upuT...upuT =UD*UT,
ezeért
et = UePUT,

ahol e diagonalis matrix, f6atlojanak elemei e, 2, 3.

6.6. Tétel. Tegyik fel, hogy A sajdtértékei mind killonbézdek, legyenek ezek
A1, A2, A3. Ekkor a kilonbozd sajdatértékekhez tartozo sajdtvektorok egymdsra
merdlegesek, ezeket jelélje s1, sa, s3.

Ekkor a linedris differencidlegyenlet rendszer linedrisan fiiggetlen megoldds-
rendszere
Yk = 6)‘kx8k.

Ezen felil tetszdleges Y (0) = Yy kezdetiértékhez létezik egyértelmien Y meg-
oldds és ez felirhaté
Y =11 +coYe 4+ c3Y;

alakban megfeleld c1, ca, cs konstans egyiitthatokkal.

Bizonyitas*. A megoldasok linearisan fiiggetlenek, hiszen e***-k is lineari-
san fliggetlenek, és sp-k is. A fenti fiiggvény derivaltja

Yi(z) = ApeM sy, k=1,2,3.
A DE jobboldala
AYy(x) = AeMT s = eMT Ay = M\ sy
Teh4t valéban megoldas.

Megjegyzés. A tétel akkor is igaz lesz, ha nem kiilonhozsek a sajatértékek,
de teljesiil az a feltétel, hogy minden tobbszdrds sajatértékhez linedrisan
fliggetlen sajatvektor-rendszer tartozik.

Példa. Legyen

N

Il
o O =
O = O
w = O
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Ekkor a megfelel§ differencidlegyenlet rendszer:

i = n

yé = Y2+ys3
!

Ys = 3y3

A megoldashoz hatérozzuk meg A sajatértékeit, (I az egységmatrix):

A sajdtvektorok meghatdrozdsa. Tekintsiik a Ay = 1 sajatértéket. Meg kell
oldani az alabbi egyenletet

0 00 a
0 01 b | =0
0 0 2 c

Ennek megoldasa ¢ = 0, illetve a és b tetszGlegesek. LEzért 1étezik Aj-hez két
ortogonélis sajatvektor, ezek

1 0
S§1 = 0 , Sg = 1
0 0

-2 0 0 a
0o -2 1 b | =0
0 0 0 c

Innen azt kapjuk, hogy

—2a =0, —2b+c¢c=0
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és c tetszbleges. Igy egy sajatvektor

S§3 — 1

Teh4t a linearis rendszer alapmegoldéasai

1 0 0
leex 0 s YQZCI 1 y }/326356 1
0

Igy az altalanos megoldas:

T

ci1e
Y = co€® + c3e3®
2¢3€3%
Koordinatanként kiirva a megoldést:
() = e
ya(z) = 2" + c3e’®
ys(z) = 2c5e3%

ahol c1, co, c3€elR tetszbleges.
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7.1. Komplex szamok, sorozatok

Réviden felsorolom a komplex szamok bevezetd alapfogalmait. ¢ az imagi-
narius egység, i = —1. A komplex szdmok halmazat C-vel jelsljiik.

7.1. Definicié. Egy z komplex szdam kanonikus alakja
z =z 41y,

ahol x = Re(z) a valés rész, y = Im(z) a képzetes rész. Egy komplex
szam konjugaltja
zZ=x—y.

Komplezr szam abszolat értéke:
|2| = Va2 +y? = V2zZ.
A z komplex szdm trigonometrikus alakja

z = r(cos(¢) + isin(¢)) = re®, r=|z|.

7.1.1. Komplex szimsorozatok

A valés szamsorozatokhoz hasonloan komplex szamsorozatokat tekintink.
Ezt (z,) jeloli, ahol minden nelN esetén z,eC.

7.2. Definicié. A (z,) szamsorozat korldtos, ha az abszolit értékekbdl dllo
(|zn]) valds szdmsorozat korldtos. (z,) konvergens és hatdrértéke a zeC

komplex szdm, azaz lim z, = z, ha
n—0o0

lim |z, — z| = 0.
n—oo

Masképp fogalmazva: Ve > 0-hoz AN kiiszdbindex, hogy

lzn — 2| < € Vn > N.

Ha (z,) komplex szamsorozat, akkor definialjuk az elemek valos és képzetes
részébdl Allo valds szamsorozatokat

xn = Re(zy), yn = Im(zy,).
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7.1. Allitas. (z,) pontosan akkor korldtos, ha (x,) és (yn) is korldtosak.
(zn) pontosan akkor konvergens, ha (x,) és (yn) is konvergensek. Ekkor

lim z, = xp, ¢€s lim y, =yo = lim z, = x¢9 + iyo-
n—oo n—o0 n—0o0

1. Példa. Legyen a sorozat z, = (1 + )", nelN. Ennek elemei
z1=1+1, 29 = 21, 23 =—2+21
A tagok abszolut értékeibdl allo sorozat:

il =v2, =20 ml=VE, |l =25

0|3

Mivel |z,| — oo, ezért a sorozat nem korlatos.

2. Példa. Legyen a sorozat n-dik tagja

2 2
Zn = COS(%) + isin(%).

Ekkor

2 2
21 =1, 29 = —1, 23 = cos(%) +isin(§)

Lathato, hogy |z,| = 1 minden n-re, tehat a sorozat korlatos.

Nyilvén (z,) pontosan akkor konvergens, ha (Z) konvergens.

Ha (z,) konvergens, akkor (|z,|) is konvergens. Forditva nem igaz.

Példa. Legyen z, = cos(n) + isin(n) = €. Ekkor (z,) nem konvergens,

viszont |z,| = 1.

7.1.2. Komplex szimsorok

Valés szamsorokhoz hasonléan tekinthetiink komplex szamokboél allo végte-
len Osszeget:

00 N

E Zp = lim g Zn
N—o0

n=1 n=

Minden komplex szamsorhoz két valés szamsor tartozik; a valos és képzetes
részekbdl 4llo szamsorok:

) )
E Tn, E Yn-
n=1 n=1
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[e.e]
7.2. Allitas. A komplex elemi ZZ” sor pontosan akkor konvergens, ha a

n=1

oo oo
Z Ty, €S Z Yn sorok konvergensek. Ekkor

n=1 n=1
oo oo oo
g Zn = g T + 1 E Yn-
n=1 n=1 n=1

Példa. (Végtelen mértani sor) Legyen z, = z", ahol zeC rogzitett. A szam-

SOor:
00

1+z+z2—|—...:Zz”.
n=0

Ez csak akkor konvergens, ha |z| < 1. Tekintsiik ekkor a sor részletdsszegeit:
N+1 1— ZNJrl 1

1—=z2
Zz 11—z Ngnoo 1—=2 1—2z Il <

7.1.3. Komplex hatvanysorok

Legyen a sor n-dik tagja z, = cp(z — 20)", ahol zpeC rogzitett komplex
szam, és c,eC. Tetszbleges z esetén definidljuk az alabbi fiiggvényt, ha a sor

konvergens:
oo

- e

Legyen az egyszertiség kedvéért zop = 0. A valés hatvanysorokra mar megis-
mert tétel mintajara itt is jellemezhetjiik a konvergencia halmazt.

7.1. Tétel. Tegyiik fel, hogy a fenti hatvanysor konvergens valamely £eC-re.
Akkor tetszéleges olyan z-re, melyre |z| < |£], szintén konvergens.

Kévetkezmény. A konvergencia halmaz a komplex szamsikon egy korlemez.

Kévetkezmény. A mar megismert elemi fiiggvények kiterjesztheték komplex
argumentumra. Példaul f(z) = e*-re:

o0
4 Zn
e = E —.
n!
n=0
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7.2. Komplex fiiggvények

Legyen D C C egy tartomany a komplex szdmsikon. f : D — C fliggvényt
tekintiink. A fiiggetlen valtozot z = x + iy, a fiiggs valtozoét w = u + v
jeloli. Tehat a hozzarendelés w = f(z) = u + iv.

1. Példa. Legyen f(z) = 2%. Ekkor
w= 2= (z+iy)* = (2% - y*) +i(2ay),
ezért a fliggd valtozok
u:xz—y2, v = 2zy.
A fiiggvény mindeniitt értelmezve van, f: C — C.

1
2. Példa. Legyen f(z) = —. Ekkor
z

1 1 z—wy x—iy T .y

= = i :
z wHiwyr—iy x2+4+y? x2+y? a2+ y2

A fiiggvény minden z # 0 esetén értelmezve van.

Geometriai leiras

A komplex fiiggvények pontos dbrazolasira négy dimenzidra lenne sziiksé-
giink - ez nem megy. Igy megelégsziink azzal, hogy két komplex szamsikot
rajzolunk: az egyiken az ET-t, a masikon az EK-t abrazoljuk. Azt tudjuk
megadni, hogy egy-egy konkrét komplex szamhoz mit rendel hozza a leké-
pezés, illetve bizonyos specidlis alakzatokat - példaul kort vagy egyenest -
hogyan transzformal.

7.2.1. Komplex fiiggvény kanonikus alakja
Legyen D C C tartomany, és adott ezen egy f : D — C hozzarendelés
z = f(z) = Re(f(2)) +i Im(f(2)).

7.3. Definici6é. A figgvény kanonikus alakja két valds értékd kétvdltozds
fiiggvény megaddsdt jelenti, f(z) = u(x,y) + iv(x,y):

u(z,y) = Re(f(z +iy)),  v(z,y) =Im(f(z +iy)).
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Példa. Legyen f(z) = z2. Mivel
fla+iy) = (z+iy)? = (2* = y) + 2izy,

ezért ennek kanonikus alakja

2

u(z,y) =2 -y,  v(z,y) = 2zy.

Forditva, ha adott két kétvéaltozos valos fiiggvény wu(z,y) és v(x,y), akkor
meghatarozhato az a f(z) komplex fiiggvény, melynek kanonikus felirdsaban
ezek a fiiggvények szerepelnek

f(z) = u(z,y) + iv(z,y).
Példa. Legyen

U(ZL‘, y) = —Ql’y, ,U(:E7y) = :BQ - y2'

Ekkor

f(z) = —2zy +i(a? — y?) = i2”

Példa. Tekintsiik az alabbi kétviltozos fiiggvényeket:

£ -y
—_— —_— = - O 0 .
U(.’I,'7y) $2+y2, v 72 +y27 (CU,Z/) 7é< ) )

Ekkor z # 0 esetén

) x )
z)=flx+1y) = +1 = - — = —
f(z) = f( y) 22 + 32 22+y?2  (z+iay)(x—iy) x+iy

T — 1y 1 1
~

7.2.2. Hatarérték, folytonossag

7.4. Definicié. Az f fiiggvény hatdrértéke o zg pontban H, ha zy torldddsi
pontja Dy-nek, és Ve > 0-hoz 30 > 0, hogy

zeDy és 0<|z—2|<6 = |f(z)-H|<e
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7.2. Tétel. Legyen f kanonikus alakja: f(z) = u(z,y) + iv(x,y). Tekint-
siink Dy-nek eqy zo = xo + iyo torloddsi pontjat. Ekkor
lim f(z) =H=U+1iV

Z—20

azzal ekvivalens, hogy léteznek az aldbbi hatdrértékek

lim w(x,y) =U lim v(z,y)="V.
(z,y)—(z0,50) (z-9) (z,y)—(zo,y0) (=:9)
7.5. Definicié. f: D — C komplex fiiggvény és zpeD. f folytonos zp-ban,
ha Ve > 0-hoz 3§ > 0, hogy ha |z — 29| < 6 és zeD, akkor |f(z) — f(20)| < €.

7.3. Tétel. f pontosan akkor folytonos zg = xg + iyo-ban, ha u és v is
folytonosak (xo,yo)-ban.

7.2.3. Differencialhatbsag

Adott egy T C C tartoméany, és egy f : T — C komplex fiiggvény. Legyen
f kanonikus alakja f(z) = u(z,y) + iv(z,y). Tegyiik fel, hogy u és v foly-

/
y?
derivaltak és folytonosak. Latni fogjuk, hogy meglepd moédon ez még nem

tonosan differencialhato fiiggvények, azaz léteznek az ul,, uy, vy, v, parcidlis

elegendd f derivilhatésidgahoz.

7.6. Definicié. Legyen zo f értelmezési tartomdnydnak belsé pontja. f
differencialhato zg-ban, ha létezik és véges az aldbbi hatdrérték:

o)~ fe)
h—0 h

(7.1)

Példa. Legyen f(z) = Re(z) = z. Differencialhato-e zp = 0-ban? A kanoni-
kus alak fliggvenyei, u(z,y) = x és v(z,y) = 0, "szép" fiiggvények. A

L T~ £(0)

h—0 h

hatarértéket két specialis iranybol szamoljuk ki. Legyen h = r + is.

1. Legyen h=r+14-0, r — 0. Ekkor

lim 7f(h) — 1) = lim r-2 0_
h—0 h r—0 r
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2. Legyen h =0+ 1is, s — 0. Ekkor

limwzlimo_O

— = 0.
h—0 h s—0 1§

Mivel 1 # 0, ezért f(z) = Re(z) nem differencialhat6 a z = 0 pontban.

A matematika egyik legfontosabb eredménye kovetkezd:

Alaptétel a komplex fiiggvény differencialhatésagarol.

7.4. Tétel. Legyen T C C tartomdny, f : T — C, zge intT. Tegyik fel,
hogy u és v folytonosan differencidlhato fiiggvények. Ekkor az aldbbi két

dllitds eqymdssal ekvivalens:

1. f differencidlhatd a zg = xo + iyo pontban
2. Az u és v kétvdltozds fiigguények kielégitik az aldbbi dsszefiiggéseket

uy(To,y0) = U;(ﬂﬁo,yo)

uy, (70, 50) =  —y(%0,Y0)-

Az utolséd két egyenletet Cauchy-Riemann egyenleteknek hivjuk.

Ha f differencidlhato T-n, akkor azt mondjuk, hogy a fiiggvény analitikus
(vagy reguldris) a T tartomanyon.

Bizonyitas*. Annyit latunk be, hogy f differencidlhaté zp-ban, akkor telje-
siilnek a C-R egyenletek.

A (7.1) hatarértéket specialis irdanyokbol nézziik. Legyen h = r + is.
Elsként s = 0 és r — 0 Ekkor:
U(l’o + 7, yO) + Z"U(.I‘O + 7, yO) - U(.I‘(], yO) - iv(x07 yO)

/ = 1. =
f (ZO) rg% T
— lim U(l‘o + 7, yO) - U(.’L‘Q, yO) +ilim U(ZL‘(] + 7, yO) - ’U(l‘o, yO) _
r—0 r r—0 T

= U;C(.T(], yO) + iU;(l'(), yO)

Masodszorra, tegyiik fel, hogy r = 0 és s — 0. Ekkor:

f,(ZO) — lim U(.’L'(), Yo + 8) - u(x(]:y()) +4lim

’U(JJ(), Yo + 8) B U(Jﬁ‘o, Z/O) _
s—0 18 s—0 18

= —iu;(mo, yo) + U;(ﬂfo, Yo)-
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Mivel a két hatarértéknek egyenlének kell lennie, igy

uz (20, Yo) + 1y (20, Yo) = —iuy (0, y0) + vy (20, yo)-

Két komplex szam egyenl@sége ekvivalens valds és képzetes részeinek egyen-
l6ségével, és épp a Cauchy-Riemann egyenleteket kapjuk W

A bizonyitasbol az is kideriilt, hogy ha f differencidlhat6, akkor derivaltja
(legalabb) kétféleképpen szamolhato:

f(2) = uy, + vy, = v, — duy,.
1. Példa. Legyen f(z) = e*. Ekkor

fz +iy) = e®T = %W = e%(cosy + isiny),

ezért
u(z,y) = e* cosy, v(z,y) = e*siny.

A megfelel§ parcidlis derivaltak:

ul(z,y) = e* cosy, uy (v, y) = —e”siny,

~

vy (T,y) = e¥siny = —uy, v, (x,y) = €” cosy = uy.

Tehat a fliggvény differencidlhato, és
() = dy(z,y) + vl (z,y) = €* cosy + ie”siny = f(2).
2. Példa. Legyen f(z) = Z = = — iy. Ennek kanonikus alakjat felirva a
parcialis derivéaltak
w,o=1, u, =0, v, =0, U;:—l#u;.

Tehat a fliggvény nem differencidlhato.

7.2.4. Elemi fiiggvények

Exponenciilis fiiggvény

Az f(z) = e* fuggvényt komplex szamok esetén természetes modon igy ér-
telmezziik, kiindulva a z komplex szdm z = x 4 7y kanonikus alakjabél:

e* =" = ¢%(cosy + isiny).
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Ez valoban a valos f(z) = e® fliggvény kiterjesztése.
le*| = e = eRe(®), arc () =y,
ahol arc (z) a z komplex szam trigonometrikus alakjaban szerepls szoget
jeloli.
Példa. Hol teljesiil az |e*| = 1 egyenlGség? Mivel

e’ =1 — x =0,

ezért az f(z) = e fiiggvény hatasara az imaginéarius tengely (amikor z =
0+ iy) képe az egységkor lesz.

7.3. Allitas. Az f(z) = e* fiiggvény néhdny alaptulajdonsdga:

1. Analitikus és (€)' = e*.
2. Tetszdleges két z1 és zo komplex szamra

eA1tz2 — 2122

3. Az e® fiigguény 2mi szerint periodikus, azaz

e? = e#t2mi WWzeC.

Bizonyitas.
1. Mar lattuk.

2. Behelyettesitéssel kozvetleniil igazolhato.

3. e* periodicitisa a trigonometrikus fliggvények periodicitasanak kévet-

kezménye:

e@HIIF2TE — 0% (cog(y 4 21) + isin(y + 27)).
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Logaritmus fiiggvény

Az exponencidlis fliggvény inverzét keressiik. Megvizsgaljuk f(z) = e* ér-
tékkészletét. A w = 0 nem eleme az értékkészletnek, mivel

Rez > 0 VzeC.

e = e

Legyen 0 # weC, keressiik azt a z-t, melyre w = e*. Ha w trigonometrikus
alakja w = re’, akkor

r=Inr, y=0+2kn, keZ.

Mivel az f(z) = e fiiggvény 2mi szerint periodikus, ezért az el6z6ek miatt a
keresett w szdm nem egyértelmt. Tehat

In(w) = In |w| +i(arc (w) + 2kw), keZ
sokértéki fliggvény. A k = 0-hoz tartozd értéket féértéknek nevezziik, és igy
jeloljiik:
Ln(w) = In|w| + i arc (w).
Példa.

In(i) = In1+ i(g + 2km) = i(g + 2k).

7.5. Tétel. A logaritmus figgvény alaptulajdonsdgai:

2. Tetszdleges z1, 22¢C esetén

In(z; - z2) = Ln(z1) + Ln(za) + @ 2kmw,  keZ.

3. A logaritmus-féérték fiigguény zo = 0-t kivéve mindenditt analitikus és

d 1
—L = —.
dz n(2) z
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Hatvanyfiiggvény

Ertelmezziik az f(z) = 2*, AeC hatvanyfiiggvényt az exponencialis és loga-
ritmus fliggvény segitségével az alabbi modon:

Z)\ — eAlnz.

Tehat ez is sokértékii fiiggvény lesz.

1. Példa.
18 = ezlnl — ez(Ln 1+i2km) _ €—k7r.

Ennek féértéke k = 0 esetén eV = 1.

2. Példa.

i piln(i) _ ivi(5+2km)

i T +2km)

_= 6_( N

- s . 2 £ : .
melynek fgértéke i* = e~ 2. (Tessék réacsodalkozni erre az eredményre!)

7.2.5. Harmonikus fliggvény

7.7. Definicié. Legyen u(x,y) kétvdltozds figguény, amely valamely R C
R? tartomdnyon van értelmezve. Tegyiik fel, hogy itt folytonos és kétszer
differencidlhato. u(x,y) harmonikus az R tartomdnyon, ha

wy, (2, y) +uy, (z,y) =0 V(z,y)eR.

7.4. Allitas. Tegyiik fel, hogy f : T — C komplex figgvény differencidlha-
td. Ekkor f(z) kanonikus alakjiban szerepld u(x,y) és v(x,y) figgvények
harmonikusak.

Bizonyitas. A bizonyitasban feltessziik, hogy u és v kétszer folytonosan
differencidlhatoak. (Latni fogjuk, hogy ez nem plusz feltétel, 1d. a 7.11 Té-
telt.) A differencidlhatosag miatt uy = vy és uy = —v;. Az els6 azonossagot
x szerint, a masodikat y szerint derivilva, majd Gsszegezve azt kapjuk, hogy
ul, + ugy = v;’y — vgx = 0.

7.5. Allitas. Ha v harmonikus a T egyszeresen Gsszefiiggd tartomdnyon,
akkor Jv : T — R mdsik harmonikus figgvény, hogy az f(z) = u(z,y) +
w(x,y) komplex figgvény differencidlhato.

Azt mondjuk, hogy v az u fiiggvény harmonikus tdrsa.
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7.3. Komplex vonalintegralok*

Ez a fejezet nem része az elsééves térzsanyagnak.

7.3.1. Komplex vonalintegral definiciéja

7.8. Definicié. L C C Jordan gérbe a komplezx szamsikon, ha 3y : [a, B] — C
valds intervallumon értelmezett folytonos komplex vdltozds fliggvény, melyre

L={y(t) =z(t) +iy(t) : tela,Bs]}.
A gorbe kezddpontja (o) = A, és végpontja v(8) = B.

A goérbe tulajdonsiga az iranyitésa, mely megadja a végpontok sorrendjét.
Ha a fenti gérbét forditott irdnyitassal adjuk meg, akkor a — L gorbét kapjuk:

—L={y(t) = (=) +iy(—t) : te[-p,—al}.

7.9. Definicié. A Jordan gérbe zart, ha A = B. FEnnek az irdnyitdsa
pozitiv, ha az dramutatd jdrdsdval ellentétes irdnyban haladunk kérbe. A
gorbe sima, ha az x : (o, 8] = R, y : [a, 5] = R figgvények differencidlha-
tok.

7.6. Allitas. (Tvhossz kiszdmitdsa.) Legyen L a fent adott Jordan gérbe,
melyrdl feltessziik, hogy sima. Ennek fvhossza:

B B
S(L) = / (1) dt = / V@O D) d.

Tekintstink egy L C C Jordan-gorbét és egy ezen értelmezett f komplex
fliggvényt. Definidlni szeretnénk a vonal menti integralt.

/f(z)dz
L

Tekintsiik a gorbe egy felosztasat. Ehhez els6ként adjuk meg az [« 8] inter-
vallum felosztasat:
A=ty <ty <-<tn=2}0.



178 7. FEJEZET. KOMPLEX FUGGVENYTAN

A gbrbe megfelels pontjait igy jeloljiik
2k = Tk + 1yg :”y(tk), k=0,...,n. (72)

Legyen a k-dik ivdarab egy tetsz6leges pontja &. A felosztashoz tartozo

kozelits Gsszeg:
n

> (k= z61) - F(&)-

k=1

7.10. Definicié. A vonalintegrdlt az aldbbi hatdrérték definidlja, amennyi-
ben létezik és véges:

n

m S (o — z) - F(6) = / f(2)dz,

n—o00,
on—0 =1 7

ahol §,, = max {s(2x_1,2k), k=1,...n}. Ha az L girbe zdrt, akkor a vonal-

integrdlra ezt a jelélést haszndljuk:

j{f(z)dz.
L

Példa. Legyen f(z) = ¢, ceC. L tetsz6leges zart gorbe.

n

y{c dz = nh_g)loz (zk — zk—1)Cc = nh_g)locz (zk — 2k—1) =

7 k=1 k=1
=clz1—20+2z2—214+ ...+ 2, —2p-1) =0,

hiszen zart gérbe mentén zg = z,. Azt kaptuk tehat, hogy

%cdz:O.

L
7.7. Allitas. A vonalintegrdl alaptulajdonsdgai:

1. Linedris hozzdrendelés, azaz

[@re@+agenis=a [ 1ei+e [ g
L

L L

ahol c1,c0eC és f(2), g(z) integrdlhatok.
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2. Ha az L gorbe két (diszjunkt) részbdl dll, L = Ly + Lo, akkor
/f(z)dz = /f(z)dz + /f(z)dz.
L Ly Lo

3. Ha f folytonos fiigguény , akkor létezik az /f(z)dz vonalintegrdl.
L

5. Ha f korldatos fiigguény, vagyis:
[f() <M VzeL,
akkor
‘/f(z)dz‘ <M -s(L),
L

ahol s(L) a gorbe ivhossza.

7.3.2. Vonalintegral kiszimitasa

Két olyan modszert adunk vonalintegralok kiszamitasara, melyeket a kézon-
séges Riemann integral kiszamitasanal is alkalmaztunk. A tételek bizonyita-
sa teljesen hasonléan végezhetSk el, mint a Riemann integralok esetén.

7.6. Tétel. Legyen az L gorbe pontjainak paraméteres megaddsa:
2(t) = z(t) +iy(t) = r(t)e?D,  te[a, B].
Ha x(t), y(t) illetve r(t), 0(t) folytonosan differencidlhatdak, akkor

JEC

L
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Itt is igaz a Newton-Leibnitz formula:

7.7. Tétel. Adott az f : T — C figgvény. Tegyiik fel, hogy IF : T — C
fiigguény, mely analitikus és F'(z) = f(z) Vz-re. Ekkor minden olyan L C T
Jordan gérbe mentén, melynek végpontjai A és B:

/f(z)dz = F(B) — F(A).
L

1. Példa. Legyen f(z) = e%*. Tekintsiik azt az L gorbét (egyenes szakaszt),
mely a 2¢ pontot koti 0ssze a 2 ponttal. Ekkor a 7.7.Tétel alapjan

eiz 2

/ezzdz = [] =i(e* —e7?).
v

L

7.1. abra. A 2i és 2 pontokat 6sszekots szakasz.

2. Példa. L ugyanaz, mintfent, f(z) = e’*. L paraméteres felirasa
z(t) =t +1i(2—1), tel0, 2].

Ennek derivaltja 2/(t) = 1 —i. Ezért:
2

/eizdz = /ei(t_i(Q_t))(l — i) dt = —e* + €2

L 0
3. Példa. Legyen L az aeC koriili r sugari kor, és

f(z) =(z—a)", fix neZ.
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A korvonal paraméteres megadasa z(t) = a + 7 - €', te[0, 27].
Ekkor 2/(t) = r - ie®

2 2

j{(z —a)'dz = /(Teit)n reieldt = r"+1i/e“(”+1)dt.
L 0 0
Ha n = —1, akkor
21
j{f(z)dz = i/ldt = 2mi.
L 0
Ha n # —1, akkor
2
§ 11z =i [y
L 0
2 27
=yt /cos((n + 1)t)dt + i/sin((n + Dt)dt | =0.

0

Osszefoglalva azt kaptuk, hogy

l%@_awwz

L 0 ha n # —1.

2wt ha n=-—1,

7.8. Tétel. (Cauchy-féle alaptétel vonalintegrdlra) Legyen T C C egyszeresen
dsszefliggd tartomdny, és ebben G C T eqy sima, zdrt gérbe. Tegyik fel, hogy
az [T — C fiiggvény analitikus. Ekkor

%f@ﬂz:a
G

A tételt nem bizonyitjuk.

7.9. Tétel. (Cauchy féle alaptétel dltaldnositdsa.) Adott eqy T C C dssze-
fiiggd tartomdny, melynek hatdra a G C T gdrbe. Feltessziik, hogy T nem
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egyszeresen 0sszefiiggd, jelolje Gy, ..., Gy a lyukakat kérbevevd gorbéket; me-
lyekrdl feltessziik, hogy ugyanolyan irdnyitdsiak, mint G. Tegyik fel, hogy
f:T — C analitikus fliggvény. Ekkor

Ko6vetkezmény. Legyen T’ C C egyszeresen dsszefliggd tartomdny. f: 1T —
C analitikus T-ben, kivéve a zo€T belsd pontot. Tegyiik fel, hogy létezik zg-nak
olyan § > 0 sugari kornyezete, ahol f korldtos:

|f(z)] <M, ha 0<|z— 2] <é.

Legyen G C T zdrt gorbe zg koril. Ekkor

]{ f(z)dz = 0.
G

Bizonyitas*. Legyen G. egy e sugaru kor zp koriil, ahol ¢ < §. Viagjuk
ki T-bdl ezt a kis kort, azaz tekintsiik a Top = T\ S(20,¢) tartomanyt. Ez
Osszefiiggs, de nem egyszeresen. Ekkor

j{f(z)dz: ff(z)dz.
G Ge

Ez utébbit becsiilve azt kapjuk, hogy
|j{f(z)dz| < M 2re,
Ge

hiszen f korlatos, és a kor keriilete 2we. Mivel e tetszSlegesen kicsi, ezért

7{ F(2)dz =0,
G

7.10. Tétel. (Cauchy-féle integrdl formula.) Legyen T C C egyszeresen
osszefiiggd, és f : T — C analitikus. 2o egy belsd pont T-ben. G C T
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olyan zdrt gorbe, melynek belseje is T-ben van és a gorbe korbeveszi zy-t.
Ekkor
IO

27TZ z— zo
G

f(z0) = (7.3)

A fenti integrilban az integraland¢é fiiggvénynek ( f(z) , zeT), Zp-ban
Z — 20

szingularitdsa van.
Bizonyitas®.

FIONTE NGRS O f(=0)
f d jf °d+CZ§ d

zZ— 2 zZ— 2
G G

Mivel a kovetkezs hatarérték véges szam,

i $2) = 1)

Z—20 Z — 20

= f'(=0)

ezért az el6z6 kovetkezmény értelmében

Z— 20
G
Igy azt kaptuk, hogy

10 4o o f

Z— 20
G G

ahol felhasznéltuk a korabbi 3. Példa eredményét.

dz = 2mi f(20),
20

Specialisan, ha G a zg koriili egységkor, akkor G-t paraméteresen felirhatjuk:
2(t) = 20 + €, tel0, 27].

Ekkor dz(t) = ie'dt, ezért z = z(t) helyettesités utan az integralt igy sza-
molhatjuk:

f(ZO) _ L f(Z) 2Z7r/f Z0+e ztdt /f ZO+€Zt

2w J 2z — zo
G

azaz a a kozéppontbeli fliggvényérték a kdrvonalon vett helyettesitési értékek
atlaga.
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7.11. Tétel. Legyen T C C egyszeresen dsszefiiggd tartomdny, f : T — C
analitikus figgvény. Ekkor f akdrhdnyszor differencidlhato T-ben és minden
zo belsd pont esetén:

f(n>(20):ﬂ]§( f2) .

2z —zo)

ahol G tetszdleges olyan T-beli zdrt gorbe, melynek belseje is T-ben van és
korbveszi zg-t.

A tételt nem bizonyitjuk. Ha a derivalhatosigot mar tudjuk, akkor zg szerint
formalisan derivalva a (7.3) egyenletet ezt kapjuk:

Feo) = 5 § L

27 ) (2 - 20)?
G
" 2
fiz0) =5~ j{ (zf_(i)o)adz’
G

és teljes indukcioval kivetkezik az n-dik derivaltra vonatkozé Ssszefliggés.

Taylor-sorfejtés analitikus komplex fiiggvényre

Az el6z6 tétel alapjan tudjuk, hogy egy analitikus fliggvény akarhanyszor is
derivalhato, és fel tudjuk irni a deriviltakat zart gdrbe mentén vett vonalin-
tegrél segitségével. Ezért kimondhatjuk az alabbi tételt:

7.12. Tétel. Tegyiik fel, hogy f : T — C differencidlhato zo egy kirnyezeté-
ben. Ekkor ott Taylor sorba fejthetd, és

n

2 £(n)(, oo
P = o)+ 3 L) (o = e - o),
n=1 ’ n=0

ahol
1 f(z)
e
= o j{ (z — zo)"t1 :

G

ahol G olyan zdrt gérbe, amely része T-nek és kirbeveszi zo-t.
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Tegyiik fel, hogy f analitikus és f(zp) = 0. Ekkor a fiiggvény felirasabol egy
z — 2 tényez6 kiemelhetd, és

f(2) = (z = 20) f(2)

alakban frhaté, ahol fanalitikus.

Laurent-sorfejtés

7.13. Tétel. Tegyik fel, hogy f analitikus eqy kérgydriben azaz egy
T={z: r<|z—2z| <R}

halmazon. Ekkor f ebben a kérgydriben felirhatd a kévetkezd hatvdnysorként:

[e.o]

)= Y alz— ),
k=—o00
ahol
1 f(z)
Ck = i ?{ Wdz,
G

és G egy olyan zo-t kérbevevd zdrt gorbe, amely a fenti T tartomdny része.
Ez az un. Laurent-sor.

Tegyiik fel, hogy f olyan fliggvény, amelynek zg-ban n-ed rendd pdlusa van,
egyébként analitikus zg egy K kornyezetében. Legyen G C K egy zéart gorbe
ebben a kornyezetben. Ekkor

o0

j{f(z)dz :j{ Z cr(z — 20)fdz =
G G k=-n
i ckf(z — 20)¥dz = 2mi c_y.
k=—n G

Megjegyzés. Megvizsgéljuk az Osszefiiggést a Laurent- és a Taylor-sorfejtés
kozott. Tegyiik fel, hogy f analitikus zp-ban és ennek egy kdrnyezetében.
Ekkor k = —n < 0 esetén a Laurent sorfejtés megfelel§ egyiitthatoja

IR R
C_"_Qm‘j(z_z())—nﬂd ijf( ) 0)" dz =0,



186 7. FEJEZET. KOMPLEX FUGGVENYTAN

hiszen az integraland6 fiiggvény analitikus. Ezért a Laurent-sorfejtés valdja-
ban a Taylor-sorfejtést adja.
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