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1. Bevezetés

1.1 Motiváció
A könyv megírásának célja, hogya matematika címadó témaköréhez tartozó elsődleges
ismereteinket minél jobban összegyűjtse, de leginkább az, hogy bemutassa, mi mindenről
is szól. Amikor a gimnazista kikerül a kis zárt kertjéből, be az egyetemi élet vadonjába,
sokszor szembesül azzal a ténnyel, hogy nem tudja, mi történik körülötte. Amikor egy
gondozott vadállatot visszaküldünk a saját közegébe, akkor is hozzászoktatjuk őt, és csak
fokozatosan engedjük ki. Ennek oka, hogy attól tartunk, hogy elpusztul, ha hírtelen
bedobjuk a mélyvízbe. De akkor a gimnazistáknak miért nem teremtünk valamiféle átmeneti
hidat, amely az egyszerűbb matematika és a bonyolultabb absztrakt terek világát hidalja
át és teszi a klimatizációt fokozatossá? Én ezt kísérlem meg ezzel a tankönyvvel, mely
több éves gyakorlatvezetői tapasztalataim egységesítése egy nagy egésszé, mellyel olyan
varázserő birtokába juttathatom az fiatal felnőtteket, mellyel képesek lesznek elvarázsolni
csoporttársaikat és tanáraikat. A megértés kulcsát adom a kezükbe, oly módon, hogy
leegyszerűsítem és összekapcsolom az új információkat a már meglevő információkkal. Nem
is tudom, miért várjuk el sokszor a hallgatótól, hogy levegőbe dobott szavakat és gondolatokat
megértsen, ha egyszer nem tudják mihez lehorgonyozni azokat a lufikat.

"Az absztrakciónak rossz híre van: színtelennek, céltalannak, a világtól el-
szakadtnak és tartalom nélkülinek tartják. Terméketlennek. A matematikát
néha megróják azért, mert absztrakt: mintha ez egy veszélyes lejtőn tett rossz
lépés lenne. Pontosan az absztrakció az azonban, ami a matematika feltűnő és
gyakran nem is várt hatékonysága mögött rejtőzik. Készség az összes lényegtelen
tényező figyelmen kívül hagyására, a valóságosnál szélesebb tartományban való
vizsgálódásra, összehasonlítani azt, ami van, azzal, ami lehetséges, sőt, ami
lehetetlen - ez a matematika sikerének titka."

Az idézet Karl Sigmundtól azért fogott meg, mert sok-sok elvont dologgal fogunk
találkozni a tantárgy, de a többi tárgy során is. Ez elsőre sokszor ijesztőnek tűnhet. Nehéz
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elképzelni valamit, amiről előtte nem hallottál. Viszont ígérem, a könyv végére mindenkinek
sikerül majd megérteni például a végtelen viselkedését. Szerencsére a legtöbb absztrakt
fogalmunk mögött ott rejlik valami szikra, kiindulópont, ami nagyon is valóságos. Ezeket,
ha megtaláljuk nem csak magát a fogalmat értjük meg jobban, de azt is, hogy miért alakult
ki, miért van nekünk szükségünk arra, hogy ennyire általánosítsunk vagy elrugaszkodjunk a
megszokottól.

Éppen ez a miért az, amiért tanuljuk a tárgyat, ami miatt a diszkrét matematika ismerete
nélkül a mérnök nem mérnök igazán. Ahogyan Ty Pennington is alapozással kezd, amikor
felépít egy házat, éppúgy a mérnöknek is szüksége van mélyrehatoló fogodzókra ahhoz, hogy
ténylegesen valami olyat tudjon létrehozni, ami könnyedén megállja a helyét a nagyvilágban.

Amiket most tanulni fogunk közösen, azokat a legtöbb esetben a gyakorlatban is fel-
használják a mérnökök. Talán, ha az algoritmusok időigényéről vagy memóriaigényéről
beszélek, akkor az olvasó egyből bólogat, hogy: igen, én is örülnék, ha minél gyorsabban
végeznék a feladattal. Mindazonáltal vannak olyan rések is, melyeket olvasva nem esik le
elsőnek, mégis miért tanuljuk mi ezt. Ezeknél és a legtöbb fejezetnél igyekeztünk minél
több applikációról is beszélni, megmutatni, hogy szinte nincs olyan tantárgy, ahol nem fog
valahol előjönni a most tanultak valamelyike.

1.2 Egy kis kontextus
Jó, de pontosan mi az a Lineáris Algebra? Mitől Lineáris? Mitől Algebra? Az utóbbira
egyszerűbb a válasz: kiegészítés. Egy arab könyv címének egyik szava, amely a legelső ismert
matematikai tankönyv, mely egyenleteket és egyenletrendszerek megoldását tartalmazta,
különböző feladatokhoz. Részletesebben erről a könyvről a ?? fejezetben olvashatsz.

1. A lineáris algebra hatékony eszköz a valós problémák megoldására. Számos területen
használható, a mérnöki és közgazdasági tudományoktól a fizikáig és számítástechnikáig.

2. A matematika és a statisztika sok más területén alapozó tárgy, így a lineáris algebra
alapos ismerete utat nyit a további tanulmányokhoz.

3. A lineáris algebra megértése segíthet jobban megérteni a minket körülvevő világot.
Segíthet az adatok értelmezésében, a változók közötti kapcsolatok magyarázatában és
a való világban felmerülő problémák megoldásában.

4. A lineáris algebra nagyszerű módja a problémamegoldó és elemző készség fejlesztésének.
Megtanít logikusan és strukturáltan gondolkodni, ami az élet sok más területén is
segítségedre lesz.

5. A számítógépes programozás fontos része, alkalmazásokban, játékokban és sok más
digitális rendszerben használják. A lineáris algebra ismerete segít jobb programok
kidolgozásában.

A későbbiekben látni fogjuk, hogy vannak megszámlálható és megszámlálhatatlan elem-
szűmú halmazok. Talán a diszkrét matematikát is úgy lehetne megfogni a legjobban, hogy
a megszámlálható, vagy az egészekhez (integerek) hasonlatos halmazokkal foglalkozunk.
Ettől diszkrét, azaz nem folytonos - a folytonos dolgokkal inkább az analízis foglalkozik. A
példányok megfoghatóak, könnyedén elkülöníthetőek a többitől, mintha egyszerű tárgyak
lennének.

A diszkrét matematika a digitális számítógépek alap leíró nyelve, mert foglalkozik a
logikával, a struktúrákkal és relációkkal, eképp a hálókkal és a számelmélettel. Foglalkozik
továbbá a kombinatorikával, a valószínűségekkel, tehát magával a lehetségessel. Azaz
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összességében minden olyan alap matematikával, amelyek szükségesek a számítógépek
megértéséhez és irányításához. Nevezhetnénk úgy is, hogy: "A digitális számítógépek
matematikája".

1.3 Köszönetnyilvánítás
Elsődlegesen szeretném megköszönni minden olyan tanáromnak és hallgatómnak, aki motívált
ezen könyv megírására és azon embereknek, akik segítettek, hogy olyan tapasztalatokhoz
juthassak, melyek segítségével most mások elé tárhatok egy elsőre bonyolultnak tűnő világot
és annak megannyi varázsát.





2. Egyenletrendszerekből Mátrixokba

Sokaknak lehet ismerős az a szó, hogy mátrix. Nekem is bevallom, többször jut eszembe a
filmtrilógia, mintsem a mátrix, amikkel nap mint nap dolgozom. A filmben mátrixnak hívják
a világot, azt a szimulációt, amelyben élünk. Badarságnak tűnhet ugyan, azonban egy biztos,
hogy igaz: a matematika egyetemes és leírja a környezetünket és a világmindenséget. Azaz
inkább a nyelv, amellyel le tudjuk azt írni. Végülis a számítógépek és számos algoritmus
(utasítássorozat) alapszik az ebben a fejezetben megismert mátrixokon és azok tulajdonságain
és felhasználásán.

Mint ígértem, minden fejezetet a gimnáziumi ismereteinkhez fogok kötni. A mátrixokat
a legegyszerűbben úgy tudnánk felfogni, mint az egyenletrendszerek lusta felírását. Egyenle-
trendszert ír le, mert valójában abból tudjuk képezni, vagy éppen azzá tudjuk visszaírni.
Lusta, mert ugyan egyenletrendszert írunk le, de csak azt, amit feltétlenül szükséges - hiszen
ki szeret fölöslegesen körmölni? Én nem szeretek.

A legegyszerűbb, ha egy példán bemutatom:

5x+ 0y+ 2z = 25
3x−1y+ 2z = 15
3x+ 2y+ 7z = 52

 (2.1)

Észrevehető, hogy az ismeretleneket egy oldalra és egymás alá rendeltem. Ekkor már
látható, hogy ilyen formában sokkal egyszerűbben is leírhatjuk az egyenetrendszert, kihagyva
az ismeretleneket és a plusz előjeleket és egyenlőségjeleket:

5 0 2
3 −1 2
3 2 7

25
15
52

 (2.2)

A függőleges vonal utáni oszlopot az egyenletrendszer megoldásvektorának hívjuk, hiszen az
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egyes egyenletek megoldását tartalmazza. Az egyenletrendszer homogén, ha a megoldásvektor
nulla, azaz:

5 0 2
3 −1 2
3 2 7

0
0
0

 (2.3)

Ebben az esetben a megoldásvektort is fölösleges kiírni, azaz elhagyható a csupa nulla oszlop.
Tehát a homogén egyenletrendszer a következő formában írható fel a legszűkebben:

5x+ 0y+ 2z = 0
3x−1y+ 2z = 0
3x+ 2y+ 7z = 0

⇐⇒
5 0 2

3 −1 2
3 2 7

 (2.4)

Homogén egyenletrendszer megoldásának mindig van egy triviális megoldása, a nullvektor
- hiszen, ha x=0 és y=0 és z=0, akkor bármik is legyenek az együtthatók, az eredmény tuti,
hogy nulla.

2.1 Gauss-Jordan elimináció
Azaz, hogyan oldjuk meg az egyenletrendszert mátrixos alakban felírva? Valójában pontosan
ugyanazt csináljuk, mint gimiben - összeadjuk, kivonjuk az egyenleteket egymásból és
megszorozzuk valamivel az adott egyenletet, ha kell. A különbség, hogy mostmár nem
körmölünk fölöslegesen és rendszert viszünk a folyamatba (nem teljesen random sorrendben
megyünk végig - bár úgy is tehetnénk, csak nem feltétlenül lenne előnyös).
Definíció 2.1.1 — Vezérelem. Gauss elminiáció során minden sorban és oszlopban kivá-
laszthatunk egy (csakis egy) nem nulla számot. Ez lesz a vezérelem.

A vezérelem többek között azért nem lehet nulla, mert a vezérelem lesz az az érték,
amivel tovább tudunk dolgozni, aminek segítségével az alatta levő részeket lenullázzuk.
(Nullával beszorozni vagy leosztani egy egyenletrendszert értelmetlen.)
Definíció 2.1.2 — Rang - Képtér dimenziója. Mátrix rangján a mátrixban található vezérele-
mek számát értjük.

A fenti példán nézzük is meg. Én le fogom írni a gimis felírást is, de a gyakorlatban
papíron elég már csak a mátrixokkal számolni (látni fogjuk, hogy gépen még ennyit sem kell
csinálni, lesznek előregyártott függvényeink - akár Pythonban, akár MatLabban is nézzük
azt.)

5x+ 0y+ 2z = 25
3x−1y+ 2z = 15
3x+ 2y+ 7z = 52

⇐⇒
5 0 2

3 −1 2
3 2 7

25
15
52

 (2.5)

1. Vizsgáljuk meg, hogy van e nulla a mátrixban. Ha van, lehetőleg tegyük
legalulra az adott sort. Ezt ügye bármikor megtehettük, hiszen az egyenletrend-
szerek esetében az egyenletek között és kapcsolat áll fenn - sorrendjük mindegy. Ha
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több nullát is találunk, akkor érdemes elgondolkozni azon, hogy melyik nullát tudjuk
majd megtartani - később ezt már érezni fogjuk.
Észrevesszük, hogy az első sorban van nulla.

3x−1y+ 2z = 15
3x+ 2y+ 7z = 52
5x+ 0y+ 2z = 25

⇐⇒
3 −1 2

3 2 7
5 0 2

15
52
25

 (2.6)

2. Válasszunk ki egy vezérelemet. Ezt általában a legelső sor legelső elemével
szoktam kezdeni - mert így algoritmizálható a legegyszerűbben. De nagyon sokszor
nem ez lesz a legoptimálisabb.
(a) Ha van egyes a sorban, célszerű azt választani.
(b) Ha nincsen egyes, bármelyik választható, általában elsőnek az elsőt

választjuk. Ekkor osszuk le a sort a kiválasztott vezérelemmel. (Egyest
csinálunk belőle. ) A példánkban találunk egyest, ezért most nem a bal felső
sarkat választom, hanem az első sor második elemét.
3x−1y+ 2z = 15
3x+ 2y+ 7z = 52
5x+ 0y+ 2z = 25

⇐⇒
3 -1© 2

3 2 7
5 0 2

15
52
25

 (2.7)

3. Nullázzuk ki a kiválasztott vezérelem alatti együtthatókat.
(a) Adjuk hozzá a II. sorhoz az I. sor kétszeresét! Figyeljük meg, hogy a

vezérelem negatív volt, míg az alatta levő elem pozitív. Eltérő előjel esetén
hozzáadunk, azonos előjel esetén kivonunk. Mivel a vezérelemünk egyes,
ezért a II. sor kétszeresét kell hozzáadni, hiszen 2y+ (−2y) = 0.

3x−1y+ 2z = 15
9x+ 0y+ 11z = 82
5x+ 0y+ 2z = 25

⇐⇒
3 -1© 2

9 0 11
5 0 2

15
82
25

 (2.8)

A harmadik sorban levő vezérelem alatti értéket is le kéne nulláznunk, de szerenc-
sére ez már nulla volt alapból.

4. Ha lenulláztunk mindenkit a vezérelem alatt, ideje új vezérelemet keresni.
Ne feledjük, abból a sorból és oszlopból már nem választhatunk, ahol már választottunk!
Keressük a vezérelemet a második sorban. HA a kilencest, vagy a 11-est választjuk,
akkor nehéz lenne úgy vezéregyest készíteni, hogy a sor leosztása során egészeket
kapjunk (a 82 se 9-el, se 11-el nem osztható.) A szebb eredmény érdekében cseréljük
fel a második és a harmadik egyenletet és utána válasszunk vezérelemet (csere nélkül
is választhatnánk a harmadik sorból.). Válasszuk vezérelemnek az ötöst.

3x−1y+ 2z = 15
5x+ 0y+ 2z = 25
9x+ 0y+ 11z = 82

⇐⇒
 3 -1© 2
5© 0 2
9 0 11

15
25
82

 (2.9)
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5. Osszuk le a második sort a vezérelemmel. (Készítsünk vezéregyest.)

3x−1y+ 2z = 15
1x+ 0y+ 2

5z = 5
9x+ 0y+ 11z = 82

⇐⇒
 3 -1© 2
1© 0 2

5
9 0 11

15
5
82

 (2.10)

6. Nullázzuk le a vezérelem alatti együtthatót. Azaz ebben az esetben vonjuk ki
a harmadik sorból a második sor kilencszeresét (III-9II).

3x−1y+ 2z = 15
1x+ 0y+ 2

5z = 5
0x+ 0y+ 7.4z = 37

⇐⇒
 3 -1© 2
1© 0 2

5
0 0 7.4

15
5
37

 (2.11)

7. AGauss eliminációt elvégeztük - háromszögmátrixot kaptunk (mégha most
a lépcsőnk nem is a főátlóban szerepel pontosan.) Már innen is manuálisan
visszafejthetjük a megoldást, a baloldali eredeti gimis alakot használva. Látható,
hogy létezik a harmadik vezérelem is - azaz a mátrix rangja 3. Ha minden sorban és
oszlopban van vezérelem, akkor az egyenletrendszernek egyetlen egy megoldása van.

3x−1y+ 2z = 15
1x+ 0y+ 2

5z = 5
0x+ 0y+ 7.4z = 37

⇐⇒
 3 -1© 2
1© 0 2

5
0 0 7.4©

15
5
37

 (2.12)

Tehát összefoglalva adott lenullázási lépés egyben úgy néz ki, hogy:

nullázandó sor− nullázandó együttható
vezérelem ·vezérelem sora

Fejtsük vissza a Gauss utáni alakból az egyenletrendszer megoldását:

 3 -1© 2
1© 0 2

5
0 0 7.4©

15
5
37

⇐⇒ 3x−1y+ 2z = 15
1x+ 2

5z = 5
7.4z = 37

 (2.13)

Az alsó sorból azt kapjuk, hogy z = 37
7.4 = 5 Helyettesítsuk be akkor, hogy z = 5

3x−1y+ 2 ·5 = 15
1x+ 2

5 ·5 = 5

}
=⇒

3x−1y+ 10 = 15
1x+ 2 = 5

}
=⇒

3x−1y+ 10 = 15
x= 3

}
(2.14)

Helyettesítsük be, hogy x= 3

3 ·3−1y+ 10 = 15 =⇒−y+ 19 = 15 =⇒ y = 4 (2.15)

Tehát az egyenletrendszerünk megoldása: x
y
z

=

 3
4
5


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2.1.1 De akkor hol van a Jordan?
Gauss Jordan során mikor befejeztük a Gauss eliminációt, elindulunk és a vezérelemek fölött
is kinullázgatjuk az együtthatókat. Így a mátrixunkban jobb esetben vezéregyeseket(vagy
vezérelemeket) fogunk találni, minden más együttható nulla lesz. Ekkor a megoldásvektorunk
helyén az egyenletrendszer valódi megoldását, azaz az ismeretlenek értékét kapjuk. Nézzük
meg ezt a példánkon. Eljutottunk a Gaus végére:

3x−1y+ 2z = 15
1x+ 0y+ 2

5z = 5
0x+ 0y+ 7.4z = 37

⇐⇒
 3 -1© 2
1© 0 2

5
0 0 7.4©

15
5
37

 (2.16)

1. Osszuk le az alsó egyenletet a vezérelemmel.

3x−1y+ 2z = 15
1x+ 0y+ 2

5z = 5
0x+ 0y+ 1z = 5

⇐⇒
 3 -1© 2
1© 0 2

5
0 0 1©

15
5
5

 (2.17)

2. II-2
5III és I-2III

3x−1y+ 0z = 5
1x+ 0y+ 0z = 3
0x+ 0y+ 1z = 5

⇐⇒
 3 -1© 0
1© 0 0
0 0 1©

5
3
5

 (2.18)

3. I-3II

0x−1y+ 0z =−4
1x+ 0y+ 0z = 3
0x+ 0y+ 1z = 5

⇐⇒
 0 -1© 0
1© 0 0
0 0 1©

−4
3
5

 (2.19)

4. Végeztünk, de ha szépíteni akarjuk, szorozzuk be az első sort -1-el.

0x+ 1y+ 0z = 4
1x+ 0y+ 0z = 3
0x+ 0y+ 1z = 5

⇐⇒
 0 1© 0
1© 0 0
0 0 1©

4
3
5

 (2.20)

Figyeljük meg, hogy itt a sorrend (y,x,z) lett!.

2.2 Egyenletrendszerek megoldhatósága és Mátrix rang alapján
2.2.1 Markerek: Nullsor és Tilossor

Definíció 2.2.1 — Nullsor. Nullsorról akkor beszélhetünk egy Gauss elimináció során,
amikor az adott sor csupa nullákból áll (a megoldásvektor oldalán is).
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Definíció 2.2.2 — Tilossor. Tilossorról akkor beszélhetünk, amikor az adott sor együttható
oldala csupa nulla, míg a megoldásvektorban levő szám NEM nulla.

A Tilossor értelemszerűen azért tilos, mert azt jelenti, hogy ilyet nem kaphatunk - nem
lesz megoldása az egyenletrendszernek, ha ilyet kapunk. Gondoljuk végig, a tilos sor azt
jelenti, hogy 0x+ 0y+ 0z = valami, ami nem nulla. Ekkor az egyenlet baloldalán nullát,
jobb oldalán pedig egy attól különböző számot kapunk - ez ellentmondás.

Marker Homogén ERSZ Inhomogén ERSZ A mátrix rangja A|b mátrix rangja
nincs 1 (a triviális x=0) 1 (x=A−1b lsd később) = oszlopszám = A rangja
Nullsor ∞ (Nem mindig igaz!) ∞ <oszlopszám = A rangja
Tilos sor nem jöhet ki nincs <oszlopszám > A rangja

A táblázatban figyeljük meg az összefüggéseket: A homogén egyenletrendszernek mindig
van megoldása, ez a triviális megoldás. Az Ax=b egyenletrendszernek csak akkor van
megoldása, ha az együtthatómátrix (A) és a kibővítettmátrix (A|b) rangja megegyezik.
Ellenkező esetben Tilossort kapunk. A nullsor nem mindig jelent végtelen megoldást, a rang
és oszlopszám kapcsolata számít valójában!

Lehetséges-e, hogy a bővített mátrix rangja kisebb, mint az együtthatómátrix rangja?
Nem, hiszen a bővített mátrix az az együtthatómátrix kibővítése így valójában csak az a
kérdés, hogy találunk-e vezérelemet a b oszlopvektorban vagy sem. Tehát Rang(A|b)=Rang(A)
vagy Rang(A|b)=Rang(A)+1.
Definíció 2.2.3 — Szabadsági fok - Magtér dimenziója. Szabadsági fok alatt a szabad
változók számát értjük. Tehát a vezérelemmel NEM rendelkező oszlopvektorok számát!



3. Mátrix determinánsa (Előjeles Térfogat)

Definíció 3.0.1 — Determináns. A mátrix determinánsa az egy speciális mérték. Egy olyan
függvény, amely a négyzetes mátrixhoz egy számot rendel - ami egyben megegyezik majd az
oszlopvektorok által kifeszített paralelepipedon térfogatának 3 dimenzióban. (Többdimenziós
vektorok esetén a térfogat általánosítható általa.)

1x1-es mátrix esetén ez maga a cellában lévő szám. [a]→ a. 2x2-es mátrix esetén a
főátlók szorzatából kivonjuk a mellékátlók szorzatát.[

a b
c d

]
→ ad− bc

Magasabb dimenzióban rekurzívan megadható adott sor általi kifejtéssel. Első sor által
kifejtve (sakktáblaszabályra figyelni kell): a b c

d e f
g h i

→ a

∣∣∣∣∣ e f
h i

∣∣∣∣∣︸ ︷︷ ︸
ei−fh

−b
∣∣∣∣∣ d f
g i

∣∣∣∣∣︸ ︷︷ ︸
di−fg

+c
∣∣∣∣∣ d e
g h

∣∣∣∣∣︸ ︷︷ ︸
dh−eg

Ha n > 1, akkor az n×n-es mátrix determinánsát megkapjuk, ha az első sor minden
elemét szorozzuk a hozzá tartozó előjeles, (n−1)× (n−1)-es aldeterminánssal, majd ezeket
összeadjuk. Az előjel az ún sakktábla-szabály szerint állapítható meg: az első sor első eleme
+, második eleme −, harmadik eleme megint + előjelű és így tovább. Az aldetermináns
pedig az adott sor és oszlop elhagyásával létrejövő mátrix determinánsa. Az A mátrix
determinánsát det(A)-val vagy |A|-val jelöljük - utóbbi nem keverendő össze az abszolút
értékkel (lásd a fenti 1×1-es példát)!

A fenti módszerrel egy n×n-es determináns visszavezethető n! db 1×1-es determinánsra.
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Tétel 3.0.1 — Kifejtési tétel. A determináns értéke kiszámolható ha egy tetszőleges sor
(vagy oszlop) elemeit szorozzuk a hozzájuk tartozó előjeles aldeterminánsokkal és ezeket
összeadjuk.

Tehát nem muszáj az első sor szerint kifejteni a determinánst, hanem tetszőleges sor/oszlop
szerint megtehetjük. A kifejtésnél fontos figyelembe venni az aldeterminánsok előjeleit, amit
a sakktábla szabály alapján kapunk meg (bal felső sarok mindig +):∣∣∣∣∣∣∣∣∣∣∣∣

+ − + − . . .
− + − + . . .
+ − + − . . .
− + − + . . .
...

...
...

... . . .

∣∣∣∣∣∣∣∣∣∣∣∣
Érdemes a legtöbb 0-t tartalmazó sor vagy oszlop szerint kifejteni a determinánst, illetve az
alábbi tulajdonságok felhasználásával sok nullát csinálni.

3.1 Tulajdonságok/Tételek
(Sorra vagy oszlopra egyaránt igazak!)

1. Oszlopok és sorok szerepe egyforma (szimmetrikus): a főátlóra tükrözve a determináns
értéke nem változik. Azaz det(A) = det

(
A>
)
.

pl.

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣∣
Bizonyítás 3.1 3× 3-ra nézzük meg. Ha megnézzük 1× 1 esetén det[a]=a tran-
szponálom: det[a]T = det[a] = a. 2×2 esetén:∣∣∣∣∣a b

c d

∣∣∣∣∣= adet[d]︸ ︷︷ ︸
d

−bdet[c]︸ ︷︷ ︸
c

Első oszlop szerint fejtsük ki a transzponált verziót.∣∣∣∣∣a c
b d

∣∣∣∣∣= adet[d]︸ ︷︷ ︸
d

−bdet[c]︸ ︷︷ ︸
c

A kettő tényleg megegyezik.
3×3 esetén. ∣∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣∣= a

∣∣∣∣∣e f
h i

∣∣∣∣∣− b
∣∣∣∣∣d f
g i

∣∣∣∣∣+ c

∣∣∣∣∣d e
g h

∣∣∣∣∣



3.1 Tulajdonságok/Tételek 19

Transzponált esetén fejtsük ki az első oszlop szerint:∣∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣∣= a

∣∣∣∣∣e h
f i

∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣∣e f
h i

∣∣∣∣∣
−b
∣∣∣∣∣d g
f i

∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣∣d f
g i

∣∣∣∣∣
+c
∣∣∣∣∣d g
e h

∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣∣d e
g h

∣∣∣∣∣
Tehát észrevesszük, hogy a transzponált esetén az aldetermináns mindig az original
mátrix aldeterminánsa transzponálva. Egyel kisebb dimenzióra meg már beláttuk,
hogy a transzponálás nem változtat. Tehát erre a dimenzióra sem fog megváltozni.
Ezzel a logikával kiterjeszthető ez bármekkora mátrixra. �

2. Ha a determinánsnak egy sorát egy λ számmal szorozzuk, akkor a deter-
mináns értéke λ-szoros lesz. Ebből következik, ha minden sorát megszorozzuk
λ-val, a determináns értéke a λn-nel szorzódik, ahol n a mátrix mérete: det(λA) =
λndet(A), ahol A ∈ Rn×n.

pl. λ ·

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
λa λb λc
d e f
g h i

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
a b c
λd λe λf
g h i

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
a b c
d e f
λg λh λi

∣∣∣∣∣∣∣
Bizonyítás 3.2 Legyen B mátrix az A mátrix, melynek i. sorát beszoroztuk λ-val.
Fejtsük ki az adott sor szerint a determinánst. :

det(B) =
n∑
j=1

λaijDij = λ
n∑
j=1

aijDij︸ ︷︷ ︸
det(A)

�

3. Ha a determináns egyik sora egy kéttagú összeg, akkor a determináns értéke a két
olyan determináns értékének összege, melyeknek az egyik sora a kéttagú összeg egyik
ill. másik fele.

pl.

∣∣∣∣∣∣∣
a b c

d+ j e+k f + l
g h i

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
a b c
j k l
g h i

∣∣∣∣∣∣∣
Bizonyítás 3.3 Legyen C mátrix melyben az i. sora egy kéttagú összeg. Fejtsük ki
az i. sor szerint a determinánst. :

det(C) =
n∑
j=1

(aij + bij)Dij =
n∑
j=1

aijDij︸ ︷︷ ︸
det(A)

+
n∑
j=1

bijDij︸ ︷︷ ︸
det(B)
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Ahol az A mátrix a C mátrix, csak az i. sora a C mátrix i. sorának első tagjai. B i.
sora pedig a második tagjait tartalmazza. �

4. Ha a determinánsnak egy sora csupa 0-ából áll, akkor értéke 0.

Bizonyítás 3.4 Fejtsük ki a determinánst a nullsor szerint. :

det(A) =
n∑
j=1

0Dij = 0

�

5. A determináns két sorát felcserélve értéke (-1) szeresére változik.

Bizonyítás 3.5 Lássuk be, hogy két szomszédos sorcere esetén ez igaz: Ebben
az adott sorszerint kifejtve a két determinánst azt vesszük észre, hogy ügye az
aldeterminánsok értékei nem változnak, ahogyan a sor értékei sem, mi változik
then? A sakktábla szabály! :)

det(A) =
n∑
j=1

aijDij det(Asorcserelt) =
n∑
j=1

aij(−1)Dij

Mostmár csak az a kérdés, hogy hány szomszédos cserére vezethetjük vissza két nem
szomszédos sor cseréjét. Egy rajzolással belátható, hogy páratlan számú sorcsere
történik. Mínusz egy páratlanadik hatványra emelve still mínusz egy. �

6. Ha a determinánsnak van két egyenlő sora, akkor értéke 0.

Bizonyítás 3.6 Cseréljük ki ezt a két azonos sort. Ekkor a mátrix nem változik, de
a determináns minusz egyszeres lesz. Azaz:

det(A) =−det(A)

det(A) = 0

�

7. A determináns értéke nem változik, ha egy sorához (i) hozzáadjuk valame-
lyik másik sorának (j) szám szorosát.

Bizonyítás 3.7 Alkalmazzuk az összegtételt. Lesz egy olyan detrminánsunk, ami
az eredeti mátrixé (A) és ehhez hozzáadjuk egy másik determinánst, amelynek i.
sorában a j.sor λ szorosa van (Aλj).

det(Ai+λj)
összegtétel

↓= det(A) + det(Aλj)
számszorostétel

↓= det(A) +λdet(Ai. sor = j. sor)︸ ︷︷ ︸
0

egyenlősorok
↓= det(A)

�

8. Ha a determináns főátlója alatt (vagy fölött) csak 0-ák állnak, akkor a
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determináns értéke a főátlóban lévő elemek szorzata. Ez a helyzet a diagonális
mátrixnál is, nemcsak a felső-/alsóháromszög mátrix esetében.

pl.

∣∣∣∣∣∣∣∣∣
a 0 0 0
b c 0 0
d e f 0
g h i j

∣∣∣∣∣∣∣∣∣= a · c ·f · j,

∣∣∣∣∣∣∣∣∣
a b d g
0 c e h
0 0 f i
0 0 0 j

∣∣∣∣∣∣∣∣∣= a · c ·f · j,

∣∣∣∣∣∣∣∣∣
a 0 0 0
0 c 0 0
0 0 f 0
0 0 0 j

∣∣∣∣∣∣∣∣∣= a · c ·f · j.

Bizonyítás 3.8 Fejtsük ki a a determinánst és az aldeterminánsokat is az első sor
szerint. Mindig csak az első tag marad meg, mert a többit nullával kell szorozni.

det(A) = a11

első elemhez tartozó aldetermináns
↓

det(A11) = a11a22det(A11,11)
↑

Az aldetermináns első eleméhez tartozó aldetermináns

+ · · ·= a11a22 . . .ann

�

9. FERDE KIFEJTÉS: adott sor /oszlop elemeit rendre másik sor/oszlop megfelelő
eleméhez tartozó aldeterminánssal szorozzuk, akkor nullát kapunk.

Bizonyítás 3.9 Ebben az esetben valójában egy olyan determinánst kapunk, ahol
az a sor, amelyik szerint kifejtjük megegyezik azzal a sorral, amelyikhez tartozó
aldetrminánsokat használtuk. Tehát két azonos sorunk keletkezett. Az azonossorok
tulajdonság miatt ez nulla.
pl első sor szerint fejtsünk ki, a második sor aldeterminánsaival.:

−a11

∣∣∣∣∣a12 a13
a32 a33

∣∣∣∣∣+a12

∣∣∣∣∣a11 a13
a31 a33

∣∣∣∣∣−a13

∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣∣=
∣∣∣∣∣∣∣
a11 a12 a13
a11 a12 a13
a31 a32 a33

∣∣∣∣∣∣∣
egyenlősoroky

= 0

�

Lényegében, a determináns “Gauss eliminálható”, ámde figyelnünk kell néhány szabályra:
• két sor cseréje esetén változik az előjel,
• egy sort/oszlopot megszorozhatunk egy számmal, de így a determinánst értéke is ezzel

a számmal szorzódik,
• Gauss eliminációval ellentétben minden művelet elvégezhető oszlopokra is, mert a

determináns transzponálható anélkül, hogy értéke megváltozna.





4. Mátrixműveletek

Definíció 4.0.1 —Művelet. Olyan függvény, amely adott objektumhoz vagy objektumokhoz
egy másik ugyanolyan típusú objektumot rendel.

Definíció 4.0.2 — Egységelem. Adott egy H halmaz és egy rajta értelmezett * kétváltozós
művelet. Ekkor az e ∈H objektum a * műveletre nézve egységelem, akkor és csak akkor,
ha h∗e= e∗h= h ∀h ∈H.

(Azaz az egységelemet összeművelve balról és jobbról a H bármely elemével az eredmény
ömaga marad, azaz az adott H halmazbeli h elem lesz.

Megkülönböztetjük a baloldali és jobboldali egységelemet, ha csak az egyik oldalról
műveljük.
Definíció 4.0.3 — Inverzelem. Adott egy H halmaz és egy rajta értelmezett * kétváltozós
művelet. Ekkor az h−1 ∈ H objektum a * műveletre nézve inverzelem, akkor és csak
akkor, ha h∗h−1 = h−1 ∗h= e ∀h ∈H.

(Azaz az inverzelemet összeművelve balról és jobbról a H bármely elemével az eredmény
az adott műveletre vonatkoztatott egységelem lesz.

Megkülönböztetjük a baloldali és jobboldali inverzelemet, attól függően, melyik oldalról
műveljük.
Definíció 4.0.4 — Baloldali Inverzelem. Adott egy H halmaz és egy rajta értelmezett *
kétváltozós művelet. Ekkor az h−1 ∈H objektum a * műveletre nézve baloldali inverzelem,
akkor és csak akkor, ha h−1 ∗h= e ∀h ∈H. Balról műveljük.

4.1 Mátrixok számszorosa
Definíció 4.1.1 — Mátrix számszorosa. Olyan függvény, amely adott λ ∈R esetén a A ∈
Rnxm mátrixhoz hozzárendeli a B ∈ Rnxm mátrixot, melynek elemei: bij = λaij

Tehát elemenként minden elemet beszorzunk az adott számmal. A gimnáziumi vektorok
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nyújtásához hasonlóan működik.

4.1.1 Mátrix számszorosának tulajdonságai
(Hamár definiáltuk a mátrixok összeadását.)

A tulajdonságok következnek az elemenkénti valós szám szorzás és elemenkénti valós
szám összeadás tulajdonságaiból.

Legyen A,B ∈ Rn×m és λ,µ ∈ R
1. 1A=A
2. Vegyes asszociatív:

λ(µA) = (λµ)A

3. Vegyes disztributív:
(a)

(λ+µ)A= λA+µA

(b)
λ(A+B) = λA+λB

4.2 Mátrixok transzponáltja
Definíció 4.2.1 — Transzponált. Olyan egyváltozós művelet, melynek eredményeképpen
a mátrix sorai és oszlopai felcserélődnek. Azaz ha, A mátrix nxm-es, akkor annak
transzponáltja az a B mxn-es mátrix, melynek elemei bij = aji

4.2.1 Transzponálás tulajdonságai
(Hamár definiáltuk a mátrixok összeadását.)

1. (A+B)T =AT +BT

2. (AB)T =BTAT

3. (AT )−1 = (A−1)T

4.3 Mátrixok összeadása
Két mátrix összege elemenkénti művelet.
Definíció 4.3.1 — A és B mátrix összege. Az a C mátrix, melynek adott pozíciójú elemét
az A és B mátrixok azonos pozíciójú elemeinek összegével kapjuk. Tehát: cij = aij + bij

4.3.1 Mátrixösszeadás tulajdonságai
Tulajdonságai abból következnek, hogy a mátrixok összeadását visszavezettük nxm darab
valós szám összeadására.

1. Asszociatív (csoportosítható).

(A+B) +C =A+ (B+C)

2. Létezik egységeleme a nullmátrix.

A+ 0 =A
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3. Létezik inverzeleme a -1A.
A−A= 0

4. Kommutatív (felcserélhető).
A+B =B+A

Definíció 4.3.2 — Abel csoport. Abel csoportnak azon Halmaz,művelet párost értjük,
melyre teljesül, hogy a művelet zárt a halmazra nézve, asszociatív, létezik egységeleme,
létezik inverzeleme és kommutatív.

4.4 Mátrixok szorzása
Mátrixok szorzása NEM elemenként elvégezhető! A két mátrix szorzata három egymásba
ágyazott ciklusként fogható.

A skalárszorzat segítségével tudjuk definiálni.
Definíció 4.4.1 — A és B mátrix szorzata. Amennyiben az A nxm-es mátrix oszlopainak
száma megegyezik a B mxk-s mátrix sorainak számával, létezik az AB mátrixszorzat,
amely egy olyan nxk dimenziójú C mátrix, melynek adott elemét úgy kapjuk, hogy az A
mátrix adott sorát a B mátrix adott oszlopával skalárszorozzuk. Tehát cij =A i. sora · B
j. oszlopa=∑l ailblj .

4.4.1 Mátrixszorzás tulajdonságai
1. Asszociatív (csoportosítható)

(A ·B) ·C =A · (B ·C)

2. Négyzetes mátrixok esetén létezik az egységelem, az egységmátrix (jele E vagy I).

E ·A=A ·E =A

3. Négyzetes mátrixok esetén létezik az inverzelem.

A−1 ·A=A ·A−1 = E

4. NEM kommutatív!
5. Azonos típusú mátrixok esetén a mátrixszorzás disztributív a mátrixok összeadására

nézve (figyeld meg a műveleti sorrendet).

A · (B+C) = (A ·B) + (A ·C)

(B+C) ·A= (B ·A) + (C ·A)

Tétel 4.4.1 Ha egy mátrixnak létezik baloldali és jobboldali invezre, akkor az egyértelmű
(megegyezik). Összeadásra és szorzásra vonatkoztatva is!
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Bizonyítás 4.1 Az összeadásra nézve a tétel következik a valós számok összeadásainak
tulajdonságából.

Szorzásra vonatkoztatva jelöljük a baloldali inverzt: A−1bal, a jobboldalit pedig:
A−1jobb

Ekkor:

A−1bal
egységelem def

↓=A−1balE

jobbinverz defy
=A−1bal(AA−1jobb)

asszociativitás
↓= (A−1balA)A−1jobb

balinverz def
↓= EA−1jobb

egységelem def
↓=A−1jobb

Tehát a bal és a jobbinverz megegyezik. �

4.4.2 Inverz mátrix tulajdonságai

Inverz mátrix alatt a szorzásra vonatkoztatott inverzet értjük.
Definíció 4.4.2 — Szinguláris mátrix. Olyan mátrix, melynek nem létezik inverze. (Tehát
determinánsa nulla.)

1. (A−1)−1 =A

Bizonyítás 4.2

(A−1)−1
egységelem def

↓= (A−1)−1E

inverzelem defy
= (A−1)−1(A−1A)

asszociatív
↓= [(A−1)−1A−1]A

inverzelem defy
= EA

egységelem def
↓=A

�

2. (AB)−1 =B−1A−1

Bizonyítás 4.3 Konstruktívan belátjuk, hogy mi történik, ha összeszorozzuk az AB
mátrixot a B−1A−1 mátrixal.

AB(B−1A−1)
asszociatív

↓=A(BB−1)A−1

egységelem defy
=AEA−1

egységelem def
↓=AA1

egységelem defy
= E

�

3. Ha a C nem szinguláris, akkor a mátrixegyenlet átrendezhető az inverz segítségével.
AC =BC→A=B és CA= CB→A=B

Bizonyítás 4.4 Tegyük fel, hogy AC =BC. Próbáljuk meg az A-t átalakítani, úgy,
hogy a baloldalt kapjuk.

A

egységelem def
↓=AE

inverzelem defy
=A(CC−1)

asszociatív
↓= (AC)C−1

feltétely
= (BC)C−1

asszociatív
↓

B(CC−1)

inverzelem defy
=BE =B

�
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4.4.3 Inverz mátrix kiszámítása
Gauss-Jordan eliminációval:

[A|E]→ [E|A−1]

Determinánssal:

A−1 = 1
det(A)adj(A)

4.5 Speciális valós mátrixok
Definíció 4.5.1 — Permutáló mátrix. Olyan négyzetes mátrix, mely az egységmátrix os-
zlopainak permutációjával keletkezik.

pl.:

 0 1 0
1 0 0
0 0 1


Definíció 4.5.2 — Szimmetrikus mátrix. A mátrix szimmetrikus, akkor és csak akkor, ha

A=AT

Tehát szimmetrikus a főátlóra. Pl.:

 1 8 7
8 2 4
7 4 3


Definíció 4.5.3 — antiszimmetrikus - ferdén szimmetrikus mátrix. Az A mátrix akkor és
csak akkor antiszimmetrikus, ha

A=−AT

Pl.:

 1 8 −7
−8 2 4
7 −4 3


Tétel 4.5.1 Minden négyzetes mátrix felírható egy szimmetrikus és egy antiszimmetrikus
mátrix összegeként.

Bizonyítás 4.5 Konstruktív megalkotjuk ezt az összeget.

A= 1
2A+ 1

2A= 1
2A+ 1

2A+ 1
2A

T − 1
2A

T = 1
2(A+AT )︸ ︷︷ ︸
szimmetrikus

+ 1
2(A−AT )︸ ︷︷ ︸

antiszimmetrikus

S 1
2(A+AT ) szimmetrikus mátrix, mert az elemeit tekintve:

sij = 1
2(aij +aji) =

↑
valós számok összeadása kommutatív

1
2(aji+aij)

S definíciójay
= sji
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Tehát megkaptuk, hogy az i. sorban és j. oszlopban levő elem valóban megegyezik a
j. sorban és i. oszlopban levő elemmel.

F 1
2(A−AT ) szimmetrikus mátrix, mert az elemeit tekintve:

fij = 1
2(aij +aji) =

↑
valós számok összeadása kommutatív és -1 kiemelése

−1
2(aji+aij)

F definíciójay
=−fji

Tehát megkaptuk, hogy az i. sorban és j. oszlopban levő elem valóban megegyezik a
j. sorban és i. oszlopban levő elem negáltjával. �

Definíció 4.5.4 — Ortogonális mátrix. A mátrix ortogonális akkor és csak akkor, ha

AAT = E

Tétel 4.5.2 Az A mátrix akkor és csak akkor ortogonális, ha

AT =A−1

Definíció 4.5.5 — Givens mátrixok.

G12 =

 cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

 G13 =

 cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)

 G23 =

 1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)


Definíció 4.5.6 — Idempotens mátrixok.

A2 =A

Definíció 4.5.7 — Nilpotens mátrix.
A2 = 0

Definíció 4.5.8 — Unipotens mátrix.
B2 = E



5. Vektoralgebra: Felbontási tételek, koordináta

Definíció 5.0.1 — Vektor. Irányított szakasz.

Két vektor egyenlő, ha hosszuk és irányuk megegyezik.
Definíció 5.0.2 — Egységvektor. Olyan vektor, melynek hossza 1.

5.1 Vektorok összeadása
Középiskolából ismert módon a nyílfolyam módszer vagy a paralelogramma módszer szerint
lehet a vektorokat összeadni.

5.1.1 Vektor összeadás tulajdonságai
1. Asszociatív (a+ b) + c= a+ (b+ c)
2. Létezik egységeleme a nullvektor a+ 0 = a
3. Létezik inverzeleme. A vektor ellentettje. a−a= 0
4. Kommutatív a+ b= b+a

Tehát a Vektorok halmaza összeadásukra nézve Abel csoport. Figyeljük meg a hasonlósá-
got a mátrixok összeadásával, hiszen a vektor egy egy oszlopos vagy egy egy soros mátrix
lesz, ha koordinátamátrixal írjuk fel.

5.1.2 Vektor számszorosa
A középiskolához hasonlóan működik,valamint megegyezik a mátrix számszorosával.
Definíció 5.1.1 — Vektor számszorosa. Olyan művelet, mely a v vektorhoz hozzárendel egy
olyan vektort, melynek hossza a λ ∈R szorosa a v hosszának és a v vektorral egyirányú
(ha λ≥ 0) vagy ellentétes irányú (ha λ < 0).

Számolni a koordinátáikkal pont ugyanúgy kell, mint a mátrixok esetében,
hiszen a vektor koordinátamátrixa az egy 1 oszlopos n soros mátrix.
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Definíció 5.1.2 — Párhuzamos vektorok. Két vektor akkor és csak akkor párhuzamos, ha
irányuk megegyezik, vagy ellentétes. jele a||b

Tétel 5.1.1 — Párhuzamos vektorok.

a||b⇐⇒∃λ ∈R,a= λb

Tulajdonságai megegyeznek a mátrix számszorosának tulajdonságaival.
Legyen a,b ∈ Rn és λ,µ ∈ R
1. 1a=a
2. Vegyes asszociatív:

λ(µa) = (λµ)a

3. Vegyes disztributív:
(a)

(λ+µ)a= λa+µa

(b)
λ(a+ b) = λa+λb

5.2 Felbontások
Tétel 5.2.1 — Síkbeli felbontási tétel. Ha adott a síkban két nem párhuzamos vektor a és
b, akkor minden síkbeli vektor egyértelműen felbontható az a és b vektorral párhuzamos
összetevőkre, melyek lineáris kombinációja adja a c vektort.

a,b,c ∈ S a ∦ b ⇒∃!α,β ∈R c= αa+βb

Bizonyítás 5.1 Konstruktív adjunk meg két nem párhuzamos vektort legyenek a és b,
valamint egy harmadik síkbeli c vektort, melynek kezdőpontja P és végpontja Q.

A c kezdőpontjából (P) húzzunk egy a-val párhuzamos egyenest. A c végpontjából(Q)
húzzunk egy b-vel párhuzamos egyenest.

P

Q

Mαa

βb
a

b
c

a ∦ b⇒ a két egyenes metszi egymást. A metszéspont legyen M.
Ekkor: c= PQ= PM +MQ
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PM ‖ a⇒∃α ∈R PM = αa
MQ ‖ b⇒∃β ∈R MQ= βb
Tehát valóban c= αa+βb
Lássuk be, hogy egyértelmű. Ez legyen indirekt. tegyük fel, hogy a felbontás létezik

és nem egyértelmű. (Figyelted az implikáció tagadását?)
Ekkor létezik két külön felírás.

α1a+β1b= c

α2a+β2b= c

Gyors gaussal, az I-II, azt kapjuk, hogy:

(α1−α2)︸ ︷︷ ︸
0

a+ (β1−β2)︸ ︷︷ ︸
0

b= 0

Sem a, sem b nem nullvektor, ezért csakis a zárójelek lehetnek nullák. Ebből viszont
következik, hogy a súlyoknak (koordinátáknak) meg kell egyeznie. Tehát a felírás valóban
egyértelmű.

�

Definíció 5.2.1 — Lineáris kombináció. Súlyozott összeg. a vektor lineáris kombinációja
αa.

a és b vektor lineáris kombinációja αa+βb.
a, b és c vektor lineáris kombinációja αa+βb+γc.

Definíció 5.2.2 — Lineárisan független. Az a,b, és c vektorok lineárisan függetlenek, akkor
és csak akkor, ha egyik sem írható fel a többi vektor lineáris kombinációjaként.

Definíció 5.2.3 — Lineárisan összefüggő. Az a,b és c vektorok lineárisan összefüggők, ha
valamelyik felírható a többi lineáris kombinációjaként.

Tétel 5.2.2 Két vektor a síkban akkor és csak akkor lineárisan független, ha nem
párhuzamosak.

a,b ∈ S¬LÖF ⇔ a ∦ b

Tétel 5.2.3 Három vektor a térben akkor és csak akkor lineárisan független, ha nem
egysíkúak.

a,b,c ∈R3¬LÖF ⇔ a,b,c /∈ S

Definíció 5.2.4 — Generátorrendszer. Azon vektorok, melyek a tér összes vektorát előál-
lítják lineáris kombinációjukkal.

Definíció 5.2.5 — Bázis. Független generátorrendszer.
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Tétel 5.2.4 A síkban két lineárisan független vektor bázist alkot.

A függetlenség miatt válik a lineáris kombináció egyértelművé.

Tétel 5.2.5 — Térbeli felbontási tétel. Ha adott a térben három nem egysíkú vektor a,b
és c, akkor bármely d térbeli vektorhoz egyértelműen létezik olyan α,β,γ ∈R, amelyre
igaz, hogy d= αa+βb+γc

Definíció 5.2.6 • Ortogonális bázis : a vektorok merőlegesek
• Normált bázis : a vektorok hossza 1
• Ortonormált bázis: ortogonális és normált



6. Vektoralgebra: A vektorok három szorzata

6.1 Skalárszorzat
Definíció 6.1.1 — Skalárszorzat. Függvény: V 2→R : a ·b= |a||b|cos(γ). Az két vektorhoz
hozzárendel egy valós számot, úgy, hogy veszi a két vektor hosszának szorzatát és
megszorozza a közbezárt szögük koszinuszával. Másikfajta jelölése: <a,b>

Másikfajta jelölése: <a,b> általában a kvantummechanikában fordul elő az úgynevezett
braket notation.

6.1.1 Kiszámítás Koordinátákkal ortonormált bázisban

a · b=
n∑
k=1

akbk

Bizonyítás 6.1

a · b= (a1i+a2j+a3k) · (b1i+ b2j+ b3k) =
a1b1 i · i︸︷︷︸

1
+a1b2 i · j︸︷︷︸

0

+a1b3 i ·k︸︷︷︸
0

+

a2b1 j · i︸︷︷︸
0

+a2b2 j · j︸︷︷︸
1

+a2b3 j ·k︸︷︷︸
0

+

a3b1 k · i︸︷︷︸
0

+a3b2 k · j︸︷︷︸
0

+a3b3 k ·k︸︷︷︸
1

=

a1b1 +a2b2 +a3b3 =
3∑

k=1
= akbk

(6.1)

�

6.1.2 Geometriai Jelentés
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Definíció 6.1.2 — Skalárszorzat geometriai jelentése. Az a vektor b vektorra vett merőleges
vetületének b-hossz-szorosa (előjelesen).

b

a

|a|cos(γ)

α

6.1.3 Skalárszorzat tulajdonságai
Később, ha adott lesz bármely más függvény, amely rendelkezik ezekkel a tulajdonsá-
gokkal, skalárszorzatként használhatjuk, ha úgy akarjuk. Bővebben lásd az eukleideszi
(skalárszorzattal rendelkező) tereket - ott már gyakrabban használjuk a braket notationt.

1. Pozitív definit a ·a≥ 0 és a ·a= 0↔ a= 0 (Önmagával vett skalárszorzat a normané-
gyzet - hossz négyzete)

2. Szimmetrikus (függvénynél hívjuk így) a · b= b ·a
3. Homogén (λa) · b= λa · b
4. Lineáris a · (b+ c) = a · b+a · c
Grachm-Schmidt ortogonalizáció - ha nullvektort kapunk, akkor az eredeti vektorok

összefüggőek.

Tétel 6.1.1 Két vektor skalárszorzata akkor és csak akkor nulla, ha a vektorok merőlegesek.

a · b= 0⇔ a⊥ b

Bizonyítás 6.2 Akkor és csak akkor kapcsolat mindkét irányát be kell látni. Emlékezz az
ekvivalencia átírása két implikáció éselésével történik.

Lássuk be, hogy a · b= 0⇒ a⊥ b
Tegyük fel, hogy a · b= 0

a · b= |a||b|cos(γ) = 0

Egy szorzat akkor nulla, ha valamelyik tényezője nulla. Ha |a|= 0 vagy |b|= 0 azt
jelenti, hogy legalább az egyik a nullvektor. A nullvektor minden irányú, így merőleges is
a másikra nézve.

Mi van akkor, ha |a| 6= 0 és |b| 6= 0 (Figyelj a logikai műveletekre!). Ekkor a cos(γ) = 0.
Azaz γ = π

2 +kπ. Tehát a két vektor merőleges.
Lássuk be, hogy a · b= 0⇐ a⊥ b
Ha a⊥ b⇒ γ = π

2 ⇒ cos(γ) = 0⇒ |a||b|cos(γ) = 0
Tehát a skalárszorzat tényleg nulla.
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�

Tétel 6.1.2 Önmagával vett skalárszorzat a hossz négyzete.

a ·a= |a||a|cos(0)︸ ︷︷ ︸
1

= |a|2

6.2 Vektoriális szorzat
Definíció 6.2.1 — Vektoriális szorzat. Művelet: V 2→ V : a× b= |a||b|sin(γ) ·e, ahol az e
vektor az a, b vektor által kifeszített síkra merőleges (jobbkéz szabályt betartó iránnyal).

6.2.1 Kiszámítás Koordinátákkal ortonormált bázisban

a× b=

∣∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣

Bizonyítás 6.3

a× b= (a1i+a2j+a3k)× (b1i+ b2j+ b3k) =
a1b1 i× i︸︷︷︸

0

+a1b2 i× j︸︷︷︸
k

+a1b3 i×k︸ ︷︷ ︸
−j

+

a2b1 j× i︸︷︷︸
−k

+a2b2 j× j︸ ︷︷ ︸
0

+a2b3 j×k︸ ︷︷ ︸
i

+

a3b1 k× i︸ ︷︷ ︸
j

+a3b2 k× j︸ ︷︷ ︸
−i

+a3b3 k×k︸ ︷︷ ︸
0

=

i(a2b3−a3b2)− j(a1b3−a3b1) +k(a1b2−a2b1) =

∣∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣

(6.2)

�

6.2.2 Geometriai Jelentés
Definíció 6.2.2 — Vektoriális szorzat geometriai jelentése. Az a,b vektorok által kifeszített
síkra merőleges vektor, melynek hossza a két vektor által kifeszített paralelogramma
területe.
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b

a
|a|sin(γ)

a× b

α

|a× b|=
alap
↓
|b| |a|sin(γ)︸ ︷︷ ︸

magasság

6.2.3 Vektoriális szorzat tulajdonságai
1. a×a= 0 (Determináns 1. tulajdonság)
2. antikommutatív a× b=−b×a (jobbrendszer)
3. Homogén (λa)× b= λ(a× b) (Determináns 2. tulajdonság)
4. Disztributív (Determináns 5. tulajdonság)

(a) (a+ b)× c= a× c+ b× c
(b) a× (b+ c) = a× b+a× c

Tétel 6.2.1 Az a és b vektorok vektoriális szorzata akkor és csak akkor a nullvektor, ha
párhuzamusak.

a× b= 0⇔ a ‖ b

Bizonyítás 6.4 Lássuk be, hogy a× b= 0⇒ a ‖ b
A nullvektor hossza nulla:

|a× b|= 0⇒ |a||b|sin(γ) = 0

Egy szorzat akkor nulla, ha valamelyik tényezője nulla. Ha a= 0 vagy b= 0, akkor
mivel a nullvektor minden irányú, ezért párhuzamosak is.

Ha a 6= 0 és b 6= 0, akkor a sin(γ) = 0⇒ γ = 0 +kπ.
Lássuk be, hogya× b= 0⇐ a ‖ b.
Ha a ‖ b⇒ γ = 0⇒ sin(γ) = 0⇒ |a× b|= 0

�

6.3 Vegyes szorzat
Definíció 6.3.1 — Vegyes szorzat. Függvény: V 3→R : (a× b) · c
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6.3.1 Kiszámítás koordinátákkal ortonormált bázisban

Csak vegyítsd össze az előbbi két műveletet, először a×b, majd a kijött vektort skalárszorozd
a c-vel. Valójában a három vektorból álló mátrix determinánsa.

(a× b) · c=

∣∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣

Bizonyítás 6.5

a× b=



∣∣∣∣∣ a2 a3
b2 b3

∣∣∣∣∣
−
∣∣∣∣∣ a1 a3
b1 b3

∣∣∣∣∣∣∣∣∣∣ a1 a2
b1 b2

∣∣∣∣∣


Ezt a vektort kell skalárszoroznunk a c vektorral. (Első koordináta szor első koordináta

+ második koordináta szor második koordináta...)

(a× b) · c= c1

∣∣∣∣∣ a2 a3
b2 b3

∣∣∣∣∣− c2

∣∣∣∣∣ a1 a3
b1 b3

∣∣∣∣∣+ c3

∣∣∣∣∣ a1 a2
b1 b2

∣∣∣∣∣=
∣∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣
�

6.3.2 Geometriai Jelentés
Definíció 6.3.2 — Vegyes szorzat geometriai jelentése. A három vektor által kifeszített
paralelepipedon előjeles térfogata.

Bizonyítás 6.6
(a× b) · c= (|a× b| ·e) · c= |a||b|sin(α)︸ ︷︷ ︸

alapterület

e · c︸︷︷︸
magasság

�

Vegyük észre: Ha a paralelepipedon térfogata nulla, akkor a három vektor egy síkban
van - azaz lineárisan összefüggőek. Ebből következik:

Tétel 6.3.1 A három vektor által alkotott mátrix determinánsa akkor és csak akkor nulla,
ha a három vektor lineárisan összefüggő.

Tétel 6.3.2 A három vektor által alkotott mátrix determinánsa akkor és csak akkor NEM
nulla, ha a három vektor lineárisan FÜGGETLEN.
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6.4 Alkalmazás
6.4.1 Vektor felbontása - Grahm-Schmidt ortogonalizáció 2D-ben

Egy vektort fel tudunk bontani egy másik vektorral párhuzamos és merőleges összetevőire.
Emlékezzünk a fizika erőinek példáira.

A b vektorral párhuzamos összetevőnek a hosszát megkaphatjuk a koszinus szögfüggvény
használatával, hiszen az a szög melletti befogő.

|a‖|= |a|cos(γ) = |a||b|cos(γ)
|b|

= a · b
|b|

Oké, de ez még csak a hossza. Hogyan csinálok belőle vektort? Beszorzok a b vektorral
párhuzamos egységvektorral, ami eb = b

|b|
Tehát a b-vel párhuzamos öszetevő, mint vektor:

a‖ = |a‖|eb = a · b
|b|

b

|b|
= a · b
b · b

b

b

a
a⊥= a−a‖

a‖ = a·b
b·b b

α

A merőleges összetevő pedig csak egy egyszerű kivonás: a⊥ = a−a‖

6.4.2 Két vektor hajlásszöge
Tétel 6.4.1 — Két vektor hajlásszöge. Adott a és b vektor. Hajlásszögük:

γ = arccos
(
a · b
|a||b|

)
Sidenote: a cos(γ) nem más, mint a korreláció. Minnél inkább 1, annál inkább egyirányba

néz a két vektor. Minnél inkább -1 annál inkább ellenkező irányba néz a két vektor. Minnél
inkább nulla, annál inkább merőleges a két vektor (totál nem egyirányba néznek.)

6.4.3 Sík normálvektoros egyenlete
Definíció 6.4.1 — Sík normálvektora. Olyan vektor, mely merőleges a sík minden vektorára.

Tétel 6.4.2 Ha adott egy P0 =

 x0
y0
z0

 pontja a síknak és a sík normálvektora: n=

 A
B
C


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akkor a sík egyenlete:

Ax+By+Cz =Ax0 +By0 +Cz0

Bizonyítás 6.7 A normálvektor merőleges a sík bármely vektorára. Ezt a bármely vektort
megkapjuk úgy, hogy kivonjuk a P0 pontot a sík bármely P pontjából.

v ∈ S v = P −P0

Mivel a normálvektor merőleges erre a vektorra, ezért skalárszorzatuk nulla.

n⊥ v⇒ n ·v = 0

n(P −P0) = 0

Skalárszorzat homogén, lineáris.

nP −nP0 = 0

nP = nP0 A
B
C

 ·
 x
y
z

=

 A
B
C

 ·
 x0
y0
z0


Ax+By+Cz =Ax0 +By0 +Cz0

�

6.4.4 Sík tengelymetszetes egyenlete
A sík tengelymetszetes egyenletét úgy kaphatjuk, ha megnézzük, hogy a sík hol metszi a
különböző tengelyeket. Általános esetben a sík egyenlete az alábbi:

Ax+By+Cz =D

Először ezt leosztjuk D-vel:

A

D
x+ B

D
y+ C

D
z = 1

majd a nevezőbe levisszük az együtthatókat:

x
D
A

+ y
D
B

+ z
D
C

= 1.

Ezzel megkaptuk a tengelymetszetes egyenlet általános alakját. Ugyanis az ilyen alakú
egyenlettel megadott síknál a x tengelyt akkor metszi a sík, ha y= z= 0 és x= D

A . Hasonlóan,
y metszet akkor van, ha y = D

B , valamint z metszet akkor, ha z = D
C .
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6.4.5 Sík és pont távolsága
Sík és pont távolságát úgy kapjuk, hogy merőlegest állítunk a Síkra az adott Q pontból - ez
gyakorlatilag a sík egy normálvektora lesz. Ha a Q pontot összekötöm a sík adott ismert P0
pontjával, kapom a PQ vektort. Ezen PQ vektor normálvektorra vett merőleges vetületének
hosszát keresem.

Tétel 6.4.3 — Sík és pont távolsága. Adott egy S sík, melynek normálvektora n és egy
ismert pontja P0, ekkor a Q ponttól való távolsága a síknak:

d(S,Q) = P0Q ·n
|n|

x

y

z

O

roS

n

Po

Q

−−→
P0Q

T

6.4.6 Két sík hajlásszöge
A normálvektorok által bezárt szög.

Tétel 6.4.4 — Két sík hajlásszöge. Adott S1 és S2 síkok, normálvektoruk rendre n1 és n2
. Hajlásszögük:

γ = arccos
(
n1·n2
|n1||n2|

)



7. Vektorterek

A vektortér speciális kéthalmazos két műveletes struktúra, amelyre a következők teljesülnek.
Egyik halmaz a vektorok halmaza (V), a másik halmaz a skalárok halmaza (T) (A skalárok

halmaza egy test - úgy működik mint a valós számok, bővebben lásd a DM tankönyvben).
A vektorok halmazán értelmezve van egy összeadás művelet, amellyel Abel csoportot

alkot.
V nemüres halmaz vektortér T test felett, v1,v2,v3 ∈ V :
1. Asszociatív v1 + (v2 +v3) = (v1 +v2) +v3
2. Létezik egységelem 0 ∈ V 0 +v = v
3. Létezik inverzelem v−1 ∈ V v−1 +v = 0
4. Kommutatív v1 +v2 = v2 +v1

A két halmazt összekapcsoló művelet a skalárral való szorzás. Melynek tulajdonságai a
következők λ,µ ∈ T :

1. 1v1 = v1, ahol az 1 a T test szorzásra vonatkozó egységeleme.
2. Vegyes asszociatív: (λµ)v1 = λ(µv1)
3. Vegyes disztributív:

(a) (λ+µ)v1 = λv1 +µv1
(b) λ(v1 +v2) = λv1 +λv2

Definíció 7.0.1 — Altér. A tér egy olyan részhalmaza, mely szintén vektortérként működik.

Tétel 7.0.1 Legyen V vektortér valamely T test felett. A W ⊆ V halmaz akkor és csak
akkor altere V-nek, ha zárt az összeadásra és a skalárszorosra nézve. Azaz:

∀v1,v2 ∈W v1 +v2 ∈W

λ ∈ T∀v ∈W λv ∈W
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Bizonyítás 7.1 Akkor és csak akkor kapcsolatot mindkét irányban meg kell vizsgálni
(Emlékezz az ekvivalencia két implikációra bontható).

Tegyük fel, hogy a W altér. Ekkor vektortérként viselkedik ⇒ igazak rá a vektortér
definíciójában szereplő tulajdonságok. Tehát valóban zárt mindkét műveletre.

Másik oldal: Tegyök fel, hogy zárt mindkét műveletre. Ekkor a többi tulajdonságra
vagyunk kíváncsiak. A W részhalmaza a V térnek, tehát a V térre vonatkozó minden
tulajdonság (a feltett zártságot leszámítva, de azt meg feltettük) igaz. Így valóban altér. �

7.1 Vektortér axiómák következményei
Tétel 7.1.1 0: V halmazbeli összeadás egységeleme.

∀λ ∈ T λ0 = 0

Bizonyítás 7.2 A (V,+) Abel csoport ⇒ létezik egységeleme: 0. Egységelem definíciója:

v+ 0 = v / ·λ
⇒ λ(v+ 0) = λv /vegyes disztribúció
⇒ λv+λ0 = λv /+ (λv)−1(összeadásra vonatkoztatott inverz)
⇒ λv+ (λv)−1︸ ︷︷ ︸

0

+λ0 = λv+ (λv)−1︸ ︷︷ ︸
0

λ0 = 0
Megkaptuk a tételt.

�

Tétel 7.1.2 0: a T testbeli összeadás egységeleme.
0: V halmazbeli összeadás egységeleme.

∀v ∈ V 0v = 0

Bizonyítás 7.3

λv

T test összeadás egységelem def
↓= (λ+ 0)v =

↑
Vektortér vegyes disztribúció

λv+ 0v
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⇒ λv = λv+ 0v /+ (λv)−1(összeadásra vonatkoztatott inverz)
⇒ λv+ (λv)−1︸ ︷︷ ︸

0

= λv+ (λv)−1︸ ︷︷ ︸
0

+0v

⇒ 0 = 0 + 0v 0 egységdef
⇒ 0 = 0v

Megkaptuk a tételt.

�

Tétel 7.1.3 -1: T testbeli szorzás egységelemének T összeadásra vonatkoztatott inverze.
v−1: a V-beli összeadásra vonatkoztatott v vektor inverze.

∀v ∈ V −1v = v−1

Bizonyítás 7.4

0
Előző tétel

↓= 0v =
↑

Test egységelem def

(−1 + 1)v
Vegyes disztrivúció

↓=−1v+ 1v

�

Tétel 7.1.4 λ ∈ T v ∈ V

λv = 0⇒ vagy λ= 0 vagy v = 0

Bizonyítás 7.5 Tegyük fel, hogy λv = 0
Ha λ 6= 0⇒∃λ−1 T test szorzására vonatkoztatott inverz.

λv = 0 / ·λ−1

λ−1λ︸ ︷︷ ︸
1

v = λ−10︸ ︷︷ ︸
0

/T szorzás inverz def; első tétel

v = 0

Tehát abban az esetben, ha λ nem egyenlő a T test összeadásának egységelemével (és
a feltétel igaz), akkor a v vektor egyenlő a vektorok összeadásának egységelemével.

Nézzük meg a másik esetet. Ha v 6= 0, akkor λ= 0, mert más esetben nem kapnánk
meg a nullvektort.

�
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7.2 Lineárisan független, összefügő vektorok

Definíció 7.2.1 — Lineárisan független vektorok. A v1, . . . ,vn vektorok lineárisan függetlenek,
akkor és csak akkor, ha a ∑n

i=1λivi = 0 csak úgy lehetséges, hogy ∀λi = 0. Azaz lineáris
kombinációjuk csak a triviális megoldással állítja elő a nullvektort.

Definíció 7.2.2 — Lineárisan összefüggő vektorok. A v1, . . . ,vn vektorok lineárisan össze-
függő vektorok, akkor és csak akkor, ha a ∑n

i=1λivi = 0 lineáris kombinációban ∃λi 6= 0.
Azaz lineáris kombinációjuk a triviálistól különböző megoldással is előállítja a nullvektort.

Tétel 7.2.1 A v1, . . . ,vn vektorok lineárisan összefüggő vektorok, akkor és csak akkor, ha
a van olyan vj vektor, amely előáll a többi lineáris kombinációjaként.

Bizonyítás 7.6 Akkor és csak akkor, mindkét irányban meg kell nézni.
Tegyük fel, hogy lineárisan összefüggőek a vektorok.
Ekkor létezik λj 6= 0, hogy ∑n

i=1 = λivi = 0.

λ1v1 + · · ·+λjvj + · · ·+λnvn = 0 /−λjvj

λj 6= 0⇒∃T test szorzásra vonatkoztatott inverze: 1
λj

λ1v1 + · · ·+λj−1vj−1 + 0 +λj+1vj+1 + · · ·+λnvn =−λjvj / ·− 1
λj(

−λ1
λj

)
v1 + · · ·+

(
−λj−1

λj

)
vj−1 + 0 +

(
−λj+1

λj

)
vj+1 + · · ·+

(
−λn
λj

)
vn = vj

Valóban előállítottuk a vj vektort az összes többi vektor lineáris kombinációjaként.
Másik irány: Tegyük fel, hogy a vj kifejezhető a többi lineáris kombinációjaként.

vj = λ1v1 + · · ·+λj−1vj−1 + 0 +λj+1vj+1 + · · ·+λnvn /−vj
0 = λ1v1 + · · ·+λj−1vj−1 + (−1)vj +λj+1vj+1 + · · ·+λnvn

Ekkor a vj vektor együtthatója −1 6= 0, tehát a nullvektor előállt nem triviális lineáris
kombinációként. �

Tétel 7.2.2 Ha a v1, . . . ,vn vektorok lineárisan összefüggőek, tetszőleges vektort hozzávéve,
továbbra is lineárisan összefüggő marad.
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Bizonyítás 7.7 Tegyük fel, hogy v1, . . . ,vn vektorok lineárisan összefüggőek. Ekkor definí-
ció szerint v =∑n

i=1λivi = 0 lineáris kombinációban létezik λj 6= 0.
Vegyük hozzá az vn+1-vektort ehhez a kombinációhoz úgy, hogy λn+1 = 0 és a többi

skalár marad (ez ügye megtehető, mert nem változtat az összegen).
v =∑n

i=1λivi+λn+1vn+1 = 0. Itt továbbra is λj 6= 0. Tehát továbbra is összefüggőek.
�

Tétel 7.2.3 Ha a v1, . . . ,vn vektorok lineárisan függetlenek, tetszőleges vektort elhagyva,
a maradék vektorok függetlenek maradnak.

Bizonyítás 7.8 Indirekt bizonyítás. Tagadjuk az implikációt. Tegyük fel, hogy a v1, . . . ,vn
vektorok lineárisan függetlenek, és ebből ehagyva egy vektort, a maradék vektorok nem
függetlenek lesznek, azaz összefüggővé válnak.

Ha az elhagyott vektort visszavennénk ehhez az összefüggő vektorokhoz, akkor az előző
tétel szerint összefüggőnek kéne lennie a rendszernek. De ez ellent mond a feltevésünkkel,
amiszerint az eredeti rendszerünk független.

Tehát a tétel tagadása kontradikció, az eredeti állítás igaz.
�

Tétel 7.2.4 Ha a v1, . . . ,vn vektorok lineárisan függetlenek, és egy további vn+1 vektor
hozzávételével lineárisan összefüggővé válnak, akkor ezen vn+1 vektor kifejezhető a többi
vektorok lineáris kombinációjaként.

Bizonyítás 7.9 Tegyük fel, hogy a tétel igaz. Ekkor:

λ1v1 + · · ·+λnvn+λn+1vn+1 = 0 ∃λj 6= 0

Az a kérdés, hogy melyik együttható lesz, a nem nulla. Tegyük fel, hogy nem az
újonnan hozzávett vektor együtthatója a nem nulla. Tehát j 6= n+ 1. Ekkor az λn+1 = 0

λ1v1 + · · ·+λnvn+ 0vn+1 = λ1v1 + · · ·+λnvn = 0

Ebben a lineáris kombinációban szerepel egy nem nulla együttható, a λj . Tehát
definíció szerint a v1, . . . ,vn vektorok lineárisan összefüggők. Ez ellentmond a tételnek.

Azaz csak az az újonnan hozzávett vektor együtthatója nem lehet nulla: λn+1 6= 0.
Ebből definíció szerint a v1, . . . ,vn,vn+1 vektorok lineárisan összfüggők.

�

Tétel 7.2.5 — Bázis fogalmához kellő tétel. A v vektor v =∑n
i=1λivi akkor és csak akkor

egyértelmű, ha v1, . . . ,vn lineárisan független.
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Bizonyítás 7.10 Mindkét irányt be kell látnunk.
1. A felírás egyértelmű ⇒ v1, . . . ,vn lineárisan függetlenek.

Indirekt. Tegyük fel, hogy a felírás egyértelmű és v1, . . . ,vn NEM lineárisan
függetlenek, azaz összefüggőek.

v1, . . . ,vnLÖF
LÖF def
↓⇒∃vj =

n∑
i=1;i 6=j

µivi

v
Felrás
↓= λ1v1 + · · ·+λjvj + · · ·+λnvn

behelyettesítés
↓= λ1v1 + · · ·+λj

n∑
i=1;i 6=j

µivi+ · · ·+λnvn =

=
↑

Összevonva az azonos vektorokat

(λ1 +λjµ1)v1 +· · ·+(λj−1 +λjµj−1)vj−1 +(λj+1 +λjµj+1)vj+1 +· · ·+(λn+λjµn)vn

Az eredeti lineáris kombináció együtthatói az újonnan kapott lineáris kombináció
együtthatóitól függetlenek. A felírás nem egyértelmű. Kontradikció. Tehát az
eredeti állítás, igaz.

2. v1, . . . ,vn lineárisan függetlenek ⇒ a felírás egyértelmű.
Indirekt. Tegyük fel, hogy v1, . . . ,vn lineárisan függetlenek és a felírás NEM
egyértelmű.

v =
n∑
i=1

αivi =
n∑
i=1

βivi

0 =
n∑
i=1

αivi−
n∑
i=1

βivi =
n∑
i=1

(αi−βi)︸ ︷︷ ︸
0

vi

Mivel függetlenek, ezért minden együttható nulla kell, hogy legyen. αi−βi = 0⇒
αi = βi
Tehát mégiscsak egyértelmű a felírás.

�

7.3 Generátorrendszer
Definíció 7.3.1 — Generátorrendszer. Azon vektorok, melyek lineáris kombinációjaként a
vektortér minden eleme előáll.

Definíció 7.3.2 — Vektorok által generált altér. A vektorok lineáris kombinációjával előálló
vektorok összessége. jelölései: < v1, . . . ,vn >;{λ1v1 + · · ·+λnvn|λi ∈ T};span(v1, . . . ,vn)

7.4 Bázis és koordinátamátrix
Definíció 7.4.1 — Bázis. Független generátorrendszer.
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Definíció 7.4.2 — Koordináta. Legyen a V vektortér egy bázisa [b] = b1, . . . , bn. A v
vektor e bázisban való felírásában a v = λ1v1 + · · ·+λn lineáris kombinációban szereplő
együtthatók a v vektor [b] bázisra vonatkoztatott koordinátái.

Fontos, az egyértelműség miatt a bázisvektorok sorrendje rögzített!. Ekkor a koordináta
mátrix:

v =

 λ1
...
λn



7.5 Dimenzió
Definíció 7.5.1 — Dimenzió. A V vektortér dimenziója, bármely bázisának elemszáma.
jele: dim(V)

Tétel 7.5.1 — Kicserélési tétel. Az f1, . . . ,fn független vektorokból álló rendszer bármely
fi vektorához létezik egy olyan g1, . . . ,gm generátorrendszerbeli gj vektor, amellyel az
fi-t kicserélve az f1, . . . ,fi−1,gj ,fi+1, . . . ,fn vektorokból álló rendszer független marad.

Bizonyítás 7.11 Indirekt Tegyük fel, hogy az f1, . . . ,fn független vektorokból álló rendszer
bármely fi vektorához NEM létezik egy olyan g1, . . . ,gm generátorrendszerbeli gj vektor,
amellyel az fi-t kicserélve az f1, . . . ,fi−1,gj ,fi+1, . . . ,fn vektorokból álló rendszer független
marad.

Ekkor ∀gk-ra, gk,f2, . . . ,fn LÖF.
Független rendszerből elhagyva egy vektort a rendszer továbbra is független

marad ⇒ Tudjuk, hogy f2, . . . ,fn független.
A gk vektor hozzávétele összefüggővé tette ⇒ kifejezhető az f-k lineáris kom-

binációjaként.

gk =
n∑
l=2

γklf l

g1, . . . ,gm generátorrendszer ⇒ f1 felírható a g-k lineáris kombinációjaként.

f1 =
n∑
l=1

Φklgl

Behelyettesítünk minden g-bey
=

n∑
l=1

Φkl

n∑
l=2

γklf l

Felírtuk az f1 vektort a többi f-vektor lineáris kombinációjaként ⇒ f1, . . . ,fn LÖF.
Ez kontradikció az indirekt feltevésünkkel. Tehát az eredeti tétel igaz. �

Tétel 7.5.2 — Kicserélési tétel következménye. A generátorrendszerbeli vektorok száma
legalább annyi, ahány vektor valamely független rendszerben van.
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Bizonyítás 7.12 A független rendszer különböző vektorait csak különböző vektorokra lehet
kicserélni a generátorrendszerből, hogy független maradjon. Tehát legalább ennyi kell. �

Tétel 7.5.3 Bármely vektortérben a bázisok elemszáma egyenlő.

Bizonyítás 7.13 Legyen a vektortér két bázisa [b] és [c]. Elemszámuk: nb,nc. A bázis
független generátorrendszer.

Tekintsük [b]-t függetlennek, [c]-t generátorrendszernek.
Fenti következmény

↓⇒ nb ≤ nc.
De ez fordítva is igaz.

Tekintsük [c]-t függetlennek, [b]-t generátorrendszernek.
Fenti következmény

↓⇒ nc ≤ nb.
A rendezési reláció antiszimmetrikus. Ezért

nb = nc

�

Tétel 7.5.4 — dimenzió átfogalmazása. Legyen V nem nulla vektortér, n pozitív egész.
Az alábbiak ekvivalensek:

1. dim(V)=n
2. V-ben található n lineárisan független vektor, de bármely n+ 1 összefügg
3. V-ben található n elemű generátorrendszer, de n−1 elemű nem.

Bizonyítás 7.14 — (1) ekivalens (2). Ekvivalencia, mindkét irányt be kell látnunk.
dim(V ) = n⇒ bármely bázis n vektort tartalmaz és a bázisvektorok függetlenek ⇒

létezik n független vektor.
Kérdés: bármely n+ 1. vektor LÖF lesz?
Legyen v1, . . . ,vn+1 vektor. és [b] tetszőleges rögzített bázis.

vj =
n∑
k=1

γjkbk Egyértelmű

Írjunk fel egy random u vektort a v-k lineáris kombinációjaként.

u= α1v1 + · · ·+αn+1vn+1

Behelyettesítünk minden v-bey
= α1

n∑
k=1

γ1kbk + · · ·+αn+1

n∑
k=1

γn+1;kbk

Másrészt u egyértelműen előáll a bázisvektorok lineáris kombinációjaként.

u= β1b1 + · · ·+βnbn
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u−u= 0

β1b1 + · · ·+βnbn−α1

n+1∑
k=1

γ1kbk−·· ·−αn
n+1∑
k=1

γnkbk = 0

Vonjuk össze az azonos vektorokhoz tartozót. Minden szummában van egy darab b1
és n+1 szumma volt. Azaz szerepelnek: α1γ11b1;α2γ21b1; . . . ;αn+1γn+1;1b1;(

β1−
n+1∑
i=1

αiγi1

)
b1 + · · ·+

(
βn−

n+1∑
i=1

αiγin

)
bn = 0

[b] bázis ⇒ Független ⇒ minden együttható nulla.(
β1−

n+1∑
i=1

αiγi1

)
︸ ︷︷ ︸

0

b1 + · · ·+
(
βn−

n+1∑
i=1

αiγin

)
︸ ︷︷ ︸

0

bn = 0

A γ-k mindegyike nem lehet nulla, hiszen akkor az n+1 vektorunk mind nullvektor
lenne (lásd a legelső egyértelmű felírást). Ismert β-k és γ-k. Kérdés az α együtthatók
értéke. Látjuk, hog van n db egyenletünk (a zárójelek nullával egyenlőek), de van n+1
ismeretlenünk. Legalább egy ismeretlen szabadon választható. u= α1v1 + · · ·+αn+1vn+1
felírás nem egyértelmű ⇒ v1, . . . ,vn+1 LÖF.

Másik irány: Tegyük fel, hogy V-ben található n lineárisan független vektor, de
bármely n+ 1 összefügg.

Tekinstsük a független rendszert: v1, . . . ,vn. Bárkit hozzávéve LÖF lesz. ⇒ ez a
hozzávett vektor felírható a többi lineáris kombinációjaként.

vn+1 =
n∑
k=1

λkvk ∀vn+1 ∈ V

Ebből az következik, hogy a v1, . . . ,vn generátorrendszer is. Tehát v1, . . . ,vn bázis
⇒ dim(V ) = n. �

Következmények: Ha dim(V)=n, akkor
1. V-ben bármely n elemű független rendszer bázist alkot
2. V-ben bármely n elemű generátorrendszer bázist alkot
3. Egy vektortér bármely véges generátorrendszere tartalmaz bázist

Tétel 7.5.5 Ha egy V vektortérnek van véges generátorrendszere, akkor bármely lineárisan
független rendszer kiegészíthető bázissá.

7.6 Rang összefüggések

Vezérelemmel rendelkező oszlopvektorok függetlenek, vezérelemmel NEM rendelkező os-
zlopvektorok összefüggővé teszik a rendszert.

Legyen az ismeretlenek száma n A mátrix négyzetes:
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rang(A) = n⇔ ndb független oszlopvektor van⇔ det(A) 6= 0⇔Ax= b 1db megoldás van

rand(A)< n⇔ LÖF ⇔ det(A) = 0⇔Ax= 0 ∃ triviálistól különböző megoldás

Tétel 7.6.1 Ha Am×nmátrix, akkor és csak akkor van megoldása, ha a rang(A)=rang([A|b]).

Tétel 7.6.2 Ha rang(A)=rang([A|b])=ismeretlenek száma, akkor pontosan 1db megoldás
van.



8. Spec fgv: A homogén lineáris leképezés

8.1 Mitől homogén és mitől lineáris
Emlékszünk, sok számos függvényt tanultunk gimnáziumban is. Ezek között volt a lineáris
függvény is. A tanult lineáris (mert alakja egy egyenes) függvényünk általánosan felírva a
következőképp volt:

f(x) =mx+ b

Ahol az m a meredekség, a b pedig az offset(eltolás) volt. A Linearitást egy adott tulajdonság
megvizsgálásával is tudjuk definiálni:
Definíció 8.1.1 — Lineáris. Egy függvény lineáris, hogyha adott összegre tagonként is
elvégezhető:

f(u+v) = f(u) +f(v)

Homogénné a lineáris függvényünk egy egyszerű b = 0 behelyettesítéssel tehető. Azaz a
homogén lineáris függvény általános alakja:

f(x) =mx

Tehát az offset nulla, azaz az egyenes átmegy az origón.
Definíció 8.1.2 — Homogén. Egy függvény homogén, hogyha adott számszoros kiemelhető:

f(λu) = λf(u)

Pont ugyanígy kell elképzelni a homogén lineáris leképezést is. A különbség a térben van,
amiben elvégezzük, ez pedig nem más, mint a vektortér. Azaz a tér adott vektorához
fogunk egy másik vektort rendelni. Ebből adódóan a meredekséget is összetettebben kell
elképzelnünk - a megfelelő irányokban való nyújtásnak képzelhetnénk el - azaz egy szám
helyett egy mátrixunk lesz.
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Definíció 8.1.3 — Homogén Lineáris Leképezés. Egy olyan speciális függvény, mely V
vektortérből W vektortérbe képez: L : V →W Tulajdonsága: homogén L(λv) = λL(v) és
lineáris: L(a+ b) = L(a) +L(b)

és alakja:
y = L(x) =Mx

Ahol y ∈W és x ∈ V . Az M pedig egy dim(W)×dim(V) alakú mátrix.

Emlékezzünk: Az egyenletrendszerek is lehetnek homogén lineárisak. Az Ax= b egyenlet-
rendszer homogén, ha a megoldásvektor (b) nulla.

A homogén lineáris leképezés valójában mit jelent? Vektorhoz egy másik vektort
rendelünk. Úgy a legegyszerűbb elképzelni, mint egy transzformációt, amelyben a tér adott
bútorait, tárgyait (pontjait) adott egységes módon elmozgatjuk, elforgatjuk, megnyújtjuk
adott irányok mentén.

8.2 Leképezés mátrixa
Definíció 8.2.1 — Leképezés mátrixa. A leképezés mátrixán azt a mátrixot értjük, mely
az y=Ax egyenletben szerepel (A) és a mátrix oszlopvektorai a bázisvektorok képét
tartalmazzák a megfelelő sorrendben.

Tétel 8.2.1 Legyen L : V n →W k lineáris leképezés. A a leképezés mátrixa, minden
x ∈ V -hez y ∈W ezen x képe. y = L(x), ekkor y =Ax

Bizonyítás 8.1
x= α1a1 + · · ·+αnan

L(x) = L(α1 +a1 + · · ·+αn+an)
lineáris
↓= L(α1a1)+ · · ·+L(αnan)

homogén
↓= α1L(a1)+ · · ·+αnL(an) =

=
↑

Mátrixszorzásba átírva

[
1. bázisvektor képe

↓
L(a1)| · · · |

n. bázisvektor képey
L(an)]x=Ax

�

8.3 Zérushely azaz Magtér, É.K. azaz Képtér
Mint minden függvényt, a homogén lineáris leképezéseket is le lehet írni tulajdonságai
alapján. Ezen tulajdonságok voltak gimnáziumban többek között a zérushely és az érték
készlet is.
Definíció 8.3.1 —Magtér - Kernel. Homogén lineáris leképezés magterén annak zérushelyét
értjük. Azaz azon vektorok összességét a kiindulási térben (V), melyek képe a nullvektor.

Hogyan számolható ki, akkor a magtér? Azaz hogyan határozható meg, hogy mely
vektorok képe lesz a nullvektor? Már az olvasó is tudja rá a választ: pont úgy, ahogyan
gimiben kiszámoltuk a zérushelyeket. Egyenlővé tettük nullával.
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mx+ b= 0

Ezt átrendezve a zérushely lineáris függvény esetén:

x=− b

m

Gimiből ismert homogén lineáris esetben értelemszerűen ez csakis a nulla lehet, mert (b= 0).
Ültessük át ezt az analógiát a homogén lineáris leképezésekre (itt már értelemszerűen

több megoldás is lehetséges lehet majd): Keressük azon x vektorokat, melyre teljesül, hogy

Ax= 0

Azaz Gauss-Jordan eliminációval könnyedén megoldhatjuk a problémát a homogén egyenle-
trendszert megoldva. Ne feledjük, ennek mindig van egy triviális megoldása: a nullvektor
mindig része lesz a magtérnek. Hiszen A0 = 0 bármely A mátrix esetén. Ismerős nem? A
homogén lineáris függvény átmegy az origón. Tehát a valódi kérdés az, hogy a nullvektoron
kívül mely vektorok képeznek még a nullvektorba.

Tétel 8.3.1 A magtér dimenziója megegyezik a vezérelemmel NEM rendelkező oszlopvek-
torok számával. (Hiszen ezen oszlopvektorokhoz tartozó ismeretlenek válnak paraméterré
a megoldás során - ahány különböző paraméter, annyi dimenziós a megoldás.) Ez nem
más, mint a szabadsági fok.

8.3.1 Geometriai példa: xy síkra vetítés
Ebben az esetben a homogén lineáris leképezésünk mintha egy felülnézetet mutatna meg,
leképezi a tér minden vektorát az xy-síkra. Azaz: a

b
c

→
 a

b
0


Képzeljük el, ha felülről nézünk a térre, vajon kik azok, akiket az origóban fogunk látni?

Hát mindenki, aki az origo fölött, vagy alatt van - azaz a k tengelyen minden vektor.
Nézzük meg közelebbről a leképezés általános felírását. Hogyan tudnánk az általános a
b
c

 vektorból nullvektort csinálni? Könnyen: a = 0, b = 0 behelyettesítéssel máris

nullvektorokat fogunk kapni. Tehát minden

 0
0
c

 alakú vektor képe a nullvektor lesz. Ez

valóban a k (z) tengely.
Ezt így jelöljük: Ker(A) = span{k}. A Ker- kernel-magtér, A az adott leképezés mátrixa,

span pedig azt jelenti, hogy kifeszít, azaz a span mögé felsoroljuk a vektorokat, amelyek
kifeszítik az adott alteret.
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Definíció 8.3.2 — Altér. Az altér adott vektortér részhalmaza, ami továbbra is vek-
tortérként viselkedik.

A definícióból sejthető, hogy a magtér altér, hiszen ahogy a zérushely részhalmaza az
értelmezési tartománynak, úgy a magtér is részhalmaza a kiindulási térnek - persze ez még
nem elegendő, de kezdetben az analógia kedvéért már jó. Pontos bizonyításhoz végig kell
menni a tulajdonságokon, abból kiindulva, hogy a magtér minden vektora a nullvektorba
képez.

Mivel ebben az esetben egy darab vektor (k) kifeszíti a magteret, ezért a magtér
dimenziója 1. Azaz Gauss eliminációval számolva egyetlen oszlop lesz, amely nem rendelkezik
majd vezérelemmel. Nézzük meg a leképezés mátrixát:

A=

 1© 0 0
0 1© 0
0 0 0


Ha pontosak akarunk lenni, az utolsó sor elhagyható. Látható, hogy a mátrixunkkon nem

nagyon kell Gauss-Eliminálni, ezért gyorsan kiválaszthatóak a vezérelemek (bekarikázva).
Definíció 8.3.3 — Képtér. Homogén lineáris leképezés képterén annak érték készletét
értjük. Azaz azon vektorok összességét, melyek előállnak valamely kiindulástérbeli vektor
képeként.

A képteret a gyakorlatban számolás nélkül is megoldhatjuk feltéve, hogy a magteret már
kiszámoltuk Gauss-elmininációval.

Tétel 8.3.2 A képtér azon eredeti oszlopvektorok által lesz kifeszítve, melyekben Gauss-
elimináció során vezérelem volt.

Bizonyítás 8.2 Amely oszlopokban van vezérelem, azon öszlopvektorok lineárisan függetlenek
- amely oszlopvektorokban nincs vezérelem, azok lineárisan összefüggővé teszik az os-
zlopvektorokat - így ezen vezérelemmel NEM rendelkező oszlopvektorok előállíthatóak a
többi oszlopvektor lineáris kombinációjaként. Ebből következik, hogy a képtérbeli összes
vektor előállítható a vezérelemmel rendelkező oszlopvektorok lineáris kombinációjával.
Például tegyük fel, hogy az alső két oszlopvektorban volt vezérelem, ezek legyenek az
a1,a2 vektorok. A harmadik ekkor előállítható: a3 = αa1 +βa2. Ezt behelyettesítve a
leképezés definíciójába kapjuk:

y =Ax= x1a1 +x2a2 +x3a3 = x1a1 +x2a2 +x3(αa1 +βa2) = (x1 +x3α)a1 +(x2 +x3β)a2

�

Tétel 8.3.3 A magtér altér.

Bizonyítás 8.3 Legyen u,v ∈Ker(L). Ekkor L(u) = L(v) = 0
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Zárt összeadásra nézve:

L(u+v)
lineáris
↓= L(u) +L(v) = 0 + 0 = 0⇒ u+v ∈Ker(L)

Zárt a skalárszorosra nézve:

L(λu)
homogén
↓= λL(u) = λ0 = 0⇒ λu ∈Ker(L)

Tehát a magtér valóban altér, mert zárt az összeadásra és a skalárszorosra nézve. �

Tétel 8.3.4 A képtér altér.

Bizonyítás 8.4 Legyen u,v ∈ Im(L). Ekkor ∃x,y ∈ V,L(x) = u,L(y) = v
Zárt összeadásra nézve:

u+v

képtér
↓= L(x) +L(y)

lineáris
↓= L(x+y)⇒ u+v ∈ Im(L)

Zárt a skalárszorosra nézve:

λu

képtér
↓= λL(x)

homogén
↓= L(λx)⇒ λu ∈ Im(L)

Tehát a képtér valóban altér, mert zárt az összeadásra (létezik egy olyan kiindulási
térbeli vektor, melynek a képe a két képtérbeli vektor összege) és a skalárszorosra (létezik
egy olyan kiindulási térbeli vektor, melynek képe a képtérbeli vektor számszorosa) nézve.
�

Tétel 8.3.5 — Dimenzió tétel. Legyen A leképezés:A : V →W . Ekkor

Dim(Ker(A)) +Dim(Im(A)) =Dim(V )

Bizonyítás 8.5 Mivel Ker(A) altér, ezért létezik bázisa. Ez legyen: b1, . . . , bm. (Ekkor
Dim(Ker(A))=m.

Ezt kiegészítve kaphatjuk a kiindulási tér (V) bázisát: b1, . . . , bm, bm+1, . . . , bn.
Kérdés: ki lesz a képtér bázisa?

x ∈ V ⇒ x= x1b1 + · · ·+xmbm+xm+1bm+1 + · · ·+xnbn

Végezzük el rajta a leképezést.

y = L(x) = L(x1b1 + · · ·+xmbm+xm+1bm+1 + · · ·+xnbn)
lineáris
↓=
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= L(x1b1) + · · ·+L(xmbm) +L(xm+1bm+1) + · · ·+L(xnbn) =
↑

homogén

= x1L(b1)︸ ︷︷ ︸
0

+ · · ·+xmL(bm)︸ ︷︷ ︸
0︸ ︷︷ ︸

0

+xm+1L(bm+1) + · · ·+xnL(bn)

y = xm+1L(bm+1) + · · ·+xnL(bn)

Tehát a képtér bázisa: L(bm+1), . . . ,L(bn). Azaz Dim(Im(A))=n-m
�

8.4 Sajátérték sajátvektor - azaz mennyivel és milyen irányban nyújtunk?
A sajátérték egy skaláris érték, amely leírja a transzformáció erősségét. A sajátvektor olyan
vektor, amelynek iránya változatlan marad, ha lineáris transzformációt alkalmazunk rá.
Definíció 8.4.1 — Sajátérték, sajátvektor. A λ szám sajátértéke az L transzformációnak,
ha van olyan nem nulla vektor, amelyre

L(x) = λx

. Ez a nem nulla vektor a λ sajátértékhez tartozó sajátvektora.

Tétel 8.4.1 Adott sajátértékhez tartozó összes sajátvektor a nullvektort hozzávéve alteret
alkot. Neve: sajátaltér.

Bizonyítás 8.6
L(s1) = λs1 L(s2) = λs2

Zárt az összeadásra nézve: L(s1 +s2) = L(s1) +L(s2) = λs1 +λs2 = λ(s1 +s2)
Zárt a skalárszorosra nézve: L(µs1) = µL(s1) = µλs1 = λ(µs1) �

Tétel 8.4.2 — Sajátérték kiszámítása. Adott L leképezés: y=Ax. Ekkor sajátértékei a
det(A−λE) = 0 karakterisztikus egyenlet gyökei.

Bizonyítás 8.7 Induljunk ki a sajátérték definíciójából: Ax= λx
Rendezzük át az egyenletet (és vigyünk be egy egységmátrixot, mert miért ne):

Ax−λEx= 0
Emeljük ki az x-t: (A−λE)x= 0
x egy sajátvektor, ezért nem lehet nulla. Ez egy homogén egyenletrendszer. Kérdés,

tehát az a kérdés, hogy mikor van triviálistól különböző megoldása (tehát az x nem a
nullvektor).

Ha létezne az inverz mátrix, akkor csak a triviális megoldás létezne. Tehát nem
szabad, hogy létezzen - ebből az következik, hogy a determinánsnak nullának kell lennie.
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Tehát csak akkor van triviálistól különböző megoldás, ha:

det(A−λE) = 0

�

Tétel 8.4.3 — Sajátaltér kiszámítása Ker(A−λ0E). Adott L leképezés: y=Ax. Ekkor a
λ= λ0 sajátvektorhoz tartozó sajátaltere a (A−λ0E)x= 0 homogén egyenletrendszer
megoldása. Vegyük észre, hogy ez gyakorlatilag az A−λ0E mátrix magtere.

Tétel 8.4.4 Sajátvektorok bázisára áttérve a transzformáció mátrixa diagonális. A
főátlóban az adott sajátvektorhoz tartozó sajátértékek vannak sorrendben.

Bizonyítás 8.8 A leképezés mátrixában a bázisvektorok képe szerepel. Ki lesz a sajátvek-
torok képe?

Definíció szerint: L(si) = λisi
Ezt felírva a sajátvektorok bázisában: L(si) = λisi = 0s1 + · · ·+λisi+ . . .0sn Ebben a

lineáris kombinációban minden sajátvektor együtthatója nulla, kivéve az i, sajátvektort.
Három dimenzióban:

L(s1) = λ1s1 = λ1s1 + 0s2 + 0s3 =

 λ1
0
0


L(s2) = λ2s2 = 0s1 +λ2s2 + 0s3 =

 0
λ2
0


L(s3) = λ3s3 = 0s1 + 0s2 +λ3s3 =

 0
0
λ3


Ezeket betéve egy mátrixba a tétel adódik.

�

Tétel 8.4.5 Különböző sajátértékekhez tartozó sajátvektorok függetlenek.

Bizonyítás 8.9 Teljes indukcióval.
A függetlenség definícióját szeretnénk megvizsgálni. A kérdés, hogy a sajátvektorok

lineáris kombinációja hogyan hozza ki a nullvektort. Két sajátvektor esetében:

α1s1 +α2s2 = 0

Szeretnénk valahogy behozni a sajátérték definícióját is. Ezért vegyük mindkét oldal
leképezését:
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L(α1s1 +α2s2)
homogén lineáris

↓= α1L(s1)︸ ︷︷ ︸
λ1s1

+α2L(s2)︸ ︷︷ ︸
λ2s2

= L(0) = 0

A sajátérték sajátvektor definícióját alkalmazva:

α1λ1s1 +α2λ2s2 = 0

Ebből valójában egy egyenletrendszert kaptunk:

α1s1 +α2s2 = 0

α1λ1s1 +α2λ2s2 = 0

A második egyenletből vonjuk ki az első egyenlet λ1 szeresét. Így tudom kiejteni az
s1-es tagot. Emlékezz a Gauss-eliminációra.

α1λ1s1 +α2λ2s2−λ1(α1s1 +α2s2) = 0

α2(λ2−λ1)s2 = 0

Egy szorzat akkor nulla, hogyha valamelyik tényezője nulla. Ez a nullvektorra is igaz
- valamelyik tényezője nulla, vagy nullvektor.

Sajátvektor definíció: s2 6= 0.
λ2 6= λ1⇒ λ2−λ1 6= 0
Tehát az α2 = 0.
Ezt az α1-re is meg lehet csinálni. Akkor megkapjuk, hogy α1 = 0. Tehát az eredeti

lineáris kombinációban a nullvektor csak úgy állhat elő, ha minden együttható nulla. Ez
pedig a függetlenség definíciója.

Több vektor esetén kicsit hasonló az eljárás. Ekkor abból indulunk ki, hogy feltesszük,
hogy az előtte levő vektorok már függetlenek, csak a plusz egyedik vektorral vagyunk
kíváncsiak arra, hogy megváltozik-e a függetlenség. �



9. Bázistranszformáció

Bázistranszformáció során ugyanzokat a vektorokat (helyeket) írjuk le csak más bázisban
felírva. Ennek több célja lehet, de a legfőbb, hogy más bázisban lehet, hogy egyszerűbb
számolnunk.

9.1 Vektor koordinátái másik bázisban felírva
Emlékezzünk vissza a bázis fogalmára. Ekkor adott vektort másik bázisban úgy írunk fel,
hogy keressük az adott lineáris kombináció együtthatóit:

v = α′b1 +β′b2 +γ′b3

Tehát ezt az egyenletrendszert oldjuk meg, ahol a megoldásvektorban az eredeti ko-
ordináták vannak.

új bázisvektorok egy mátrixbany
[b1|b2|b3]

 α′

β′

γ′


↑

?új koordináták?

=

eredeti koordinátáky α
β
γ



Mivel tudjuk, hogy a mátrixban bázisvektorok vannak, ezért a felírás egyértelmű - létezik
inverze a mátrixnak, íg az egyenletrendszer is általa megoldható:
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Tétel 9.1.1 — Vektor koordinátái új bázisban felírva.

új koordináták [b] bázisbany
v[b] =B

↑
új bázisvektorok egy mátrixban

−1
eredeti koordináták

↓
v

9.2 Leképezés mátrixa másik bázisban felírva (TAS)
Amikor áttérünk másik bázisra, akkor értelem szerűen megváltozik ugyanannak a vektornak
(helynek) a koordinátái. Ebből fakadóan, hogyha egy leképezést akarunk elvégezni, akkor
ugyanannak a leképezésnek a mátrixa is meg kell, hogy változzon, ha a vektorokat más
bázisban írtuk fel. (Ettől függetlenül a leképezésünk ugyanaz marad, tehát ugyanahhoz az x
vektorhoz ugyanazt az y vektort rendeljük, csak más számreprezentációval utalunk azokra
az egyedekre.)

Kérdés, akkor, hogy mi lesz a leképezés mátrixa új bázisban felírva. Fontos: mind a
kiindulási, mindpedig a képtérben áttérhetünk más bázisra.

Végezzük el a bázistranszformációt a kiindulási térben:

x ∈ V

x vektor koordinátái az új bázisbany
x′ = S

↑
a kiindulási tér (source) új bázisvektorai mátrixban

−1
x eredeti koordinátái

↓
x

Ekkor, ha belegondolunk a leképezésünk az eredeti bázisban:

y =Ax

Itt látjuk, hogy az eredeti koordináták vannak, átrendezve a fenti egyenletet kapjuk, hogy
x= Sx′. Ezt behelyettesítve:

y = AS︸︷︷︸
Leképezés új mátrixa, ha csak a kiindulási térben tértünk át

x′

Most csináljuk meg ugyanezt a képtérben:

y ∈W

y vektor koordinátái az új bázisbany
y′ = T

↑
a képtér (target) új bázisvektorai mátrixban

−1
y eredeti koordinátái

↓
y

Ebből kifejezve y-t: y = Ty′ belyettesítve a leképezés definíciójába:

Ty′ =Ax \T inverzével szorzunk balról

y′ = T−1A︸ ︷︷ ︸
leképezés új mátrixa, ha csak a képtérben térünk át

x
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Mindkettőt együtt nézve kapjuk:

y′ = T−1ASx′

Tétel 9.2.1 — leképezés mátrixa új koordináták esetén.

A′ = T−1AS

9.3 Diagonalizáció - áttérés a sajátvektorok bázisára
A szoftverfejlesztésben a mátrix-diagonalizáció segítségével hatékonyabban lehet lineáris
algebrai egyenleteket megoldani. A lineáris programozásban használják olyan optimal-
izálási problémák megoldására, mint például az optimális stratégia megtalálása a játékban,
a szállítási probléma költségeinek minimalizálása vagy a termelési rendszerből származó
profit maximalizálása. A mátrix diagonalizálással lineáris egyenletrendszerek is megold-
hatók, ami a szoftverfejlesztésben gyakori feladat. Ezenkívül felhasználható egy mátrix
sajátértékekre és sajátvektorokra történő felosztására, amelyek segítségével egy rendszer
stabilitását elemezhetjük, vagy mátrix inverzét lehet kiszámítani.

Tétel 9.3.1 A sajátvektorok bázisára áttérve a leképezés mátrixa diagonális. A főátlóban a
sajátértékek vannak a sajátvektorok, mint bázisvektorok által meghatározott sorrendben.

Tehát diagonalizáció során leegyszerűsítjük a leképezés mátrixát úgy, hogy áttérünk
sajátvektorainak bázisára - ezáltal egy diagonális mátrixot kapva.

9.3.1 Diagonalizáció feltételei
Definíció 9.3.1 — Két mátrix hasonló. Az A mátrix hasonló a B mátrixhoz, ha létezik egy
olyan S mátrix, amellyel fennál, hogy

A= S−1BS

.

Tétel 9.3.2 A hasonlóság a négyzetes mátrixok terében ekvivalencia reláció.

Bizonyítás 9.1 Lássuk be az ekvivalencia reláció három tulajdonságát:
• Reflexív: A=A⇒A= E−1AE
• Szimmetrikus: Ha A ∼ B, akkor A = C−1BC Ezt átrendezve B = CAC−1 =

(C−1)−1AC−1

• Tranzitív: Ha A∼ B azaz A=D−1BD és B ∼ C, azaz B = F−1CF akkor A=
D−1F−1CFD = (FD)−1C(FD) tehát A∼ C

�

Definíció 9.3.2 — Diagonalizálható mátrix. Az A mátrix diagonalizálható, ha hasonló egy
diagonális mátrixhoz.
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Tétel 9.3.3 Hasonló mátrixok sajátértékei páronként egyenlőek, valamint, ha A hasonló
B-hez, hasonlósági mátrixa a T (A = T−1BT ), akkor ha A sajátvektora s, akkor a B
ugyanazon sajátértékhez tartozó sajátvektora Ts.

Bizonyítás 9.2 Induljunk ki a sajátvektor definíciójából:

As= λs

Helyettesítsük be a hasonlóság definícióját A helyére:

T−1BTs= λs

Szorozzunk T-vel balról:
B Ts︸︷︷︸

B sajátvektora

= λTs

Visszakeaptuk a definíciót B mátrixra vonatkoztatva, csak Ts a sajátvektor. �

Tétel 9.3.4 — Diagonalizálhatóság elégséges de nem szükséges feltétele. Ha valamely né-
gyzetes mátrix sajátértékei mind különbözőek, akkor a mátrix diagonalizálható.

Bizonyítás 9.3 Különböző sajátértékekhez tartozó sajátvektorok függetlenek, tehát bázist
alkotnak. �

Tétel 9.3.5 — Diagonalizálhatóság szükséges és elégséges feltétele. Az A mátrix akkor és
csak akkor diagonalizálható, ha van sajátvektorokból álló bázisa.

Bizonyítás 9.4 Jobbról balra nézve: 9.3.1 tételben bizonyítottuk.
Balról jobbra nézve: Ha az A mátrix diagonalizálhgató, akkor létezik sajátvektorokból

álló bázisa. Tegyük fel, hogy A diagonalizálható, ekkor:

D = S−1AS

Szorozzunk be S-el balról:
SD =AS

Ezt a két mátrixszorzást oszloponként összehasonlítva (két mátrix akkor egyenlő, ha
oszloponként egyenlők) azt kapjuk, hogy i. oszlop esetén: λisi =Asi. Ez a sajátvektor
definíciója. Tehát az S mátrixban a sajátvektor van, míg a D mátrixban az adott
sajátérték.

S−1⇒ S oszlopvektorai, azaz a sajátvektorok függetlenek ⇒ tehát bázist alkotnak n
dimenzióban. �
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Tétel 9.3.6 — Diagonalizáció elégséges feltétele 2. Ha a négyzetes mátrix (An×n) sajátértékei
által meghatározott sajátalterek dimenzióinak összege n, akkor az A mátrix diagonalizál-
ható. A tétel másképp megfogalmazva: Az algebrai és geometriai multiplicitásoknak meg
kell egyezni sajátértékenként!

Definíció 9.3.3 — Geometriai multiplicitás. A sajátaltér dimenziója.

Definíció 9.3.4 — Algebrai multiplicitás. Az adott sajátérték hányszor fordul elő megoldásként.
Tehát gyöktényezős alakban felírva a karakterisztikus polinomot, az adott sajátérték záró-
jele hanyadik hatványon van. pl: (λ−λ1)2(λ−λ2) = 0 esetén a λ1 algebrai multiplicitása
2, míg a λ2 algebrai multiplicitása 1.

Tétel 9.3.7 — Algebra alaptétele. Minden n-ed fokú polinomnak n gyöke van.

Mátrix hatványa
Tétel 9.3.8 Ha A diagonalizálható, akkor az A mátrix n. hatványa:

An = SDnS−1

(Figyelj, hol az inverz.)

Diagonális hatványa pedig egyszerűen a főátló elemeinek hatványa. :)

Bizonyítás 9.5 Ha A diagonalizálható, akkor: D = S−1AS. Ezt átrendezve: A= SDS−1

An =AA.. .AA= (SDS−1)(SDS−1) . . .(SDS−1)(SDS−1)
átcsoportosítva

↓=

= SDS−1S︸ ︷︷ ︸
E

DS−1 . . .DS−1S︸ ︷︷ ︸
E

DS−1 = SDD.. .DS−1 = SDnS−1

�

9.4 Főtengelytranszformáció - főkomponens analízis (PCA)
A főkomponens-elemzés (PCA) egy statisztikai módszer, amelyet az adatkészlet dimenziójá-
nak csökkentésére használnak, miközben a lehető legtöbb eltérést megőrzik az adatokban.
Ez egyfajta lineáris transzformáció, amely korrelált változók halmazát veszi fel, és nem
korrelált változók halmazává (a fő komponensekké) alakítja át. Ezt a technikát az adatok
mintázatainak azonosítására, a zaj csökkentésére és az adatok könnyebben láthatóvá tételére
használják. A PCA bármilyen típusú adatra alkalmazható, beleértve a képeket, a hangot, a
szöveget és a numerikus adatokat.
Definíció 9.4.1 — Bilineáris függvény. Olyan függvény, mely két vektorhoz egy számot
rendel és mindkét változójában lineáris. Tehát tulajdonságai λ ∈R v1,v2,v3 ∈ V :

1. (a) L(v1 +v2,v3) = L(v1,v3) +L(v2,v3)
(b) L(v1,v2 +v3) = L(v1,v2) +L(v1,v3)

2. (a) L(λv1,v2) = λL(v1,v2)
(b) L(v1,λv2) = λL(v1,v2)
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Definíció 9.4.2 — Speciális Bilineáris függvény. Egy adott módon definiált Bilineáris füg-
gvény, amely alatt azt a függvényt értjük, amely két vektorhoz egy számot rendel a
következőp módon:

f(x,y) = xTAy

Definíció 9.4.3 — Kvadratikus alak. Olyan bilineáris függvény, ahol a két vektor mege-
gyezik. Mátrixát szokás Q-val jelölnmi és megállapodás szerint szimmerikus!

Q(x) = f(x,x) = xTQx

Tétel 9.4.1 Szimmetrikus mátrix különböző sajátértékeihez tartozó sajátvektorai merőlege-
sek.

Bizonyítás 9.6 2 dimenzióban a sajátvektorok definíciója:

As1 = λ1s1

As2 = λ2s2

Első egyenletet szorozzuk s2-vel, másodikat s1−el:

As1s2 = λ1s1s2

As2s1 = λ2s1s2

A két egyenletet kivonva egymásból a bal oldal csak akkor nulla, ha az A mátrix
szimmetrikus*, míg jobboldalt az s1,s2 felcserélhető, mert nem mátrixszorzás van ott:

0 = (λ1−λ2)︸ ︷︷ ︸
6=0

s1s2︸︷︷︸
0

Tehát s1s2 = 0⇒ s1 ⊥ s2.
�

*
Axy = ax1y1 + bx2y1 + cx1y2 +dx2y2

Míg, ha megfordítod, akkor:

Ayx= ax1y1 + bx1y2 + cx2y1 +dx2y2

Tehát csak akkor egyezik meg, ha az A mátrix szimmetrikus.

Tétel 9.4.2 — Spektrál tétel. Valamely négyzetes mátrix akkor és csak akkor diagonal-
izálható ortogonálisan, ha szimmetrikus.

9.4.1 Miért előnyös, hogy a Q mátrix szimmetrikus?
• Egyértelművé válik a felírás
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• Szimmetrikus mátrix sajátvektorai merőlegesek- Létezik sajátvektorokból álló
bázisa - mindig diagonalizálható

• Használható a szimmetrikus mátrix és a merőleges (ortogonális) mátrix definíciója a
levezetésben.

Definíció 9.4.4 — Főtengelytranszformáció. Főtengelytranszformáció gyakorlatilaga kvad-
ratikus alak mátrixának diagonalizációja. Azaz áttérünk a sajátvektorok (az alakzatok
főtenmgelyének) bázisára.

Vezessük le, hogy mi is történik valójában: az x vektor új koordinátái:

u= S−1x⇒ x= Su

,ahol S-ben a Q mátrix sajátvektorai vannak (az új bázisvektorok).

Q(x) = xTQx= xTQx
áttérés
↓= (Su)TQ(Su) =

↑
transzponálás felbontása

uTSTQSu

S ortogonális (mert Q szimmetrikus)
↓= uT S−1QS︸ ︷︷ ︸

D

u=x
Diagonalizáció

uTDu

9.4.2 Alakzatokon szemléltetve
Ezek az egyenletek alakzatokat írnak le, melyek főtengelyei valójában a sajátvektorok.

Eredetileg:

(x1 x2)
(
a b
c d

)(
x1
x2

)
= [ax1 + cx2 bx1 +dx2]

(
x1
x2

)
=

= (ax1 + cx2)x1 + (bx1 +dx2)x2 = ax2
1 + (b+ c)x1x2 +dx2

2

Diagonalizációval ezek a vegyes tagok tűnnek el:

(u1 u2)
(
λ1 0
0 λ2

)(
u1
u2

)
= [λ1u1 λ2u2]

(
u1
u2

)
= λ1u

2
1 +λ2u

2
2

9.4.3 Pozitív definit - ellipszis (2×2 esetén)
Ekkor minden sajátérték pozitív.

Q(u) = λ1u
2
1 +λ2u

2
2 = C

ahol a C egy konstans megadott szám.

Tétel 9.4.3 — Ellipszis egyenlete főtengelyek bázisában.

u2
1
a2 + u2

2
b2 = 1

ahol az a és b paraméterek megmondják, hogy az adott főtengelyen mennyire nyúlik
meg az alakzat.

Az ellipszis egyenletét összehasonlítva a kvadratikus alak diagonalizációjával kapjuk az
ellipszis paramétereinek (a és b) értékeit:
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a=
√
C

λ1

b=
√
C

λ2

Ezek alapján tudjuk ábrázolni mind az eredeti, mindpedig a sajátvektorok (azaz a
főtengelyek) bázisában.

Eredeti bázisban:

i

j

sv1sv2

√
C
λ1

√
C
λ2

Sajátvektorok bázisában:
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sv1

sv2

√
C
λ1

√
C
λ2

9.4.4 Pozitív semidefinit - párhuzamos egyenes

Ekkor az egyik sajátérték nulla, a másik pozitív. Legyen a második sajétérték nulla.

λ1u
2
1 = C

u1 =±
√
C

λ1
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Eredeti bázisban:

i

j

sv1sv2

√
C
λ1

Sajátvektorok bázisában:

sv1

sv2

√
C
λ1
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9.4.5 Indefinit - hiperbola

Ekkor az egyik sajátérték negatív, a másik pozitív.

Tétel 9.4.4 — Hiperbola egyenlete.

u2
1
a2 −

u2
2
b2 = 1

a b paraméter a parabola összenyomhatóságát adja meg (virtuális parabola kezdőpon-
tját adja meg)

Ezt összevetve a kvadratikus alak diagonalizációjával a paraméterek:

a=
√
C

λ1

b=
√

C

|λ2|

Eredeti bázisban:

i

j

sv1sv2

√
C
λ1

A sajátvektorok bázisában:
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sv1

sv2

√
C
λ1



10. Komplex számok

10.1 A komplex szám fogalma

Mindannyian tudjuk, hogy a valós számok halmazán a gyökvonással időnként gondok vannak:
nem tudjuk értelmezni, ha negatív szám van alatta.

Ennek értelmezésére jött létre a komplex számok halmaza - azaz kibővítjük a valós
számok halmazát, egy nagyobb halmazra, amelyben már a gyök alatti minusz számok is
értelmes halmazon belüli eredményt adnak. Azaz a gyökvonás is zárt a komplex számok
halmazán.

A valós számok elférnek és ki is töltik a teljes számegyenest, ezért oda már nem tudjuk
beilleszteni azon új komplex számokat, amik a valós számok halmazán nem léteznek - így
terjesztjük ki a számegyenest a komplex számsíkra.

Akkor miről is van szó? adott egy számunk, melyben minusz van a gyök alatt. Hogyan
tudom ezt felfogni és értelmezni? Legegyszerűbben azt mondhatjuk, hogy egy adott negatív
szám valójában egy pozitív szám beszorozva mínusz eggyel.:

√
−36 =

√
−1 ·36 =

√
−1 ·
√

36︸︷︷︸
6

Tehát átalakítható minden ilyen szám egy olyan számra, hogy
√
−1-et szorozzuk egy

gyök alatt levő pozitív számmal, ami már egy valós szám, így értelmezhető. Ebből adódóan
egyedül a

√
−1 az a szám, amivel nem tudunk mit kezdeni. Nem is baj, ne is kezdjünk vele

semmit, fogjuk fel őt úgy, mint egy bázisvektort. Egy egységnyi valami. A fenti példánkban
a komplex számot felfoghatjuk úgy, hogy egy olyan valami, ami hatszor tartalmazza ezt a
fura

√
−1-es számot.

Másodfokú egyenletek megoldásánál sokat találkoztunk olyan számmal, amely ennél
kicsit összetetteb volt: 13±

√
−25. Ezt is tudjuk úgy kezelni, hogy egy ismert valós számhoz

hozzá adunk valamennyiszer
√
−1-t (ez lesz a szám képzetes része).
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Valós rész
↓

13 + 5
√
−1︸ ︷︷ ︸

Képzetes rész

Hogy szebb legyen vezessünk be egy másik jelölést: i2 =−1. (Van ahol az i helyett a j-t
használják, utalva az i,j,k rendszerre.)

13 ·1 + 5i

10.2 A komplex szám alakjai
Definíció 10.2.1 — Algebrai alak. Minden komplex szám felírható algebrai alakban:

a+ bi

ahol az a,b valós számok, az 1 és az i pedig bázisvektoroknak tekinthetőek, hiszen ezek
lineáris kombinációjáról beszélünk. (Tehát egy kétdimenziós vektort kaptunk.)

Tehát, ha a számsíkon reprezentáljuk a komplex számokat, akkor egy vektort kapunk.
Tudjuk azonban, hogy a kétdimenziós vektorokat tudjuk polárkoordinátás alakban is felírni.
Ekkor az adott vektort hosszával (r-radius) és szögével (φ) reprezentáljuk:

r∠φ

Ezt a jelölést általában véve inkább a mérnökök használják. A matematikában két
pontosabb alakja van a komplex számoknak.
Definíció 10.2.2 — Trigonometrikus alak. A komplexszám triginometrikus alakban felírható:

r(cos(φ) + isin(φ))

ahol r a vektor hossza φ a vektor szöge. Ez gyakorlatilag a polárkoordinátából descart
koordinátába való átváltás: valós rész:a= r cos(φ), képzetes rész: b= r sin(φ).

Definíció 10.2.3 — Exponenciális alak. A komplex szám exponenciális alakban is felírható:

reiφ

ahol r a vektor hossza φ a vektor szöge. Ez az alak a trigonometrikus alakból kapható az
Euler formula segítségével.

Definíció 10.2.4 — Euler formula.

eix = cos(x) + isin(x)

Bizonyítás 10.1 Az Euler formula bizonyítása az e szám hatványsorának felírásából adódik.
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ex = 1 +x+ x2

2! + x3

3! + · · ·

cosx= 1− x
2

2! + x4

4! −
x6

6! + · · ·

sinx= x− x
3

3! + x5

5! −
x7

7! + · · ·

Az x helyére írd: ix. Ekkor figyeld meg az i hatványait, hogy megkapod az alternáló
megfelelő előjeleket és néhol az i betűt:

i0 = 1, i1 = i, i2 =−1, i3 =−i,
i4 = . . .

eix = 1 + ix+ (ix)2

2! + (ix)3

3! + (ix)4

4! + (ix)5

5! + (ix)6

6! + (ix)7

7! + (ix)8

8! + · · ·

= 1 + ix− x
2

2! −
ix3

3! + x4

4! + ix5

5! −
x6

6! −
ix7

7! + x8

8! + · · ·

=
(

1− x
2

2! + x4

4! −
x6

6! + x8

8! −·· ·
)

+ i

(
z− x

3

3! + x5

5! −
x7

7! + · · ·
)

= cos(x) + isin(x)

�

10.3 Műveletek a komplex számokkal
10.3.1 Összeadás

Úgy működik, mint az algebrában tanultaknál z1,z2 ∈ C:

z1 = a1 + b1i z2 = a2 + b2i

z1 +z2 = a1 + b1i+a2 + b2i= (a1 +a2) + (b1 + b2)i
Azaz megfigyelhetjük, hogy koordinátánként adjuk őket össze, mint a vektoroknál.

10.3.2 Szorzás
Szorzás Algebrai alakban (Mindekit mindenkivel)
Úgy működik, mint az algebrában tanultaknál z1,z2 ∈ C:

z1 = a1 + b1i z2 = a2 + b2i

z1z2 = (a1 + b1i)(a2 + b2i) = a1a2 +a1b2i+a2b1i+ b1b2i
2 = a1a2 +a1b2i+a2b1i− b1b2 =

= (a1a2− b1b2)︸ ︷︷ ︸
Valós rész

+(a1b2 +a2b1)i︸ ︷︷ ︸
Képzetes rész

Tehát ez NEM úgy működik, mint a vektoroknál.
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Szorzás Polárkoordinátás alakban
Szorozni polárkoordinátás alakban sokkal egyszerűbb, ha az exponenciális alakot tekintjük,
akkor úgy működik, mint az algebrában:

z1 = r1e
iφ1 z2 = r2e

iφ2

z1z2 = r1e
iφ1r2e

iφ2 = r1r2e
i(φ1+φ2)

Hosszak szorzódnak, szögek összeadódnak:r1r2∠φ1 +φ2.

10.3.3 Osztás
Osztás Algebrai alakban (Ítlenítéssel)
Osztani algebrai alakban is lehet, ebben az esetben, ha emlékszel, hogyan gyöktelenítettél,
most úgy fogsz ítleníteni:

z1 = r1e
iφ1 z2 = r2e

iφ2

z1
z2

= a1 + b1i

a2 + b2i
= a1 + b1i

a2 + b2i

a2− b2i

a2− b2i
= (a1 + b1i)(a2− b2i)

a2
2− b2

2

Ekkor a nevezőben már csak egy valós szám szerepel, a számlálóban pedig egy szorzás van:

(a1 + b1i)(a2− b2i)
a2

2− b2
2

= (a1a2 + b1b2) + (a2b1−a1b2)i
a2

2− b2
2

= a1a2 + b1b2
a2

2− b2
2︸ ︷︷ ︸

Valós rész

+ a2b1−a1b2
a2

2− b2
2

i︸ ︷︷ ︸
Képzetes rész

Osztás Polárkoordinátás alakban
Osztani polárkoordinátás alakban sokkal egyszerűbb, ha az exponenciális alakot tekintjük,
akkor úgy működik, mint az algebrában:

z1 = r1e
iφ1 z2 = r2e

iφ2

z1
z2

= r1e
iφ1

r2eiφ2
= r1
r2
ei(φ1−φ2)

Hosszak osztódnak, szögek kivonódnak: r1
r2
∠φ1−φ2.

10.3.4 Hatványozás
A szorzást megfigyelve hatványozni már csak polárkoordinátás alakban szeretnénk.

z = r∠φ= reiφ

zn = rneinφ

Hossz hatványozódik, szög n-szerese lesz:rn∠nφ.
Definíció 10.3.1 — Moivre-formula.

zn = rn(cos(nφ) + isin(nφ))
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10.3.5 Gyökvonás
Ha megfigyeljük a hatványozást és tudjuk, hogy a gyökvonás ennek a megfdordított prob-
lémája, akkor könnyen összerakható a képlet: z = r∠φ= reiφ n

√
z = n
√
rei

φ+k2π
n k= 0 . . .n−1

Figyeljük meg, hogy itt már számításba vesszük azt hogy a szögek 2π periódusonként
ugyanazt a vektort definiálják. Az algebra alaptétele alapján n darab gyök lesz. Ezek a
gyökök pedig a kört n részre szeletelik fel. Ezeket a gyököket szokás trigonometrikus alakban
megadni.
� Példa 10.1

4√8 + 13.85i=?

Váltsuk át polárkoordinátába, kerekítve azt kapjuk, hogy z = 16∠60◦
Tehát

4√16∠60◦ = 4√16∠60◦+k360◦
4 = 4∠15◦+k90◦

A 4 megoldást illik trigonometrikus alakban megadni:

ε0 = 4(cos(15◦) + isin(15◦))

ε1 = 4(cos(105◦) + isin(105◦))

ε2 = 4(cos(195◦) + isin(195◦))

ε3 = 4(cos(285◦) + isin(285◦))

ε0

ε1

ε2

ε3

Re

Im

4
15◦

90◦

�
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10.4 Egységgyökök - azaz a gyök(1) kiterjesztése
Definíció 10.4.1 — Egységgyök. Az egységgyök a zn = 1 egyenlet megoldásai. (n db van
belőlük továbbra is)

Az egyes számot komplex számként tekintve felírhatjuk: 1 + 0i és 1∠0 alakban is.
A polárkoordinátás alakból fogunk tudni számolni n. gyököt. A fenti képletet kell csak
alkalmazni. Példának tekintsük a hatodik egységgyököket.
� Példa 10.2 — Hatodik egységgyökök.

6√1 =?

εk = 1∠k360◦
6

Tehát trigonometrikus alakban mind a hat megoldás:

ε0 = cos(0) + isin(0) = 1
ε1 = cos(60◦) + isin(60◦)
ε2 = cos(120◦) + isin(120◦)
ε3 = cos(180◦) + isin(180◦)
ε4 = cos(240◦) + isin(240◦)
ε5 = cos(300◦) + isin(300◦)

ε0

ε1ε2

ε3

ε4 ε5

Re

Im

60◦

�
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Tétel 10.4.1 Az összes n. egységgyök előáll az első (k=1) egységgyök hatványaiként.

Tétel 10.4.2 Az n. egységgyökök halmaza Abel-csoportot alkot a komplex számok szorzására
vonatkoztatva.

Bizonyítás 10.2 • Zárt Arra vagyunk kíváncsiak, hogy két példány szorzata továbbra
is gyöke-e az 1-nek. Azaz a definíciót tekintve a kérdésünk:

(εkεl)n
?
↓= 1

Polárkoordinátákban elvégezve a szorzást:

εkεl = 1∠(k+ l)2π
n

Ha ezt n. hatványra emeljük, a 360◦ egész számszorosát kapjuk szögnek:

(εkεl)n = 1n∠n(k+ l)2π
n

= 1∠(k+ l)2π = 1

Tehát valóban zárt.
• Létezik egységelem ez az 1, hiszen szöge nulla, tehát bárkit ezzel szorozva

önmagát kell kapnom továbbra is.
• Létezik inverzelem εkεl = 1 A kérdés, hogy ki lehet az εl? Megint csak a szögeket

kell tekinteni:
k

2π
n

+ l
2π
n

= n
2π
n

l = n−k

Azaz az inverzelem az εn−k egységyök.
• Asszociatív Adódik az összeadás asszociativitásából, hiszen csak a szögeket kell

összeadnunk egységgyök szorzása során.
• Kommutatív Adódik az összeadás kommutativitásából, hiszen csak a szögeket

kell összeadnunk egységgyök szorzása során.
�

Definíció 10.4.2 — A primitív egységyök ekvivalens definíciói. A primitív egységgyökök
halmaza részhalmaza az adott n. egységgyökök halmazának.

1. εk n. egységgyök primitív n. egységgyök, ha hatványai előállítják az összes többi n.
egységgyököt.

2. εk n. egységgyök primitív n. egységgyök, ha n. hatványa pontosan 1 és semelyik
ennél kisebb hatványa nem 1. (tehát legelsőnek n forgatásra jutunk az egybe.)

3. εk n. egységgyök primitív n. egységgyök, ha k és n relatív prímek.

A három definíció ekvivalenciája bebizonyítható:



78 10. Fejezet: Komplex számok

Bizonyítás 10.3 • Lássuk be elsőnek, hogy a 2. definícióból következik az
első definíció.: Tegyük fel, hogy adott egy εk n. egységgyök, az n-t válasszuk
meg úgy, hogy az εk n-nél kisebb fokú gyökök esetén nem megoldás. (Tehát n

√
1-nél

lesz legelsőnek megoldás. Azaz teljesül a második definíció.)
Az egységgyök Abel-csoport a szorzásra nézve, ezért minden hatvány továbbra is
egységgyök marad.
Tekintsük εk hatványait 1-től n-ig. Ez n darab egységgyök. Tudjuk, hogy n
különböző egységgyök van - skatulya elv szerint - ez azt jelenti, hogy ha ez az n
darab hatvány mind különböző, akkor minden egységgyök elő is fordul a hatványok
között.
Az az egy kérdés maradt, hogy az εk 1-n-ig tartó hatványai valóban különbözőek-
e. Indirekt bizonyítsuk: Tegyük fel, hogy létezik két egyenlő hatványa εk-nak (a
hatványkitevő (legyen egyik j, másik l 1-n-ig lehet csak tehát j, l < n).

εjk = εlk

εjk
εlk

= 1

εj−lk = 1

Az εk-nak megkaptuk egy olyan hatványát, amellyel eljutunk az 1-be. Mindazonáltal
ez a hatvénykitevő j− l kisebb, mint n. Ez pedig ellentmondana a feltevésünknek,
miszerint a második definíció teljesül. Tehát valóban különbözik mindegyik hatvány,
tehát valóban előállítja az összes többi egységgyököt az εk hatványai. Azaz az első
definíció érvényes.

• Lássuk be az első definícióból következik a harmadik definíció: Az első
definíció alapján az εk hatványai előállítják az összes többi egységgyököt. Így az
elsőt is.

εjk = ε1

Elég csak a szögeket tekintenünk:

jk
2π
n

= 2π
n

+u2π

jk 2π
n −

2π
n

u
= 2π

2π
n (jk−1)

u
= 2π

jk−1
u

= n

jk−1 = nu

jk−nu= 1

Ebből következik, hogy k és n valóban relatív prímek.
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• Zárjuk be a kört, Definíció 3-ból következik a definíció 2: Indirekt Tegyük
fel, hogy εjk = 1 j < n. Tekinstsük megint csak a szögeket:

jk
2π
n

= 0

Tehát jk
n egész szám. Ez ellent mond a feltevésnek, miszerint j < n. Tehát így nem

állíthatja elő az 1-t. Tehát a második definíció teljesül.
�

� Példa 10.3 — 6. primitív egységgyökök - pirossal jelölve. 1,6 és az 5,6 relatív prímek. Az
ε1-es hatványai sorban az ε1 hatvan fokos forgatásával kaphatóak meg. n. forgatásra jutunk
elsőnek az 1-be. Az ε5-ös hatványai sorban az ε5 300 fokos forgatásával kaphatóak meg. n.
forgatásra jutunk elsőnek az 1-be.

A többinél hamarabb eljutunk az egybe :(. Szintén nézhető az is, hogy hatványozással,
azaz adott fokú forgatással valaha is eljutunk-e az összes többi egységgyökbe vagy sem.
Természetesen csakis a k=1 és a k=5 esetén lesz igaz (n=6).

A gyakorlatban a legegyszerűbb nézni a relatív prímséget. Ebből adódóan a k=1 és
a k=n-1 mindig primitív egységgyökök. (De előfordulnak más n-ek esetén ezeken kívül is
primitív egységgyökök, de ezek mindig azok).

ε0

ε1ε2

ε3

ε4 ε5

Re

Im

60◦

�
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10.5 Algebra alaptétele
Az algebra alaptétele szerint a minden n-edfokú polinomnak n darab gyöke (zérushelye)
van a komplex számok halmazán. Ebből adódik a gyöktényezős alak is - lásd algebrai
multiplicitás.

Tétel 10.5.1 Ha egy z komplex szám gyöke egy polinomnak, akkor konjugáltja is gyöke.

Következmény 10.5.2 Páratlan fokszámú polinomnak mindig van 1 darab valós gyöke.



11. Angol szótár

Gauss elimináció - Gaussian elimination
Rang - Rank (of a matrix)
Kibővített mátrix - augmented matrix [A|b]
Elemi sorművelet - elementary row operation
Együttható mátrix - coefficient matrix
Szabadsági fok - freedom of degree
Determináns - determinant
Magtér - kernel
Képtér - image space
Kifejtési tétel - Laplace expansion
Átló - diagonal
Művelet - operation
Egységelem - unit element
Inverzelem - inverse element
Transzponált - transposed
Abel csoport - abelian group
Egységvektor - unit vector
Párhuzamos - parallel
Merőleges - perpendicular
Ortogonális - ortogonal
Sík - plane
Nyíl a síkon van - Arrow in the plane
Lineárisan összefüggő - Linearly dependent
Lineárisan független - Linearly independent
Generátorrendszer - Linear span
Skalárszorzat - dot/inner product
Ortonormált bázis - orthonormal basis
Merőleges vetület - perpendicular projection
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Vektoriális szorzat - cross/vector product
Normálvektor - the normal to the plane
Normálvektoros egyenlet - point-normal equation
Tengelymetszetes egyenlet - equation defined by the intersection of the plane and the

coordinate axes
Hajlásszög - inclination/tilt angle
Vektortér - vector space
Altér - subspace
Lineáris leképezés - linear mapping
Zérushely - zero point
Gyök - root
Sajátérték - eigenvalue
Sajátvektor - eigenvector
Főkomponens analízis - principal component analysis
Valós rész - real part
Képzetes rész - imaginary part
Egységgyök - the root of unity/de Moivre number
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