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Ez a kony a Linearis Algebra targyat hivatott osszefoglalni és kiszinezni. Bemutatja, mi a
matematika igazi esszencidja. Hasonldsag mas jegyzetekkel a matematika egyetemességén
alapul.

Masodik kiadds (2.1 version), 2023 Jinius
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1.1

1. Bevezetés

Motivacio

A konyv megirdsdnak célja, hogya matematika cimadd témakoréhez tartozo elsédleges
ismereteinket minél jobban Gsszegyijtse, de leginkabb az, hogy bemutassa, mi mindenrol
is sz6l. Amikor a gimnazista kikeriil a kis zart kertjébdl, be az egyetemi élet vadonjaba,
sokszor szembesiil azzal a ténnyel, hogy nem tudja, mi torténik koriiltte. Amikor egy
gondozott vadallatot visszakiildiink a sajat kozegébe, akkor is hozzaszoktatjuk 6t, és csak
fokozatosan engedjiik ki. Ennek oka, hogy attél tartunk, hogy elpusztul, ha hirtelen
bedobjuk a mélyvizbe. De akkor a gimnazistdknak miért nem teremtiink valamiféle &tmeneti
hidat, amely az egyszeriibb matematika és a bonyolultabb absztrakt terek vilagat hidalja
At és teszi a klimatizaciét fokozatossa? En ezt kisérlem meg ezzel a tankonyvvel, mely
tobb éves gyakorlatvezetoi tapasztalataim egységesitése egy nagy egésszé, mellyel olyan
varazser0 birtokaba juttathatom az fiatal felnétteket, mellyel képesek lesznek elvarazsolni
csoporttarsaikat és tandraikat. A megértés kulcsdt adom a keziikbe, oly mdédon, hogy
leegyszerilisitem és Gsszekapcsolom az 0j informéacidkat a mar meglevo informéaciékkal. Nem
is tudom, miért varjuk el sokszor a hallgatotél, hogy levegobe dobott szavakat és gondolatokat
megértsen, ha egyszer nem tudjik mihez lehorgonyozni azokat a lufikat.

"Az absztrakcionak rossz hire van: szintelennek, céltalannak, a vilagtol el-
szakadtnak és tartalom nélkiilinek tartjidk. Terméketlennek. A matematikat
néha megrojik azért, mert absztrakt: mintha ez egy veszélyes lejton tett rossz
1épés lenne. Pontosan az absztrakcié az azonban, ami a matematika feltiin6 és
gyakran nem is vart hatékonysidga mogott rejtézik. Készség az Gsszes 1ényegtelen
tényezd figyelmen kiviil hagyasara, a valosagosndl szélesebb tartomanyban vald
vizsgalddasra, Osszehasonlitani azt, ami van, azzal, ami lehetséges, s6t, ami
lehetetlen - ez a matematika sikerének titka."

Az idézet Karl Sigmundtél azért fogott meg, mert sok-sok elvont dologgal fogunk
talalkozni a tantargy, de a tobbi targy soran is. Ez elsére sokszor ijesztonek tiinhet. Nehéz
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elképzelni valamit, amirdl el6tte nem hallottal. Viszont igérem, a konyv végére mindenkinek
sikeriil majd megérteni példaul a végtelen viselkedését. Szerencsére a legtobb absztrakt
fogalmunk mogott ott rejlik valami szikra, kiindulépont, ami nagyon is valésdgos. Ezeket,
ha megtalaljuk nem csak magat a fogalmat értjiikk meg jobban, de azt is, hogy miért alakult
ki, miért van nekiink sziikségiink arra, hogy ennyire altalanositsunk vagy elrugaszkodjunk a
megszokottol.

Eppen ez a miért az, amiért tanuljuk a targyat, ami miatt a diszkrét matematika ismerete
nélkiil a mérnok nem mérnok igazan. Ahogyan Ty Pennington is alapozéssal kezd, amikor
felépit egy hézat, éppigy a mérndknek is sziiksége van mélyrehatolé fogodzékra ahhoz, hogy
ténylegesen valami olyat tudjon létrehozni, ami konnyedén megallja a helyét a nagyvilagban.

Amiket most tanulni fogunk koézosen, azokat a legtobb esetben a gyakorlatban is fel-
hasznaljak a mérnokok. Taladn, ha az algoritmusok idéigényérdl vagy memoriaigényérol
beszélek, akkor az olvasé egybdl bélogat, hogy: igen, én is oriilnék, ha minél gyorsabban
végeznék a feladattal. Mindazondltal vannak olyan rések is, melyeket olvasva nem esik le
elsének, mégis miért tanuljuk mi ezt. Ezeknél és a legtobb fejezetnél igyekeztiink minél
tobb applikaciordl is beszélni, megmutatni, hogy szinte nincs olyan tantargy, ahol nem fog
valahol el6jonni a most tanultak valamelyike.

Egy kis kontextus

J6, de pontosan mi az a Linedris Algebra? Mitél Linearis? Mitél Algebra? Az utébbira
egyszerlibb a valasz: kiegészités. Egy arab konyv cimének egyik szava, amely a legels6 ismert
matematikai tankonyv, mely egyenleteket és egyenletrendszerek megoldasat tartalmazta,
kiillonb6z6 feladatokhoz. Részletesebben errdl a konyvrél a 77 fejezetben olvashatsz.

1. A lineéaris algebra hatékony eszkoz a valés problémak megolddsara. Szamos teriileten
hasznalhatd, a mérnoki és kozgazdasagi tudoméanyoktol a fizikdig és szamitastechnikaig.

2. A matematika és a statisztika sok mas teriiletén alapozo targy, igy a linearis algebra
alapos ismerete utat nyit a tovabbi tanulmanyokhoz.

3. A linedris algebra megértése segithet jobban megérteni a minket koriilvevé vilagot.
Segithet az adatok értelmezésében, a valtozok kozotti kapcsolatok magyarazataban és
a valo vilagban felmeriilo probléméak megoldasaban.

4. A linedris algebra nagyszerii médja a problémamegoldé és elemzd készség fejlesztésének.
Megtanit logikusan és strukturaltan gondolkodni, ami az élet sok mas teriiletén is
segitségedre lesz.

5. A szamitogépes programozas fontos része, alkalmazasokban, jatékokban és sok mas
digitalis rendszerben hasznaljak. A linearis algebra ismerete segit jobb programok
kidolgozasaban.

A késébbiekben latni fogjuk, hogy vannak megszamlalhat6 és megszdmlalhatatlan elem-
szimi halmazok. Talan a diszkrét matematikat is agy lehetne megfogni a legjobban, hogy
a megszamlalhat6, vagy az egészekhez (integerek) hasonlatos halmazokkal foglalkozunk.
Ettél diszkrét, azaz nem folytonos - a folytonos dolgokkal inkdbb az analizis foglalkozik. A
példéanyok megfoghatdak, konnyedén elkiilonithetéek a tobbitdl, mintha egyszert targyak
lennének.

A diszkrét matematika a digitalis szamitégépek alap leird nyelve, mert foglalkozik a
logikéval, a strukturdkkal és reldciékkal, eképp a héldkkal és a szamelmélettel. Foglalkozik
tovabba a kombinatorikdval, a valdszinliségekkel, tehdt magdval a lehetségessel. Azaz
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Osszességében minden olyan alap matematikaval, amelyek sziikségesek a szamitégépek
megértéséhez és irdnyitasdhoz. Nevezhetnénk gy is, hogy: "A digitdlis szdmitogépek
matematikdja".

Koszonetnyilvanitas

Els6dlegesen szeretném megkoszonni minden olyan tandromnak és hallgatémnak, aki motivalt
ezen konyv megirasara és azon embereknek, akik segitettek, hogy olyan tapasztalatokhoz
juthassak, melyek segitségével most masok elé tarhatok egy elsére bonyolultnak tiin6 vilagot
és annak megannyi varazsat.






2. Egyenletrendszerekbol Matrixokba

Sokaknak lehet ismer6s az a sz6, hogy matrix. Nekem is bevallom, t6bbszor jut eszembe a
filmtrilégia, mintsem a méatrix, amikkel nap mint nap dolgozom. A filmben matrixnak hivjak
a vilagot, azt a szimulaciét, amelyben éliink. Badarsdgnak tlinhet ugyan, azonban egy biztos,
hogy igaz: a matematika egyetemes és leirja a kornyezetiinket és a vildgmindenséget. Azaz
inkdbb a nyelv, amellyel le tudjuk azt irni. Végiilis a szamitégépek és szamos algoritmus
(utasitdssorozat) alapszik az ebben a fejezetben megismert métrixokon és azok tulajdonsigain
és felhasznalasan.

Mint igértem, minden fejezetet a gimndziumi ismereteinkhez fogok kétni. A maétrixokat
a legegyszerlibben gy tudnank felfogni, mint az egyenletrendszerek lusta felirasat. Egyenle-
trendszert ir le, mert val6jaban abbdl tudjuk képezni, vagy éppen azza tudjuk visszairni.
Lusta, mert ugyan egyenletrendszert irunk le, de csak azt, amit feltétleniil sziikséges - hiszen
ki szeret f5lslegesen kormolni? En nem szeretek.

A legegyszeriibb, ha egy példan bemutatom:

o +0y+22=25
3x—1ly+22=15 (2.1)
342y + 7z =52

Eszrevehetd, hogy az ismeretleneket egy oldalra és egymas ald rendeltem. Ekkor mar
lathatd, hogy ilyen forméaban sokkal egyszer{ibben is leirhatjuk az egyenetrendszert, kihagyva
az ismeretleneket és a plusz elGjeleket és egyenlGségjeleket:

5 0 225
3 -1 215 (2.2)
3 2 752

A fiigg6leges vonal uténi oszlopot az egyenletrendszer megolddsvektoranak hivjuk, hiszen az
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egyes egyenletek megoldasat tartalmazza. Az egyenletrendszer homogén, ha a megoldasvektor
nulla, azaz:

5 0 200
3 -1 20 (2.3)
3 2 70

Ebben az esetben a megoldasvektort is folosleges kiirni, azaz elhagyhaté a csupa nulla oszlop.
Tehat a homogén egyenletrendszer a kévetkezd formaban irhaté fel a legsziikebben:

or+0y+22=0 5 0 2
3r—1ly+22=0) <= |3 -1 2 (2.4)
3z42y+72=0 3.2 7

Homogén egyenletrendszer megolddsanak mindig van egy trivialis megoldasa, a nullvektor
- hiszen, ha x=0 és y=0 és z=0, akkor barmik is legyenek az egyiitthaték, az eredmény tuti,
hogy nulla.

Gauss-Jordan eliminacio

Azaz, hogyan oldjuk meg az egyenletrendszert métrixos alakban felirva? Valéjaban pontosan
ugyanazt csindljuk, mint gimiben - Gsszeadjuk, kivonjuk az egyenleteket egymdasbol és
megszorozzuk valamivel az adott egyenletet, ha kell. A kiilonbség, hogy mostméar nem
kormolink foloslegesen és rendszert visziink a folyamatba (nem teljesen random sorrendben
megytink végig - bar gy is tehetnénk, csak nem feltétleniil lenne elényos).

Definicié 2.1.1 — Vezérelem. Gauss elminidcié soran minden sorban és oszlopban kivé-
laszthatunk egy (csakis egy) nem nulla szimot. Ez lesz a vezérelem.

A vezérelem tobbek kozott azért nem lehet nulla, mert a vezérelem lesz az az érték,
amivel tovabb tudunk dolgozni, aminek segitségével az alatta levd részeket lenullazzuk.
(Nulldval beszorozni vagy leosztani egy egyenletrendszert értelmetlen.)

Definicié 2.1.2 — Rang - Képtér dimenzidja. Matrix rangjan a métrixban talalhaté vezérele-
mek szamat értjik.

A fenti példén nézziik is meg. En le fogom irni a gimis felirast is, de a gyakorlatban
papiron elég mér csak a matrixokkal szdmolni (latni fogjuk, hogy gépen még ennyit sem kell
csindlni, lesznek el6regyartott fiiggvényeink - akar Pythonban, akar MatLabban is nézziik
azt.)

o +0y+22 =25 5 0 295
3x—1ly+22=15,<+= |3 -1 215 (2.5)
3x+2y+ 7z =52 3.2 752

1. Vizsgaljuk meg, hogy van e nulla a matrixban. Ha van, lehetdleg tegyiik
legalulra az adott sort. Ezt iigye barmikor megtehettiik, hiszen az egyenletrend-
szerek esetében az egyenletek kozott és kapcsolat all fenn - sorrendjiik mindegy. Ha
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tobb nullat is taldlunk, akkor érdemes elgondolkozni azon, hogy melyik nulldt tudjuk
majd megtartani - késébb ezt mar érezni fogjuk.
Eszrevessziik, hogy az elsé sorban van nulla.

3z —1y+2z=15 3 —-1 9215
3x+2y+72=52) <= |3 2 52 (2.6)
ox + 0y + 22 =25 5 0 225

2. Valasszunk ki egy vezérelemet. Ezt dltaldban a legels6 sor legelsé elemével
szoktam kezdeni - mert igy algoritmizalhaté a legegyszertibben. De nagyon sokszor
nem ez lesz a legoptiméalisabb.

(a) Ha van egyes a sorban, célszerili azt valasztani.

(b) Ha nincsen egyes, barmelyik vélaszthatd, altaldban els6nek az els6t
vélasztjuk. Ekkor osszuk le a sort a kivalasztott vezérelemmel. (Egyest
csindlunk belble. ) A példdnkban talalunk egyest, ezért most nem a bal felsé
sarkat valasztom, hanem az els6 sor masodik elemét.

3z—1y+22z =15 3.6 215
3w+2y+T72=52p < (3 2 7 52 (2.7)
52+ 0y 422 =25 5 0 225

3. Nullazzuk ki a kivalasztott vezérelem alatti egyiitthatékat.

(a) Adjuk hozza a II. sorhoz az I. sor kétszeresét! Figyeljiik meg, hogy a
vezérelem negativ volt, mig az alatta lev elem pozitiv. Eltéré eldjel esetén
hozzaadunk, azonos elGjel esetén kivonunk. Mivel a vezérelemiink egyes,
ezért a II. sor kétszeresét kell hozzdadni, hiszen 2y + (—2y) = 0.

3z—1y+22z =15 3 6 2|15
9r4+0y+112=82 ) <= |9 0 11 82 (2.8)
540y +2z =25 5 0 2|25

A harmadik sorban levé vezérelem alatti értéket is le kéne nullaznunk, de szerenc-
sére ez mar nulla volt alapbdl.

4. Ha lenullaztunk mindenkit a vezérelem alatt, ideje Gj vezérelemet keresni.
Ne feledjiik, abbdl a sorbdl és oszlopbdl mar nem valaszthatunk, ahol mar valasztottunk!
Keressiik a vezérelemet a masodik sorban. HA a kilencest, vagy a 11-est valasztjuk,
akkor nehéz lenne tgy vezéregyest késziteni, hogy a sor leosztasa soran egészeket
kapjunk (a 82 se 9-el, se 11-el nem oszthat6.) A szebb eredmény érdekében cseréljikk
fel a masodik és a harmadik egyenletet és utdna véalasszunk vezérelemet (csere nélkiil
is valaszthatndnk a harmadik sorbdl.). Vélasszuk vezérelemnek az 6tost.

3z —1ly+2z=15 3 6 2|15
5r+0y+2:=25 p<= |[® 0 2|25 (2.9)
92+ 0y + 11z = 82 9 0 1182
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5. Osszuk le a mésodik sort a vezérelemmel. (Készitsiink vezéregyest.)

3z —1ly+2z=15 3 € 2/15
lz+0y+22=5 <= |O 0 2|5 (2.10)
97+ 0y + 112 = 82 9 0 11] 82

6. Nulldzzuk le a vezérelem alatti egyiitthatét. Azaz ebben az esetben vonjuk ki
a harmadik sorbdl a mésodik sor kilencszeresét (III-91I).

3z —1y+22z =15 3 6 2|15
le+0y+22=5 (<= |DO 0 2|5 (2.11)
0x + 0y + 7.4z = 37 0 0 7437

7. A Gauss eliminacidt elvégeztiik - haromszégmatrixot kaptunk (mégha most
a lépcs6énk nem is a f6atléban szerepel pontosan.) MaAr innen is manuélisan
visszafejthetjiik a megoldast, a baloldali eredeti gimis alakot hasznalva. Lathaté,
hogy létezik a harmadik vezérelem is - azaz a matrix rangja 3. Ha minden sorban és
oszlopban van vezérelem, akkor az egyenletrendszernek egyetlen egy megoldasa van.

3z —1ly+2z=15 3.6 2|15
le+0y+22=5 (< |DO 0 2|5 (2.12)
0z +0y+7.42 =37 0 0 ©TAH37

Tehat osszefoglalva adott lenullazasi 1épés egyben gy néz ki, hogy:

nulldzandé egyiitthato

nullazando sor — -vezérelem sora

vezérelem

Fejtsiik vissza a Gauss utani alakbdl az egyenletrendszer megoldasat:

3.6 2|15 3z —1ly+2z=15
® o0 % 5 > lz+22=5 (2.13)
0 0 TA43 T4z =37

Az alsé sorbdl azt kapjuk, hogy z = ;’_—Z =5 Helyettesitsuk be akkor, hogy z =5

3r—1y+2-5=15 3z —1y+10=15 3z —1y+10=15
9 == = (2.14)
lr+£-5=95 lz4+2=5 r=3
Helyettesitsiik be, hogy x =3
3-3—-1y+10=1—= —y+19=15=y=4 (2.15)

Tehat az egyenletrendszeriink megoldasa:
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2.1.1 De akkor hol van a Jordan?

Gauss Jordan soran mikor befejeztiik a Gauss eliminaciot, elindulunk és a vezérelemek folott
is kinulldzgatjuk az egyiitthatokat. Igy a métrixunkban jobb esetben vezéregyeseket (vagy
vezérelemeket) fogunk talalni, minden més egyiitthaté nulla lesz. Ekkor a megolddsvektorunk
helyén az egyenletrendszer valodi megoldéasat, azaz az ismeretlenek értékét kapjuk. Nézzik
meg ezt a példankon. Eljutottunk a Gaus végére:

3z —1y+22 =15 3 6 2|15
le+0y+22=5 <= |O 0 2|5 (2.16)
0z + 0y + 7.4z = 37 0 0 TA37

1. Osszuk le az als6 egyenletet a vezérelemmel.

3z —1y+2z=15 3 € 2|15
le+0y+22=5 ;<= |@® 0 2|5 (2.17)
0z+0y+1z=25 0 0 @5

2. 112111 és I-2I11
3r—1y+0z=5 3 € 0/5
lz+0y+0z=3,«<= |D 0 03 (2.18)
0z +0y+1z=>5 0 0 @5

3. I-3I1
Oz —1y+0z=—4 0 € 0]-4
le+0y+0z=3 — O 0 0| 3 (2.19)
0z+0y+12=5 0 0 @ 5

4. Végeztiink, de ha szépiteni akarjuk, szorozzuk be az elsé sort -1-el.
Ox+1y+0z=4 0 @ 0|4
le+0y+0z2=3,«<~= | 0 03 (2.20)
0z+0y+12=5 0 0 @5

Figyeljiik meg, hogy itt a sorrend (y,x,z) lett!.

2.2 Egyenletrendszerek megoldhatésaga és Matrix rang alapjan

2.2.1 Markerek: Nullsor és Tilossor
I Definicié 2.2.1 — Nullsor. Nullsorrdl akkor beszélhetiink egy Gauss elimindcié soran,

amikor az adott sor csupa nullakbdl all (a megoldasvektor oldalan is).
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I Definici6é 2.2.2 — Tilossor. Tilossorrdl akkor beszélhetiink, amikor az adott sor egyiitthato
oldala csupa nulla, mig a megoldésvektorban levé szam NEM nulla.

A Tilossor értelemszertien azért tilos, mert azt jelenti, hogy ilyet nem kaphatunk - nem
lesz megoldasa az egyenletrendszernek, ha ilyet kapunk. Gondoljuk végig, a tilos sor azt
jelenti, hogy Oz + 0y 4 0z = valami, ami nem nulla. Ekkor az egyenlet baloldalan nullat,
jobb oldalan pedig egy attdl kiillénb6z6 szamot kapunk - ez ellentmondés.

Marker Homogén ERSZ Inhomogén ERSZ A matrix rangja | A|b matrix rangja
nincs 1 (a trivialis x=0) 1 (x = A~1b1sd késébb) | = oszlopszam = A rangja

Nullsor | co (Nem mindig igaz!) 00 <oszlopszam = A rangja

Tilos sor nem johet ki nincs <oszlopszam > A rangja

A tablazatban figyeljiikk meg az Osszefliggéseket: A homogén egyenletrendszernek mindig
van megolddsa, ez a trividlis megoldas. Az Ax=b egyenletrendszernek csak akkor van
megoldasa, ha az egyiitthatématrix (A) és a kib&vitettmatrix (A|b) rangja megegyezik.
Ellenkezé esetben Tilossort kapunk. A nullsor nem mindig jelent végtelen megoldést, a rang
és oszlopszam kapcsolata szamit valéjaban!

Lehetséges-e, hogy a bévitett matrix rangja kisebb, mint az egyiitthatématrix rangja?
Nem, hiszen a bovitett matrix az az egylitthatomatrix kibovitése igy valdéjaban csak az a
kérdés, hogy taldlunk-e vezérelemet a b oszlopvektorban vagy sem. Tehdt Rang(A|b)=Rang(A)
vagy Rang(A|b)=Rang(A)+1.

I Definicié 2.2.3 — Szabadsagi fok - Magtér dimenziéja. Szabadsagi fok alatt a szabad
valtozok szamat értjiikk. Tehat a vezérelemmel NEM rendelkez6 oszlopvektorok szamat!
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3. Matrix determinansa (El6jeles Térfogat)

Definici6 3.0.1 — Determinans. A métrix determindnsa az egy specidlis mérték. Egy olyan
fiiggvény, amely a négyzetes matrixhoz egy szamot rendel - ami egyben megegyezik majd az
oszlopvektorok dltal kifeszitett paralelepipedon térfogatinak 3 dimenzidban. (Tobbdimenzids
vektorok esetén a térfogat dltaldnosithatd dltala.)

1x1-es matrix esetén ez maga a celliban 16v6 szam. [a] — a. 2x2-es métrix esetén a
féatlok szorzatabdl kivonjuk a mellékatlok szorzatat.

a b
[c d]—)ad—bc

Magasabb dimenziéban rekurzivan megadhaté adott sor altali kifejtéssel. Elsé sor altal
kifejtve (sakktablaszabdlyra figyelni kell):

a b ¢

d e f|—a Z f _p| @ f +c d Z

g h i ! g ! g
ei—fh di—fg dh—eg

Ha n > 1, akkor az n x n-es matrix determinansat megkapjuk, ha az els6 sor minden
elemét szorozzuk a hozza tartozé eléjeles, (n—1) x (n— 1)-es aldetermindnssal, majd ezeket
Osszeadjuk. Az el6jel az Gn sakktabla-szabaly szerint allapithaté meg: az els6 sor elsé eleme
+, mésodik eleme —, harmadik eleme megint + eldjelil és igy tovabb. Az aldeterminédns
pedig az adott sor és oszlop elhagyasaval 1étrejové matrix determinansa. Az A matrix
determinansat det(A)-val vagy |A|-val jeloljiik - utébbi nem keverendd 6ssze az abszolit
értékkel (lasd a fenti 1 x 1-es példat)!

A fenti médszerrel egy n X n-es determinéns visszavezetheté n! db 1 x 1-es determinénsra.
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Tétel 3.0.1 — Kifejtési tétel. A determinans értéke kiszimolhaté ha egy tetszéleges sor
(vagy oszlop) elemeit szorozzuk a hozzdjuk tartozo eléjeles aldeterminansokkal és ezeket
Osszeadjuk.

Tehét nem muszaj az elsd sor szerint kifejteni a determindnst, hanem tetszéleges sor/oszlop
szerint megtehetjiik. A kifejtésnél fontos figyelembe venni az aldeterminansok el6jeleit, amit
a sakktabla szabdly alapjan kapunk meg (bal fels6 sarok mindig +):

+ - + -
-+ - +
+ - + -
-+ - +

Erdemes a legtobb 0-t tartalmazoé sor vagy oszlop szerint kifejteni a determinénst, illetve az
alabbi tulajdonsagok felhasznalasaval sok nullat csindlni.

Tulajdonsagok / Tételek

(Sorra vagy oszlopra egyarant igazak!)
1. Oszlopok és sorok szerepe egyforma (szimmetrikus): a f6atléra titkkrozve a determinédns

értéke nem véltozik. Azaz det(A) = det (AT).

a b c a d g
pl. |d e fl=|b e h
g h i c f 1

Bizonyitas 3.1 3 x 3-ra nézziik meg. Ha megnézziik 1 x 1 esetén det[a]=a tran-
szponalom: det[a]” = det[a] = a. 2 x 2 esetén:

a b
d

' = adet[d] —bdet[(]
T

Els6 oszlop szerint fejtsiik ki a transzponalt verziét.

a cC

= adet[d] —bdet|c]
b d —_  ——

c

A kettd tényleg megegyezik.
3 x 3 esetén.

d e
g h

e f

d f
B0

| t+c
g ()

a b ¢
d e fl=a
g h i
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Transzpondlt esetén fejtsiik ki az els6 oszlop szerint:

a d g
beh:aeh—bdg—i-cdg
. i i e h
Cf ¢ ~—— —— ——
e f d f d e
h 1 g 1 g h

Tehat észrevessziik, hogy a transzponalt esetén az aldeterminans mindig az original
matrix aldetermindnsa transzpondalva. Egyel kisebb dimenziéra meg mar belattuk,
hogy a transzponalds nem véltoztat. Tehat erre a dimenziéra sem fog megvaltozni.
Ezzel a logikaval kiterjesztheté ez barmekkora maétrixra. "

2. Ha a determinansnak egy sorat egy A szammal szorozzuk, akkor a deter-
minans értéke \-szoros lesz. Ebbol kovetkezik, ha minden sorat megszorozzuk
A-val, a determinédns értéke a A"-nel szorzddik, ahol n a matrix mérete: det(AA) =
A"det(A), ahol A € R™*™,

a b ¢ Aa Ab Ac a b ¢ a b ¢
pl. A-ld e fl=|d e fl=|Ad X Af|=|d e f
g h 1 g h 1 g h 1 Ag Ah A

Bizonyitas 3.2 Legyen B matrix az A matrix, melynek i. sorat beszoroztuk A-val.
Fejtsiik ki az adott sor szerint a determinanst. :

det(B) = Z Aag;iDij = )\ZaijDij
— =
j J
det(A)

|
3. Ha a determinans egyik sora egy kéttagi Osszeg, akkor a determinans értéke a két

olyan determinans értékének Osszege, melyeknek az egyik sora a kéttagi Osszeg egyik
ill. masik fele.

a b c a b ¢l Jla b c
pl. |d+j e+k f4+Il=|d e fl+|j k I
g h 1 g h 1 g h i

Bizonyitas 3.3 Legyen C métrix melyben az i. sora egy kéttagu 6sszeg. Fejtsiik ki
az i. sor szerint a determinanst. :

n

det(C) =D _(aij +bij) Dij = 3 _ai;Dij+>_bi Dij
j=1 J=1 J=1

det(A) det(B)
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Ahol az A matrix a C matrix, csak az i. sora a C matrix i. soranak els6 tagjai. B i.
sora pedig a masodik tagjait tartalmazza. "

4. Ha a determinansnak egy sora csupa 0-abdl all, akkor értéke 0.

Bizonyitas 3.4 Fejtsiik ki a determinanst a nullsor szerint. :

det(A) = ZODij =0

5. A determindns két sorat felcserélve értéke (-1) szeresére véltozik.

Bizonyitas 3.5 Lassuk be, hogy két szomszédos sorcere esetén ez igaz: Ebben
az adott sorszerint kifejtve a két determinanst azt vessziik észre, hogy ligye az
aldeterminansok értékei nem valtoznak, ahogyan a sor értékei sem, mi valtozik
then? A sakktabla szabdly! :)

det Zasz] det( sorcserelt Zaw z]
7=1

Mostmaér csak az a kérdés, hogy hany szomszédos cserére vezethetjiik vissza két nem
szomszédos sor cseréjét. Egy rajzolassal belathato, hogy paratlan szamu sorcsere
torténik. Minusz egy paratlanadik hatvanyra emelve still minusz egy. "

6. Ha a determindnsnak van két egyenld sora, akkor értéke 0.

Bizonyitas 3.6 Cseréljik ki ezt a két azonos sort. Ekkor a métrix nem valtozik, de
a determindns minusz egyszeres lesz. Azaz:
det(A) = —det(A)
det(A) =0
|

7. A determinans értéke nem valtozik, ha egy sordhoz (i) hozzidadjuk valame-
lyik masik sordnak (j) szdm szorosat.

Bizonyitas 3.7 Alkalmazzuk az 6sszegtételt. Lesz egy olyan detrmindnsunk, ami
az eredeti métrixé (A) és ehhez hozzdadjuk egy mésik determindnst, amelynek i.
sordban a j.sor A szorosa van (Ayj).

Osszegtétel szédmszorostétel egyenlésorok
det(Azx;) = det(A) +det(Axj) = det(A) + Adet(Ai, sor — . sor) = det(A)
0

»” 2

8. Ha a determinans f6atléja alatt (vagy folott) csak 0-ak &llnak, akkor a
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9.

determinans értéke a féatléban 1év6 elemek szorzata. Ez a helyzet a diagonalis
matrixndl is, nemcsak a fels6-/alséharomszog métrix esetében.

a 0 0 O a b d g a 0 0 O

b ¢ 0 0 .10 ¢ e h .10 ¢ 00 )
pl d e f 0 —a'C'f'j, O 0 f Z —G/‘C'f'j, 0 0 f 0 —G/'C'f'].

g h i j 000 j 000 j

Bizonyitas 3.8 Fejtsiik ki a a determinédnst és az aldeterminansokat is az elsé sor
szerint. Mindig csak az els6 tag marad meg, mert a tobbit nullaval kell szorozni.

elsé elemhez tartizé aldeterminéns
det(A) = alldet(All) = allaggdet(AlLll) +---=a11a22...0np

Az aldeterminéns els eleméhez tartozé aldetermindns
| |

FERDE KIFEJTES: adott sor Joszlop elemeit rendre masik sor/oszlop megfelel6
eleméhez tartozo aldeterminanssal szorozzuk, akkor nullat kapunk.

Bizonyitas 3.9 Ebben az esetben val6jaban egy olyan determinanst kapunk, ahol
az a sor, amelyik szerint kifejtjiik megegyezik azzal a sorral, amelyikhez tartozé
aldetrmindnsokat hasznaltuk. Tehdat két azonos sorunk keletkezett. Az azonossorok
tulajdonsag miatt ez nulla.

pl elsé sor szerint fejtsiink ki, a masodik sor aldeterminansaival.:

egyenlésorok
a1 a2 a3 l
a2 a3 ail  a13 a1l aia| 4
—a11 +a12 —ai3 =la11 a2 ai3|=0
az2 as3 as1 3 az1 a2 431 asy ass

Lényegében, a determindns “Gauss eliminalhat6”, amde figyelniink kell néhany szabéalyra:

két sor cseréje esetén valtozik az el6jel,

egy sort/oszlopot megszorozhatunk egy szdmmal, de igy a determindnst értéke is ezzel
a szammal szorzodik,

Gauss eliminaciéval ellentétben minden miivelet elvégezhetd oszlopokra is, mert a
determinans transzpondlhaté anélkiil, hogy értéke megvaltozna.






4.1

4. Matrixmuveletek

I Definici6 4.0.1 — Miivelet. Olyan fliggvény, amely adott objektumhoz vagy objektumokhoz
egy masik ugyanolyan tipusi objektumot rendel.

miivelet. Ekkor az e € H objektum a * miiveletre nézve egységelem, akkor és csak akkor,

| Definicié 4.0.2 — Egységelem. Adott egy H halmaz és egy rajta értelmezett * kétvaltozds
ha hxe=exh=h VYhe H.

(Azaz az egységelemet Gsszemiivelve balrol és jobbrol a H barmely elemével az eredmény
omaga marad, azaz az adott H halmazbeli h elem lesz.
Megkiilonboztetjiik a baloldali és jobboldali egységelemet, ha csak az egyik oldalrol
miveljiik.
Definicié 4.0.3 — Inverzelem. Adott egy H halmaz és egy rajta értelmezett * kétvaltozos

miivelet. Ekkor az h~! € H objektum a * miiveletre nézve inverzelem, akkor és csak
akkor, ha hxh ' =h"'xh=e Vhe H.

(Azaz az inverzelemet dsszemiuvelve balrol és jobbrol a H barmely elemével az eredmény
az adott miveletre vonatkoztatott eqységelem lesz.
Megkiilonboztetjiik a baloldali és jobboldali inverzelemet, attdl fiiggéen, melyik oldalrél
miveljiik.
Definicié 4.0.4 — Baloldali Inverzelem. Adott egy H halmaz és egy rajta értelmezett *

kétvaltozos miivelet. Ekkor az h~! € H objektum a * miiveletre nézve baloldali inverzelem,
akkor és csak akkor, ha h™'xh =e Vh € H. Balrél miiveljiik.

Matrixok szamszorosa
Definici6 4.1.1 — Matrix szamszorosa. Olyan fiiggvény, amely adott A € R esetén a A €
R™™ matrixhoz hozzarendeli a B € R"*™ matrixot, melynek elemei: b;; = Aa;;

Tehdt elemenként minden elemet beszorzunk az adott szammal. A gimndziumi vektorok
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nyujtasahoz hasonloan mikodik.

Matrix szamszorosanak tulajdonsagai
(Hamar definidltuk a matrixok 6sszeadését.)

A tulajdonsagok kovetkeznek az elemenkénti valds szam szorzas és elemenkénti valds
szam Osszeadas tulajdonsagaibdl.

Legyen A,Be€ R™™ és \,u € R

1. 1A=A

2. Vegyes asszociativ:

A(pA) = (An)A

3. Vegyes disztributiv:

(a)
A+p) A= A+pA

(b)
AMA+B)=AA+AB

Matrixok transzponaltja
Definici6 4.2.1 — Transzponalt. Olyan egyvaltozds miivelet, melynek eredményeképpen
a matrix sorai és oszlopai felcserélédnek. Azaz ha, A matrix nzm-es, akkor annak
transzpondltja az a B man-es matrix, melynek elemei b;; = a;

Transzponalas tulajdonsagai

(Hamar definidltuk a métrixok 6sszeadését.)
1. (A+B)T =AT+BT
2. (AB)T = BT AT
3. (ATt =(Aa"HT

Matrixok osszeadasa

Két matrix osszege elemenkénti miivelet.

ez

I Definicié 4.3.1 — A és B matrix osszege. Az a C matrix, melynek adott pozicioju elemét

Matrixosszeadas tulajdonsagai

Tulajdonsagai abbdl kovetkeznek, hogy a matrixok Osszeadasat visszavezettiik nam darab
valds szam Osszeadésara.
1. Asszociativ (csoportosithato).

(A+B)+C=A+(B+C)
2. Létezik egységeleme a nullmatrix.

A+0=A4
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3. Létezik inverzeleme a -1A.

A—A=0
4. Kommutativ (felcserélhetd).
A+B=B+A
Definici6 4.3.2 — Abel csoport. Abel csoportnak azon Halmaz,miivelet parost értjiik,

melyre teljesiil, hogy a miivelet zart a halmazra nézve, asszociativ, létezik egységeleme,
létezik inverzeleme és kommutativ.

4.4 Matrixok szorzasa

Matrixok szorzasa NEM elemenként elvégezheto! A két matrix szorzata harom egymasba
agyazott ciklusként foghaté.
A skalarszorzat segitségével tudjuk definilni.

Definicié 4.4.1 — A és B matrix szorzata. Amennyiben az A nrm-es matrix oszlopainak
szama megegyezik a B maxk-s matrix sorainak szaméval, 1étezik az AB matrixszorzat,
amely egy olyan nzk dimenzioji C métrix, melynek adott elemét gy kapjuk, hogy az A
matrix adott sordt a B matrix adott oszlopaval skalarszorozzuk. Tehat c¢;; =A i. sora - B
j. oszlopa=}_, a;b;.

4.4.1 Matrixszorzas tulajdonsagai

1. Asszociativ (csoportosithato)
(A-B)-C=A-(B-C)
2. Négyzetes matrixok esetén létezik az egységelem, az egységmatrix (jele E vagy I).
E-A=A-FE=A
3. Négyzetes matrixok esetén 1étezik az inverzelem.
AL A=A4.A"1=F

4. NEM kommutativ!
5. Azonos tipusi matrixok esetén a matrixszorzas disztributiv a métrixok osszeadasara
nézve (figyeld meg a miveleti sorrendet).

A (B+C)=(A-B)+(A-C)

(B+C)-A=(B-A)+(C-A)

Tétel 4.4.1 Ha egy matrixnak 1étezik baloldali és jobboldali invezre, akkor az egyértelmii
(megegyezik). Osszeadésra és szorzdsra vonatkoztatva is!
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Bizonyitas 4.1 Az Osszeadasra nézve a tétel kovetkezik a valés szamok Osszeadédsainak
tulajdonsagabol.

Szorzéasra vonatkoztatva jeloljiik a baloldali inverzt: A~1%% a jobboldalit pedig:
A—ljobb

Ekkor:

jobbinverz def
egységelem def l asszociativitas balinverz def egységelem def

A-lbal £ p—lbalp = A~1bal( 4 A=1jobby 1 (A~ Lbal g) g—1Liobb L pyg-Liobb £ 4—1jobb

Tehat a bal és a jobbinverz megegyezik. "

4.4.2 Inverz matrix tulajdonsagai

Inverz matrix alatt a szorzasra vonatkoztatott inverzet értjik.

Definicié 4.4.2 — Szingularis matrix. Olyan méatrix, melynek nem létezik inverze. (Tehat
determindnsa nulla.)

1. (A H =4

Bizonyitas 4.2

2 inverzelem def inverzelem def
egységelem def asszociativ egysegelem def

(Afl)—l i (Afl)flE > (Afl)fl(AflA) i [(Afl)flAfl]A ~*EA i A

2. (AB)"'=pB-14-1

Bizonyitas 4.3 Konstruktivan belatjuk, hogy mi torténik, ha 6sszeszorozzuk az AB
matrixot a B~ A~! matrixal.

egységelem def egysétgelem def

asszociativ egységelem de l

AB(B~'AY) £ A(BB~1)A™! Lapattanly
| |

3. Ha a C nem szingularis, akkor a matrixegyenlet atrendezhet6 az inverz segitségével.
AC=BC —-A=Bé&(CA=CB—-A=8B

Bizonyitas 4.4 Tegyiik fel, hogy AC = BC. Prébéaljuk meg az A-t dtalakitani, ugy,
hogy a baloldalt kapjuk.

inverzelem def

. .inve Zfelem def L feltétel asszociativ
egységelem de asszociativ l

A AE = A(CC™Y) £ (AC)C2 L (BC)C~'B(CC~Y) = BE =B
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4.4.3 Inverz matrix kiszamitasa

Gauss-Jordan eliminacioval:
[A|E] — [E|A™]

Determinanssal:

A—l

= Ge(a) 2 YA

4.5 Specialis valés matrixok
I Definicié 4.5.1 — Permutalé matrix. Olyan négyzetes matrix, mely az egységmatrix os-

c s 7

010
pl.: 1 00
0 0 1
I Definicié 4.5.2 — Szimmetrikus matrix. A matrix szimmetrikus, akkor és csak akkor, ha
A=AT
1 8 7
Tehat szimmetrikus a féatlora. Pl.: 8 2 4
7 4 3

Definicié 4.5.3 — antiszimmetrikus - ferdén szimmetrikus matrix. Az A matrix akkor és
csak akkor antiszimmetrikus, ha

A=-AT
1 8 -7
PL: | -8 2 4
7T -4 3

Tétel 4.5.1 Minden négyzetes matrix felirhat6 egy szimmetrikus és egy antiszimmetrikus
matrix osszegeként.

Bizonyitas 4.5 Konstruktiv megalkotjuk ezt az Osszeget.

1 1
2 2

szimmetrikus  antiszimmetrikus

I N W T AT
A=A+ A=At A4 AT AT — (A4 AT)+ ~(A—AT)

S1(A+ AT) szimmetrikus métrix, mert az elemeit tekintve:

S definiciéja

|

5 a5 ) = 5 (o + )
S PR PR
1) 2 1) 7t T2 7t 1] J

valés szamok Osszeaddsa kommutativ
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Tehat megkaptuk, hogy az i. sorban és j. oszlopban lev) elem valéban megegyezik a
j. sorban és i. oszlopban levé elemmel.
F3(A— AT) szimmetrikus métrix, mert az elemeit tekintve:

F definiciéja

|

1 1
fis = 5(@ij +aji) = =5 (aji+aig) = ~fii

valés szamok Osszeaddsa kommutativ és -1 kiemelése

Tehat megkaptuk, hogy az i. sorban és j. oszlopban levé elem valoban megegyezik a
j. sorban és i. oszlopban levé elem negéltjaval. "

Definicié 4.5.4 — Ortogonalis matrix. A matrix ortogonalis akkor és csak akkor, ha
AAT =E

Tétel 4.5.2 Az A matrix akkor és csak akkor ortogondlis, ha

AT =A™
Definicié 4.5.5 — Givens matrixok.
cos(a) —sin(a) 0 cos(a) 0 —sin(«) 1 0 0
Gi2=| sin(a) cos(a) 0 | Giz= 0 1 0 Goz=| 0 cos(a) —sin(a)
0 0 1 sin(a) 0 cos(«) 0 sin(a) cos(a)
I Definicié 4.5.6 — Idempotens matrixok.
A=A
I Definicié 4.5.7 — Nilpotens matrix.
A?2=0

I Definicié 4.5.8 — Unipotens matrix.
B’=F
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5. Vektoralgebra: Felbontasi tételek, koordinata

I Definicié 5.0.1 — Vektor. Iranyitott szakasz.

Két vektor egyenld, ha hosszuk és iranyuk megegyezik.

I Definicié 5.0.2 — Egységvektor. Olyan vektor, melynek hossza 1.

5.1 Vektorok Odsszeadasa

Kozépiskolabdl ismert médon a nyilfolyam moédszer vagy a paralelogramma maédszer szerint
lehet a vektorokat Gsszeadni.

5.1.1 Vektor Gsszeadas tulajdonsagai

1. Asszociativ (a+b)+c=a+(b+c)

2. Létezik egységeleme a nullvektor a+0=a

3. Létezik inverzeleme. A vektor ellentettje. a —a =0

4. Kommutativa+b=b+a

Tehat a Vektorok halmaza 6sszeaddsukra nézve Abel csoport. Figyeljiik meg a hasonldsa-
got a matrixok Osszeaddsaval, hiszen a vektor egy egy oszlopos vagy egy egy soros matrix
lesz, ha koordinatamétrixal irjuk fel.

5.1.2 Vektor szamszorosa

A kozépiskolahoz hasonléan miikédik,valamint megegyezik a matrix szamszorosaval.

Definici6 5.1.1 — Vektor szamszorosa. Olyan miivelet, mely a v vektorhoz hozzarendel egy
olyan vektort, melynek hossza a A € R szorosa a v hosszanak és a v vektorral egyiranyu
(ha A > 0) vagy ellentétes irdnyt (ha A <0).

Szamolni a koordinataikkal pont ugyanigy kell, mint a matrixok esetében,
hiszen a vektor koordinatamatrixa az egy 1 oszlopos n soros matrix.
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Definicié 5.1.2 — Parhuzamos vektorok. Két vektor akkor és csak akkor parhuzamos, ha
irdnyuk megegyezik, vagy ellentétes. jele al|b

Tétel 5.1.1 — Parhuzamos vektorok.
allb<=3IXe R,a= X

Tulajdonsigai megegyeznek a matrix szdmszorosanak tulajdonsigaival.
Legyen a, b€ R" és \,u € R
1. la=a
2. Vegyes asszociativ:
A(pa) = (Ap)a
3. Vegyes disztributiv:

(a)
(A+p)a=a+pa

(b)
A(a+b) = Aa+ b

5.2 Felbontasok

Tétel 5.2.1 — Sikbeli felbontasi tétel. Ha adott a sikban két nem parhuzamos vektor a és
b, akkor minden sikbeli vektor egyértelmiien felbonthaté az a és b vektorral parhuzamos
Osszetevokre, melyek linearis kombinéciéja adja a ¢ vektort.

a,b,ceS alfb =3Ja,fER c=aa+Pb

Bizonyitas 5.1 Konstruktiv adjunk meg két nem parhuzamos vektort legyenek a és b,
valamint egy harmadik sikbeli ¢ vektort, melynek kezd6pontja P és végpontja Q.
A ¢ kezdSpontjabdl (P) hizzunk egy a-val parhuzamos egyenest. A ¢ végpontjabol(Q)

hiizzunk egy b-vel parhuzamos egyenest.
A

P aa

a lf b= a két egyenes metszi egyméast. A metszéspont legyen M.
Ekkor: ¢=PQ =PM+MQ
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PM|la=3a€ R PM =aa

MQQ||b=3p€R MQ=pb

Tehat valoban ¢ = aa + Bb

Lassuk be, hogy egyértelmii. Ez legyen indirekt. tegytk fel, hogy a felbontés létezik
és nem egyértelmii. (Figyelted az implikacio tagaddsdat?)

Ekkor létezik két kiilon feliras.

ara+pib=c
aga+ Pab=c
Gyors gaussal, az I-II, azt kapjuk, hogy:
(a1 —ag)a+(f1—B2)b=0
—_——— —_———

0 0

Sem a, sem b nem nullvektor, ezért csakis a zaréjelek lehetnek nulldk. Ebbél viszont
kovetkezik, hogy a sulyoknak (koordinatdknak) meg kell egyeznie. Tehdt a felirds valéban
egyértelmil.

aa.
a és b vektor linearis kombinacija aa + Bb.
a, b és ¢ vektor linearis kombinacidja aa+ Bb+vyc.

Definicié 5.2.2 — Linearisan fiiggetlen. Az a,b, és c vektorok linearisan fliggetlenek, akkor
és csak akkor, ha egyik sem irhaté fel a tobbi vektor linedris kombinéciéjaként.

Definici6 5.2.3 — Linedrisan &sszefiiggd. Az a,b és c vektorok linedrisan Osszefiiggék, ha
valamelyik felirhat6 a t6bbi linedris kombinaciéjaként.

Tétel 5.2.2 Két vektor a sikban akkor és csak akkor linearisan fiiggetlen, ha nem
parhuzamosak.

a,b € S-LOF < alb

Tétel 5.2.3 Harom vektor a térben akkor és csak akkor linearisan fiiggetlen, ha nem
egysikuak.

a,b,c € R®*-LOF < a,b,c¢ S

Definicié 5.2.4 — Generatorrendszer. Azon vektorok, melyek a tér 6sszes vektorat el6al-
litjak linearis kombinaciéjukkal.

‘ Definici6 5.2.1 — Linearis kombinacié. Stulyozott sszeg. a vektor linearis kombinacidja

I Definicié 5.2.5 — Bazis. Fiiggetlen generatorrendszer.
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I Tétel 5.2.4 A sikban két linearisan fiiggetlen vektor bazist alkot.
A fiiggetlenség miatt valik a linedris kombinacié egyértelmiivé.

Tétel 5.2.5 — Térbeli felbontasi tétel. Ha adott a térben harom nem egysikt vektor a,b
és ¢, akkor barmely d térbeli vektorhoz egyértelmiien létezik olyan «, 3,7 € R, amelyre
igaz, hogy d = aa+ b+ e

Definici6 5.2.6 e Ortogonalis bazis : a vektorok merdlegesek
o Normalt bazis : a vektorok hossza 1
e Ortonormalt bazis: ortogonélis és normalt
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6. Vektoralgebra: A vektorok harom szorzata

Skalarszorzat
Definici6 6.1.1 — Skalarszorzat. Fiiggvény: V2 — R:a-b=|a||b|cos(7). Az két vektorhoz
hozzarendel egy valés szamot, tgy, hogy veszi a két vektor hosszanak szorzatat és
megszorozza a kozbezart szogiik koszinuszaval. Maésikfajta jelolése: <a,b>

Masikfajta jelolése: <a,b> altaldban a kvantummechanikaban fordul el6 az tgynevezett
braket notation.

Kiszamitas Koordinatakkal ortonormalt bazisban

a-b= Zakbk
k=1

Bizonyitas 6.1

a-b=(a1i+asj+agk)- (bri+boj +bsk) =
a1b1i%+a1bgz\~/j/+a1b3%{k/+
0

a2b1j'i+a2b2j'j+(1263j-k+
~~~ ~~~ ~~~

0 1 0 (6.1)
(I361U+(13b2@+a363k\'j§ =
0 0 1
3
a1by + azbs + azbs = Z = agby
k=1

Geometriai Jelentés



6.1.3

34 6. Fejezet: Vektoralgebra: A vektorok harom szorzata

Definici6 6.1.2 — Skalarszorzat geometriai jelentése. Az a vektor b vektorra vett merdleges
vetiiletének b-hossz-szorosa (elGjelesen).

a

(07

|alcos(7) b

Skalarszorzat tulajdonsagai
Késobb, ha adott lesz barmely mas fliggvény, amely rendelkezik ezekkel a tulajdonsé-
gokkal, skalarszorzatként hasznalhatjuk, ha gy akarjuk. Bo6vebben lasd az eukleideszi
(skalarszorzattal rendelkezé) tereket - ott mar gyakrabban hasznéljuk a braket notationt.

1. Pozitiv definit a-a >0 és a-a =0+ a =0 (Onmagdval vett skaldrszorzat a normané-

gyzet - hossz négyzete)

2. Szimmetrikus (fiiggvénynél hivjuk igy) a-b=0-a

3. Homogén (Aa)-b= Aa-b

4. Lineéris a- (b+c)=a-b+a-c

Grachm-Schmidt ortogonalizicié - ha nullvektort kapunk, akkor az eredeti vektorok
Osszefliggoek.

Tétel 6.1.1 Két vektor skalarszorzata akkor és csak akkor nulla, ha a vektorok merdlegesek.

a-b=0<alb

Bizonyitas 6.2 Akkor és csak akkor kapcsolat mindkét iranyat be kell latni. Emlékezz az
ekvivalencia dtirdsa két implikdcio éselésével torténik.

Lassuk be, hogy a-b=0=a 1 b

Tegyiik fel, hogy a-b=0

a-b=lallb|cos(y) =0

Egy szorzat akkor nulla, ha valamelyik tényez&je nulla. Ha |a| = 0 vagy |b| =0 azt
jelenti, hogy legalabb az egyik a nullvektor. A nullvektor minden irdnyu, igy merdleges is
a masikra nézve.

Mi van akkor, ha |a| # 0 és |b| # 0 (Figyelj a logikai miuveletekre!). Ekkor a cos(vy) = 0.

Azaz v = 5 +kn. Tehat a két vektor merdleges.

Lassuk be, hogy a-b=0<«<a 1 b

Ha a L b= ~v=7 = cos(y) =0=|al|b|cos(y) =0

Tehat a skalarszorzat tényleg nulla.
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Tétel 6.1.2 Onmagaval vett skaldrszorzat a hossz négyzete.

a-a=|al|la]cos(0) = ]a|2
~———

1

6.2 Vektorialis szorzat

Definici6 6.2.1 — Vektorialis szorzat. Miivelet: V2 — V :a x b= |al|b|sin(7) -e, ahol az e
vektor az a, b vektor altal kifeszitett sikra merdleges (jobbkéz szabdlyt betart6 irdannyal).

6.2.1 Kiszamitas Koordinatakkal ortonormalt bazisban

i 7k
axb=| a1 az as
b1 by b3

Bizonyitas 6.3

axb= (a1i+a2j+a3]€) X (bli—i-bgj—i-bgk) =
a1b1i X i+a1bai X j+arbzt x k+
~—~ N—— —~

k —J
agby j X i+agby j X j+asgbzj x k+
—k 0 7 (62)
aszb1 k X i+aszbak X j+asbsk x k=
J —1
i j k
i(a2b3 — ang) —j(a1b3 — a3b1) + k(ale — agbl) = | a a2 as
b1 by b3
[ ]

6.2.2 Geometriai Jelentés

Definicié 6.2.2 — Vektorialis szorzat geometriai jelentése. Az a,b vektorok altal kifeszitett
sikra merdleges vektor, melynek hossza a két vektor altal kifeszitett paralelogramma
tertilete.
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alap

1
|axb| = [b] |a|sin()
——

magassig

6.2.3 Vektorialis szorzat tulajdonsagai

1. axa=0 (Determinans 1. tulajdonsig)
2. antikommutativ a x b = —b X a (jobbrendszer)
3. Homogén (Aa) x b= A(a x b) (Determinéns 2. tulajdonsag)
4. Disztributiv (Determindns 5. tulajdonsag)
(a) (a+b)xc=axc+bxc
(b) ax (b+c)=axb+axc

Tétel 6.2.1 Az a és b vektorok vektoridlis szorzata akkor és csak akkor a nullvektor, ha

parhuzamusak.

axb=0<allb

Bizonyitas 6.4 Lassuk be, hogy axb=0=a b
A nullvektor hossza nulla:

la x b| =0=|al|b|sin(y) =0

Egy szorzat akkor nulla, ha valamelyik tényez6je nulla. Ha a =0 vagy b = 0, akkor
mivel a nullvektor minden irdanyu, ezért parhuzamosak is.

Ha a #0 és b# 0, akkor a sin(y) =0= v =0+ k.

Lassuk be, hogya xb=0<«<a || b.

Haal|b=v=0=sin(y)=0=]axb =0

6.3 Vegyes szorzat
| Definicié 6.3.1 — Vegyes szorzat. Fiiggvény: V3 — R: (a xb)-c
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6.3.1 Kiszamitas koordinatakkal ortonormalt bazisban

Csak vegyitsd Ossze az el0bbi két miiveletet, el6szor a x b, majd a kijott vektort skaldrszorozd
a c-vel. Valéjaban a harom vektorbél allé matrix determinansa.

Cc1 C2 cC3
(axb)-c=| a1 ay ag
by b b3
Bizonyitas 6.5
as as
by b3
a] as
xb=| —
“ b1 bs ‘
ap a
b1 by

Ezt a vektort kell skalarszoroznunk a ¢ vektorral. (Elsé koordindta szor elsé koordindta
+ mdsodik koordindta szor mdsodik koordindta...)

as a a1 a a1 a A e G

2 a3 1 a3 1 a2

(axb)-c=c1 —c9 +c3 =|a ay a3
by b3 by b3 by b2 by by bs

6.3.2 Geometriai Jelentés
I Definicié 6.3.2 — Vegyes szorzat geometriai jelentése. A harom vektor altal kifeszitett
paralelepipedon el6jeles térfogata.

Bizonyitas 6.6
(axb)-c=(laxb|-e)-c=|al|b|sin(x) &-/5)
alapteriilet M2gassag

u
Vegyiik észre: Ha a paralelepipedon térfogata nulla, akkor a harom vektor egy sikban

van - azaz linearisan Osszefiiggéek. Ebbdl kovetkezik:

Tétel 6.3.1 A harom vektor altal alkotott matrix determinansa akkor és csak akkor nulla,
ha a hidrom vektor linearisan 6sszefiiggd.

Tétel 6.3.2 A hirom vektor 4ltal alkotott métrix determinénsa akkor és csak akkor NEM
nulla, ha a harom vektor linedrisan FUGGETLEN.
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6.4 Alkalmazas

6.4.1 Vektor felbontasa - Grahm-Schmidt ortogonalizacié 2D-ben
Egy vektort fel tudunk bontani egy masik vektorral parhuzamos és meroleges Gsszetevoire.
Emlékezziink a fizika erdinek példdira.
A b vektorral parhuzamos 6sszetevének a hosszat megkaphatjuk a koszinus szogfiiggvény
hasznalataval, hiszen az a szog melletti befogd.

_ Jallblcos(z) _a-b
0] 0]
Oké, de ez még csak a hossza. Hogyan csindlok bel6le vektort? Beszorzok a b vektorral

parhuzamos egységvektorral, ami e, = %
Tehét a b-vel parhuzamos 6szetevd, mint vektor:

lay| = la|cos(7)

a-bb a-b
o =layles = Tr i = 5p

a
AL 1= a—a

e
o
=2

b b

a =

d
>

A merdleges Osszetevd pedig csak egy egyszerii kivonds: a; =a—aq

6.4.2 Két vektor hajlasszoge
Tétel 6.4.1 — Két vektor hajlasszoge. Adott a és b vektor. Hajlasszogiik:

Y = arccos (ab)
|al[o]

Sidenote: a cos(y) nem més, mint a korreldcié. Minnél inkdbb 1, annél inkdbb egyiranyba
néz a két vektor. Minnél inkabb -1 annal inkabb ellenkezo iranyba néz a két vektor. Minnél
inkabb nulla, annél inkdbb meréleges a két vektor (totdl nem egyirdnyba néznek.)

6.4.3 Sik normalvektoros egyenlete
I Definicié 6.4.1 — Sik normalvektora. Olyan vektor, mely meréleges a sik minden vektorara.

o
Tétel 6.4.2 Ha adott egy Pp=| wyo | pontja asiknak és a sik norméalvektora: n =
20

QW
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akkor a stk egyenlete:

Ax+ By+Cz = Axo+ Byg+Cz
Bizonyitas 6.7 A normaéalvektor merdleges a sik barmely vektorara. Ezt a barmely vektort
megkapjuk gy, hogy kivonjuk a Py pontot a sik barmely P pontjabdl.

veSv=P-F

Mivel a normalvektor meroleges erre a vektorra, ezért skalarszorzatuk nulla.

nlv=n-v=0

n(P—PFPy)=0
Skalarszorzat homogén, lineéris.
nP—nPy=0
nP = nPO
A T A i)
B y |=| B Yo
C z C 20

Ax+ By+Cz= Axo+ By + Cz

6.4.4 Sik tengelymetszetes egyenlete

A sik tengelymetszetes egyenletét tigy kaphatjuk, ha megnézziik, hogy a sik hol metszi a
kiillonb6z6 tengelyeket. Altaldnos esetben a sik egyenlete az aldbbi:

Ax+By+Cz=D

El6szor ezt leosztjuk D-vel:

A B, 8
D T DY T DT

majd a nevez6be levissziik az egylitthatokat:

Fzzel megkaptuk a tengelymetszetes egyenlet altalanos alakjat. Ugyanis az ilyen alakt

egyenlettel megadott sikndl a x tengelyt akkor metszi a sik, hay=2=0¢ésx = %. Hasonléan,

y metszet akkor van, ha y = %, valamint z metszet akkor, ha z = g.
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6.4.5 Sik és pont tavolsaga

Sik és pont tavolsagat ugy kapjuk, hogy merdlegest allitunk a Sikra az adott Q pontbdl - ez
gyakorlatilag a sik egy normalvektora lesz. Ha a Q pontot 0sszek6tom a sik adott ismert Py
pontjaval, kapom a PQ vektort. Ezen PQ vektor normalvektorra vett merdleges vetiiletének
hosszat keresem.

Tétel 6.4.3 — Sik és pont tavolsaga. Adott egy S sik, melynek normalvektora n és egy
ismert pontja Py, ekkor a Q ponttdl valé tavolsdga a siknak:

6.4.6 Két sik hajlasszoge

A normalvektorok éltal bezéart szog.

Tétel 6.4.4 — Két sik hajlasszoge. Adott Sq és So sikok, normalvektoruk rendre nq és ng
. Hajlasszogik:

— ni-n
= ar —L e
7Y = arccos (|n1||n2\)



7. Vektorterek

A vektortér specialis kéthalmazos két miiveletes struktira, amelyre a kovetkezok teljesiilnek.

Egyik halmaz a vektorok halmaza (V), a masik halmaz a skaldrok halmaza (T) (A skaldrok
halmaza egy test - igy mitkédik mint a valds szamok, bévebben lisd a DM tankonyvben).

A vektorok halmazan értelmezve van egy Osszeadas miivelet, amellyel Abel csoportot
alkot.

V nemiires halmaz vektortér T test felett, vq,v9,v3 € V:

1. Asszociativ v1 + (v2 +v3) = (v1 +v2) +v3
2. Létezik egységelem 0 € V 04+v=w

3. Létezik inverzelem v~ ' € V v~ 140 =0
4. Kommutativ v; +v9 = v9 +v1

A két halmazt 6sszekapcsolé miivelet a skalarral vald szorzas. Melynek tulajdonségai a
kovetkezSk A\, € T

1. lvy = vy, ahol az 1 a T test szorzasra vonatkozd egységeleme.
2. Vegyes asszociativ: (Au)vy = A(pvr)
3. Vegyes disztributiv:

(a) (A+p)vr = vy + pvy

(b) )\(’Ul + 112) = A1 + Avg

I Definicié 7.0.1 — Altér. A tér egy olyan részhalmaza, mely szintén vektortérként miikddik.

Tétel 7.0.1 Legyen V vektortér valamely T test felett. A W C V halmaz akkor és csak
akkor altere V-nek, ha zart az osszeaddsra és a skaldrszorosra nézve. Azaz:

Vo, va €W vi+v2eW

ANeETVveEW MeW
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Bizonyitas 7.1 Akkor és csak akkor kapcsolatot mindkét irdnyban meg kell vizsgélni
(Emlékezz az ekvivalencia két implikdciora bonthato).
Tegyiik fel, hogy a W altér. Ekkor vektortérként viselkedik = igazak ra a vektortér

c s 2

Masik oldal: Tegyok fel, hogy zart mindkét miveletre. Ekkor a tobbi tulajdonsigra
vagyunk kivancsiak. A W részhalmaza a V térnek, tehat a V térre vonatkozé minden
tulajdonsag (a feltett zdrtsagot leszamitva, de azt meg feltettik) igaz. Igy valoban altér. m

7.1 Vektortér axiomak kovetkezményei

Tétel 7.1.1 0: V halmazbeli 6sszeadés egységeleme.

YaeT MN=0

v+0=v /A
= AMv+0)= v /vegyes disztribucié
= AU+ A0 = \v / + (\w) ! (6sszeaddsra vonatkoztatott inverz)
= v+ () A0 = Ao+ ()
— v
A =0
Megkaptuk a tételt.

Tétel 7.1.2 0: a T testbeli 6sszeadéds egységeleme.
0: V halmazbeli 6sszeadas egységeleme.

YoeV 0v=0

Bizonyitas 7.3

T test Osszeadas egységelem def
= (A+0)p = du+0u

Vektortér vegyes disztribicié

| Bizonyitas 7.2 A (V,+) Abel csoport = létezik egységeleme: 0. Egységelem definicidja:
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= Av = Av+ 0v /4 (\v) ! (6sszeaddsra vonatkoztatott inverz)
= v+ () =+ ()T 40w

0 0

= =0+0v 0 egységdef

< 1o

=
Megkaptuk a tételt.

Tétel 7.1.3 -1: T testbeli szorzéas egységelemének T Osszeadédsra vonatkoztatott inverze.
v~ a V-beli 6sszeaddsra vonatkoztatott v vektor inverze.

YweV —lu=v"

Qi Oy? (—1+1)yé —lv+1v
Test egységelem def

Tétel 7.1.4 N€T veV

Av=0= vagy A=0 vagy v=0

Bizonyitas 7.5 Tegylik fel, hogy A\v =0
Ha A # 0= 3I\~! T test szorzdsdra vonatkoztatott inverz.

/X!

0
A Aw=2"10 /T szorzés inverz def; elsé tétel

Tehédt abban az esetben, ha A nem egyenld a T test 6sszeaddsanak egységelemével (és
a feltétel igaz), akkor a v vektor egyenlé a vektorok Gsszeadasanak egységelemével.

Nézziik meg a masik esetet. Ha v # 0, akkor A =0, mert més esetben nem kapnédnk
meg a nullvektort.

Bizonyitas 7.4
El8z6 tétel Vegyes disztrivicié
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7.2 Linearisan fiiggetlen, osszefiigd vektorok

akkor és csak akkor, ha a > 1" \ju; = 0 csak ugy lehetséges, hogy VA; =0. Azaz linedris
kombindcidjuk csak a trividlis megolddssal dllitja el6 a nullvektort.

Definicié 7.2.2 — Linearisan 6sszefiiggd vektorok. A v1,...,v, vektorok linedrisan 6ssze-
fiiggd vektorok, akkor és csak akkor, ha a > 7" ; A\ju; = 0 lineédris kombindciéban 3\; # 0.

| Definici6é 7.2.1 — Linearisan fiiggetlen vektorok. A v1,...,v, vektorok linearisan fiiggetlenek,
| Azaz linedris kombindciojuk a trividlistol kilonbozd megolddssal is elddllitja a nullvektort.

Tétel 7.2.1 A vq,...,v, vektorok linearisan Gsszefiiggd vektorok, akkor és csak akkor, ha
a van olyan v; vektor, amely el6all a tobbi linedris kombinacidjaként.

Bizonyitas 7.6 Akkor és csak akkor, mindkét irdanyban meg kell nézni.
Tegyiik fel, hogy linearisan 6sszefliggbek a vektorok.
Ekkor létezik A; # 0, hogy > i = \jv; = 0.

A0+ -+ A+ + A, =0 /= Aju

Aj # 0= dT test szorzdsra vonatkoztatott inverze:%j

1

Aug e+ A1 F 0+ A1+ A, = — A /—)\*
J

o4 Aj_1> Aji1 A
( )‘J’) Ao ) N )T Aj !

Valéban eldallitottuk a v; vektort az osszes tobbi vektor linedris kombinacidjaként.
Masik irdny: Tegyiik fel, hogy a v; kifejezhetd a tébbi linedris kombindcidjaként.

v =M+ X1 0+ Ay o+ An, /—v;
0=Mv;+--+ )\j—lyjfl + (—1)Qj + /\j+12j+1 + -+ Ay,

Ekkor a v; vektor egyiitthatdja —1 # 0, tehdt a nullvektor el6allt nem trivialis linedris

kombinacioként. -

Tétel 7.2.2 Ha a vy, ...,v, vektorok linearisan Osszefiiggdek, tetszéleges vektort hozzavéve,
tovabbra is linedrisan 6sszefiiggé marad.



7.2 Lineérisan fliggetlen, osszefligé vektorok 45

Bizonyitas 7.7 Tegyiik fel, hogy v1,...,v, vektorok linedrisan Gsszefiiggéek. Ekkor defini-
ci6é szerint v = > ;" A\jv; = 0 linedris kombinacioéban 1étezik A; # 0.

Vegyiik hozzé az v, 1-vektort ehhez a kombinédcidhoz gy, hogy A,+1 =0 és a tobbi
skaldr marad (ez ligye megtehetd, mert nem valtoztat az Osszegen).

V=31 AV + Ang1v, 1 = 0. Itt tovabbra is A\j # 0. Tehat tovabbra is Gsszefiiggdek.

Tétel 7.2.3 Ha a vy,...,v, vektorok linearisan fiiggetlenek, tetsz6leges vektort elhagyva,
a maradék vektorok fiiggetlenek maradnak.

Bizonyitas 7.8 Indirekt bizonyitas. Tagadjuk az implikaciét. Tegyiik fel, hogy a v1,...,v,
vektorok linedrisan fliggetlenek, és ebbdl ehagyva egy vektort, a maradék vektorok nem
fliggetlenek lesznek, azaz Osszefliggévé valnak.

Ha az elhagyott vektort visszavennénk ehhez az 6sszefiiggd vektorokhoz, akkor az el6z6
tétel szerint Gsszefiiggdnek kéne lennie a rendszernek. De ez ellent mond a feltevésiinkkel,
amiszerint az eredeti rendszeriink fiiggetlen.

Tehat a tétel tagadasa kontradikcid, az eredeti allitas igaz.

Tétel 7.2.4 Ha a vy,...,v, vektorok linearisan fiiggetlenek, és egy tovabbi v, vektor
hozzéavételével linearisan Gsszefiiggévé valnak, akkor ezen v,41 vektor kifejezhetd a tobbi
vektorok linearis kombinaciéjaként.

Bizonyitas 7.9 Tegyiik fel, hogy a tétel igaz. Ekkor:
A1+ F Ay F A 1841 =0 3N #0
| |

Az a kérdés, hogy melyik egyiitthat6 lesz, a nem nulla. Tegyiik fel, hogy nem az
ujonnan hozzévett vektor egyiitthatdja a nem nulla. Tehat j #n+ 1. Ekkor az A\,11 =0

A0y + -+ A0, + 00, = Avg -+ A0, =0

Ebben a linedris kombinacioban szerepel egy nem nulla egyiitthato, a A;. Tehat

definici6 szerint a vy,...,v, vektorok linearisan Gsszefiiggék. Ez ellentmond a tételnek.
Azaz csak az az Gjonnan hozzavett vektor egyiitthatéja nem lehet nulla: A4 # 0.
Ebbdl definicié szerint a vi,...,v,, 0,41 vektorok linearisan 6sszfiiggok.

Tétel 7.2.5 — Bazis fogalmahoz kellé tétel. A v vektor v =>"""; A\ju; akkor és csak akkor
egyértelmii, ha vy,...,v,, linearisan fliggetlen.



46 7. Fejezet: Vektorterek

Bizonyitas 7.10 Mindkét irdanyt be kell latnunk.
1. A feliras egyértelmli = vy,...,v,, linearisan fliggetlenek.
Indirekt. Tegyiik fel, hogy a feliras egyértelmii és vq,...,v,, NEM linearisan
fuggetlenek, azaz Osszefliggdek.

LOF def n

vy,...,0, LOF $ Jv; = Z iV,
i=Li#j
Felras behelyettesités @
Qi)\lyl‘F"'—F)\ij"i‘""i‘/\nQn i)\121'f“"-i->\j Z ,U«iQi"F"‘—i-)\nQn =

i=Lij

= (A1) +- -+ (Ao A1) 1+ (A F A1) 85401+ n+ Ajin) vy,
Osszévonva az azonos vektorokat
Az eredeti linedris kombinaci6 egytitthatdi az Gjonnan kapott linedris kombinacié

egylutthatéitdl figgetlenek. A felirds nem egyértelmii. Kontradikcié. Tehat az
eredeti allitas, igaz.

2. vy,...,v, linedrisan fiiggetlenek = a felirds egyértelmi.
Indirekt. Tegyiik fel, hogy wy,...,v, linearisan fiiggetlenek és a felirds NEM
egyértelmi.

n n
v=) aw; =) B
p=ll =1
n

0=) aw;— ) Biw; =) (0s—PB)y;

=1 0

Mivel fiiggetlenek, ezért minden egyiitthaté nulla kell, hogy legyen. a; — 3; = 0=
o; = f3;

Tehat mégiscsak egyértelmii a feliras.

7.3 Generatorrendszer
Definici6 7.3.1 — Generatorrendszer. Azon vektorok, melyek lineiris kombinéci6jaként a
vektortér minden eleme elGall.

Definicié 7.3.2 — Vektorok altal generalt altér. A vektorok linearis kombinacidjaval el6alld
vektorok Osszessége. jelolései: < wy,...,vn >;{\v1+- -+ Avp|\i € T} span(vy, ..., vp)

7.4 Bazis és koordinatamatrix
I Definicié 7.4.1 — Bazis. Fiiggetlen generatorrendszer.
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Definicié 7.4.2 — Koordinata. Legyen a V vektortér egy bazisa [b] = by,...,b,. A v
vektor e bazisban valé felirdsdban a v = Ajv1 +--- + A, linearis kombinaciéban szereplo
egyiitthatok a v vektor [b] béazisra vonatkoztatott koordindtai.

Fontos, az egyértelmiiség miatt a bazisvektorok sorrendje rogzitett!. Ekkor a koordinata
matrix:

A1

7.5 Dimenzié

Definicié 7.5.1 — Dimenzié. A V vektortér dimenziéja, barmely bazisanak elemszama.
jele: dim(V)

Tétel 7.5.1 — Kicserélési tétel. Az fi,..., f, figgetlen vektorokbol all6 rendszer barmely
fi vektorahoz létezik egy olyan g1,...,g, generatorrendszerbeli g; vektor, amellyel az
fi-t kicserélve az f1,..., fi—1,9j, fi+1,---, fn vektorokbdl all6 rendszer fiiggetlen marad.

barmely f; vektordhoz NEM létezik egy olyan gi,...,gm, generdtorrendszerbeli g; vektor,
amellyel az f;-t kicserélve az f1,..., fi—1,9;, fi+1,..., fn vektorokbol 4ll6 rendszer fiiggetlen
marad.

Ekkor VYgy-ra, g, f2,..., fn LOF.

Fiiggetlen rendszerbdl elhagyva egy vektort a rendszer tovabbra is fiiggetlen
marad = Tudjuk, hogy fo,..., f, fliggetlen.

A g vektor hozzavétele Osszefliiggévé tette = kifejezhetd az f-k linearis kom-
binaciéjaként.

n
gk =) "l
1=2

gi,---,9m generatorrendszer = f; felirhaté a g-k linedris kombinacidjaként.

Behelyettesitink minden g-be

n n n
=) Pug i > P vl
=1 =2

=1

Felirtuk az f; vektort a tébbi f-vektor linedris kombinaciéjaként = fi,..., f, LOF.

Bizonyitas 7.11 Indirekt Tegyiik fel, hogy az fi,..., f, fliggetlen vektorokbol all6 rendszer
Ez kontradikcié az indirekt feltevésiinkkel. Tehat az eredeti tétel igaz. "

Tétel 7.5.2 — Kicserélési tétel kbvetkezménye. A generdtorrendszerbeli vektorok szama
legaldbb annyi, ahany vektor valamely fliggetlen rendszerben van.
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Bizonyitas 7.12 A fiiggetlen rendszer kiilonb6z6 vektorait csak kiilonb6z6 vektorokra lehet
kicserélni a generatorrendszerbol, hogy fliggetlen maradjon. Tehat legalabb ennyi kell. m

I Tétel 7.5.3 Barmely vektortérben a bazisok elemszama egyenld.

Bizonyitas 7.13 Legyen a vektortér két bazisa [b] és [c]. Elemszamuk: ny,n.. A bdzis

fiiggetlen generdtorrendszer.
Fenti kovetkezmény

Tekintsiik [b]-t fiiggetlennek, [c]-t generatorrendszernek. = np < ne.

De ez forditva is igaz.
Fenti kovetkezmény

Tekintsiik [c]-t fiiggetlennek, [b]-t generdtorrendszernek. £ ne < Ny
A rendezési relacié antiszimmetrikus. Ezért

Np = Ne

Tétel 7.5.4 — dimenzié atfogalmazasa. Legyen V nem nulla vektortér, n pozitiv egész.
Az alabbiak ekvivalensek:

1. dim(V)=n

2. V-ben taldlhaté n linedrisan fiiggetlen vektor, de barmely n+ 1 6sszefligg

3. V-ben talalhaté n elemii generatorrendszer, de n — 1 elemii nem.

Bizonyitas 7.14 — (1) ekivalens (2). Ekvivalencia, mindkét irdnyt be kell ldtnunk.

dim (V') =n = barmely bézis n vektort tartalmaz és a bazisvektorok fiiggetlenek =
létezik n fliggetlen vektor.

Kérdés: barmely n+ 1. vektor LOF lesz?

Legyen vy, ...,v,4+1 vektor. és [b] tetszileges rogzitett bazis.

n
vj = Z’ijbk Egyértelmt
k=1

Irjunk fel egy random u vektort a v-k linedris kombinaciéjaként.

Behelyettesitiink minden v-be

n n
U= Qo1+ An1Unt1 = 01 Y Yikbk -+ Qnt1 Y Yns1ikbe
k=1 k=1

Masrészt u egyértelmiien el6all a bazisvektorok linearis kombindciéjaként.

uzﬁlbl‘i‘""i‘ﬂnbn
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u—u=0
n+1 n+1
Bibi+-+Babn— 01 > Yikbk — - —an Y Ynkbe =0
k=1 k=1
Vonjuk 6ssze az azonos vektorokhoz tartozét. Minden szummaéaban van egy darab by
és n+1 szumma volt. Azaz szerepelnek: a17vy11b1; 2721015 ... ;04 1Yn+1:101;
n+1 n+1
<ﬁ1 -> Oém'l) bit--+ (571 -y Oéﬂm) bn, =0
i=1 =1

[b] bazis = Fiiggetlen = minden egytitthat6 nulla.

n+1 n+1
(,81 — Z ozfyi1> by +---+ (Bn — Z O‘i'Yin) b, =0

i=1 =1

0 0

A ~-k mindegyike nem lehet nulla, hiszen akkor az n+1 vektorunk mind nullvektor
lenne (ldsd a legels6 egyértelmii felirast). Ismert 8-k és v-k. Kérdés az a egyiitthatok
értéke. Latjuk, hog van n db egyenletiink (a zardjelek nullaval egyenléek), de van n+1
ismeretleniink. Legaldbb egy ismeretlen szabadon valaszthaté. v = ajvi + -+ apr1vn41
felirds nem egyértelmii = vy,...,v,41 LOF.

Masik irdany: Tegyiik fel, hogy V-ben talalhaté n linearisan fiiggetlen vektor, de
barmely n+ 1 sszefligg.

Tekinstsiik a fiiggetlen rendszert: vy,...,v,. Barkit hozzavéve LOF lesz. = ez a
hozzavett vektor felirhat6 a tobbi linearis kombinacidjaként.

n
Un41 = Z AVg Vo1 €V
k=1

Ebbdl az koévetkezik, hogy a wvy,...,v, generdtorrendszer is. Tehat vy,...,v, bazis
= dim(V) =n. n

Kovetkezmények: Ha dim(V)=n, akkor

1. V-ben barmely n elemi fiiggetlen rendszer bazist alkot

2. V-ben barmely n elemii generatorrendszer bazist alkot

3. Egy vektortér barmely véges generdtorrendszere tartalmaz bazist

Tétel 7.5.5 Ha egy V vektortérnek van véges generatorrendszere, akkor barmely linearisan
fliggetlen rendszer kiegészithetd bazissa.

7.6 Rang osszefiiggések

Vezérelemmel rendelkezé oszlopvektorok fiiggetlenek, vezérelemmel NEM rendelkezd os-
zlopvektorok Osszefiiggévé teszik a rendszert.

Legyen az ismeretlenek szama n A matrix négyzetes:



50 7. Fejezet: Vektorterek

rang(A) = n < ndb figgetlen oszlopvektor van < det(A) # 0 < Ax = b 1db megoldds van

rand(A) <n < LOF & det(A) =0 < Az =0 3 trivialistdl kiilonbézé megoldas

I Tétel 7.6.1 Ha A m x n métrix, akkor és csak akkor van megolddsa, ha a rang(A)=rang([A|b]).

I Tétel 7.6.2 Ha rang(A)=rang([A|b])=ismeretlenek szama, akkor pontosan 1db megoldas
van.
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8. Spec fgv: A homogén linearis leképezés

8.1 Mitdl homogén és mitdl linearis

Emléksziink, sok szamos fliggvényt tanultunk gimnaziumban is. Ezek k6z6tt volt a linearis
fiiggvény is. A tanult linedris (mert alakja egy egyenes) fiiggvényiink dltaldnosan felirva a
kovetkezOképp volt:
f(x)=mz+b
Ahol az m a meredekség, a b pedig az offset(eltolds) volt. A Linearitast egy adott tulajdonsig
megvizsgalasaval is tudjuk definidlni:
Definicié 8.1.1 — Linearis. Egy filiggvény linearis, hogyha adott Osszegre tagonként is

elvégezhetd:

flutv) = fu)+ f(v)

Homogénné a linedris fiiggvénytink egy egyszerii b = 0 behelyettesitéssel tehetd. Azaz a
homogén linedris fiiggvény altalanos alakja:

flz)=mz

Tehat az offset nulla, azaz az egyenes dtmegy az origon.

Definici6 8.1.2 — Homogén. Egy fiiggvény homogén, hogyha adott szimszoros kiemelheto:

fu) = Af(u)

Pont ugyanigy kell elképzelni a homogén linedris leképezést is. A kiilonbség a térben van,
amiben elvégezziik, ez pedig nem més, mint a vektortér. Azaz a tér adott vektorahoz
fogunk egy masik vektort rendelni. Ebbdl adéddéan a meredekséget is dsszetettebben kell
elképzelniink - a megfeleld irdnyokban valé nyujtasnak képzelhetnénk el - azaz egy szam
helyett egy métrixunk lesz.
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Definicié 8.1.3 — Homogén Linearis Leképezés. Egy olyan specidlis fliggvény, mely V'
vektortérb6l W vektortérbe képez: L :V — W Tulajdonsdga: homogén L(Av) = AL(v) és
linedris: L(a+b) = L(a)+ L(b)
és alakja:
y=L(x)=Mzx

Ahol y e W és x € V. Az M pedig egy dim(W)xdim(V) alakd métrix.

Emlékezziink: Az egyenletrendszerek is lehetnek homogén linearisak. Az Az =b egyenlet-
rendszer homogén, ha a megoldasvektor (b) nulla.

A homogén linearis leképezés valdjaban mit jelent? Vektorhoz egy masik vektort
rendeliink. Ugy a legegyszeriibb elképzelni, mint egy transzforméciét, amelyben a tér adott
butorait, targyait (pontjait) adott egységes médon elmozgatjuk, elforgatjuk, megnyujtjuk
adott irdnyok mentén.

Leképezés matrixa
Definicié 8.2.1 — Leképezés matrixa. A leképezés matrixan azt a matrixot értjik, mely
az y=Ax egyenletben szerepel (A) és a matrix oszlopvektorai a béazisvektorok képét
tartalmazzak a megfelel6 sorrendben.

Tétel 8.2.1 Legyen L : V™ — WF lineéris leképezés. A a leképezés méatrixa, minden
x € V-hez y € W ezen x képe. y = L(x), ekkor y = Ax

Bizonyitas 8.1
r=a101+ -+ apan
linedris homogén
Lxz)=Llar+a1+- -+ ap+ay) e L(anay) + -+ L(anay) = ar1L(ay)+ -+ anL(ay) =
n. bazisvektor képe
1. béazisvektor képe l

1
= [L(a1)|--|L(an)]z = Az

Maétrixszorzasba atirva

Zérushely azaz Magtér, E.K. azaz Képtér

Mint minden fiiggvényt, a homogén linearis leképezéseket is le lehet irni tulajdonsagai
alapjan. Ezen tulajdonsagok voltak gimnaziumban tébbek kozott a zérushely és az érték
készlet is.

Definici6 8.3.1 — Magtér - Kernel. Homogén linearis leképezés magterén annak zérushelyét
I értjiik. Azaz azon vektorok Osszességét a kiinduldsi térben (V), melyek képe a nullvektor.

Hogyan szamolhat6 ki, akkor a magtér? Azaz hogyan hatarozhaté meg, hogy mely
vektorok képe lesz a nullvektor? Mar az olvasé is tudja ra a valaszt: pont gy, ahogyan
gimiben kiszamoltuk a zérushelyeket. Egyenlévé tettiik nullaval.
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mx+b=0
Ezt atrendezve a zérushely lineéris fiiggvény esetén:

b

r=——

m
Gimibél ismert homogén linedris esetben értelemszertien ez csakis a nulla lehet, mert (b= 0).
Ultessiik 4t ezt az analégiat a homogén linearis leképezésekre (itt mar értelemszertien
tobb megoldés is lehetséges lehet majd): Keressiik azon x vektorokat, melyre teljesiil, hogy

Axr =0

Azaz Gauss-Jordan eliminaciéval konnyedén megoldhatjuk a probléméat a homogén egyenle-
trendszert megoldva. Ne feledjiik, ennek mindig van egy trivialis megoldéasa: a nullvektor
mindig része lesz a magtérnek. Hiszen A0 =0 barmely A métrix esetén. Ismer6s nem? A
homogén linearis fliggvény atmegy az origon. Tehat a valdédi kérdés az, hogy a nullvektoron
kiviil mely vektorok képeznek még a nullvektorba.

Tétel 8.3.1 A magtér dimenziéja megegyezik a vezérelemmel NEM rendelkezé oszlopvek-
torok szaméval. (Hiszen ezen oszlopvektorokhoz tartozé ismeretlenek vilnak paraméterré
a megoldas soran - ahdny kiilonboz8 paraméter, annyi dimenziés a megoldas.) Ez nem
mas, mint a szabadsdgi fok.

Geometriai példa: xy sikra vetités
Ebben az esetben a homogén linearis leképezésiink mintha egy feliilnézetet mutatna meg,
leképezi a tér minden vektorat az xy-sikra. Azaz:

a a
b |—1 b
0

Képzeljiik el, ha feliilrol néziink a térre, vajon kik azok, akiket az origéban fogunk latni?
H&t mindenki, aki az origo folott, vagy alatt van - azaz a k tengelyen minden vektor.
Nézziik meg kozelebbrdl a leképezés altalanos felirdsat. Hogyan tudnank az altaldnos
a
b | vektorbdl nullvektort csindlni? Koénnyen: a = 0,0 = 0 behelyettesitéssel maris
c
0
nullvektorokat fogunk kapni. Tehat minden | 0 | alakd vektor képe a nullvektor lesz. Ez
c
valéban a k (z) tengely.
Ezt gy jeloljik: Ker(A)=span{k}. A Ker- kernel-magtér, A az adott leképezés matrixa,
span pedig azt jelenti, hogy kifeszit, azaz a span mogé felsoroljuk a vektorokat, amelyek
kifeszitik az adott alteret.
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Definicié 8.3.2 — Altér. Az altér adott vektortér részhalmaza, ami tovabbra is vek-
tortérként viselkedik.

A definiciébdl sejthetd, hogy a magtér altér, hiszen ahogy a zérushely részhalmaza az
értelmezési tartomanynak, gy a magtér is részhalmaza a kiindulasi térnek - persze ez még
nem elegendd, de kezdetben az analdgia kedvéért mar jo. Pontos bizonyitashoz végig kell
menni a tulajdonsidgokon, abbdl kiindulva, hogy a magtér minden vektora a nullvektorba
képez.

Mivel ebben az esetben egy darab vektor (k) kifesziti a magteret, ezért a magtér
dimenzidja 1. Azaz Gauss eliminacidval szamolva egyetlen oszlop lesz, amely nem rendelkezik
majd vezérelemmel. Nézziik meg a leképezés matrixat:

® 0 0
A= 0 @ 0
0 0 0

Ha pontosak akarunk lenni, az utolsé sor elhagyhatd. Lathaté, hogy a matrixunkkon nem
nagyon kell Gauss-Eliminalni, ezért gyorsan kivalaszthatéak a vezérelemek (bekarikdzva).

Definicié 8.3.3 — Képtér. Homogén linearis leképezés képterén annak érték készletét

értjilkk. Azaz azon vektorok 6sszességét, melyek el6allnak valamely kiindulastérbeli vektor
képeként.

A képteret a gyakorlatban szamolds nélkil is megoldhatjuk feltéve, hogy a magteret mar
kiszamoltuk Gauss-elmininédciéval.

Tétel 8.3.2 A képtér azon eredeti oszlopvektorok altal lesz kifeszitve, melyekben Gauss-
eliminaci6 soran vezérelem volt.

Bizonyitas 8.2 Amely oszlopokban van vezérelem, azon 6szlopvektorok linearisan fiiggetlenek
- amely oszlopvektorokban nincs vezérelem, azok linearisan Osszefiiggévé teszik az os-
zlopvektorokat - igy ezen vezérelemmel NEM rendelkez6 oszlopvektorok eléallithatéak a
tobbi oszlopvektor linearis kombinaciéjaként. Ebbdl kovetkezik, hogy a képtérbeli 6sszes

ez

Példaul tegyiik fel, hogy az alsé két oszlopvektorban volt vezérelem, ezek legyenek az
ai,as vektorok. A harmadik ekkor eléallithaté: as = aay + Sas. Ezt behelyettesitve a
leképezés definiciéjaba kapjuk:

y = Ax = z10; + X209 + 1303 = T101 +T2a9 + x3(a; + fay) = (v1 +w30)a; + (2 +230)ay

I Tétel 8.3.3 A magtér altér.

I Bizonyitas 8.3 Legyen u,v € Ker(L). Ekkor L(u) = L(v) =0
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Zart osszeadéasra nézve:
lineiéris
L(u+v)=L(u)+ L(v) =0+0=0=u+v € Ker(L)
Zart a skalarszorosra nézve:
homogén

L) £ AL(w) = X0 = 0= \u € Ker(L)

Tehat a magtér valéban altér, mert zart az Osszeadasra és a skalarszorosra nézve. m

| Tétel 8.3.4 A képtér altér.

Bizonyitas 8.4 Legyen u,v € Im(L). Ekkor 3z,y € V, L(x) =u,L(y) =v
Zart Osszeadéasra nézve:

képtér linedris
utvx L(x)+ L(y) + Lz+y)=u+velIm(L)
Zart a skalarszorosra nézve:
képtér  homogén

M AL(z) £ L) = Au € Im(L)

Tehat a képtér valéban altér, mert zart az osszeaddsra (1étezik egy olyan kiindulasi
térbeli vektor, melynek a képe a két képtérbeli vektor dsszege) és a skaldrszorosra (létezik
egy olyan kiindulasi térbeli vektor, melynek képe a képtérbeli vektor szamszorosa) nézve.

Tétel 8.3.5 — Dimenzi6 tétel. Legyen A leképezés:A:V — W. Ekkor

Dim(Ker(A))+ Dim(Im(A)) = Dim(V)

Bizonyitas 8.5 Mivel Ker(A) altér, ezért létezik bézisa. Ez legyen: by,...,by,. (Ekkor
Dim(Ker(A))=m.
Ezt kiegészitve kaphatjuk a kiindulasi tér (V) béazisat: bi,...,bm,0m+1,---,bn-
Kérdés: ki lesz a képtér bazisa?

TV =x=21b14  + Zmbm + Tyt 1bms1 + - + Tpbn

Végezziik el rajta a leképezést.

linearis

Y= L(z) = L@+ + Tombm + Ty 1bm 1+« + Tbp) =
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homogén
=21 L(b1) ++ - +Tm L(bm) +@mt1 L(bmt1) + -+ + 2n L(bn)
0 0

0

y= xm+1L(bm+1) + - +an(bn)
Tehat a képtér bazisa: L(by+1),---,L(by). Azaz Dim(Im(A))=n-m

8.4 Sajatérték sajatvektor - azaz mennyivel és milyen iranyban nyajtunk?

A sajatérték egy skalaris érték, amely leirja a transzforméacio erdsségét. A sajatvektor olyan
vektor, amelynek irdnya valtozatlan marad, ha linearis transzformaciét alkalmazunk ra.

Definicié 8.4.1 — Sajatérték, sajatvektor. A )\ szam sajatértéke az L transzforméciénak,
ha van olyan nem nulla vektor, amelyre

L(z)= Xz

. Ez a nem nulla vektor a \ sajatértékhez tartozé sajatvektora.

Tétel 8.4.1 Adott sajatértékhez tartozd Osszes sajatvektor a nullvektort hozzavéve alteret
alkot. Neve: sajataltér.

Bizonyitas 8.6
L(Sl) = )\81 L(SQ) = ASQ

Zart az Osszeaddsra nézve: L(s1+s2) = L(s1)+ L(s2) = As1 + Asa = A(s1+ s2)
Zart a skalarszorosra nézve: L(usi) = pL(s1) = pAs1 = A(us1) .

Tétel 8.4.2 — Sajatérték kiszamitasa. Adott L leképezés: y=Ax. Ekkor sajatértékei a
det(A — \E) = 0 karakterisztikus egyenlet gyokei.

Rendezzuk at az egyenletet (és vigyiink be egy egységmétrixot, mert miért ne):
Ax— A\Ex =

Emeljiik k1 az x-t: (A—AE)z =0

x egy sajatvektor, ezért nem lehet nulla. Ez egy homogén egyenletrendszer. Kérdés,
tehédt az a kérdés, hogy mikor van trividlistél kiillonboz8 megoldédsa (tehét az x nem a
nullvektor).

Ha létezne az inverz matrix, akkor csak a trivialis megoldés létezne. Tehat nem

Bizonyitas 8.7 Induljunk ki a sajatérték definici6jabél: Az = Az
szabad, hogy létezzen - ebbdl az kovetkezik, hogy a determinansnak nulldnak kell lennie.
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Tehat csak akkor van trivialist6l kiillonb6z6 megoldas, ha:

det(A—\E) =0

Tétel 8.4.3 — Sajataltér kiszamitasa Ker(A— \oF). Adott L leképezés: y=Ax. Ekkor a
A = )\ sajatvektorhoz tartozé sajitaltere a (A — AgE)z = 0 homogén egyenletrendszer
megoldasa. Vegyiik észre, hogy ez gyakorlatilag az A — A\gE mdtrix magtere.

Tétel 8.4.4 Sajatvektorok bézisara attérve a transzformacié matrixa diagondlis. A
féatléban az adott sajatvektorhoz tartozd sajatértékek vannak sorrendben.

Bizonyitas 8.8 A leképezés matrixdban a béazisvektorok képe szerepel. Ki lesz a sajatvek-
torok képe?

Definici6 szerint: L(s;) = \;s;

Ezt felirva a sajatvektorok bazisdban: L(s;) = \js; =0s1+---+ \;s;+...0s, Ebben a
linedris kombindcioban minden sajdatvektor egyiitthatdja nulla, kivéve az i, sajdtvektort.

Harom dimenziéban:

A1
L(s1) = A181 = A\151+0s2+0s3 = 0
0
0
L(SQ) = Ag89 =081 + Aosg +0s3 = Ao
0
0
L(s3) = A3s3 =081 + 0s2+ A\3s3 = 0
A3

Ezeket betéve egy matrixba a tétel adédik.

I Tétel 8.4.5 Kiilonbozo sajatértékekhez tartozo sajatvektorok fiiggetlenek.

Bizonyitas 8.9 Teljes indukciéval.

e s

linearis kombinaciéja hogyan hozza ki a nullvektort. Két sajatvektor esetében:

o181+ agsg =0

c s 2

leképezését:
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homogén linearis

L(a1s1 +a9ss) = a1 L(s1) +aa L(s2) = L(0) =0
—— ——
A181 Ao So

s sz

a1A181 +agN9sy =0

Ebbdl valéjaban egy egyenletrendszert kaptunk:

151+ agse =0
Q1A1S81FasXasy =0

A mésodik egyenletb8l vonjuk ki az elsé egyenlet \; szeresét. Igy tudom kiejteni az
s1-es tagot. Emlékezz a Gauss-eliminaciora.

a1 181+ agXasy — A (g sy +agsy) =0

ag()\g - )\1)82 =0

Egy szorzat akkor nulla, hogyha valamelyik tényezéje nulla. Ez a nullvektorra is igaz
- valamelyik tényez6je nulla, vagy nullvektor.

Sajatvektor definicié: sg # 0.

)\27&)\1=>)\2—)\17é0

Tehat az ag = 0.

Ezt az ajp-re is meg lehet csinalni. Akkor megkapjuk, hogy oy = 0. Tehat az eredeti
linearis kombinaciéban a nullvektor csak gy dllhat eld, ha minden egyiitthaté nulla. Ez
pedig a fiiggetlenség definicidja.

Tobb vektor esetén kicsit hasonlé az eljaras. Ekkor abbdl indulunk ki, hogy feltessziik,
hogy az el6tte levo vektorok mar fiiggetlenek, csak a plusz egyedik vektorral vagyunk
kivancsiak arra, hogy megvaltozik-e a fiiggetlenség. "



9. Bazistranszformacio

Bézistranszformaci6 sordn ugyanzokat a vektorokat (helyeket) irjuk le csak més bazisban
felirva. Ennek t6bb célja lehet, de a legf6bb, hogy mas bazisban lehet, hogy egyszeriibb
szamolnunk.

9.1 Vektor koordinatai masik bazisban felirva

Emlékezziink vissza a bazis fogalmara. Ekkor adott vektort méasik bazisban gy irunk fel,
hogy keressiik az adott linearis kombindacié egyiitthatoit:

v=a'b;+8'by+7'bs

Tehat ezt az egyenletrendszert oldjuk meg, ahol a megoldasvektorban az eredeti ko-
ordinatak vannak.

eredeti koordindtak
4j bazisvektorok egy métrixban l
l o a
/ —
[b1lbolbs]| B | =| B

/

Y v
74j koordinatak?

Mivel tudjuk, hogy a matrixban bazisvektorok vannak, ezért a felirds egyértelmii - 1étezik
inverze a matrixnak, ig az egyenletrendszer is altala megoldhaté:
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Tétel 9.1.1 — Vektor koordinatai uj bazisban felirva.

4j koordindték [b] bazisban
l eredeti koordinatak
vp = B8

4j bazisvektorok egy matrixban

9.2 Leképezés matrixa masik bazisban felirva (TAS)

Amikor 4ttériink masik béazisra, akkor értelem szertien megvaltozik ugyanannak a vektornak
(helynek) a koordinatai. Ebbél fakadban, hogyha egy leképezést akarunk elvégezni, akkor
ugyanannak a leképezésnek a matrixa is meg kell, hogy valtozzon, ha a vektorokat més
bézisban irtuk fel. (Ettél fiiggetleniil a leképezésiink ugyanaz marad, tehat ugyanahhoz az x
vektorhoz ugyanazt az y vektort rendeljik, csak més szamreprezentaciéval utalunk azokra
az egyedekre.)

Kérdés, akkor, hogy mi lesz a leképezés méatrixa 1j bazisban felirva. Fontos: mind a
kiindulési, mindpedig a képtérben attérhetiink mas bézisra.

Végezziik el a bazistranszforméaciot a kiindulasi térben:

x vektor koordinatéi az 1j bazisban

lx eredeti lioordinété,i
/ J—
zeV x :,%' 1z
a kiinduldsi tér (source) 4j bazisvektorai métrixban

Ekkor, ha belegondolunk a leképezésiink az eredeti bézisban:
y=Ax

Itt latjuk, hogy az eredeti koordinatak vannak, dtrendezve a fenti egyenletet kapjuk, hogy
x = S7'. Ezt behelyettesitve:

Leképezés Gj matrixa, ha csak a kiindulasi térben tértiink &t

Most csinaljuk meg ugyanezt a képtérben:

y vektor koordindtdi az 0j bazisban

y eredeti koordinatai

yew y’=$_1§

a képtér (target) 4j bazisvektorai matrixban

Ty = Az \T inverzével szorzunk balrél

v =T 1Az
—

leképezés 1j matrixa, ha csak a képtérben tériink at
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Mindkettot egyiitt nézve kapjuk:
y =T 1ASa'

Tétel 9.2.1 — leképezés matrixa j koordinatak esetén.

A =T71AS8

Diagonalizacio - attérés a sajatvektorok bazisara

A szoftverfejlesztésben a matrix-diagonalizacié segitségével hatékonyabban lehet linedris
algebrai egyenleteket megoldani. A linearis programozasban hasznaljak olyan optimal-
izalasi problémak megoldasara, mint példaul az optimalis stratégia megtaldlasa a jatékban,
a szallitasi probléma koltségeinek minimalizdldasa vagy a termelési rendszerbdl szarmazoé
profit maximalizaldasa. A matrix diagonalizalassal linearis egyenletrendszerek is megold-
haték, ami a szoftverfejlesztésben gyakori feladat. Ezenkiviil felhasznalhaté egy matrix
sajatértékekre és sajatvektorokra torténd felosztasara, amelyek segitségével egy rendszer
stabilitdsat elemezhetjiik, vagy matrix inverzét lehet kiszamitani.

Tétel 9.3.1 A sajatvektorok bazisara attérve a leképezés matrixa diagondlis. A f6atloban a
sajatértékek vannak a sajatvektorok, mint bazisvektorok altal meghatarozott sorrendben.

Tehat diagonalizicié soran leegyszeriisitjiik a leképezés méatrixat agy, hogy attériink
sajatvektorainak bazisira - ezaltal egy diagonalis matrixot kapva.

Diagonalizacio feltételei
Definicié 9.3.1 — Két matrix hasonlé. Az A métrix hasonlé a B méatrixhoz, ha létezik egy
olyan S matrix, amellyel fennal, hogy

A=S"'BS

I Tétel 9.3.2 A hasonlésig a négyzetes matrixok terében ekvivalencia relacié.

Bizonyitas 9.1 Lassuk be az ekvivalencia relacié hdrom tulajdonsagat:
e Reflexivi A=A=A=FE"1AF
e Szimmetrikus: Ha A ~ B, akkor A = C~'BC Ezt atrendezve B = CAC~! =
(Cfl)flACfl
e Tranzitiv: Ha A~ B azaz A= D 'BD és B~ C, azaz B=F~'CF akkor A=
D™'F~1CFD = (FD)"'C(FD) tehat A~ C

Definici6 9.3.2 — Diagonalizalhaté matrix. Az A méatrix diagonalizalhatd, ha hasonlé egy
diagonalis matrixhoz.
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Tétel 9.3.3 Hasonl6 méatrixok sajatértékei paronként egyenléek, valamint, ha A hasonld
B-hez, hasonldésagi matrixa a T (A =T~!BT), akkor ha A sajatvektora s, akkor a B
ugyanazon sajatértékhez tartozé sajatvektora Ts.

Bizonyitas 9.2 Induljunk ki a sajatvektor definici6jabol:

As = As

c s 2

T 'BTs=\s
Szorozzunk T-vel balrdl:
BTs =)\T's
~~

B sajatvektora

Visszakeaptuk a definiciét B matrixra vonatkoztatva, csak Ts a sajatvektor. ]

Tétel 9.3.4 — Diagonalizalhatésag elégséges de nem sziikséges feltétele. Ha valamely né-
gyzetes matrix sajatértékei mind kiilonbozoek, akkor a matrix diagonalizalhaté.

Bizonyitas 9.3 Kiilonb6z0 sajatértékekhez tartozo sajatvektorok fiiggetlenek, tehat bazist
alkotnak. "

Tétel 9.3.5 — Diagonalizalhatésag sziikséges és elégséges feltétele. Az A matrix akkor és
csak akkor diagonalizalhaté, ha van sajatvektorokbdl allé bazisa.

Bizonyitas 9.4 Jobbrél balra nézve: 9.3.1 tételben bizonyitottuk.
Balrol jobbra nézve: Ha az A métrix diagonalizalhgatd, akkor létezik sajatvektorokbol
allé bazisa. Tegytk fel, hogy A diagonalizalhatd, ekkor:

D=S"1458

Szorozzunk be S-el balrol:
SD=AS

Ezt a két matrixszorzast oszloponként 6sszehasonlitva (két matrix akkor egyenld, ha
oszloponként egyenldk) azt kapjuk, hogy i. oszlop esetén: \;s; = As;. Ez a sajatvektor
definiciéja. Tehat az S matrixban a sajatvektor van, mig a D matrixban az adott

sajatérték.
S~ = S oszlopvektorai, azaz a sajatvektorok fiiggetlenek = tehat bazist alkotnak n
dimenzidéban. "
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Tétel 9.3.6 — Diagonalizaci6 elégséges feltétele 2. Ha a négyzetes matrix (A"*") sajatértékei
altal meghatarozott sajatalterek dimenzidinak 6sszege n, akkor az A matrix diagonalizal-
haté. A tétel masképp megfogalmazva: Az algebrai és geometriai multiplicitasoknak meg
kell egyezni sajatértékenként!

I Definicié 9.3.3 — Geometriai multiplicitas. A sajataltér dimenzidja.

Definici6 9.3.4 — Algebrai multiplicitas. Az adott sajatérték hanyszor fordul el6 megoldéasként.
Tehat gyoktényezos alakban felirva a karakterisztikus polinomot, az adott sajatérték zaré-
jele hanyadik hatvanyon van. pl: (A —A1)2(A—M\2) =0 esetén a \; algebrai multiplicitdsa

2, mig a A9 algebrai multiplicitasa 1.

I Tétel 9.3.7 — Algebra alaptétele. Minden n-ed fokiu polinomnak n gyoke van.

Matrix hatvanya

Tétel 9.3.8 Ha A diagonalizdlhatd, akkor az A matrix n. hatvanya:
A"=SD"S™1
(Figyelj, hol az inverz.)

Diagonalis hatvanya pedig egyszeriien a {64tlé elemeinek hatvanya. :)

Bizonyitas 9.5 Ha A diagonalizadlhaté, akkor: D = S~1AS. Ezt dtrendezve: A = SDS™!

atcsoportositva

A= AA...AA=(SDS™Y)(SDS™Y)...(SDS~1)(SDS™!) %

=SDS'SDS~'..DS'SDS ' =8DD...DS™ ' =SpD"s!
E E

Fotengelytranszformacio - fokomponens analizis (PCA)

A f8komponens-elemzés (PCA) egy statisztikai mddszer, amelyet az adatkészlet dimenzi6jé-
nak csOkkentésére hasznalnak, mikézben a lehetd legtobb eltérést megorzik az adatokban.
Ez egyfajta linearis transzformacio, amely korrelalt valtozok halmazat veszi fel, és nem
korrelalt valtozok halmazava (a 6 komponensekké) alakitja 4t. Ezt a technikat az adatok
mintézatainak azonositdsara, a zaj csokkentésére és az adatok konnyebben lathatova tételére
hasznaljak. A PCA barmilyen tipusi adatra alkalmazhatd, beleértve a képeket, a hangot, a
szoveget és a numerikus adatokat.

Definicié 9.4.1 — Bilinearis fiiggvény. Olyan fliggvény, mely két vektorhoz egy szamot
rendel és mindkét valtozéjaban linearis. Tehat tulajdonsagai A € R wvy,v9,v3 € V:
1. (a) L(Ul + 1)2,1}3) = L(Ul,vg) + L('I)Q,Ug)
(b) L(vl,v2 +v3) = L(’Ul,UQ) + L(vl,vg)
2. (a) L()\’Ul,UQ) = )\L(Ul,’vg)
(b) L(vy,Ave) = AL(v1,v32)
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gvény, amely alatt azt a fiiggvényt értjik, amely két vektorhoz egy szamot rendel a
kévetkez6p modon:

fla,y) =2" Ay

Definicié 9.4.3 — Kvadratikus alak. Olyan bilineéris fiiggvény, ahol a két vektor mege-

6
| Definicié 9.4.2 — Specialis Bilinearis fiiggvény. Egy adott moédon definidlt Bilinedris fiig-
‘ gyezik. Matrixat szokds Q-val jelolnmi és megallapodés szerint szimmerikus!

Q(z) = f(z,2) = 2" Qx

Tétel 9.4.1 Szimmetrikus matrix kiilonbozé sajatértékeihez tartozo sajatvektorai merdlege-
sek.

Bizonyitas 9.6 2 dimenziéban a sajatvektorok definicidja:

A81 = )\181
A82 = )\252

Els6 egyenletet szorozzuk ss-vel, masodikat s; — el:

A8182 = )\18182
As9s1 = A95189
A két egyenletet kivonva egymasbdél a bal oldal csak akkor nulla, ha az A matrix

szimmetrikus*, mig jobboldalt az s1, sy felcserélhetd, mert nem matrixszorzds van ott:

O = ()\1 — )\2) 51592
——
#0 0

Tehat s150 =0=s1 L s9.

Azy = az1y1 + broyr + cx1y2 + dzoys
Mig, ha megforditod, akkor:
Ayz = ax1y1 + br1y2 + crayr + dxaye

Tehéat csak akkor egyezik meg, ha az A méatrix szimmetrikus.
Tétel 9.4.2 — Spektral tétel. Valamely négyzetes matrix akkor és csak akkor diagonal-

izalhat6 ortogonalisan, ha szimmetrikus.

9.4.1 Miért elonyos, hogy a Q matrix szimmetrikus?

o Egyértelmiivé valik a feliras
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o Szimmetrikus matrix sajatvektorai merélegesek- Létezik sajatvektorokbdl allé
bazisa - mindig diagonalizalhato
o Hasznélhaté a szimmetrikus matrix és a meréleges (ortogondlis) matrix definiciéja a
levezetésben.
Definicié 9.4.4 — Fétengelytranszformaci6. Fotengelytranszformécié gyakorlatilaga kvad-
ratikus alak matrixdnak diagonalizdcidja. Azaz attériink a sajatvektorok (az alakzatok
fétenmgelyének) bézisara.

Vezessiik le, hogy mi is torténik valéjaban: az x vektor 1j koordinatai:
u=S"'z=1x=>5Su

,ahol S-ben a Q matrix sajdtvektorai vannak (az 0j bazisvektorok).

4ttérés S ortogondlis (mert Q szimmetrikus)
Qz) =2TQzr=2"TQux £ (Su)T'Q(Su) =uT STQSu S S71QSu=u"Du
) SN——
transzpondlas felbontasa D

Diagonalizacio

9.4.2 Alakzatokon szemléltetve

Ezek az egyenletek alakzatokat irnak le, melyek fotengelyei valéjaban a sajatvektorok.
Eredetileg:

b
(1 x2)< ch d > ( 2 ) = [ax1 + cxe bry+ dxs] ( 2 ) —

= (ax1 +cx2)x1 + (bry + dra)we = az?+ (b+ c)xixa+ dx%

Diagonalizaciéval ezek a vegyes tagok tiinnek el:

A O
(u1 UQ)< 01 Ay ) ( Z; ) = [)\1’LL1 )\QUQ] ( Z; > = /\1U%+/\2u%

9.4.3 Pozitiv definit - ellipszis (2 x 2 esetén)

Ekkor minden sajatérték pozitiv.
Q(u) = \Mud + X ud=C
ahol a C egy konstans megadott szam.

Tétel 9.4.3 — Ellipszis egyenlete fotengelyek bazisaban.

u? N u3 "
a? b2

ahol az a és b paraméterek megmondjdk, hogy az adott f6tengelyen mennyire nytulik
meg az alakzat.

Az ellipszis egyenletét Gsszehasonlitva a kvadratikus alak diagonalizdciéjaval kapjuk az
ellipszis paramétereinek (a és b) értékeit:
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L [c
=%
C
b= .|—
A2

Ezek alapjan tudjuk dbrazolni mind az eredeti, mindpedig a sajatvektorok (azaz a
fétengelyek) bézisaban.

Eredeti bazisban:

SV9 SU1

Ll

Sajatvektorok bazisdban:
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SV

\
? SU1

9.4.4 Pozitiv semidefinit - parhuzamos egyenes

Ekkor az egyik sajatérték nulla, a masik pozitiv. Legyen a masodik sajétérték nulla.

/\1u% =C
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Eredeti bazisban:

Sajatvektorok bazisa

ban:

SV

Xl

-------> .

SU1

SU1
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9.4.5 Indefinit - hiperbola
Ekkor az egyik sajatérték negativ, a méasik pozitiv.

Tétel 9.4.4 — Hiperbola egyenlete.

2 2
ﬂ—%:l
a? b2

a b paraméter a parabola 6sszenyomhatésiagat adja meg (virtudlis parabola kezd6pon-
tjat adja meg)

Ezt 6sszevetve a kvadratikus alak diagonalizacidjaval a paraméterek:

a1
=5
C
b=
Az

Eredeti bazisban:

SV2 SU1

-:----> .

~

~
ey = -
~ .

-
-
-

R

A sajatvektorok bazisaban:
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SV

~
~
.
~~
.~- - —”
[
A1
\
? SU1
—"----~‘-.
.-
‘f
»
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10. Komplex szamok

10.1 A komplex szam fogalma

Mindannyian tudjuk, hogy a valés szamok halmazan a gy6kvonassal idénként gondok vannak:
nem tudjuk értelmezni, ha negativ szam van alatta.

Ennek értelmezésére jott létre a komplex szamok halmaza - azaz kibovitjiik a valds
szamok halmazat, egy nagyobb halmazra, amelyben mar a gyok alatti minusz szamok is
értelmes halmazon beliili eredményt adnak. Azaz a gyOkvonas is zart a komplex szamok
halmazan.

A valds szamok elférnek és ki is toltik a teljes szdmegyenest, ezért oda mar nem tudjuk
beilleszteni azon 1j komplex szamokat, amik a valdés szdmok halmazan nem léteznek - igy
terjesztjiik ki a szdmegyenest a komplex szamsikra.

Akkor mirdl is van sz6? adott egy szamunk, melyben minusz van a gyok alatt. Hogyan
tudom ezt felfogni és értelmezni? Legegyszeriibben azt mondhatjuk, hogy egy adott negativ
szam valdjaban egy pozitiv szdm beszorozva minusz eggyel.:

V=36=+v—1-36=+v—1-V36
gl

Tehét atalakithaté minden ilyen szdm egy olyan szamra, hogy \/—1-et szorozzuk egy
gyok alatt levo pozitiv szammal, ami mar egy valds szam, igy értelmezhetd. Ebbol adoddan
egyediil a /—1 az a szdm, amivel nem tudunk mit kezdeni. Nem is baj, ne is kezdjiink vele
semmit, fogjuk fel 6t gy, mint egy bazisvektort. Egy egységnyi valami. A fenti példankban
a komplex szamot felfoghatjuk gy, hogy egy olyan valami, ami hatszor tartalmazza ezt a
fura /—1-es szamot.

Misodfoku egyenletek megoldasanal sokat taldlkoztunk olyan szammal, amely ennél
kicsit dsszetetteb volt: 134 +/—25. Ezt is tudjuk gy kezelni, hogy egy ismert valés szamhoz
hozz4 adunk valamennyiszer /—1-t (ez lesz a szam képzetes része).
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Valéj rész
13+5v—1
——
Képzetes rész

Hogy szebb legyen vezessiink be egy masik jelolést: i = —1. (Van ahol az i helyett a j-t

hasznéljék, utalva az i,j,k rendszerre.)

13-1+5¢

10.2 A komplex szam alakjai

Definicié 10.2.1 — Algebrai alak. Minden komplex szam felirhaté algebrai alakban:
a-+bi

ahol az a,b valds szamok, az 1 és az i pedig bazisvektoroknak tekinthet6ek, hiszen ezek
linedris kombindcidjardl beszéliink. (Tehét egy kétdimenzids vektort kaptunk.)

Tehat, ha a szdmsikon reprezentdljuk a komplex szdmokat, akkor egy vektort kapunk.

Tudjuk azonban, hogy a kétdimenzids vektorokat tudjuk polarkoordinatas alakban is felirni.
Ekkor az adott vektort hosszaval (r-radius) és szogével (¢) reprezentdljuk:

rZeo

Ezt a jelolést altalaban véve inkdbb a mérnckok hasznaljak. A matematikdban két

pontosabb alakja van a komplex szamoknak.

Definici6 10.2.2 — Trigonometrikus alak. A komplexszdm triginometrikus alakban felirhato:

r(cos(¢) +isin(¢))

ahol r a vektor hossza ¢ a vektor szoge. Ez gyakorlatilag a poldrkoordindtdabdl descart
koordindtdba valé dtvdltas: valds rész:a =rcos(¢), képzetes rész: b= rsin(¢).

Definici6 10.2.3 — Exponencialis alak. A komplex szdm exponenciélis alakban is felirhat6:
re'd

ahol r a vektor hossza ¢ a vektor szoge. Ez az alak a trigonometrikus alakbol kaphato az
Euler formula segitségével.

Definicié 10.2.4 — Euler formula.

" = cos(x) +isin(z)

Bizonyitas 10.1 Az Euler formula bizonyitasa az e szdm hatvanysoranak felirasabdl adodik.
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2 3
=14zttt

z?2 at z°
cos:vzl—a—l—ﬂ—a—i—---
. 3 2z’
smxzx—g—i-a—ﬁ-i-m

Az x helyére ird: ix. Ekkor figyeld meg az i hatvanyait, hogy megkapod az alternalé
megfeleld eljeleket és néhol az i betiit:

(i) +(i$)3 n (iz)* +(ix)5 +(iw)6 n (iz)” +(ix)8
2! 3! 4! 5! 6! 7! 8!
14 2 gpd ot i 28 " 28

I TR TE TR R T B TR

— (1 .’1)2 374 x‘6 JJS . .%'3 .1‘5 1‘7
= *ngZ*aJrg*"' +1 Z—*'—F*—*“F‘“

e® =1+ix+

= cos(z) +isin(x)

10.3 Miiveletek a komplex szamokkal
10.3.1 Osszeadas
Ugy miikodik, mint az algebraban tanultaknél zq, 2o € C:
z1=a1+b1i 29 =ag+ byt

21+ 29 = a1 +bii+ag+byi = (a1 +az) + (b1 + b2)i
Azaz megfigyelhetjik, hogy koordinatdanként adjuk Oket 6ssze, mint a vektoroknél.

10.3.2 Szorzas
Szorzas Algebrai alakban (Mindekit mindenkivel)
Ugy miikodik, mint az algebraban tanultaknél zq, 2o € C:
z1=a1+bii 290 =ag+byi
Z129 = (al + bli) (CLQ + bgi) =aijaz+ alei + agbli + blb2i2 =aias+ (Zlei + agbli — blbg =
= (ajaz — b1b2) + (a1ba + agby )i

Valés rész Képzetes rész

Tehat ez NEM tgy miikodik, mint a vektoroknal.
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Szorzas Polarkoordinatas alakban

Szorozni polarkoordinatas alakban sokkal egyszeriibb, ha az exponencidlis alakot tekintjiik,
akkor tigy miikodik, mint az algebraban:

$1 b2

z1 =116’ 29 =To€’

ip1,. id2 i(p1+¢2)

2129 = r1€"P1ree!?? = ryrge’

Hosszak szorz6dnak, szogek Osszeadédnak:rire/dr + ¢o.

Osztas
Osztas Algebrai alakban (itlenitéssel)
Osztani algebrai alakban is lehet, ebben az esetben, ha emlékszel, hogyan gyoktelenitettél,
most ugy fogsz itleniteni:
21 =11 P 29 = roel®?
21 a1 +byt a1 +b17 ag — byt (a1 + bli)(ag — bgi)
Z:a2+b2i:a2+b2iag—bgi: a%*b%

Ekkor a nevezében mar csak egy valds szam szerepel, a szamlaléban pedig egy szorzas van:

(a1 +b1i)(ag —b2i)  (arag+biba) + (a2bi —a1bs)i _ aag+biby | agh — alb?i
a2 — b2 a3 — b3 a3 — b3 a2 — b3

Valos rész Képzetes rész

Osztas Polarkoordinatas alakban

Osztani polarkoordinatéas alakban sokkal egyszer{ibb, ha az exponencialis alakot tekintjiik,
akkor ugy miikédik, mint az algebraban:

21 =11 29 = roel??

i
2 r1e'?t — " i(¢1—¢2)

2o T9€P2 1y
Hosszak osztédnak, szogek kivonédnak:%lgz‘)l — 9.
Hatvanyozas
A szorzast megfigyelve hatvanyozni mar csak polarkoordinatas alakban szeretnénk.
z=rlp=re?
SN — Tneinqb

Hossz hatvanyozédik, sz6g n-szerese lesz:r" Zng.

Definicié 10.3.1 — Moivre-formula.

2" =r"(cos(ng) + isin(ne))
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Gyokvonas
Ha megfigyeljiikk a hatvanyozast és tudjuk, hogy a gyokvonas ennek a megfdorditott prob-
jotk2m

léméja, akkor kénnyen Gsszerakhat6 a képlet: z =rZ¢ =re'® /z= {ret = k=0...n—

Figyeljiik meg, hogy itt mar szamitasba vessziik azt hogy a szogek 27 periédusonként
ugyanazt a vektort definidljak. Az algebra alaptétele alapjan n darab gyok lesz. Ezek a
gyokok pedig a kort n részre szeletelik fel. Ezeket a gyokoket szokés trigonometrikus alakban
megadni.

= Példa 10.1

V/8+13.85i =7

Valtsuk at polarkoordinataba, kerekitve azt kapjuk, hogy z = 16260°
Tehét

(e} k (e}
Y16.760° — %zw — 4/15° 4 k90°

A 4 megoldast illik trigonometrikus alakban megadni:

€0 = 4(cos(15°) +isin(15°)

) (15°))

€1 = 4(cos(105°) +isin(105°))

€2 = 4(cos(195°) + isin(195°))
) +isin(285°)

285°))
Ima

€1
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10.4 Egységgyokok - azaz a gyok(1) kiterjesztése
Definicié 10.4.1 — Egységgyok. Az egységgyok a z" =1 egyenlet megoldasai. (n db van
beldlik tovdbbra is)

Az egyes szamot komplex szamként tekintve felirhatjuk: 14 0: és 120 alakban is.
A polarkoordinatas alakbdl fogunk tudni szamolni n. gyokot. A fenti képletet kell csak
alkalmazni. Példanak tekintsiik a hatodik egységgyokoket.

m Példa 10.2 — Hatodik egységgyokok.

Yi=
k360°
€, =1/ 5

eo = cos(0) +isin(0) =1
€1 = cos(60°) +1isin(60°)
€2 = cos(120°) +isin(120°)
€3 = cos(180°) +1isin(180°)
€4 = cos(240°) 4 isin(240°)
€5 = cos(300°) +isin(3007)
Ima
€ €1
163 Oo 60 \ R
< 7 e
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Tétel 10.4.1 Az Osszes n. egységgyok el8all az els§ (k=1) egységgyok hatvanyaiként.

Tétel 10.4.2 Az n. egységgyokok halmaza Abel-csoportot alkot a komplex szamok szorzaséra
vonatkoztatva.

is gyoke-e az 1-nek. Azaz a definiciét tekintve a kérdéstnk:

?
(exer)” X1

Polarkoordinatakban elvégezve a szorzast:

2m

exer =1Z(k+1) -

Ha ezt n. hatvanyra emeljiik, a 360° egész szamszorosat kapjuk szognek:

2

(exe)” =1"Zn(k+1)—

=14(k+10)2r =1
Tehét valéban zart.

o Létezik egységelem ez az 1, hiszen szoge nulla, tehat barkit ezzel szorozva
onmagat kell kapnom tovabbra is.

o Létezik inverzelem cie; = 1 A kérdés, hogy ki lehet az ;7 Megint csak a szogeket

kell tekinteni:
2 2T 2
k—+l—=n—
n n n

l=n—k

Azaz az inverzelem az €, . egységyok.

o Asszociativ Adodik az Gsszeadds asszociativitasabol, hiszen csak a szogeket kell
Osszeadnunk egységgyok szorzasa soran.

o Kommutativ Adodik az 6sszeadds kommutativitasabol, hiszen csak a szogeket
kell 6sszeadnunk egységgyok szorzdsa soran.

Definicié 10.4.2 — A primitiv egységyok ekvivalens definiciéi. A primitiv egységgyokok
halmaza részhalmaza az adott n. egységgyokok halmazanak.
1. ex n. egységgyok primitiv n. egységgyok, ha hatvanyai el6allitjak az 6sszes tobbi n.
egységgyokot.
2. €1 n. egységgyok primitiv n. egységgyok, ha n. hatvanya pontosan 1 és semelyik
ennél kisebb hatvinya nem 1. (tehdt legelsének n forgatdsra jutunk az egybe.)
3. €r n. egységgyok primitiv n. egységgyok, ha k és n relativ primek.

Bizonyitas 10.2 e Zart Arra vagyunk kivancsiak, hogy két példany szorzata tovabbra

A harom definici6 ekvivalenciaja bebizonyithato:
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Bizonyitas 10.3 o Lassuk be els6nek, hogy a 2. definiciébdl kovetkezik az
els6 definici6.: Tegylik fel, hogy adott egy €, n. egységgyok, az n-t valasszuk
meg gy, hogy az e; n-nél kisebb fokii gyokok esetén nem megoldas. (Tehét {/1-nél
lesz legelsének megoldas. Azaz teljesiil a masodik definicid.)

Az egységegyok Abel-csoport a szorzasra nézve, ezért minden hatvany tovdbbra is
egységgyok marad.

Tekintsiik €, hatvanyait 1-t6l n-ig. Ez n darab egységgyok. Tudjuk, hogy n
kiilonb6z6 egységgyok van - skatulya elv szerint - ez azt jelenti, hogy ha ez az n
darab hatvany mind kiilonb6z06, akkor minden egységgyok el6 is fordul a hatvanyok
kozott.

Az az egy kérdés maradt, hogy az € 1-n-ig tarté hatvanyai valéban kiilonbo6z6ek-
e. Indirekt bizonyitsuk: Tegyiik fel, hogy létezik két egyenl6 hatvinya ex-nak (a
hatvanykitevé (legyen egyik j, mésik [ 1-n-ig lehet csak tehat j,l < n).

i
J
€
%oy
€k
1
g =1

Az ei-nak megkaptuk egy olyan hatvanyat, amellyel eljutunk az 1-be. Mindazonéaltal
ez a hatvénykitevé j — [ kisebb, mint n. Ez pedig ellentmondana a feltevésiinknek,
miszerint a méasodik definicié teljesiil. Tehat valéban kiilonbozik mindegyik hatvany,
tehat valéban eldallitja az Osszes tobbi egységgyokot az € hatvanyai. Azaz az elsé
definicié érvényes.

e Lassuk be az elsé definiciébdl kovetkezik a harmadik definicié: Az els§
definici6 alapjan az €, hatvanyai el8allitjak az Gsszes tbbi egységgyokot. Igy az

elsot is. .
e =€l
Elég csak a szogeket tekinteniink:
2
jk‘l = —ﬂ-+u27r
n
2r _ 2
Ik = o
u
2 (
L(jk—1
k-1 _,_
U
gk—1
—=
Jjk—1=nu
jk—nu=1

Ebbdl kovetkezik, hogy k és n valéban relativ primek.
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e Zarjuk be a kort, Definicié 3-bdl kovetkezik a definicié 2: Indirekt Tegyiik
fel, hogy €], =1 j < n. Tekinstsiik megint csak a szogeket:

2
jE= =0
n

Tehat % egész szam. Ez ellent mond a feltevésnek, miszerint j < n. Tehat igy nem
allithatja el6 az 1-t. Tehat a masodik definicié teljestil.

m Példa 10.3 — 6. primitiv egységgyokok - pirossal jellve. 1,6 és az 5,6 relativ primek. Az
€1-es hatvanyai sorban az e¢; hatvan fokos forgatasival kaphatéak meg. n. forgatasra jutunk
elsének az 1-be. Az e5-6s hatvanyai sorban az e5 300 fokos forgatasdval kaphatdak meg. n.
forgatdsra jutunk elsének az 1-be.

A t6bbinél hamarabb eljutunk az egybe :(. Szintén nézhet6 az is, hogy hatvanyozéssal,
azaz adott foka forgatassal valaha is eljutunk-e az 6sszes tobbi egységgyokbe vagy sem.
Természetesen csakis a k=1 és a k=5 esetén lesz igaz (n=6).

A gyakorlatban a legegyszeriibb nézni a relativ primséget. Ebbdl adéddan a k=1 és
a k=n-1 mindig primitiv egységgyokok. (De eléfordulnak mas n-ek esetén ezeken kiviil is
primitiv egységgyokok, de ezek mindig azok).

Ima

o
€3 0 €0

N
g
=
¢
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Algebra alaptétele

Az algebra alaptétele szerint a minden n-edfokd polinomnak n darab gyoke (zérushelye)
van a komplex szamok halmazan. Ebbdl adédik a gyoktényezos alak is - lasd algebrai
multiplicitas.

I Tétel 10.5.1 Ha egy z komplex szam gycke egy polinomnak, akkor konjugéltja is gyoke.

I Kovetkezmény 10.5.2 Paratlan fokszamu polinomnak mindig van 1 darab valés gyoke.



11. Angol szoétar

Gauss eliminacié - Gaussian elimination
Rang - Rank (of a matrix)

Kibgvitett matrix - augmented matrix [A|b]
Elemi sormiivelet - elementary row operation
Egyiitthaté matrix - coefficient matrix
Szabadsagi fok - freedom of degree
Determinans - determinant

Magtér - kernel

Képtér - image space

Kifejtési tétel - Laplace expansion

Atl6 - diagonal

Miivelet - operation

Egységelem - unit element

Inverzelem - inverse element

Transzpondlt - transposed

Abel csoport - abelian group
Egységvektor - unit vector

Parhuzamos - parallel

Merdleges - perpendicular

Ortogonalis - ortogonal

Sik - plane

Nyil a sikon van - Arrow in the plane
Linearisan 0Osszefiiggs - Linearly dependent
Linearisan fiiggetlen - Linearly independent
Generatorrendszer - Linear span
Skalarszorzat - dot/inner product
Ortonormalt bazis - orthonormal basis
Merdleges vetiilet - perpendicular projection
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Vektoridlis szorzat - cross/vector product

Normalvektor - the normal to the plane

Normalvektoros egyenlet - point-normal equation

Tengelymetszetes egyenlet - equation defined by the intersection of the plane and the
coordinate axes

Hajlasszog - inclination/tilt angle

Vektortér - vector space

Altér - subspace

Linearis leképezés - linear mapping

Zérushely - zero point

Gyok - root

Sajatérték - eigenvalue

Sajatvektor - eigenvector

Fékomponens analizis - principal component analysis

Valés rész - real part

Képzetes rész - imaginary part

Egységgyok - the root of unity/de Moivre number
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