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1. Bevezetés

1.1 Motiváció
A könyv megírásának célja, hogya diszkrét matematika témaköréhez tartozó jegyzeteket
minél jobban összegyűjtse, de leginkább az, hogy bemutassa, mi mindenről is szól.

"Az absztrakciónak rossz híre van: színtelennek, céltalannak, a világtól el-
szakadtnak és tartalom nélkülinek tartják. Terméketlennek. A matematikát
néha megróják azért, mert absztrakt: mintha ez egy veszélyes lejtőn tett rossz
lépés lenne. Pontosan az absztrakció az azonban, ami a matematika feltűnő és
gyakran nem is várt hatékonysága mögött rejtőzik. Készség az összes lényegtelen
tényező figyelmen kívül hagyására, a valóságosnál szélesebb tartományban való
vizsgálódásra, összehasonlítani azt, ami van, azzal, ami lehetséges, sőt, ami
lehetetlen - ez a matematika sikerének titka."

Az idézet Karl Sigmundtól azért fogott meg, mert sok-sok elvont dologgal fogunk
találkozni a tantárgy, de a többi tárgy során is. Ez elsőre sokszor ijesztőnek tűnhet. Nehéz
elképzelni valamit, amiről előtte nem hallottál. Viszont ígérem, a könyv végére mindenkinek
sikerül majd megérteni például a végtelen viselkedését. Szerencsére a legtöbb absztrakt
fogalmunk mögött ott rejlik valami szikra, kiindulópont, ami nagyon is valóságos. Ezeket,
ha megtaláljuk nem csak magát a fogalmat értjük meg jobban, de azt is, hogy miért alakult
ki, miért van nekünk szükségünk arra, hogy ennyire általánosítsunk vagy elrugaszkodjunk a
megszokottól.

Éppen ez a miért az, amiért tanuljuk a tárgyat, ami miatt a diszkrét matematika ismerete
nélkül a mérnök nem mérnök igazán. Ahogyan Ty Pennington is alapozással kezd, amikor
felépít egy házat, éppúgy a mérnöknek is szüksége van mélyrehatoló fogodzókra ahhoz, hogy
ténylegesen valami olyat tudjon létrehozni, ami könnyedén megállja a helyét a nagyvilágban.

Amiket most tanulni fogunk közösen, azokat a legtöbb esetben a gyakorlatban is fel-
használják a mérnökök. Talán, ha az algoritmusok időigényéről vagy memóriaigényéről
beszélek, akkor az olvasó egyből bólogat, hogy: igen, én is örülnék, ha minél gyorsabban
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végeznék a feladattal. Mindazonáltal vannak olyan rések is, melyeket olvasva nem esik le
elsőnek, mégis miért tanuljuk mi ezt. Ezeknél és a legtöbb fejezetnél igyekeztünk minél
több applikációról is beszélni, megmutatni, hogy szinte nincs olyan tantárgy, ahol nem fog
valahol előjönni a most tanultak valamelyike.

1.2 Egy kis kontextus
Jó, de pontosan mi az a diszkrét matematika és mitől diszkrét? A későbbiekben látni
fogjuk, hogy vannak megszámlálható és megszámlálhatatlan elemszűmú halmazok. Talán a
diszkrét matematikát is úgy lehetne megfogni a legjobban, hogy a megszámlálható, vagy
az egészekhez (integerek) hasonlatos halmazokkal foglalkozunk. Ettől diszkrét, azaz nem
folytonos - a folytonos dolgokkal inkább az analízis foglalkozik. A példányok megfoghatóak,
könnyedén elkülöníthetőek a többitől, mintha egyszerű tárgyak lennének.

A diszkrét matematika a digitális számítógépek alap leíró nyelve, mert foglalkozik a
logikával, a struktúrákkal és relációkkal, eképp a hálókkal és a számelmélettel. Foglalkozik
továbbá a kombinatorikával, a valószínűségekkel, tehát magával a lehetségessel. Azaz
összességében minden olyan alap matematikával, amelyek szükségesek a számítógépek
megértéséhez és irányításához. Nevezhetnénk úgy is, hogy: "A digitális számítógépek
matematikája".

1.3 Köszönetnyilvánítás
Elsődlegesen szeretném megköszönni Bércesné dr. Novák Ágnes fáradhatatlan munkáját,
amelyet a tantárgy kidolgozásával töltött, valamint, hogy megtanította a matematika
legérdekesebb részeit és mindig gondosan odafigyelt arra, hogy érdeklődésemet a terület
iránt és a motivációmat ne veszítsem el. A könyv a Tanárnő jegyzeteit veszi alapul és azokat
egészíti ki én inkább csak összeraktam egy helyre az anyagot. A könyv továbbra sem teljes
és folyamatos felülbírálást és hozzáadást igényel, de remélhetőleg segíti a közös munkát.



2. Kombinatorika

2.1 Bevezető
Itt most megpróbálom bemutatni eléggé konyhanyelven a már gimnáziumban is ismert
kombinatorikai fogalmakat: Permutáció, Variáció, Kombináció (PVC).

A kombinatorika számos helyen előfordul a való életben is. Komputerchipek pro-
gramozása során az Input/Output lábak permutációját érdemes és szükséges figyelembe
venni. FPGA-k esetén a logikai kapuk elhelyezése, sorrendje kulcsfontosságú. Fehérjék
és DNS molekulák szekvencia problémái, illesztések, lehetséges mutációk stb. mind mind
kombinatorikai kihívások.

2.2 Permutáció
A permutáció a kombinatorika alapja, minden erre vezethető vissza. A permutáció a latin
permutare igéből származik, aminek jelentése per-át mutare- mozdít. Átmozdít, felcserél,
áthelyez stb. Ebből adódóan a permutáció probléma a sorbarendezés problémája.

2.2.1 Ismétlés nélküli Permutáció
Megmondja, hogy n darab különböző valamit hányféleképpen tudunk sorbarendezni. Ekkor
nagyon egyszerűen belátható, mit kell csinálni: Van n darab helyünk, amikre el kell
helyeznünk a valamiket. Az első helyre logikusan n darab különböző valamit tehetünk,
azonban a második helyre, mivel az elsőt már elhelyeztük már csak n−1 valamit tehetünk.
Ekkor a harmadik helyre már csak n−2 darab valami közül tehetünk. Azaz a k. helyre
n−k darab valami küzül tehetünk. Tekintve, hogy mit tehetünk az egyes helyekre , függ
az előzőleg felhasznált elemektől is, ezért a fenti lehetőségek szorzata fogja adni a teljes
permutáció számát.

Pn = n! (2.1)
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Figure 2.1: Faktoriális fa: A helyek az egyes szinteket jelölik, míg a gráf elemei a lehetséges
számokat az adott helyen. Hogy megkapjuk a permutációk számát, elég az utolsó helyen
levő elemeket összeszámolni: ez hat darab. Ha nem akarunk sokat számolni, észrevehetjük,
hogy mindegyik azonos szinten levő elemből ugyanannyi gyermek származik. Elég csupán
megnézni, hogy adott szinten, egy elemből hány gyermek származik és ezeket összeszorozva
megkapjuk az utolsó szint elemeinek számát:3 ·2 ·1

Mintafeladat
Az {1,2,3} számokat hányféleképpen rendezhetjük sorba?

Megoldás:
Természetesen az 2.1 ábrán is látható, könnyen fel lehet sorolni a lehetőségeket egy fa

felrajzolásával. Ebből ugyanúgy megkapható, hogy a válasz ismétlés nélküli permutáció:
Pn = 3! = 3 ·2 ·1 = 6

2.2.2 Ismétléses Permutáció
Ismétléses Permutációról akkor beszélünk, amikor vannak azonos elemeink a sorbaren-
dezendő elemek között. Az azonos elemek esetén természetesen, hogy az egyik, vagy a
másik áll-e az adott helyen végeredményben lényegtelen. Ebből az következik, hogy a
lehetséges Permutációk száma ismétléses esetben kevesebbnek kell lennie - nem számítjuk
külön esetnek, ha azonos elemek azonos helyen szerepelnek. Például: {a1,a2, l,m} betűket
szeretnénk sorbarendezni, és csak a betűkre vagyunk kíváncsiak, hogy milyen karaktersoroza-
tok lehetségesek(alsó index nélkül): akkor az a1lma2 és az a2lma1 lehetőségek ugyanazon
karaktersorozatnak számítanak. Nem tekinthetők különböző szónak, hisz alma, alma.

a1lma2 = a2lma1;a1a2lm= a2a1lm;a1la2m= a2la1m; ...
Látható, ha kirakunk egy szót, amelyben azonos betűk szerepelnek, ha az azonos betűk

indexeinek ismétlés nélküli permutációját vesszük, akkor megkapjuk, hogy hány azonos szót
kapnánk adott karaktersorozatot tekintve, ha az indexelt betűket is megkülönböztetve írnánk
fel a lehetséges karaktersorozatokat. Tehát megkapjuk, hányszor több karaktersorozatunk
lenne, ha megkülönböztetnénk az indexek segítségével az azonos betűket. Ebből adódóan
egyszerű a képlet: az indexek szerint megkülönböztetett ismétlés nélküli permutáció számát



2.3 Variáció 11

le kell osztani az indexek permutációjával.

P k1,k2,...
n = n!

k1! ·k2!... = Pn

Pk1 ·Pk2...
(2.2)

Az almás esetben:

P 2
4 = 4!

2! = 4 ·3 = 12 (2.3)

2.3 Variáció
Mint említettem, minden az ismétlés nélküli Permutációból származtatható, így a Variáció is.
A Variáció a latin variare - változtat szóból ered. Variáció esetén arra vagyunk kíváncsiak,
hogy hányféleképpen tudunk sorbarendezni k elemet n elemből kiválasztva. (Mivel n elemből
választunk, ezért k < n.) Belátható, ha k = n akkor Permutációt kapunk.

2.3.1 Ismétlés nélküli Variáció
Itt is egyértelmű, hogy a Permutációhoz képest kevesebb Variációt kell kapnunk, hiszen
kevesebb elemet választunk ki. Ha például a 2.2.1 esetén most nem mindhárom elemet
vesszük, hanem csak kettőt, akkor a harmadik helyet az 2.1 ábrából levághatjuk, azaz a
szorzatból is az utolsó elemet elhagyhatjuk. Természetesen a fenti példában ez az eredményen
nem fog változtatni, mert a faktoriálisban az utolsó elem az egyes szorzó. De hasonlóan kell
eljárnunk magasabb n és k esetén: n−k helyet le kell vágnunk az n helyből.

Tehát, ha n elemből k elemet kiválasztunk és sorbarendezünk:

V k
n = n!

(n−k)! =
n∏

i=n−k+1
i= Pn

Pn−k
(2.4)

Bizonyítás 2.1 — Hivatalos. Ebben az esetben először kiválasztunk k elemet (lásd ismétlés
nélküli kombináció), majd utána ezeket rendezzük sorba k! féleképpen:(

n

k

)
·k! = n!

k!(n−k)! ·k! = n!
(n−k)!

�

2.3.2 Ismétléses Variáció
Ebben az esetben azt az elemet, amit már felhasználtunk, ismételten felhasználhatjuk, tehát
a 2.2.1 esetén, ha két helyünk van, előrodulhatnak a következő esetek: 11,22,33. Az ismétlés
nélküli Permutáció képletének megalkotásakor használt logikát kell követnünk. Azaz n
elemből k elemet sorbarendezve: az első helyre tehetünk n elemet, de mivel az első helyen
szereplő elemet ismét felhasználhatjuk, a második helyre szintén n elemet tehetünk és így
tovább: a k. helyre továbbra is n elem kerülhet.

V k,i
n = nk (2.5)
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1

1 2 3

2

1 2 3

3

1 2 3

{I. hely}

{II. hely}

{III. hely}

Figure 2.2: Az ismétléses variáció fája: A helyek az egyes szinteket jelölik, míg a gráf
elemei a lehetséges számokat az adott helyen. Hogy megkapjuk a variációk számát, elég
az utolsó helyen levő elemeket összeszámolni: ez kilenc darab. Ha nem akarunk sokat
számolni, észrevehetjük, hogy mindegyik elemből ugyanannyi gyermek származik (nem csak
az azonos szinten levőkből). Elég csupán annyiszor összeszorozni egy elem gyermekeinek
számát önmagával, ahány hely van: 3 ·3 = 9

2.4 Kombináció
A Kombináció a latin combinare - egyesít igéből származik con- együtt, bini-kettessével
azaz kettőből egyet alkot. Valami hasonló történik a matematikában is: több elemből egy
halmazt alkotunk. A halmaz a kiválasztott elemeket tartalmazza. Mivel halmazról beszélünk,
nem számít a sorrend! Ez a lényegi különbség, ami megkülönbözteti a Permutációtól és a
Variációtól, de ezekből származtatható.

2.4.1 Ismétlés nélküli Kombináció
Ebben az esetben n elemből választunk ki k elemet, de a sorrend nem számít. Ha számítana?
Ismétlés nélküli Variációt kapnánk. De most nem számít a sorrend. Mi a teendő? Nem
több, nem kevesebb, mint meg kell szabadulni a fölösleges megismételt elemektől. Le kell
osztanunk a lehetséges Variációk számát a kiválasztott elemek Permutációinak számával.

Ck
n = V k

n

Pk
= n!

(n−k)! ·k! =
(
n

k

)
(2.6)

Tipikus ilyen eset, hányféle billentyűkombináció állítható elő a billentyűzeten. :) Erről
talán könnyű megjegyezni, hogy a kombináció esetén nem számít a sorrend - a billentyűkom-
binációk esetén egyszerre kell leütni a billentyűket. De ugyanez érvényes a lottószelvényre is
- nem számít, melyik számot ikszeltük be először.
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Bizonyítás 2.2 — Hivatalos. Felfoghatjuk úgy is a problémát, hogy először sorbarendezzük
az összes elemet (n!). Az első k elem lesz, amit kiválasztottunk. Ekkor nem számít a
kiválasztottak sorrendje k!, sem a ki nem választottak sorrendje (n−k)!.

n!
k!(n−k)!

�

2.4.2 Ismétléses Kombináció
Az ismétléses Kombináció visszavezethető ismétléses Permutációra egy kis absztrakt gondo-
lkodással. A feladat az, hogy n különböző elemből válasszunk ki k elemet úgy, hogy egy
elemet többször is választhatunk (sorrend nem számít). Például visszatevéses húzás esetén.

Mondjuk azt, hogy van az {A,B,C} elemek, melyekből szeretnénk öt elemet kiválasztani
(a visszatevés miatt lehetséges az n < k felállás is). Ezt meg is tesszük, majd rendezzük őket
sorba úgy, hogy elősször a kiválasztott A-kat rakjuk le, majd a kiválasztott B-ket és végül a
kiválasztott C-ket.

A különbözők közé tegyünk egy elválasztójelet, például egy mínuszjelet. Például ha két
A-t és egy B-t valamint két C-t választottunk ki: AA-B-CC, ha két A-t nulla B-t és három
C-t: AA- -CCC.

De ez így még zavaros. Azért kértem, hogy rakjuk bele az elválasztójeleket, mert amíg
a konkrét betűket írjuk le, addig nem vagyunk sokkal előrébb. Ha most átírjuk a betűket
azonos szimbólumra, például a plusz jelre, az előbbi két esetünk a következőképp alakul:
++-+-++ valamint a ++- -+++.

Ezt az elvontságot könnyen visszafejthetjük, ha akarjuk, hiszen az elválasztójelek még
mindig jelzik nekünk az eredeti elemeket, viszont máris kezd összeállni a kép: Két eshetőséget
is felírva ez a probléma már emlékeztet minket az ismétléses Permutációra, Van öt darab
plusz jelünk és két darab mínusz jelünk. Ezután a többi eshetőséget ezek Permutációjával
kapjuk meg.

Csináltunk egy egyértelmű hozzárendelést az ismétléses Kombináció és az ismétléses
Permutáció között. (Aki tudott követni könnyen vissza tudja fejteni a +- jelek permutációját
az ABC betűk ismétléses kombinációjára.)

Látható, hogyha n elemből k elemet kiválasztunk, úgy hogy ismétlődhetnek az elemek
és a sorrend nem számít, akkor ismétléses Permutációként tekintve k darab plusz jelet és
n−1 darab - jelet kell permutálnunk.Azaz:

Ck,i
n = P

(k,n−1)
k+n−1 = (n+k−1)!

(n−1)! ·k! (2.7)

Hogyha elvégezzük az N = n+k−1 behelyettesítést:

Ck,i
n = N !

(N −k)! ·k! =
(
N

k

)
(2.8)

Azaz:

Ck,i
n = Ck

n+k−1 =
(
n+k−1

k

)
(2.9)
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Azt kapjuk, hogy feltudjuk írni az ismétléses Kombinációt ismétlés nélküli Kombinációként.

2.5 Feladatok
1. A 32 hallgató között szeretnék kiosztani 32 különböző jegyzetetet, hogy az együttan-

ulást szorgalmazzam. Hányféleképpen tehetem meg?
2. Most a 32 tanuló között 6 darab A tipusú ZH-t és 26 B típusú ZH-t szeretnék kiosztani

(vélhetően mindig a másik csoportté a könnyebb), hányféleképpen tehetem meg?
3. A 32 hallgató közül három különböző feladatra szeretnék kihívni egy-egy diákot. Egy

diákot csak egy feladatra. Hányféleképpen tehetem meg?
4. A 32 hallgató közül három különböző feladatra szeretnék kihívni egy-egy diákot. Most

egy diák több feladatra is vállalkozhat. Hányféleképpen tehetem meg?
5. A 32 diákot megszeretném jutalmazni egy csokival. De csak tíz ugyanolyan tábla

csokim van. Hányféleképpen tehetem meg? Egy hallgató csak egy jutalmat kaphat.
6. A 32 diákot megszeretném jutalmazni, most tíz ugyanolyan almával. Egy diák több

almát is kaphat. Hányféleképpen tehetem meg?

2.6 Megoldás
1. Ha a hallgatókat veszem a helyeknek és a jegyzeteket a sorbaállítandóknak akkor ez:

ismétlés nélküli permutáció: 32! féleképpen tehetem meg.
2. Kétféleképpen is gondolkodhatunk:

(a) Az előző feladatok követve most: ismétléses permutáció: 32!
6!·26!

(b) De dönthetünk úgy is, hogy a 32 hallgató közül kiválasztjuk azt a hatot, aki az
A típusú ZH-t kapja: ismétlés nélküli kombináció:

(32
6
)

= 32!
6!·26!

3. Most a feladatok a helyek és a hallgatók a sorbarendezendők: ismétlés nélküli variáció:
32!

(32−3)!
4. Az előzőhöz hasonlóan most: ismétléses variáció: 323

5. Mivel ugyanolyan csokiról van szó, ezért nem számít, hogy melyik csokit kapja, ha
kap: ismétlés nélküli kombináció:

(32
10
)

6. Az előzőhöz hasonlóan, csak most egy diákot többször is választhatok: ismétléses
kombináció:

(32+10−1
10

)
2.7 Klasszikus Valószínűség

valség = kedvező esetek száma
összes eset száma (2.10)

2.7.1 Feladat
Matematikailag helyes-e azt mondani, hogy hányféle kombinációt kell kipróbálnom ahhoz,
hogy feltörjem az elfelejtett PIN kódomat? Mennyi az esélye, hogy nem kell PUK kódot
használnom?

Megoldás: Matematikailag helytelen, hiszen PINkód esetén számít a sorrend, így
variációkról beszélhetünk. Az összes variációt könnyen megkapjuk 10 számjegyból négyet
kell kiválasztanunk és sorbarendeznünk. Egy számot többször is használhatunk (lehet, hogy
0000 a jelszavam): ismétléses variáció 104
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Ez azonban még nem számít az összes esetnek, mert az esemény most az, hogy a
lehetséges PINkódokból kiválasztunk hármat. Az nem számít, hogy hanyadjára találom
el a PIN kódomat, csak az, hogy a háromban benne legyen. Tehát az összes variációból
kiválasztva hármat: ismétlés nélküli kombináció:

(104

3
)
. Ez lesz az összes esetünk. A kedvező

esetek száma pedig úgy áll elő, hogy rögzítjük a helyes PINkódot, ekkor már csak két másik
PINkódot kell választanunk. Ezek mind kedvezőek számunkra, mert sikerül feltörnöm a
telefont. Attól most tekintsünk el, hogy ha elsőre sikerül normál esetben többször nem
próbálkozom. Tehát

(104−1
2
)

A valószínűsége, hogy benne van a három próbálkozásomban a jó PINkód, a következő:P =
(104−1

2 )
(104

3 )

2.8 Binomiális tétel és a binomiális együtthatók
Tétel 2.8.1 — Binomiális tétel.

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

Bizonyítás 2.3 (a+b)n = (a+b)(a+b) . . .(a+b) Mindent mindenkivel beszorozva, minden
zárójelből vagy a-t, vagy b-t kell választanunk. Ezzel megkapjuk az an−kbk alakú tagokat.
A kérdés, hogy az adott alakot hányszor kaptuk meg vajon? A válasz, pontosan annyiszor,
ahányféleképpen tudjuk kiválasztani azokat a zárójeleket, amelyekből a b-t választottuk.
Azaz ez egy kombináció: Ck

n =
(n

k

)
. �

2.8.1 Binomiális együtthatók tulajdonságai
1.
∑n

k=0
(n

k

)
= 2n

Bizonyítás 2.4 Ez gyakorlatilag tekinthető annak, hogy egyszer 0 majd 1 majd 2
stb. elemet választok ki adott halmazból. Azaz ez a hatványhalmazok számossága.
Algebrai bizonyításhoz lásd a Pascal háromszög sorának összegét. �

2.
∑n

k=0(−1)k
(n

k

)
= 0

Bizonyítás 2.5 A binomiális együthatók szimmetriájából következik. �

3.
∑n

k=1 k
(n

k

)
= n2n−1 | n≥ 1

Bizonyítás 2.6
∑n

k=1 k
(n

k

)
=
∑n

k=1 k
n!

k!(n−k)! = n
∑n

k=1
(n−1)!

(k−1)!(n−k)! = n
∑n

k=1
(n−1

k−1
)

=
n2n−1

�

4.
∑r

k=0
(m

k

)( n
r−k

)
=
(m+n

r

)
| 0≤ r,r ≤m,r ≤ n

Bizonyítás 2.7 Két diszjunkt halmazom van, egyikből k-elemet választok, a másikból
r-k-t akkor ez olyan, mintha a két halmaz uniójából választanék ki r elemet. �

5.
∑n

k=0
(n

k

)2 =
(2n

n

)
(Vandermonde-azonosság)
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Bizonyítás 2.8 Ez a fenti eset speckó m=n és r=n �

6.
(n

k

)
=
(n−1

k

)
+
(n−1

k−1
)

Bizonyítás 2.9 A kérdés továbbra is az, hogy egy n elemű halmazból hányféleképpen
választhatunk ki k elemet? Rögzítsünk egy elemet és ehhez képest nézzük meg a
kiválasztásokat. Ez az elem a kiválasztott elemek között vagy szerepel vagy sem.
Ha szerepel, akkor a maradékból már csak k−1 darab elemet kell kiválasztanunk:(n−1

k−1
)
. Ha nem szerepel, akkor az összes elemet a maradékból kell kiválasztanunk:(n−1

k

)
. Az összes eset ennek a kettőnek az összege. �

2.9 Pascal Háromszög

n= 6
n= 5
n= 4
n= 3
n= 2
n= 1
n= 0

0 1 2 3 4 5 6
1 6 15 20 15 6 1

1 5 10 10 5 1
1 4 6 4 1

1 3 3 1
1 2 1

1 1
1

Binomiális együtthatókkal:
Row 0:

(0
0
)

Row 1:
(1

0
) (1

1
)

Row 2:
(2

0
) (2

1
) (2

2
)

Row 3:
(3

0
) (3

1
) (3

2
) (3

3
)

Row 4:
(4

0
) (4

1
) (4

2
) (4

3
) (4

4
)

Row 5:
(5

0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)

Row 6:
(6

0
) (6

1
) (6

2
) (6

3
) (6

4
) (6

5
) (6

6
)

Row 7:
(7

0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)

Row 8:
(8

0
) (8

1
) (8

2
) (8

3
) (8

4
) (8

5
) (8

6
) (8

7
) (8

8
)

Row 9:
(9

0
) (9

1
) (9

2
) (9

3
) (9

4
) (9

5
) (9

6
) (9

7
) (9

8
) (9

9
)

Row 10:
(10

0
) (10

1
) (10

2
) (10

3
) (10

4
) (10

5
) (10

6
) (10

7
) (10

8
) (10

9
) (10

10
)

Tétel 2.9.1 — Pascal Háromszög sorának összege. Pascal háromszög n. sorának összege
2n.

Bizonyítás 2.10 — Pascal Háromszög sorának összege.

n∑
k=0

(
n

k

)
= 2n

Felismerehetjük, hogy ez hasonlít a binomiális tételre, csak hiányzik belőle az a és a b, de
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valóban hiányzik? Felfoghatjuk úgy is, hogy nem hiányoznak, hanem a= 1 és b= 1.

n∑
k=0

(
n

k

)
1k1n−k = (1 + 1)n = 2n

�
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Sorrend
számít?

Egy elem
csak

egyszer vá-
lasztható?

Összeset
sorba kell
rendezni?

Egy elem
csak egy
helyre
tehető?

Ismétléses
Variáció

Minden
elem

külön-
böző?

Ismétlés nélküli
Permutáció

Ismétléses
Permutáció

Ismétlés nélküli
Variáció

Ismétlés nélküli
Kombináció

Ismétléses
Kombináció

(
n+k−1

k

)

(
n
k

)

nk

n!
(n−k)!

n!
k1!k2!...

n!

Nem

Igen

Nem

Igen

Nem

Igen

Igen

Nem

Igen

Nem



3. Halmazalgebra

A halmazalgebra a már gimnáziumban is tanult halmazműveletekkel foglalkozik, összetett
műveletek egyszerűsítésével, átalakításával, adott halmaz elemeinek megvizsgálásával találkozhatunk
a fejezetben. Ilyen műveletek az únió, a metszet, a komplementer képzés és ezek kombiná-
ciói. A műveletek adott tulajdonságokkal rendelkeznek, melyek együttesét a későbbiekben
Bool Algebrának fogjuk nevezni. A Logikai műveletek pontosan úgy viselkednek, mint
a halmazműveletek, ezért, amit a nulladrendű logikában a műveletekkel kifejtek, azok
vonatkoznak a halmazműveletekre is, eképpen, ha az egyiket tudjuk, a másikat nem ne-
hezebb elsajátítanunk.
Definíció 3.0.1 — Halmaz. A halmaz alapfogalom. Mondhatjuk, hogy tárgyak, fogalmak,
matematikai objektumok összessége, de ezzel nem jutunk előbbre, hiszen akkor az
összesség szót kellene megmagyarázni. Ezért csupán azt követeljük meg, hogy a halmazt
az elemei egyértelműen meghatározzák.

A halmazokat jelölhetjük nagybetűkkel, vagy közé írva az elemeit, illetve annak tulaj-
donságait, ld. következő alfejezet.

Ha egy „a” azonosítójú dolog eleme az A halmaznak,úgy jelöljük, hogy: a ∈ A . Ha
valamely „b” azonosítójú dolog nem eleme az A halmaznak, akkor jelölése: b /∈A.

Tehát csakis olyan halmazokkal foglalkozunk, amelyeknél az a ∈ A állítás igazsága
egyszersmind a /∈ A állítás hamis voltát vonja maga után, illetve az a /∈ A állítás igaz
voltából az a∈A állítás hamissága következik. A logikával kapcsolatos hasonlóságok részben
ebből is erednek, valami vagy eleme, vagy nem eleme a halmaznak (logikában valami vagy
igaz, vagy hamis - boolean változó).

Egyszerre nem lehet valami eleme is és nem eleme is az adott halmaznak.
A halmazelmélet fentieken alapuló tárgyalását naív módszernek, naív halmazelmélet-

nek nevezik. Az itt ismertetett tárgyalásmód Cantor nevéhez fűződik. Abban az időben
még nem tisztult le a matematikai logika elmélete olyan mértékben, ami lehetővé tette
volna az alábbi ellentmondások, az ún. antinomiák magyarázatát. Az antinomia
kiküszöbölése az ún. axiomatikus tárgyalási módszerrel lehetséges, ez azonban megha-
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ladja e jegyzet kereteit. Csupán arra szorítkozunk, hogy az antinomiák bemutatásával
megindokoljuk a halmaz alapfogalomként való kezelésének praktikus hasznosságát.

Egyértelműen el kell tudnunk dönteni, hogy valami az adott halmaz eleme-e
vagy sem!

Példa antinomiára: Tekintsük a magyar nyelven legfeljebb 100 karakterrel definiálható
egész számok halmazát, jelöljük ezt H-val. Például, a 6 definíciója lehetne a következő: a
harmadik páros szám. Mivel ez a definíció kevesebb, mint száz karakterből áll, ezért a 6
eleme a H halmaznak.

Legyen az n egész szám definíciója az alábbi: A legkisebb, magyar nyelven száz írásjellel
(a szóközt beleértve) NEM definiálható természetes szám.

A definíció pontosan 100 karakter. Vajon n ∈H igaz, vagy n /∈H? Akár egyik, akár
másik feltevést tekintjük igaznak, ellentmondásra jutunk.

Az olyan halmazokkal,melyeknél antinomia léphet fel nem foglalkozunk!

Feladat 3.1 A falu borbélya mindazokat a férfiakat megborotválja, akik nem maguk
borotválkoznak. Tekintsük a borbély által borotvált férfiak B halmazát. Vajon ennek a
B halmaznak eleme-e a borbély maga?

�

3.1 Halmazok megadása, elemei, részhalmazok
A halmazok megadhatóak:
• felsorolással: A := {3,4}
• valamely jellemző tulajdonság megadásával, melyet halmazjelet használva a következőkép-

pen írhatunk: B := {x|x ∈ R,xmegoldása a (x−3)(x−4) = 0egyenletnek}
Vannak olyan szubjektív értékelések, amelyek önmagukban is indokolhatják, hogy a

halmaz fogalmát elemein keresztül ragadjuk meg. Pl. tekintsük az alábbi „halmazokat” :
• C:={s | s jó sorozat }
• D:={o | o okos hallgató }
Meg tudjuk-e egyértelműen mondani, hogy egy adott sorozat, egy adott hallgató

beletartozik-e a C illetve a D halmazba? Nyilvánvalóan az így leírt halmazok tartalma szemé-
lyenként változik, nem jól definiált. Tehát csak olyan tulajdonságokkal írhatunk
le egy halmazt, melyek megléte egyértelműen eldönthető, és így egyértelmű az
is, hogy egy adott dolog, objektum eleme-e a halmaznak.
Definíció 3.1.1 — egyenlő halmazok. Két halmaz akkor egyenlő, ha ugyanazok az elemeik.

Fenti példánkban A=B.
Definíció 3.1.2 — Üres halmaz. Olyan halmaz, mely egy elemet sem tartalmaz. Jele: ∅

Definíció 3.1.3 — Részhalmaz. Az A halmaz részhalmaza a B halmaznak, ha A minden
eleme B-nek is eleme. Jele: A⊆B.

Definíció 3.1.4 — Valódi részhalmaz. Ha A ⊆ B és A 6= B, akkor A valódi részhalmaza
B-nek. Jele: A⊂B.

A részhalmaz definícióját átfogalmazhatjuk úgy is, hogy AB, ha A-nak nincsen olyan
eleme, amely ne lenne B-nek is eleme. Ennélfogva: ∅ ⊆A, hiszen nincsen eleme.
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A definíció szerint minden halmaz részhalmaza önmagának. Ezt a tulajdonságot a
reflexív szóval fejezzük ki: A⊆A : reflexív tulajdonság

Feladat 3.2 • Igaz-e, ha A⊆B és B, akkor A⊆ C ? (Ez az ún. tranzitivitás)
• Igaz-e, ha A⊆B, akkor B ⊆A? (Ez az ún. kommutativitás)
hint: rendezési reláció. �

A részhalmaz fogalom felhasználásával már ismertetni tudunk egy másik antinómiát is,
amely Russeltől származik. Elképzelhető, hogy vannak olyan halmazok, amelyek önmagukat
tartalmazzák. Ugyanígy, vannak olyan halmazok, amelyek önmagukat nem tartalmazzák.

2. Antinomia (Russel): Legyen a H halmaz azon halmazok halmaza, amelyek
önmagukat nem tartalmazzák. Vajon H eleme-e önmagának? Ha igen-nel válaszolunk
az antinómiában feltett kérdésre, akkor H eleme önmagának, de ez a H definíciója miatt
lehetetlen. Ha nem-mel válaszolunk, akkor viszont éppen a H definíciója miatt H nem
tartalmazhatja önmagát.
Definíció 3.1.5 — Hatványhalmaz. Az A halmaz hatványhalmazán az A részhalmazainak
halmazát értjük. Jele: P(A) (az angol power - hatvány szóból).

Például:
• A := {1,2} P (A) = {∅,{1},{2},{1,2}}
• ∅ P (∅) = {∅}
• {∅} P ({∅}) = {∅,{∅}}

Feladat 3.3 Adja meg az alábbi halmazok hatványhalmazát:
• B := {∅,{1}}
• C := {{1},C}

�

3.2 Halmazműveletek és tulajdonságaik
Definíció 3.2.1 — Unió. Az A és B halmazok uniója (egyesítése, összege) az a halmaz,
amelynek elemei vagy A-nak, vagy B-nek elemei. Jele: A∪B:

A∪B := {x ∈A VAGY x ∈B}

Feladat 3.4 Tekintsük a racionális (Q), természetes (N), irracionális (Q*), egész (Z) és
valós számok (R) halmazát. Mi az eredményhalmaza a következő kifejezéseknek:

N ∪Z,Q∪N,Q∗∪Q,R∪Q∗,R∪Q

�

Definíció 3.2.2 — Metszet. : Az A és B halmazok metszete (közös része, szorzata) az a
halmaz, amelynek elemei A-nak is és B-nek is elemei. Jele: A∩B:

A∩B := {x ∈A ÉS x ∈B}
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Feladat 3.5 Tekintsük a racionális (Q), természetes (N), irracionális (Q*), egész (Z) és
valós számok (R) halmazát. Mi az eredményhalmaza a következő kifejezéseknek:

N ∩Z,Q∩N,Q∗∩Q,R∩Q∗,R∩Q

�

Definíció 3.2.3 — Diszjunkt. Ha az A és B halmazoknak nincsen közös része, vagyis
A∩B = ∅, akkor azt mondjuk, hogy az A és B halmazok diszjunktak.

Feladat 3.6 Tekintsük a racionális (Q), természetes (N), irracionális (Q*), egész (Z) és
valós számok (R) halmazát. Ezek közül melyik kettő diszjunkt? (több pár is lehet) �

Definíció 3.2.4 — Halmazok különbsége. Az A és a B halmazok A\B-vel jelölt különbsége
az A halmaz azon elemeinek halmaza, amelyek nincsenek B-ben. Ezt másképpen a B
halmaz A halmazra vonatkozó komplementerének nevezzük, jele: BA.

Feladat 3.7 Tekintsük a racionális (Q), természetes (N), irracionális (Q*), egész (Z) és
valós számok (R) halmazát. Mit jelent

Q\Q∗,Q∗\Q,R\N,R\Q,Q\R,Z \N,N \Z,Q\Z,Z \Q,A\∅,∅\A

? �

Definíció 3.2.5 — Univerzum. Az univerzális halmaz a feladattal kapcsolatos összes lehet-
séges objektumok összessége, jele: U.

A B halmaz adott U univerzumra vonatkozó komplementerének jele:B. (Nem kell kiírni,
általános esetben mindig az adott univerzumra vonatkozik.)

Feladat 3.8 • Mi a pozitív egész számok halmazára vonatkozó komplementere a páros
pozitív egészek halmazának? Hogyan jelölhetjük?
• Mi a valós számok halmazára vonatkozó komplementere a racionális számok hal-
mazának? Hogyan jelölhetjük?
• Tekintsük a valós számok halmazát univerzumnak. Adjuk meg a racionális (Q),
természetes (N), irracionális (Q*), egész (Z) és valós számok (R) halmazának
komplementereit (jelöléssel együtt) erre az univerzumra!

�

Definíció 3.2.6 — Szimmetrikus differencia. Az A és B halmaz szimmetrikus differenciája
azon elemek halmaza, amelyek A és B halmaz közül pontosan (CSAKIS) az egyiknek
elemei. (Később logikánál lásd kizáróvagy)

A∆B := (A\B)∪ (B \A)
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3.2.1 A műveleti definíciók egyszerű következményei
A∪U = U A∩U =A
A∪A=A A∩A=A
A∪∅=A A∩∅= ∅
A\∅=A ∅\A= ∅

3.2.2 Műveleti azonosságok
1. A∪B =B∪A A∩B =B∩A Kommutatív
2. (A∪B)∪C =A∪ (B∪C) (A∩B)∩C =A∩ (B∩C) Asszociatív
3. A∩ (B∪C) = (A∩B)∪ (A∩C) A∪ (B∩C) = (A∪B)∩ (A∪C) Disztributív
4. A∪B =A∩B A∩B =A∪B De Morgan
5. A∆B = (A∪B)\ (A∩B)

3.3 Bizonyítás kétoldali tartalmazás módszerével

Állítás 3.3.1 A=B akkor és csak akkor, ha A⊆B és B ⊆A.

Az állítás alapján, ha be tudjuk látni, hogy egy adott egyenlőség kétoldalát tekitve
a baloldal részhalmaza a jobboldalnak és a jobboldal részhalmaza a baloldnak, akkor a
jobboldal és a baloldal egyenlő.

Annal belátására, hogy A részhalmaza B-nek azt kell megnéznünk, hogy HA x ∈ A,
AKKOR x∈B. Ezt az implikációt fogjuk belátni, egyszer úgy hogy, HA x eleme baloldalnak,
akkor x eleme a jobboldalnak és utána fordítva.

Bizonyítsuk be, hogy a metszet disztributív az unióra nézve:

A∩ (B∪C) = (A∩B)∪ (A∩C)

Bizonyítás 3.1 1. Először lássuk be, hogy a baloldal részhalmaza a jobboldalnak.
2. Tegyük fel, hogy x ∈ b.o. −→ x ∈A ÉS x ∈ (B∪C)
3. x ∈ (B∪C)−→ x ∈B VAGY x ∈ C
4. Az előző két sorból adódóan: x ∈ A ÉS x ∈ B azaz x ∈ (A∩B) VAGY x ∈ A ÉS
x ∈ C azaz x ∈ (A∩C)

5. Tehát x ∈ (A∩B)∪ (A∩C), azaz x ∈ j.o.
6. Tehát a baloldal részhalmaza a jobboldalnak.



24 3. Fejezet: Halmazalgebra

Grafikusan:

x ∈ b.o.

x ∈A∩ (B∪C)

x ∈A x ∈B∪C

x ∈B x ∈ C

x ∈A x ∈B x ∈A x ∈ C

x ∈A∩B x ∈A∩C

x ∈ (A∩B)∪ (A∩C)

x ∈ j.o.

&

& &

Ezek után Be kell látnunk, hogy a jobboldal részhalmaza a baloldalnak.
1. Tegyük fel, hogy x ∈ j.o.−→ x ∈A∩B VAGY x ∈A∩C
2. Az első esetben x ∈A ÉS x ∈B a második esetben x ∈A ÉS x ∈ C
3. x ∈A ÉS x ∈B −→ x ∈B∪C Hiszen ha B-nek eleme, akkor a B∪C-nek is eleme.

Emellett az ÉS másik oldala miatt (x ∈A) x ∈A∩ (B∪C)
4. A második esetben: x ∈ A ÉS x ∈ C −→ x ∈ B ∪C valammint az ÉS első tagja

miatt: x ∈A∩ (B∪C)
5. Tehát mindkét esetben teljesül, hogy x ∈ b.o.
Grafikusan:

x ∈ j.o.

(A∩B)∪ (A∩C)

x ∈A∩B x ∈A∩C

x ∈A x ∈B& x ∈A x ∈ C&

x ∈B∪C x ∈B∪C

A∩ (B∪C) A∩ (B∪C)

x ∈ b.o. x ∈ b.o.
Azaz beláttuk, hogy a jobboldal részhalmaza a baloldalnak. Előtte pedig beláttuk,

hogy a baloldal részhalmaza a jobboldalnak. Ez csak akkor lehetséges, ha a baloldal és a
jobboldal megegyezik.

�

Bizonyístuk be a az egyik De Morgan azonosságot: A∪B =A∩B!
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Bizonyítás 3.2

x ∈ b.o.

x ∈A∪B

x /∈A∪B

x /∈A & x /∈B

A∩B

x ∈ j.o.

x ∈ j.o.

x ∈A∩B

x ∈A x ∈B&

x /∈A x /∈B&

x /∈A∪B

x ∈A∪B

x ∈ b.o.
A baloldali ábrán beláttuk, hogy a baloldal részhalmaza a jobboldalnak, míg a

jobboldali ábrán, hogy a jobboldal részhalmaza a baloldalnak. Tehát az egyenlőség két
oldala megegyezik. �

Feladat 3.9 • Igazolja a többi felsorolt azonosságot!
• Igaz-e, hogy a szimmetrikus differencia kommutatív?
• Igaz-e, hogy a szimmetrikus differencia asszociatív?

�

3.4 Számosság és logikai szita
Definíció 3.4.1 — Számosság. Halmaz számosságán a halmaz elemeinek számát értjük.
Jelölés: |A|. Ha ez véges szám, akkor azt mondjuk, hogy az A halmaz véges, ellenkező
esetben az A halmaz végtelen. A legegyszerűbb mérték.

További mértékekről a későbbi években lesz szó, mint például a valószínűségi mértékről.
Logikai szita alatt a halmazok uniójának számosságára vonatkozó összefüggést értjük,

ami a következő:
Két halmaz esetén:

|A∪B|= |A|+ |B|− |A∩B|

Három halmaz esetén:

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|

Az összefüggés látható, mindig egyre több halmazt magába foglaló metszetek kerülnek a
képletbe, méghozzá úgy, hogy a páratlan halmazokat tartalmazó metszetek pozitív előjellel
kerülnek a képletbe, míg a páros halmazokat tartalmazó metszetek negatív előjellel kerülnek
a képletbe.





4. Végtelen Számosságok

Definíció 4.0.1 — Megegyező számosság. A és a B halmaz számossága egyenlő, ha elemeik
között kölcsönösen egyértelmű (egy-egy értelmű) megfeleltetés létesíthető. Ekkor azt
mondjuk, hogy A ekvivalens B-vel. Jelölés: A∼B

Érezhető, hogy ekvivalenciarelációról beszélhetünk.

Tétel 4.0.1 A halmazok ekvivalenciája ∼ valóban ekvivalencia reláció.

Bizonyítás 4.1 1. Reflexív: Minden A-ra A∼A - az 1-1 értelmű fgv. az identitás
2. Szimmetrikus: Ha A∼B akkor B ∼A Ha az A és B között f az egy-egy értelmű

hozzárendelés, ez invertálható, ezért B és A között f−1 az egy-egy értelmű hoz-
zárendelés

3. Tranzitív: A∼B és B ∼ C akkor A∼ C Ha az A és B között f az egy-egy értelmű
hozzárendelés:(f(a) = b), B és C között g: (g(b) = c), akkor az A és C között a két
függvény kompozíciója lesz az egy-egyértelmű hozzárendelés: f ◦g : (g(f(a) = c).

�

Mit tudunk mondani azokra a halmazokra, melyeknek végtelen a számossága? Ilyen
halmaz például a valós számok halmaza is, de a természetes számok halmaza is. Vajon
melyikből van több? Mindkettő végtelen számosságú, de érezzük, hogy a számosságuk
nem egyezik meg. Megkülönböztetjük a megszámlálhatóan végtelent (természetes számok
halmaza) a nem megszámlálhatóan végtelentől. A kettő között az a különbség, hogy a
természetes számok elemeiről tudjuk, hogy hanyadik a sorban, ha sorbarendezem, míg a
valós számoknál bajban lennénk.
Definíció 4.0.2 — Megszámlálhatóan végtelen. Adott H halmaz számossága megszámlál-
hatóan végtelen, ha ekvivalens a természetes számok halmazával. H ∼ N. Jele: |H|= ℵ0
ejtsd (alef null, héber abc első betűje).
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Tétel 4.0.2 A racionális számok halmaza megszámlálható (sorbarendezhető)

Bizonyítás 4.2 A megszámlálhatóságnak a sorbarendezhetőségét kihasználva, sorba fogjuk
rendezni a racionális számokat. Minden racionális szám felírható két egész szám hánya-
dosaként. Ezt tegyük is meg: a= i

j , majd ezek alapján készítsünk egy táblázatot, hogy az
a a táblázat i. sorába és j. oszlopába kerüljön. Ekkor csak egy útvonalat kell felvázolnunk
az elemek között, hogy melyik elemet hanyadiknak látogatjuk meg:

�

Tétel 4.0.3 Ha B ⊂A, akkor az alábbiak teljesülnek:
• ha A véges, B is véges
• ha A megszámlálható, akkor B is megszámlálható
• ha B megszámlálható, A lehet megszámlálhatatlan
• B megszámlálhatatlan, akkor A is megszámlálhatatlan

Tétel 4.0.4 Ha A megszámlálható, valamint B véges és A diszjunkt, akkor A∪B is
megszámlálható.

Bizonyítás 4.3 Tekintsük A elemeinek egy sorbarendezését. Ha |B| = k, akkor az A j.
eleme legyen a (k+ j). elem, és az elejére vegyük 1-től k-ig a B elemeit. Ezzel az új
sorszámozással megadtunk egy bijekciót A∪B és a természetes számok között. �

Ez pontosan az a módszer, melyet a végtelen szálloda esetén is használnak.

Tétel 4.0.5 Véges sok diszjunkt megszámlálható halmaz uniója is megszámlálható.

Bizonyítás 4.4 Legyen k db halmaz. A feladat a k halmaz uniójának sorbarendezése.
Készítsünk egy táblázatot: Az első halmaz elemeit írjuk az 1., a második halmaz elemeit
írjuk a 2., a k. halmaz elemeit a k. sorba (mindegyik sor végtelen sok elemet tartalmaz.)
A racionális számok megszámlálható voltának bizonyításánál látott módon sorolhatjuk
fel e két dimenziós tömb elemeit. �



29

Tétel 4.0.6 Megszámlálhatóan végtelen sok diszjunkt halmaz uniója is megszámlálható.

Bizonyítása az előzőtétel szerint működik, csak nem csak az oszlopok, már a sorok száma
is végtelen.

Tétel 4.0.7 A valós számok halmaza NEM megszámlálható.

Bizonyítás 4.5 — Cantor féle átlós módszerrel. R helyett elegendő valamely részhalmazáról
bizonyítani, hogy nem megszámlálható, hiszen ha egy A halmaznak van megszámlál-
hatatlan részhalmaza, akkor az A halmaz sem megszámlálható. Legyen ez a részhalmaz
a (0,1) intervallum. Erről belátjuk, hogy nem megszámlálható, így R sem. Cantor
féle átlós eljárás: Bebizonyítjuk, hogy a (0,1) intervallum elemei nem megszámlálható
halmazt alkotnak. Bizonyítás: indirekt, tegyük fel, hogy e számok (szakaszos és nem
szakaszos tizedes törtek) sorbarendezhetők: rendezzük is sorba őket és írjuk őket egymás
alá, tizedestört alakban:

r1 = 0,x11,x12,x13,x14,x15, . . . ,x1k, . . .
r2 = 0,x21,x22,x23,x24,x25, . . . ,x2k, . . .
r3 = 0,x31,x32,x33,x34,x35, . . . ,x3k, . . .

...
rn = 0,xn1,xn2,xn3,xn4,xn5, . . . ,xnk . . .

Egy olyan mátrixot kaptunk, melynek xij elemei az i. szám j. szémjegye. KON-
STRUÁLJUNK egy új számot, ami nincs ebben a felsorolásban felírva:

ÚJ_SZÁM i. jegye =
{

1, ha xii 6= 1
0, ha xii = 1

Az új szám nem lehet felírva, mert ez különbizik mindegyik felírt számtól, méghozzá az i.
számtól az i. számjegyben biztosan különbözik - tehát a főátló elemeiben. Nincs felírva,
minimum egy szám létezik, amit nem tudtam bepaszírozni a sorba - nem sorbarendezhető.
�

Az a kérdés, hogyha nem sorbarendezhető, akkor nagyobb-e a számossága, mint a
sorbarendezhető halmazoknak. A válasz érezhető: igen.

Tétel 4.0.8 A valós számok halmaza nagyobb számosságú, mint a természetes számok
halmaza. |R|> ℵ0

Bizonyítás 4.6 Megint lássuk be a (0,1) intervallumra. Legalább megszámlálható, mert
tartalmazza a következő halmazt: {1

2 ,
1
3 , . . .} ⊂ (0,1). De nem egyenlők. Mivel a (0,1)

intervallum számossága nagyobb, mint ℵ0, ezért R számossága is nagyobb. �

Definíció 4.0.3 — Kontinuum számosság. R számossága. Jele: ℘

Egységnégyzet számossága megegyezik a (0,1) számosságával. Ezen Cantor
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maga is meglepődött, mikor azt akarta bizonyítani, hogy nagyobb a számossága.

Bizonyítás 4.7 Vegyük a koordináta pontjait (x,y), mindkét számra igaz, hogy: x,y ∈ (0,1).
Tehát felírhatóak tizedestört alakban, bijekciót fogunk megadni, amely a tizedes törtek
alapján fog megtörténni: vesszük az x első, majd az y első, majd az x második, majd az
y második etc. tizedesjegyeit és egymásmögé pakoljuk. Az lesz a (0,1)-ben levő szám.

x= 0,x1x2x3x4x5, . . . ,xk, . . .
y = 0,y1y2y3y4y5, . . . ,yk, . . .

⇐⇒ r = x1y1x2y2x3y3 . . .

�

Tudjuk, hogy véges számosságú halmaz esetén hatványhalmazának számossága: |H|=
n→ |2H |= 2n.

Bizonyítása kombinatorikai módszerekkel.

Tétel 4.0.9 1. |H|= n→ |2H |= 2n

2. |H|< |2H | ∀H
3. |R|= 2R
4. Megszámlálhatóan végtelen számosságú halmaz hatványhalmaza kontínuum szá-

mosságú. |H|= ℵ0→ |2H |= ℘

4.0.1 Kontinuum Hipotézis
Kontinuum hipotézisnek nevezzük Cantor azon elméletét, hogy az ℵ0 és a kontinuum
számosság között NINCS másik számosság, azaz egymás után jönnek.

Az igazság viszont az, hogy ez a hipotézis se nem támogatható, se nem megcáfolható. A
meglevő axiómarendszerünket a matematikáról nem dönti meg se a hipotézis elfogadása, se
annak tagadása.

Gödel 1940-ben belátta, hogy az elfogadása nem okoz, mond ellent az axiómáknak, majd
Cohen 1963-ban kiegészítette azzal, hogy a tagadása sem mond ellent az axiómáknak. Ez a
gyakorlatban azt jelenti, hogy az axiómarendszerünkbe a hipotézis elfogadása és tagadása is
berakható.



5. Nulladrendű logika

A logika kulcsfontosságú ahhoz, hogy az élet kérdéseiben el tudjunk igazodni, minden gond
nélkül automatikusan. Hasznát többek között programozásban lelitek meg, mikor logikai
vltozókat kell létrehozni és köztük műveleteket összerakni. De ugyanilyen hasznát látja a
biológus is, aki például fehérje-fehérje hálózatokat szeretne megismerni és bioinformatikai
módszerekkel kutatni azt. Sokszor időtspórolhatunk meg, ha egy rendszerre először logikailag
tekintünk rá.

Dr. Bércesné Dr. Novák Ágnes a logikáról: "A logikát, mint a filozófia egy részét, már
az ókori a görög tudósok is igen magas szinten művelték, pl. Platón (Kr. e. 427- Kr. e. 347),
Arisztotelész (Kr.e. 384- Kr. e. 311), Euklidész (Kr. e. 300 körül született). Az ún. matem-
atikai logika azonban csak XIX. században fejlődött ki. Sok világhírű matematikus foglalkozott
logikával, a magyar matematikusok közül pédául Bereczki Ilona, Kalmár László, Neumann
János, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László. E fejezet célja,
hogy mindazon matematikai logikai ismereteket összefoglalja, amelyek alapján megérthetjük
majd a mesterséges intelligenciában alkalmazott, logikai alapú következtető, döntéselőkészítő,
szakértő rendszereket, és logikai alapú programnyelveket, pl. a Prolog Programming in Logic)
nyelvet. A Prolog nyelvnek fontos magyar vonatkozása is van: Szeredi Péter és Futó Iván
fejlesztették ki annak moduláris változatát, amely abban az időben nagy előrelépést jelentett.
Az itt tanultakat a Mesterséges intelligencia tantárgy nemcsak felhasználja, hanem további
fontos ismeretekkel is kiegészíti majd. Mesterséges Intelligencia (MI) igen nagy részének
matematikai alapja a matematikai logika. Az automatizált gyártósorok, robotok működésében
pedig az MI igen nagy szerepet játszik. Az igazság az, hogy az emberi következtetés nem
a logika szabályai szerint történik. Az emberi intuíció az, amit a logika sem tud pótolni,
sőt esetenként a matematikai szigorúság rugalmatlansága akadályozhatja a következtetést.
Ezzel együtt a logika mégis az emberi gondolkodás egyfajta modelljének tekinthető, különösen
a XX. századtól bevezetett újfajta logikák: többértékű, fuzzy, temporális, modális logikák,
melyekben például az igazságértékek az igaz-hamis klasszikus modelltől eltérően finomod-
hatnak (igaz, hamis, részben igaz, A matematikai logikát a gondolkodás tudományának is
nevezik. A matematikai logika fő feladata helyes következtetési sémák kialakítása, helyességük
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bizonyítása. (többnyire igaz, stb.), lehetőség van az időbeliség modellezésére és sok minden
egyéb olyan folyamat leírására, amely a mindennapos gondolkodásunkban előfordulhat. A
Mesterséges Intelligencia nevét onnan kapta, hogy az itt kidolgozott programok, algoritmusok,
módszerek az emberi gondolkodást próbálják utánozni, és a technikában alkalmazhatóvá tenni.
Ez manapság már igen sikeresnek mondható: például az ún. „okos” termékek már mindenki
által elérhetőek. E logikáról szóló fejezetekben tehát megadjuk azokat az alapokat, melyek
segítségével az automatikus tételbizonyítás megérthető. Ez az út azonban nagyon hasznos
szemléletet is ad más intelligens rendszerek működésének megértéséhez. "

5.1 Szintaxis vs Szemantika megértése
A két fogalmat a programozás példáján keresztül kísérlem jobban bemutatni, de a logikában
éppen ehhez hasonlóan működnek.

A szintaxis a nyelv felépítésére vagy nyelvtanára vonatkozik. A szintaxis megválaszolja a
kérdést: hogyan állíthatok elő egy érvényes mondatot? Minden nyelvnek, még az angolnak
és más emberi (más néven "természetes") nyelveknek is vannak nyelvtanjai, azaz olyan
szabályokkal rendelkeznek, amelyek meghatározzák, hogy a mondat helyesen van-e felépítve.

Néhány C nyelvbeli szabály:
• A mondatokat pontosvesszővel válaszd el
• Zárd zárójelek közé az IF (ha) mondat feltételét
• Csoportosíts több állítást egyetlen állítássá bajuszok közé zárással
• Az első futtatható mondat előtt deklaráld a változókat és az adattípusokat
A Szemantika a mondat jelentésével foglalkozik. A szemantika megválaszolja a következő

kérdést, ha a mondat helyes: mit jelent a mondat?
Például:
• x++; // x növelése
• foo(xyz, –b, qrs); // foo meghívása
Szintaktikailag helyes mondatok. De mit jelentenek?
Vegyük figyelembe a ++ operátort az elsõ kijelentésben.
Ha x float adattípus, akkor ennek az állításnak nincs értelme (a C nyelvi szabályok

szerint), és így hiba, még akkor is, ha az állítás szintaktikailag helyes.
Ha x egy pointer valamilyen adattípusra, akkor az utasítás azt jelenti, hogy "adjunk

hozzá az adattípus méretét (sizeof( some data type)) az x cím értékéhez, és az eredményt az
x címen tároljuk".

Ha x egy skaláris, akkor az állítás jelentése "adjon egyet az x címhez tartozó értékhez, és
az eredményt az x címre tárolja".

A ++ operátor példában, ha x már meghaladja az adattípus maximális értékét, mi
történik, amikor megkísérel hozzá 1-et hozzáadni? Egy másik példa: mi történik, ha a
program megkísérel levonni egy NULL értékű pointert?

Összefoglalva: a szintaxis az a fogalom, amely csak arra vonatkozik, hogy a
mondat érvényes-e a nyelv nyelvtanára vagy sem. A szemantika arról szól, hogy
a mondatnak van-e érvényes jelentése és mi az.

R
A különbség érthető megválaszolásához az alábbi linket vettem segítségül és a benne
foglatak lényegét ragadtam ki ebben a részben:
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https://stackoverflow.com/questions/17930267/what-is-the-difference-between-syntax-
and-semantics-in-programming-languages

A borítókép az alábbi cikkből származik: Tasuku Kitada*,†, Breanna DiAndreth*, Brian
Teague*, RonWeiss:Programming gene and engineered-cell therapies with synthetic biol-
ogy, Science 09 Feb 2018: Vol. 359, Issue 6376, eaad1067 DOI: 10.1126/science.aad1067

5.2 Nulladrendű szintaxis
5.2.1 Jelkészlet

• betűk (ítéletváltozók) -atom
• I,H (konstansok) -atom
• ¬,∨,∧,→ (műveleti szimbólumok)
• zárójelek

5.2.2 Formulaképzés
• Minden atom formula
• Ha α,β formula akkor ¬α,α∨β,α∧β,α→ β is formulák
• a fenti két szabály véges sokszori alkalmazásával kapjuk a(z összetett) formulákat
• A magyar betűkkel az atomi formulákat, a görög betűkkel az összetett formulákat

jelöljük.
-

5.3 Függvény vs művelet
Ahhoz, hogy elinduljunk, tudnunk kell, hogy mi a különbség a függvény és a művelet között.
Művelet alkotó folyamat, létrehozol valami újat, a függvény ezzel szemben leíró folyamat
leírod, amit tudsz. Két molekulából lesz egy harmadik az például művelet lehetne, de
függvénynek számít az, ha a molekulához hozzárendelem a molekula súlyát. Ha két színből
kikeverek egy új színt az művelet, de ha adott színhez megadom a html kódját, az egy
függvény.

Természetesen fel lehet fogni a műveletet, mint egy speciális függvényt, ami megmondja,
hogy milyen változók összeművelésére milyen új változót kapok. Például, ha az egész számok
halmazán az egyet és a kettőt összeadom, akkor hármat kapok. De ha az egyet osztom
kettővel, akkor felet kapok (attól még művelet, hogy kimutat az eredeti halmazomból).

Programozás során változókat deklarálhatunk, melyek eltérhetnek a szokványos típusoktól
(string, egész, valós, logikai (bool)) és ezek között definiálhatunk új műveleteket, amik
megmondják, hogy mi lesz a művelettel létrehozott változóm eredménye.
Definíció 5.3.1 — Interpretáció. Azon függvény, amely a betűkkel jelölt változókhoz
hozzárendeli a lehetséges igazságértékek valamelyikét.

n változó esetén száma: 2n

Definíció 5.3.2 — Modell. Azon interpretáció, amelyben a formula igaz.

Tehát a tautológiának minden interpretációja modell, míg a kontradikciónak nincsen
modellje.
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5.4 Logikai és halmaz (bool) műveletek
Azt már tudjuk, hogy a művelet két vagy több változó együtteséből egy új változót hoz
létre, melynek szintén lesz egy adott értéke. Ebben az esetben mivel a nulladrendű logika
esetén binárisan gondolkodunk - azaz a változóink csak két érték közül vehetik fel az egyiket
(IGAZ vagy HAMIS) - ezért véges számú lehetőségünk van, a két eredeti változó értékét
tekintve. Ezeket a lehetőségeket nevezzük interpretációnak. Adott bemenetekre mindig
ugyanazt értékeljük ki. Ha ugyanazt a két dolgot adom össze, mindig ugyanazt a kiértékelést
kapom (1 + 2 = 3). Például, ha lót adok össze szamárral, mindig öszvért kapok.

Ebből adódóan, mivel végesek ezek az interpretációk, a műveleteket definiálhatjuk az
úgyis, hogy megadjuk az összes lehetséges bemenetre a kimenetet, azaz a kiértékelést.

5.4.1 ÉS - Metszet - Konjunkció
Az új változóm értéke, CSAK akkor lesz igaz, ha mindkét bemeneten igaz volt.

A B A∧B
0 0 0
0 1 0
1 0 0
1 1 1

A B

A
B A∧B

5.4.2 VAGY - Unió - Diszjunkció
Az új változóm értéke, akkor lesz igaz, ha LEGALÁBB AZ EGYIK bemeneten igaz volt.

A B A∨B
0 0 0
0 1 1
1 0 1
1 1 1

A B

A
B A∨B
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5.4.3 Kizáró vagy (XOR)

Az új változóm értéke, akkor lesz igaz, ha CSAK AZ EGYIK bemeneten volt igaz.
A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

A B

AB A⊕B

5.4.4 Negáció - Komplementer

A bemenetünk ellenkezőjére változik.
A ¬A
0 1
1 0

A B

A ¬A

5.4.5 Implikáció

Az új változóm értéke, CSAK akkor lesz HAMIS, ha az A bemeneten igaz volt, de a B
bemenetem hamis.

A B A→B

0 0 1
0 1 1
1 0 0
1 1 1
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A B

Az implikáció valójában részhalmazként is felfogható A→B az tekinthető annak is, hogy
A⊂B. Hiszen, ha x ∈A akkor tuti, hogy x ∈B, viszont ha x /∈A, akkor x-ről nem tudjuk
eldönteni, hogy x ∈ B vagy x /∈ B. Ellenben a történelem egy kicsit megtréfált minket,
mert az implikáció másik jelölése: A⊃B. Ez miért alakulhatott ki, számunkra hibásan? A
történelem folyamán a logikát és a halmazelméletet az elején külön kezelték. Logika során
mondatokat próbáltak meg formalizálni, így jött létre, az ∃ szimbólum is, mely az exist
szó első E betűjének megfordítása, majd megalkották a is contained in jelét is, mely C
betűjének megfordítása. Így ragadt ránk ez a látszólag hibás jelölés.

R
Erről az alábbi oldalon tájékozódhatunk: https://math.stackexchange.com/questions/1146443/is-
there-any-connection-between-the-symbol-supset-when-it-means-implication-a

A→B ≡ ¬A∨B
A
B ¬A∨B

5.4.6 Ekvivalencia
Akkor igaz, ha a változók azonos értékűek. (A két halmaz megegyezik.) Könnyen látható,
hogy a kizáró vagy negáltja.

A B A↔B

0 0 1
0 1 0
1 0 0
1 1 1

A B

5.5 Műveletek tulajdonságai (Bool Algebra)
Definíció 5.5.1 — Ekvivalens formulák. Két formula ekvivalens, akkor és csak akkor, ha
igazságértékük minden interpretációban megegyezik.
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Tétel 5.5.1 — Az ekvivalencia ekvivalencia reláció (azaz partíciót alkotnak).
• α≡ α reflexív
• α≡ β⇔ β ≡ α szimmetrikus
• α≡ β∧β ≡ γ⇒ α≡ γ tranzitív

Mivel újfajta műveletekről beszélünk, nem elhanyagolható azok tulajdonsága is. Például
az implikáció az nem megfordítható művelet, hiszen:ha eszem, akkor iszom, az nem ugyanaz,
mint ha iszom, akkor eszem.

5.5.1 Konjunkció

1. Felcserélhető/Kommutatív A∧B ≡B∧A
2. Csoportosítható/Asszociatív (A∧B)∧C ≡A∧ (B∧C)
3. Kiesés A∧ (A∨B)≡A
4. Hamissal éselés továbbra is hamis: 0∧A≡ 0
5. ÉS disztributív a VAGYra nézve: A∧ (B∨C)≡ (A∧B)∨ (A∧C)
6. Önmaga éselése Önmaga negáltjával kontradikció (mindig hamis) A∧¬A≡ 0

5.5.2 Diszjunkció

1. Felcserélhető/Kommutatív A∨B ≡B∨A
2. Csoportosítható/Asszociatív (A∨B)∨C ≡A∨ (B∨C)
3. Kiesés A∨ (A∧B)≡A
4. Igazzal vagyolás továbbra is igaz: 1∨A≡ 1
5. VAGY disztributív az ÉSre nézve: A∨ (B∧C)≡ (A∨B)∧ (A∨C)
6. Önmaga vagyolása Önmaga negáltjával tautológia (mindig igaz) A∨¬A≡ 1

5.5.3 Konjunkció tulajdonságainak belátása igazságtáblával

1. A∧B ≡B∧A
A B A∧B B∧A
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

2. (A∧B)∧C ≡A∧ (B∧C)
A B C A∧B (A∧B)∧C
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

ÉS
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A B C B∧C A∧ (B∧C)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

A két végeredmény minden interpretációban megegyezik, azaz a két oldal ekvivalens.
3. A∧ (A∨B)≡A

A B A∨B A∧ (A∨B)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

Az A valóban megegyezik minden interpretációban a legutolsó oszloppal.
4. 0∧A≡ 0

A B 0∧A
0 0 0
0 1 0

5. A∧ (B∨C)≡ (A∧B)∨ (A∧C)
6. A∧¬A≡ 0

5.6 Formalizálás
A formalizálás során matematikai nyelvre megfogalmazzuk, az adott kijelentéseket.

Kijelentés Formula
Tanulok és dolgozom t∧d
Eszem vagy iszom e∨ i

Vagy játszom vagy tanulok j⊕ t
Ha esik, hozok esernyőt e→ h
Nem olvasok könyvet ¬o

5.7 Normálformák
A normálformák célja, hogy adott sorrendben végezzük el az adott műveleteket.

Konjunktív normálforma esetén utoljára éselünk, diszjunktív normálforma esetén
viszont utoljára vagyolunk. Az utóbbinak jelentősége pl az FPGA programozásnál van.

Minden kifejezésnek létezik a konjunktív vagy diszunktív normálformája. Ezeket ek-
vivalens átalakításokkal tudjuk elérni. Az átalakítások Konjunktív NormálFormára a
következők:

Művelet Átalakított forma
A⊕B (A∨B)∧ (¬A∨¬B)
A↔B (A→B)∧ (B→A)
A→B ¬A∨B

A∨ (B∧C) (A∨B)∧ (A∨C)
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5.7.1 Konjunktív Normálforma

(L1∨¬L2)∧ (L2∨L3∨L4)∧ (L1∨L3)

Amiket összeéselünk egymással, klózoknak hívjuk (zárójelek). A zárójeleken belüli elemi
változókat pedig lietrálnak, ezek tagadhatóak.

Vannak Normálformák: Konjunktív NormálForma: alap műveleteink vannak már
csak, a tagadása a legkisebb változónak, valamint előbb a vagy művelet majd utoljára az ÉS
műveletet végezzük el (konjugáljuk, összekapcsoljuk) Azaz a Klózok között ÉSek vannak.

KNF-re hozás lépései:
1.

A⊕B I ¬(A≡B)

2.
A≡B I (A→B)∧ (B→A)

3.
A→B I ¬A∨B

4. Disztribúciók és tagadások(DeMorgan)

5.7.2 Diszjunktív Normálforma

(L1∧¬L2)∨ (L2∧L3)∨ (L1∧L3∧L4)

Itt a klózokban ések vannak, a klózok között pedig vagyok. Diszjunktív NormálForma
esetén előbb éselünk és utoljára VAGYolunk (A klózok között VAGYok vannak).

5.8 Kifejezések tautológiájának bizonyítása Rezolúcióval

Ekkor azt akarjuk belátni, hogy adott kifejezés minden interpretációban igaz (azaz tautoló-
gia). Indirekt bizonyítást alkalmazunk, azaz a kifejezés negáltjáról bizonyítjuk be, hogy
kontradikció (minden interpretációban hamis).

1. Kifejezés negálása
2. Konjunktív normálformára hozás
3. kiejtéses módszer (rezolúció lényege)
Rezolúció gyakorlati lépései:
1. Formalizáció
2. Premisszák (feltételek) egymás alá írva
3. Premisszák KNF-re hozása
4. Következmény tagadása
5. Tagadott következmény KNF-re hozása
6. Klózok egymás alá írása
7. Kiejtegetés
8. NIL - üres klóz
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5.8.1 Példa mint kifejezés
(A∧ (A→B))→B

Ezt a kifejezést kell tagadnunk és konjunktív normálformára hoznunk, azaz:

¬((A∧ (A→B))→B)≡ ¬(¬(A∧ (A→B))∨B)≡
≡ ¬(¬(A∧ (¬A∨B))∨B)≡ ¬((¬A∨¬(¬A∨B))∨B)≡
≡ ¬((¬A∨ (A∧¬B))∨B)≡ ¬(¬A∨ (A∧¬B))∧¬B ≡
≡ (A∧¬(A∧¬B))∧¬B ≡ (A∧ (¬A∨B))∧¬B ≡

≡A∧ (¬A∨B)∧¬B
Majd a Három klózt leírnunk és kiejtenünk, ami kiesik.

2

¬BB

¬A∨BA

Figure 5.1: Rezolúciós gráf: Tehát valóban azt kapjuk, hogy a kifejezésünk tagadása
kontradikció, hiszen üres klózt (NIL) kapunk. Ebből adódóan az eredeti kifejezés tautológia.

5.9 Logikai következmény fogalma
Definíció 5.9.1 Adott formula logikai következménye feltételeinek (premisszáinak), akkor
és csak akkor, ha legalább ott igaz, ahol a feltételek együtt igazak.

5.9.1 Szintaktikai vs Szemantikai következmény
Szintaktikai következmény: valójában megfogható úgy is, hogy a nyelv nyelvtanjából

fakadó átalakításokkal levezethető, adott kifejezésből egy másik kifejezés. Valójában a
matematikai műveletek és azonosságok alkalmazásával alakítjuk át a kifejezést anélkül,
hogy kiértékelnénk, azaz értelmeznénk, mit is jelent a mondat. Például: "It is great"
mondatot átalakíthatjuk úgy, hogy "It’s great" . Látszik, hogy az előzőből a második
állítás következik, de valójában nem kell tudnom a mondat jelentését ahhoz, hogy ezt
az átalakítást elvégezzem: csak használtam az "it’s = it is" azonosságot.

Szemantikai következmény: Ebben az esetben nem matematikai átalakításokkal jutunk
a következtetésünkhöz, hanem az állításaink jelentéstartalmát felhasználva jutunk
el oda. Például: "The man was the first in the game.", "The first player get golden
medal" következménye lehet, hogy "The man got the golden medal". Anélkül, hogy
értelmeznénk a jelentését a mondatoknak ezt a következtetést nem tudnánk levonni.
A logikai következmény egy függvény, mely egy vagy több logikai kifejezéshez egy
másikat rendel hozzá, adott logika alapján. Ez a logika pedig az, hogy a kifejezések
együttes IGAZ állása során (tehát és elve a feltételeket (premisszákat)) a következtetés-
nek is IGAZnak kell lennie, minden esetben. Tehát a következmény legalább ott
IGAZ, ahol a feltételek IGAZak.
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5.9.2 Basic következtetési sémák (innentől szemantikai)

A kapcsos zárójelben vesszővel elválasztva a feltételeink, premisszáink vannak, a furcsa
eyenlőség jel jobb oldalán pedig a következtetésünk. Mind a feltételek mind a következtetések
adott mondatok, formulák.

1. Modus ponens {A→B,A} |=B
2. Modus tollens {A→B,¬B} |= ¬A
3. Diszjunktív szillogizmus{A∨B,¬A} |=B
4. Hipotetikus szillogizmus{A→B,B→ C} |=A→ C
5. Konstruktív dilemma {A∨B,A→ C,B→D} |= C ∨D

5.9.3 A logikai következmény mikor helyes?

Tétel 5.9.1 — Logikai következmény helyességéről:. α |= β logikai következmény akkor és
csak akkor HELYES, ha α→ β logikai művelet tautológia (∀ interpretációban IGAZ).

Bizonyítás 5.1 A bizonyítást konstruktívan oldjuk meg, amihez fel fogjuk használni a
logikai következmény definícióját és az implikáció igazságtábláját.

A B A→B
0 0 1
0 1 1
1 0 0
1 1 1

A szemantikai következmény definíciója alapján B akkor következménye A-nak, hogyha
legalább ott igaz, ahol az A igaz. Ez a táblázatban három sort (interpretációt jelent),
egyedül a harmadik sorra nem igaz, emiatt azt az interpretációt nem kell figyelembe
vennünk. Ekkor a maradék interpretációban minden esetben az implikáció értéke IGAZ.
Tehát, ha minden esetben az A→B implikáció értéke IGAZ, azaz tautológia, akkor a B
logikai következmánye A-nak és fordítva is.

�

Tétel 5.9.2 — Logikai következmény helyességéről 2:. α |= β logikai következmény akkor
és csak akkor HELYES, ha α∧¬β formula kontradikció (∀ interpretációban HAMIS).

Bizonyítás 5.2 A logikai következmény helyességéről tételt felhasználva a tautológia
tagadása kontradikció (ellentmondás - ∀ interpretációban HAMIS). Az implikáció tagadása
pedig a következő:

¬(α→ β)≡ ¬(¬α∨β)≡ α∧¬β

Tehát rezolúció során (ami indirekt bizonyítás) valójában azt fogjuk belátni, hogy
α∧¬β kifejezés kontradikció.

�
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Miért indirekt bizonyítás a rezolúció
Azért indirekt bizonyítás, mert adott a második tételünk, miszerint: α∧¬β kontradikció.
De mi megpróbáljuk igazzá tenni, viszont jó esetben nem sikerül - mert meglátjuk, hogy
igazzá akarjuk tenni, de mégsem lesz az.

Mikor van vége a rezolúciónak?
Ha találunk egy üres klózt - tehát nem kell feltétlenül mindenkinek kiesnie. Ha már üres
klózt sikerült kihozni, akkor már meg vagyunk.

Modus ponens {A→B,A} |=B

P1 Ha alszom, akkor kipihent vagyok.
P2 Alszom.
K Kipihent vagyok.

Bizonyítás 5.3 — Definíció alapján. Definíció alapján igazságtáblával tudjuk belátni, azaz
a séma jobb oldalának legalább ott igaznak kell lennie, ahol a bal oldala igaz.

A B A→B A∧ (A→B)
0 0 1 0
0 1 1 0
1 0 0 0
1 1 1 1

Láthatjuk, hogy az utolsó interpretáció az egyetlen kérdéses interpretáció, mert a
bal oldal csak akkor igaz. Ebben az esetben viszont a jobb oldal, a B is igaz. Tehát a
definíció teljesül �

Bizonyítás 5.4 — A főtételt igazságtáblával csekkolva. Az előző igazságtáblát kibővítettem
az implikáció oszlopával.

A B A→B A∧ (A→B) (A∧ (A→B))→B
0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

Ekkor valóban látszik, hogy

minden interpretácó megállja a helyét, azaz a bal oldala a sémának implikálva a
következtetéssel tautológia. �

A rezolúciós bizonyítások NEM VALÓDI BIZONYÍTÁSOK - csak szemléltetés, hiszen
ezeket a sémákat használjuk rezolúciónál - tehát önmagával nem bizonyíthatom (ezeket a
megnevezett következtetési sémákat)! Az igazságtáblás bizonyítás teljes értékű.

Bizonyítás 5.5 — rezolúció. Lássuk be, hogy helyes a következtetési séma. a Alszom.
k Kipihent vagyok.

Formalizálnunk kell, majd először a premisszákat Konjunktív NormálFormára kell
hoznunk.
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P1 a→ k ≡ ¬a∨k
P2 a
K k

Tagadni kell a következményt, tehát ¬K : ¬k lesz. Ekkor meg vannak a klózaink.
Ezeket kell egymás alá vagy egymás mellé írni, hisz a klózok között most ÉS kapcsolat
van.

2
k

¬a∨k
a

¬k
�

Modus tollens {A→B,¬B} |= ¬A

P1 Ha alszom, akkor kipihent vagyok.
P2 Nem vagyok kipihent.
K Nem alszom.

Bizonyítás 5.6 — Definíció alapján.

A B ¬B A→B (A→B)∧¬B ¬A
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 0 0
1 1 0 1 0 0

A kérdéses

interpretáció csupán az első interpretáció, mert a feltételek ott igazak csak (utsó előtti
oszlop). A következtetés ebben az interpretációban szerencsére igaz. �

Bizonyítás 5.7 — rezolúció. a Alszom.
k Kipihent vagyok.

Lássuk be, hogy helyes a következtetési séma. Formalizálnunk kell, majd először a
premisszákat Konjunktív NormálFormára kell hoznunk.

P1 a→ k ≡ ¬a∨k
P2 ¬k
K ¬a

Tagadni kell a következményt, tehát ¬K : a lesz. Ekkor meg vannak a klózaink.
Ezeket kell egymás alá vagy egymás mellé írni, hisz a klózok között most ÉS kapcsolat
van.

2
¬a

¬a∨k
¬k

a

�

Diszjunktív szillogizmus {A∨B,¬A} |=B

P1 Eszem vagy iszom.
P2 Nem eszem.
K Iszom.
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Bizonyítás 5.8 — Definíció.

A B ¬A A∨B ¬A∧ (A∨B)
0 0 1 0 0
0 1 1 1 1
1 0 0 1 0
1 1 0 1 0

Látjuk, hogy a feltételek együtt egyedül csak a második interpretációban igazak, és
itt szerencsére a következtetés (B) is igaz. �

Bizonyítás 5.9 — rezolúció. e Eszem.
i Iszom. Lássuk be, hogy helyes a következtetési séma.

Formalizálnunk kell, majd először a premisszákat Konjunktív NormálFormára kell hoz-
nunk.

P1 e∨ i
P2 ¬e
K i

Tagadni kell a következményt, tehát ¬K : ¬i lesz. Ekkor meg vannak a klózaink.
Ezeket kell egymás alá vagy egymás mellé írni, hisz a klózok között most ÉS kapcsolat
van.

2
¬i

i
¬e
e∨ i

�

Hipotetikus szillogizmus {A→B,B→ C} |=A→ C

A hipotetikus szillogizmus gyakorlatilag az implikáció tranzitív tulajdonságát mutatja be.
P1 Ha esik a hó, akkor fázom.
P2 Ha fázom, akkor kabátot veszek fel.
K Ha esik a hó, akkor kabátot veszek fel.

Bizonyítás 5.10 — Definíció alapján. Nézzük meg az igazságtáblát.
A B C A→B B→ C (A→B)∧ (B→ C) A→ C
0 0 0 1 1 1 1
0 0 1 1 1 1 1
0 1 0 1 0 0 1
0 1 1 1 1 1 1
1 0 0 0 1 0 0
1 0 1 0 1 0 1
1 1 0 1 0 0 0
1 1 1 1 1 1 1

A feltételek együttese itt már több interpretációban is igaz, de szrerencsére minden
ilyen interpretációban a következtetésünk is igaz. �
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Bizonyítás 5.11 — rezolúcióval.
h Havazik.
f Fázom.
k Kabátot veszek fel.

Lássuk be, hogy helyes a következtetési séma. Formalizálnunk kell, majd először a
premisszákat Konjunktív NormálFormára kell hoznunk.

P1 h→ f ≡ ¬h∨f
P2 f → k ≡ ¬f ∨k
K h→ k

Tagadni kell a következményt, tehát ¬K :¬(h→ k)≡¬(¬h∨k)≡ (h∧¬k) lesz. Ekkor
a következtetés klózai a h és a ¬k. Ezeket kell egymás alá vagy egymás mellé írni, hisz a
klózok között most ÉS kapcsolat van.

2

k

¬h∨k
¬f ∨k

¬h∨f

h

¬k
�

Konstruktív dilemma {A∨B,A→ C,B→D} |= C ∨D
P1 Alszom vagy tanulok.
P2 Ha alszom, akkor kipihent vagyok.
P3 Ha tanulok, akkor ötöst kapok DM-ből.
K Kipihent vagyok vagy ötöst kapok DM-ből.

Bizonyítás 5.12 — Definíció alapján.

A B C D P1 P2 P3 P1∧P2∧P3 C ∨D
0 0 0 0 0 1 1 0 0
0 0 0 1 0 1 1 0 1
0 0 1 0 0 1 1 0 1
0 0 1 1 0 1 1 0 1
0 1 0 0 1 1 0 0 0
0 1 0 1 1 1 1 1 1
0 1 1 0 1 1 0 0 1
0 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 0 0
1 0 0 1 1 0 1 0 1
1 0 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 0 0 1 0 0 0 0
1 1 0 1 1 0 1 0 1
1 1 1 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1

�
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Bizonyítás 5.13 — Rezolúció.

a Alszom.
t Tanulok.
k Kipihent vagyok.
ö Ötöst kapok DM-ből.

Lássuk be, hogy helyes a következtetési séma. Formalizálnunk kell, majd először a
premisszákat Konjunktív NormálFormára kell hoznunk.

P1 a∨ t
P2 a→ k ≡ ¬a∨k
P3 t→ ö≡ ¬t∨ö
K k∨ö

Tagadni kell a következményt, tehát ¬K :¬(k∨ö)≡¬k∧¬ö lesz. Ekkor a következtetés
klózai a ¬k és a ¬ö. Ezeket kell egymás alá vagy egymás mellé írni, hisz a klózok között
most ÉS kapcsolat van.

2

¬a
¬k
¬a∨k

a
a∨ t

¬t
¬ö
¬t∨ö

�

5.9.4 Szokásos axiómarendszer nulladrendben (vannak más axiómarendszerek is):
Axiómarendszer olyan állítások rendszere, melyek igazságát konszenzus alapján bizonyítás
nélkül elfogadjuk és az axiómákat alkalmazva vezetünk le egyéb összefüggéseket.

1. α→ (β→ α)
2. (α→ (β→ γ))→ ((α→ β)→ (α→ γ))
3. (¬α→ β)→ ((¬α→¬β)→ α)

5.9.5 Ellentmondásos rendszer
Tétel 5.9.3 Ellentmondásos rendszerből minden is levezethető. {α,¬α} |= β

Azaz ha egy érvelés során egy α mondatot elfogadunk, de elfogadjuk a tagadását, vagyis
’nem α’-t is, akkor innentől kezdve akármelyik β mondatot el kell fogadnunk. Az ’α és ¬α’
ellentmondásból ugyanis bármi és bárminek az ellenkezője is következik.

Bizonyítás 5.14 Az összekötögetéseknél a Modus Ponens következtetést használom min-
denhol.
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Premissza (feltétel):¬α

1. axióma: ¬α→ (¬β→¬α)

Premissza(feltétel): α

1. axióma: α→ (¬β→ α)

3. axióma: (¬β→¬α)→ ((¬β→ α)→ β)

¬β→¬α

¬β→ α

(¬β→ α)→ β)

β

�





6. Elsőrendű logika

Az elsőrendű logika a nulladrendű logika kibővítése komplexebb folyamatok, összefüggések
megértése céljából. Minden, amit a nulladrendű logikában megtanultunk továbbra is
érvényesek maradnak.

A leglényegesebb különbség, hogy mostmár az elemi állításainkat alanyokhoz is tudjuk
társítani. Azaz adott egy H halmaz, melynek vannak elemei. Háromféle dolgot tudunk
megkülönböztetni:

1. a halmaz minden eleméről beszélünk,
2. van olyan eleme a halmaznak, akiről beszélünk
3. és hogy egy konkrét elemről beszélünk.
A jelkészletünk ezeket megjelenítendő a következőképpen változik:
• Prédikátum: P(x) - állítás, mely az x ∈ U elemre vonatkozik
• ∀x - Univerzális kvantor, azt jelenti, hogy az x változó az univerzum minden elemére
vonatkozik
• ∃x - Egzisztenciális kvantor, azt jelenti, hogy van olyan eleme az Univerzumnak, akit
x-nek jelölünk.
• Konstans - Az Univerzum egy konkrét elemére vonatkozik
• Függvény f(x) - Az univerzum elemei által egy másik elemre vonatkozik pl valakinek a
kutyája.

6.1 Szintaxis:
• változószimbólumok:x, y, z. . .
• konstansszimbólumok: a, b, c,
• prédikátumszimbólumok (állítás) – Jel: P, Q, S . . .
• függvényszimbólumok: f, g
• logikai összekötók (logikai műveletek jelei): ∧,∨,¬,→
• kvantorok: ∀,∃
• zárójelek: (, )
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6.2 Kvantorok hatásköre és tulajdonságai
Megállapodás alapján a kvantorok hatásköre mindig a közvetlenül utána jövő prédikátumig
tart. Azaz ∀xP (x). Ha a hatáskört több prédikátumra is ki szeretnénk fejteni, akkor
zárójelezéssel tudjuk megtenni, ekkor a közvetlenül utána jövő zárójelig tart pl: ∃x(P (x)∧
Q(x)).
• ∀x∀y ugyanaz, mint ∀y∀x
• ∃x∃y ugyanaz, mint a ∃y∃x
• ∃x∀y NEM ugyanaz, mint ∀y∃x
• ∃x∀ySzeret(x,y) : “Van olyan ember, aki mindenkit szeret a világon.”
• ∀y∃xSzeret(x,y) : “Mindenkit szeret legalább egy ember.”
• Kvantor dualitás: egymásból kifejezhetőek (DeMorgan1) ∀xSzeret(x,JégKrém) ≡
¬∃x¬Szeret(x,JégKrém) ∃xSzeret(x,Brokkoli)≡ ¬∀x¬Szeret(x,Brokkoli)

6.3 Term
A term, azaz kifejezést az Individumváltozókra és a konstansokra értjük. Ezek az Univerzum
adott elemeire vonatkoznak. Ha t1, t2, . . . , tn kifejezés, és f „n” változós fv.szimbólum, akkor
f(t1, t2, . . . , tn) is kifejezés (függvény argumentumaiba írhatunk változókat, konstansokat, de
beágyazhatók függvényértékekek is).

A termek vagy prédikátumszimbólumok, vagy függények argumentumaiban
fordulhatnak elő, önállóan nem.
Definíció 6.3.1 — Atomi formulák. Ha a P „n” argumentumú prédikátumszimbólum, és
t1, t2, ·, tn termek, akkor P (t1, t2, · · · , tn) atomi formula. A nulla argumentumos prédiká-
tumszimbólumot az ítéletváltozóknak feleltetjük meg. Ily módon az elsőrendű logika a
nulladrendű kiterjesztése.

6.4 Prenex és Skólem Normálformára hozás gyakorlati lépései:
1. Kizáróvagy eliminiálása
2. Ekvivalencia eliminálása
3. Implikáció eliminálása
4. DeMorgan1 ¬∀xP (x)≡ ∃x¬P (x) vagy ¬∃xP (x)≡ ∀x¬P (x)
5. DeMorgan0
6. Változók standardizálása

(a) Átnevezni minden kvantor utáni változót különbözőre (kivéve, ha disztribúció él -
∀ disztributív ∧-re ∃ disztributív a ∨-ra.)

7. Kvantorok kiemelése (prenex)
8. Skólemizálás (Létezik kvantor kiküszöbölése)

(a) Skolem konstans
(b) Függvény (függ egy vagy több univerzálisan kvantált változótól (ha a létezik

adott mindenek után van))

6.5 Rezolúció elsőrendben
A rezolúció hasonlóan működik mint elsőrendben, csak most Skólem Normálformára kell
hoznunk a kifejezéseket - ekkor elértük, hogy minden bennmaradt változó univerzálisan
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kvantált, egyébként függgvények és konstansok vannak benne.
Ahhoz, hogy ki tudjuk ejtegetni a tagokat, egységesen kell kinézniük azoknak (a tagadást

leszámítva), ehhez az un. egységesítő behelyettesítést kell elvégezni.
Definíció 6.5.1 — Egységesítő helyettesítés. Amennyiben egy azonos predikátum szim-
bólummal kezdődő literálok argumentumai nem egyformák, megvizsgáljuk, hogy van-e
olyan helyettesítés, amely egyforma argumentumokat eredményez. Az ilyen helyettesítést
illesztő vagy egységesítő vagy egyesítő helyettesítésnek nevezik.

6.6 Az elsőrendű nyelv szokásos használata
Definíció 6.6.1 — Nyelv. Prédikátumok halmazából és függvények halmazából áll.

Az elsőrendű nyelv tulajdonképpen matematikai struktúrák leírására jött létre. Használata
kétírányú: Lehet, hogy adott formulának keresünk modellt. Lehet azonban, hogy meglévő
elméletet vagy matematikai struktúrát szeretnénk formalizálni. Ekkor fel kell tárni a struk-
túrában használt műveleteket őket függvényekkel írjuk le. A műveleteket azért írjuk le
függvénnyel, mert a logikában a függvény az adott alanyhoz rendel egy másik alanyt, akiről
majd beszélhetünk - a művelet is ezt csinálja, adott elemekhez rendel egy másik elemet.
Szintén felmérjük a relációk tulajdonságait, őket prédikátumokkal írjuk le, hiszen az alanyok
kapcsolatáról állítunk valamit. Ha ezeket felmértük és leírtuk, akkor elsőrendű nyelven meg
is tudjuk fogalmazni a tulajdonságokat.

6.6.1 Abel-csoport leírása elsőrendű nyelven
• Predikátum: az egyenlőség, jele: =
• Függvények:

– e: kiválasztja az adott nemüres Halmazból az egységelemet,
– i(x): baloldali inverze x ∈H -nak,
– f(x,y): a csoportművelet, amely az adott H nemüres halmaz minden a,b ∈ H

eleméhez hozzárendel egy másik H-beli elemet, c-t. f(a,b) = c.
A csoportelmélet axiómái ezen az elsőrendű nyelven megfogalmazva:
1. f(f(a,b), c) = f(a,f(b,c)) asszociativitás
2. f(e,a) = a bal egység
3. f(i(b), b) = e bal inverz
4. f(a,b) = f(b,a) kommutatív





7. Struktúrák

Amikor egy adott objektumot hozunk létre pl programozás során, akkor általában azért
tesszük, hogy a későbbiekben dolgozzunk velük, azaz műveletek végezzünk el az objek-
tumainkkal. A létrehozott struktúra vagy osztály esetén az adott példányok elemei egy
halmaznak, amely összefoglalja az összes példányát az adott struktúrának. Ezen halmazbeli
elemek között szeretnénk műveleteket vagy függvényeket definiálni. Szerencsére vannak
egységesítő fogalmaink, függetlenül attól, hogy ténylegesen miket takarnak a példányok és a
műveletek, lehetnek azok kutya, macska vagy akár autó is és köztük lehet ezerféle dolog a
művelet. Viszont ha veszünk egy halmazt és hozzá egy vagy több műveletet, akkor azoknak
a műveleteknek lesznek tulajdonságai is. Adott tulajdonságú műveletekkel rendelkező halma-
zokat fogunk adott struktúrának nevezni. Így függetlenül a tényleges objektumokról, valaki
azt mondja, hogy egy gyűrűt programozott le, mindenki fogja érteni, milyen tulajdonságokat
elégítenek ki a példányok és a köztük meghatározott műveletek. Ebből adódóan egyenle-
trendezéseket tud végrehajtani velük könnyedén, adott tulajdonságokat ismerve. Ennek a
fejezetnek az a célja, hogy ezeket az elemi és összetett struktúrákat rövideb bemutassa és
példákat adjon rá.

7.1 Struktúra és művelet általános fogalma
Definíció 7.1.1 — Művelet. Tekintsük a "matematikai" objektumok egy H halmazát. A
művelet olyan függvény, amely az adott objektumok halmazából vett objektum(ok)hoz
egy (másik) halmazbeli objektumot rendel.

Definíció 7.1.2 — Egyváltozós/unáris művelet. Az f művelet unáris, ha egy objektumhoz
egy (másik) objektumot rendel. f :H →H.

Definíció 7.1.3 — Kétváltozós/bináris művelet. Az f művelet bináris művelet, ha az f
függvény értelmezési tartományaDf ⊆H×H, értékkészlete Rf ⊆H. Azaz f :H×H→H

(Rendezett objektumpárhoz, rendel egy másik objektumot.)
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Definíció 7.1.4 — n-változós művelet. Olyan művelet, melynek az értelmezési tartománya:
Df ⊆H×H×·· ·×H =Hn és értékkészlete: Rf ⊆H. Azaz: f :Hn→H.

Definíció 7.1.5 — Algebrai struktúra. Olyan nem üres H halmaz, amelyben legalább egy *
művelet van definiálva. Jele: <H|∗> , több művelet esetén:<H|∗,◦, · · ·>

Definíció 7.1.6 — Összetett algebrai struktúra. függvényekkel összekötött több algebrai
struktúra. Például: vektortér.

7.2 Műveleti tulajdonságok
Definíció 7.2.1 — Asszociatív (csoportosítható). Egy H-n értelmezett * bináris művelet
asszociatív, ha bármely a,b,c ∈H-ra teljesül, hogy: a∗ (b∗ c) = (a∗ b)∗ c

Definíció 7.2.2 — Kommutatív (felcserélhető). Egy H-n értelmezett * bináris művelet
kommutatív, ha bármely a,b ∈H-ra teljesül, hogy: a∗ b= b∗a

Definíció 7.2.3 — Baloldali egységelem. A H halmazon értelmezett * bináris művelet bal
oldali egységelemének egy olyan eb ∈H elemet nevezünk, melyre ∀a ∈H esetén teljesül,
hogy eb ∗a= a.

Tétel 7.2.1 Legyen értelmezve H-n egy * bináris, asszociatív művelet. Ha a kétoldali
egységelemek léteznek, akkor eb = ej = e, vagyis az egység kétoldali és egyértelmű.

Bizonyítás 7.1 eb ∗ej = ej baloldali egységelem definíciója miatt és eb ∗ej = eb a jobboldali
egységelem definíciója miatt, tehát eb = eb ∗ej = ej �

Definíció 7.2.4 — (Kétoldali) egységelem. Az e ∈H elem a * bináris művelet egységeleme,
ha mind bal- mindpedig jobboldali egységelem. Azaz ∀a ∈He∗a= a∗e= a.

Definíció 7.2.5 — Balinverz. Az a ∈ H elem * bináris műveletre vonatkozó bal oldali
inverze, egy olyan a−1

b ∈H elem, melyre a−1
b ∗a= e, ahol az e a * művelet egysége.

Definíció 7.2.6 — (Kétoldali) inverz. Az a ∈H elem inverze, egy olyan a−1 ∈H elem, az
a-nak mind bal, mindpedig jobboldali inverze. Azaz: a−1 ∗a= a∗a−1 = e, ahol az e a *
művelet egysége.

Tétel 7.2.2 Legyen értelmezve H-n egy * bináris, asszociatív művelet. Ha a kétoldali
inverzek léteznek, akkor a−1

b = aj−1 = a−1, vagyis az inverz kétoldali és egyértelmű
asszociatív művelet esetén.

Bizonyítás 7.2

a−1
b = a−1

b ∗e= a−1
b ∗ (a∗a−1

j ) = (a−1
b ∗a)∗a−1

j = a−1
j
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Definíció 7.2.7 — Disztributív. A H halmazon értelmezett * művelet disztributív a H
halmazon értelmezett ◦ műveletrenézve, ha bármely a,b,c ∈H-ra a∗ (b◦ c) = a∗ b◦a∗ c
és (b◦ c)∗a= b∗a◦ c∗a teljesül.

7.3 Fontos struktúrák
Az itt megadott definíciókat szokás axiomatikus definícióknak nevezni.

7.3.1 Félcsoport - Semigroup
Definíció 7.3.1 — Félcsoport. Egy G nem üres halmazt félcsoportnak nevezünk, ha
értelmezve van G-n egy * bináris művelet, amely asszociatív. ∀a,b,c ∈ G (a ∗ b) ∗ c =
a∗ (b∗ c)

Például az n×n-es mátrixok a szorzásra nézve félcsoportot alkotnak.
Példa: Legyen a H halmaz adott karakterekből összerakott összes lehetséges stringek

halmaza. H = {”a”,”b”,”c”,”d”,”ab”,”ba”, . . . ,”aaa”,”aaab”, . . .}. A művelet legyen az
összefűzés (concatenate), azaz két stringet egymás mellé fűzve létrehozunk egy újabb
stringet. Az asszociativitást egy példán keresztül mutatom meg:

concatenate(concatenate("alma","fa"),"ház")=concatenate("alma",concatenate("fa","ház"))
Az eredmény mindkét esetben az "almafaház".

7.3.2 Csoport - Group
Definíció 7.3.2 — Csoport. Egy G nemüres halmazt csoportnak nevezünk, ha értelmezve
van G-n egy * bináris művelet, amely

1. asszociatív: ∀a,b,c ∈G (a∗ b)∗ c= a∗ (b∗ c)
2. létezik egységelem: ∃e ∈G ∀a ∈G e∗a= a
3. létezik inverz elem: ∀a ∈G∃a−1 ∈G, a−1 ∗a= e

Például: Az egyik legkorábbi titkosítási protokoll, a Caesar rejtjel, (nagyon egysz-
erű) csoportműveletként is értelmezhető. A legtöbb kriptográfiai séma valamilyen módon
használja a csoportokat. Különösen a Diffie – Hellman kulcscsere véges ciklikus csopor-
tokat használ. Tehát a csoport-alapú kriptográfia kifejezés elsősorban olyan kriptográfiai
protokollokra utal, amelyek végtelen nem-abelian csoportokat használnak.

A Caesar eltolás lényege, hogy egy adott szót úgy kódolunk, hogy adott számmal eltoljuk
az ABC-ben a betűket. Például +3-as eltolással kapjuk: "ALMA" → "DOPD". Az angol
ABC-t vegyük alapul, ekkor 26 féle eltolásunk lehetséges. Legyen a H halmaz az adott
számú eltolás, a rajta értelmezett művelet pedig az eltolások összefűzése, tehát többször
alkalmazzuk a Caesar-eltolást nem feltétlenül ugyanazzal az értékkel. Csoportot alkot,
hiszen:

1. zárt: Ha eltolom egy adott számmal (legyen a) a betűket, majd ezt megismétlem egy
másik számmal (legyen b), akkor valójában továbbra is egy Caesar-eltolást hajtottunk
végre a+ b számú eltolással. (Értelem szerűen, ha túlcsordul a 26-n, akkor az megfelel
annak, ahova érkezik, pl 26. eltolás a nulladik eltolásnak, 27. eltolás az 1. eltolásnak.)

2. Asszociatív: (S +3−−→C1
+4−−→C2) +2−−→C = S

+3−−→ (C1
+4−−→C2

+2−−→C) hiszen a baloldala az
egyenletnek az ugyanaz, mintha S +7−−→ C2

+2−−→ C, a jobboldala pedig: S +3−−→ C1
+6−−→ C



56 7. Fejezet: Struktúrák

ALMA DOPD HSTH JUVJ+3 +4 +2

+7

+6

3. Egységeleme a nullával való eltolás "ALMA" +0−−→ "ALMA".
4. Inverz elem esetén az egységelemet kell megkapnunk, azaz a két eltolás összegének

26-nak kell lennie, mert ekkor:

ALMA DOPD ALMA+3 26-3=23

+26≡+0

Definíció 7.3.3 — Abel-csoport. Olyan csoport, melyre még teljesül, hogy a művelet
kommutatív is: ∀a,b ∈G a∗ b= b∗a.

További példák:
• <térbeli vektorok|+>
• <egész számok|+>
• <racionális számok|+>
• <pozitív racionális számok|·>
• <valós számok|+>
• <pozitív valós számok|·>
• <n×m-es mátrixok|+>
• <{−1,1}|·>

Az egyenletek megszokott rendezéséhez szükséges tételek

A tételeket mindkét irányban ki kell mondani, mert nem feltétel, hogy kommutatív legyen a
csoport. Csak az egyik oldalra bizonyítom, a többit az olvasóra bízom.

Tétel 7.3.1 Ha G csoport, akkor ∀a,x,y ∈G-re ha a∗x= a∗y, akkor x= y és ha x∗a= y∗a,
akkor x= y.

Bizonyítás 7.3

x

egységelem def
↓= e∗x

inverzelem defy
= (a−1 ∗a)∗x

asszociatívy
= a−1 ∗ (a∗x)

feltétely
= a−1 ∗ (a∗y)

asszociatívy
= (a−1 ∗a)∗y

inverzelem defy
= e∗y

egységelem def
↓= y (7.1)

�

Tétel 7.3.2 Ha G csoport, akkor ∀a,x,y ∈G esetén, ha a∗x= b, akkor x= a−1 ∗ b, illetve
ha x∗a= b, akkor x= b∗a−1
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Bizonyítás 7.4

x

egységelem def
↓= e∗x

inverz elem defy
= (a−1 ∗a)∗x

asszociatívy
= a−1 ∗ (a∗x)

feltétel
↓= a−1b (7.2)

�

7.3.3 Gyűrű - Ring
A gyűrűben két más-más tulajdonsággal rendelkező művelet van, és a műveletek közötti
kapcsolatot is egy tulajdonság fejezi ki.
Definíció 7.3.4 — Gyűrű. Egy R nemüres halmazt gyűrűnek nevezünk, ha van R-en két
művelet: * és ◦. E műveletekre a következők teljesülnek:

1. a * művelet Abel-csoport
2. a ◦ művelet asszociatív ( félcsoport)
3. a két műveletet a disztributív szabály köti össze:
a◦ (b∗ c) = (a◦ b)∗ (a◦ c) és (b∗ c)◦a= (b◦a)∗ (c◦a)

A * műveletet összeadásnak, a másik műveletet szorzásnak hívjuk, a megszokott klasszikus
műveletekre való hasonlítás miatt. Amennyiben a szorzás is kommutatív, Kommutatív
gyűrűről beszélünk.

Képfeldolgozás gyűrűvel
Természetes azt gondolni, hogy két kép hasonló, ha a pixelenkénti kivonása a pixel értékeinek
egymásból közelít a nullához. Ennek az ötletnek az a problémája, hogy általában, amikor a
kivonás negatív értékeket ad, sok szerző úgy gondolja, hogy ezeket az elemeket nullának
veszi. Ez a megfontolás általában nem írja le a két kép közötti különbséget, és bizonyos
esetekben lehetséges, hogy fontos információk vesznek el. Ezért olyan struktúrát kellett
definiálni, hogy a két kép közötti műveletek stabilak legyenek.

Tekintsük a képet egy egész számokból álló vektornak: Zn, ekkor a pixelenkénti összeadás
és művelet ezen a képek halmazán gyűrűt alkot: < Zn|+, ·>. Tekintve, hogy pixelenkénti
összeadásról és szorzásról beszélünk, ezért ezeket könnyű belátni. Az összeadás egységeleme,
azaz a nullelem, az a kép, amely csupa nullákat tartalmaz, míg a szorzás egységeleme, az a
kép, amely csupa egyeseket tartalmaz, a többi tulajdonságot az olvasóra bízom.

R Garcés, Yasel Torres, Esley Pereira, Osvaldo Pérez, Claudia Morales, Roberto. (2014).
Application of the Ring Theory in the Segmentation of Digital Images. International
Journal of Soft Computing, Mathematics and Control. 3. 10.14810/ijscmc.2014.3405.

A gyűrű elmélet segít bevezetni olyan fogalmakat, mint például, erősen ekvivalens képek
fogalmát. A és B kép erősen ekvivalens akkor, ha létezik egy S - skalár kép, melyre teljesül,
hogy A=B+S. Azaz egy konstanssal van eltovla a két kép értéke (képzelhető el úgy, hogy
egyneletesen fényesebb vagy sötétebb a kép).

Képszegmentációs algoritmus:
Szukséges: A(Eredeti kép); ε (Megállás küszöbértéke); hr, hs(Kernel paraméterek)
1. Inicializálás: B1 =A,B2 =A and errabs=∞
2. while errabs > ε do
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3. Eredeti kép filterelése Mean Shift Algorithmussal
4. B2=filretelt kép
5. B1 és B2 különsbségének számítása: v = entrópia(B1− (B2))
6. errabs= v
7. Update B1 =B2
8. end while
9. return B1 (szegmentált kép)

További példák:
1. n×n-es mátrixok a szokásos összeadásra és szorzásra nézve
2. páros számok szokásos összeadásra és szorzásra nézve - kommutatív is

7.3.4 Test- Field
Definíció 7.3.5 — Test. Egy T legalább kételemű halmazt kommutatív Testnek nevezünk,
ha értelmezve van T-n két művelet, melyeket összeadásnak és szorzésnak hívunk. Mindkét
művelet Abel-csoport, kivéve, hogy az összeadás egységelemének nincsen a szorzásra
vonatkoztatott inverze. A szorzás disztributív az összeadásra nézve.

Definíció 7.3.6 — Ferdetest. Minden tulajdonsága egyezik a Test tulajdonságaival, kivéve,
hogy a szorzás nem kommutatív, azaz sima csoport.

Test felhasználása bitekkel való számolás során
Legyen a Bool-Algebrából ismert Igaz (1) és Hamis (0) elemek halmaza. Ekkor a XOR
megfeleltethető az összeadásnak, míg az ÉS a szorzásnak.

Lássuk be, hogy valóban test:

Bizonyítás 7.5 Kizáró vagy:
1. Zárt, hiszen a XOR művelet nem vezet ki az igaz,hamis halmazból.

2. Asszociatív - igazságtáblával belátható:

A B C B+C A+(B+C) (A+B)+C (A+B)
0 0 0 0 0 0 0
0 0 1 1 1 1 0
0 1 0 1 1 1 1
0 1 1 0 0 0 1
1 0 0 0 1 1 1
1 0 1 1 0 0 1
1 1 0 1 0 0 0
1 1 1 0 1 1 0

A Két oszlop megegyezik minden interpretációban.

3. egységelem A+E=A
A E? A+E=A
0 0 0
1 0 1

Tehát az egyégelem (nullelem) az azonosan

HAMIS.

4. Inverz elem: A+A−1 = E
A A−1 A+A−1 = E
0 0 0
1 1 0

Tehát az inverzelem önmaga.

5. Kommutatív - XOR igazságtáblájából tudjuk, hogy kommutatív, olvasóra bízom.
Tehát a kizáró vagy valóban Abel-csoport. A kérdés, hogy az ÉS művelet is az-e?
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1. Zárt X
2. Asszociatív X

3. Egységelem: E=1, mert
A E A ·E =A
0 1 0
1 1 1

4. Inverz elem (nullelemre nem kell léteznie inverz elemnek, így csak az IGAZ-ra kell
megnéznünk: 1 ·1 = 1 Tehát az 1 inverze az 1, mert IGAZ ÉS IGAZ = IGAZ.

5. Kommutatív X
Tehát az ÉS valóban Abel-csoport az összeadás egységelemének inverzét nem keresve. A
két műveletet összekötő disztribúciót kell még belátni:

A B C B+C A · (B+C) A ·B A ·C (A ·B) + (A ·C)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 0 1 1 0

Tehát a disztributív szabály is teljesül. �

További példák:
1. <racionális számok | +,·>
2. <valós számok | +,·>
3. <komplex számok | +,·>

7.3.5 Vektortér - Vector Space

A vektorterek tárgya a Lineáris Algebra, itt csak a definícióval foglalkozunk most. A
vektortér már összetett struktúra, egy csoport elemeit egy függvény segítségével kapcsolatba
hozzuk egy test elemeivel.
Definíció 7.3.7 — Vektortér -Vector Space. A V nem üres halmazt vektortérnek nevezzük
a T test felett, ha az alábbi tulajdonságok teljseülnek:

1. A V halmazon értelmezve van egy összeadás nevű művelet, mely bármely v1,v2 ∈ V
elemekhez egyértelműen hozzárendel egy V-beli elemet, amelyet v1 +v2-vel jelölünk.
Az összeadás Abel(kommutatív)-csoport.

2. A T test és a V halmaz között értelmezve van a skalárral való szorzás (röviden,
skalárszoros, számszoros): bármely λ ∈ T ún. skalárhoz és bármely v ∈ V ún.
vektorhoz egyértelműen hozzárendel egy V-beli elemet, amelyet λv-vel jelölünk. A
skalárszoros a következő tulajdonságokkal rendelkezik bármely λ,µ ∈ T és v,v1,v2 ∈
V esetén:
(a) 1v=v, ahol az 1 a T test szorzásra vonatkoztatott egységeleme
(b) vegyes asszociatív: (λµ)v = λ(µv)
(c) vegyes disztributív szabály:

i. (λ+µ)v = λv+µv
ii. λ(v1 +v2) = λv1 +λv2
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A vektortereknek számos alkalmazása ismert, mind a nyelvtechnológiában, mindpedig a
kvantummechanika területén vektorokkal operálunk. Ezekkel az adott tantárgyakon sokat
fogtok találkozni.

További példák:
1. A sík és a tér vektorai a valós számok felett
2. Valós számok a valós számok teste felett
3. A természetes számok a valós számok teste felett
4. Az n×m-es mátrixok a valós számok teste felett
A Vektortér (Vector Space) nem összekeverendő a Vektormezővel (Vector-

field). A vektormező egy függvény, amely a tér adott pontjához rendel egy vektort, azaz
F :R3→R3. Ezzel analízisen fogtok találkozni, vagy fizikából, ahol a tér adott pontjaira
adott irányú erők hatnak.

7.4 Összefoglalás
Nulladik: a halmaznak zártnak kell lennie a műveletre nézve! Egyműveletes struktúrák
esetén:

Asszociatív

Létezik egységelem

Létezik inverzelem

Kommutatív

Félcsoport

Csoport
Abel-csoport

Kétműveletes struktúrák esetén a
⊗

művelet bővülése a meghatározó különbség:⊗
disztributív a

⊕
nézve.

⊕
: Abel-csoport

⊗
: Félcsoport

⊗
: Csoport

⊗
: Abel-csoport

Gyűrű
Ferdetest

Test

A szorzásnak az összeadás egységelemére nézve nem kell inverzének lennie.

R
A Caesar cipher ésa borítón levő kép: https://www.wikiwand.com/en/Caesar_cipher



8. Relációk

A halmazok elemei között nem csak műveleteket definiálhatunk, hanem szükségünk lehet
egyéb összefüggések megadására is. Például adott egy adag valami, meg kell tudnunk
határozni, hogy két valami mikor egyenlő, de meg kell tudnunk határozni azt is, hogy milyen
módon rendezzük sorba az elemeket. Például legyen a halmaz a hallgatók halmaza. Torna-
sorba akarjuk állítani az embereket, miszerint tesszük, kor vagy magasság szerint? Ezeket
az összefüggéseket hívjuk relációknak, mikor egyenlőséget határozunk meg, ekvivalencia
relációról beszélünk, mikor sorbarendezzük valamilyen tulajdonság, vagy logika alapján a
halmaz elemeit, akkor rendezési relációról beszélünk.
Definíció 8.0.1 — Descartes (direkt) szorzat. Legyenek D1,D2, . . . ,Dn adott halmazok. E
halmazok Descartes (direkt) szorzata: D1×D2×·· ·×Dn := {(d1,d2, . . . ,dn) |dk ∈Dk 1≤
k ≤ n} A direkt szorzat tehát olyan rendezett érték n-eseket (n=2 esetén párokat,n=3
esetén hármasokat) tartalmaz, amelynek k. eleme a k. halmazból való.

Direkt szorzat példák:
1. A= {1,2} B = {7,8,9}, akkor A×B = {(1,7),(1,8),(1,9),(2,7),(2,8),(2,9)}
2. Adatok:= Nevek x Városok x Utcanevek x Házszámok={(Nagy Janka, Budapest, Fő

u., 1),. . . (Nagy Janka, Budapest, Fő u., 16), (Nagy Janka, Budapest, Fő u., 17),. . . ..
(Nagy Janka, Budapest, Kossuth L. u., 1), . . . . (Nagy János, Budapest, Fő u. 1.),
. . . .}

3. R×R = {(x,y)|x ∈ R és y ∈ R}, Descartes koordináta-rendszer
Definíció 8.0.2 — Reláció. D1,D2, . . . ,Dn direkt szorzat bármely részhalmaza.

Példa relációra:
{ (Nagy Janka, Budapest, Kossuth L. u., 1), (Nagy János, Budapest, Fő u., 1)} ⊆

Adatok
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Definíció 8.0.3 Bináris reláció, ha n= 2 : r ⊆D1×D2

8.1 Ekvivalencia reláció
Definíció 8.1.1 — Ekvivalencia reláció. Olyan bináris reláció, melyre teljesülnek a következő
tulajdonságok:

1. Reflexív: (x,x) ∈R
2. Szimmetrikus: Ha (x,y) ∈R, akkor (y,x) ∈R
3. Tranzitív: Ha (x,y) ∈R és (y,z) ∈R, akkor (x,z) ∈R

Például a Modulo k maradékosztályok ekvivalencia relációt határoznak meg. Azaz
(a,b) ∈R, ha k-val osztva ugyanazt a maradékot adják. Jele: a≡ b mod (k) kimondva: a
kongruens b modulo k.
Definíció 8.1.2 — Partíció. A partíció a H halmaz egy olyan részhalmazrendszere, amelyre:

Hi∩Hj = ∅ és
n⋃

i=1
Hi =H

A partícióra úgyis gondolhatunk, mint amikor a memóriát osztjuk fel, azaz partícionáljuk,
hogy dualbootot tudjunk rá telepíteni. Értelemszerűen, ha metszete lenne a partícióknak,
akkor amikor a Linuxot a Windows mellé telepítem, akkor az szépen felülírná a metszetet is,
így a Windowsom öszeomlana. Éppígy, amikor partícionálunk, ügyelünk arra, hogy az összes
memóriaterület megmaradjon. Ha nem tenné ki a partíciók úniója a teljes memóriatrületet,
akkor lennének ki nem használt erőforrásaink.

Tétel 8.1.1 Az R bináris relácó a H halmazon ekvivalencia reláció akkor és csak akkor,
ha az ekvivalenciosztályok H partícióját adják.

Bizonyítás 8.1 Ha R ekvivalencia reláció, akkor az ekvivalencia osztályok a H halmaz
partícióját adják. Indirekt bizonyítjuk: Tegyük fel, hogy Az R ekvivalencia reláció
ekvivalencia osztályai nem a H halmaz partícióját adják. Ekkor például a két osztálynak
lehet metszete.

i 6= j Hi∩Hj 6= ∅ −→ ∃a ∈Hi∩Hj

a ∈Hi −→ ∀b ∈Hi⇐⇒ (a,b) ∈R

a ∈Hj −→ ∀c ∈Hj ⇐⇒ (a,c) ∈R

A szimmetria miatt (b,a)∈R. Tehát látjuk, hogy (b,a)∈R és (a,c)∈R, így a tranzitív
tulajdonság miatt: (b,c) ∈ R. Tehát b és c ekvivalens egymással, azaz ugyanabban az
ekvivalencia osztályban vannak, azaz Hi =Hj , azaz ugyanazt a partíciót alkotják.

Ha a Hi halmazrendszer a H halmaz egy partíciója, akkor a Hi halmazok ekvivalencia
relációt határoznak meg: Tegyük fel, hogy a Hi egy partíció, lássuk be az ekvivalencia
reláció tulajdonságait.

1. Relfexív, mert a ∈Hi, akkor a ∈Hi, tehát (a,a) ∈R
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2. Szimmetrikus, mert a ∈ Hi és b ∈ Hi az ugyanaz, mintha azt mondanám, hogy
b ∈Hi és a ∈Hi, tehát ha (a,b) ∈R−→ (b,a) ∈R.

3. Tranzitív, ha a és b ugyanabban a halmazban vannak és b és c szintén ugyanabban
a halmazban vannak, akkor a és c is ugyanabban a halmazban vannak. Azaz: Ha
(a,b) ∈R és (b,c) ∈R, akkor (a,c) ∈R

�

Feladat 8.1 Legyen a H = {1,2,3,4,5,6,7,8,9,10}. és legyen R = {(a,b) ∈ R|a = b
mod (3)}, adja meg az ekvivalenciaosztályokat. �

8.2 Rendezési reláció
Definíció 8.2.1 — Parciális rendezési reláció. Az R bináris reláció a H halmazon parciális
rendezési reláció, ha teljesülnek rá a következő tulajdonságok:

1. Reflexív: (x,x) ∈R
2. Antiszimmetrikus: Ha (x,y) ∈R és (y,x) ∈R, akkor és csak akkor, ha x= y
3. Tranzitív: Ha (x,y) ∈R és (y,z) ∈R, akkor (x,z) ∈R

Szokásos jelölés (x,y) ∈R-re: x≤ y. Utalva arra, hogy a kisebb-nagyobb viszony a valós
számok között is rendezési reláció (ráadásul teljes).

Definíció 8.2.2 — Teljes rendezési reláció. R rendezési reláció H halmazon akkor teljes, ha
(x,y) ∈R és az (y,x) ∈R közül legalább az egyik teljesül. Azaz bármely két eleme a H
halmaznak összehasonlítható.

8.2.1 Pointer iterálása teljesen rendezett halmazon lehetséges
Amennyiben van egy osztályunk, amelyet magunk hoztunk létre, akkor amíg nem állítjuk
sorrendbe a példányokat, addig nem tudunk rajta ciklussal végigfutni pointer segítségével.
Hiszen a pointer nem fogja tudni, melyik példány a rákövetkező példány.

Listing 8.1: C++ pointer iterálás
1 class Car{//Az osztly, maga a halmaz elemeinek meghatrozsa
2 public:
3 szgk sz;
4 Car(string marka, string tipus){
5 sz.marka=marka;
6 sz.tipus=tipus;
7 }
8 ...
9 friend ostream & operator<<(ostream & out, const Car & car_){
10 return out << car_.sz.marka <<" "<< car_.sz.tipus;;
11 }
12 bool operator <( const Car& rhs) const //Ez itt a rendezesi relacio megadasa
13 {
14 return sz.marka+sz.tipus < rhs.sz.marka+rhs.sz.tipus;
15 }
16
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17 };
18
19
20 class CarDealer{
21 public:
22 map<Car, int> cars;
23 int darab;
24
25 ...
26 friend ostream& operator<<(ostream & out, CarDealer & card){
27 map<Car, int>::iterator it=card.cars.begin(); //Az elso elemre mutat (

↪→ infimum).
28
29 while(it!=card.cars.end()){//Itt futsz vegig a peldanyokon, a megadott sorrend

↪→ szerint.
30 out<<it−>first<<" − "<<it−>second<<"db"<<endl;
31 it++;
32 }
33 out<<"Itt jart GatZo.";
34 return out;
35
36 };

8.2.2 Hasse-diagram

A rendezési relációt Hasse diagrammal szoktuk szemléltetni. A Hasse-diagram-ban a halmaz
elemeit lerajzoljuk úgy, hogy a diagramban feljebb rajzoljuk azokat az elemeket, amelyeknél
vannak kisebbek. Az elemeket akkor kötjük össze, ha azok az adott rendezés szerint
közvetlenül összehasonlíthatók. Nem kötjük össze sem a reflexív, sem a tranzitív tulajdonság
miatt relációban álló elemeket.

Például a a rendezési reláció legyen értelmezve a H = {1,2,3} halmaz hatványhalmazán.
Tehát a sorbarendezni kívánt elemek: 2H = {∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
Ekkor az a halmaz, amely benne van a másikban, az előrébb kerül a sorban, azaz pl:
{1} ≤ {1,2,3} viszont ebből adódóan, akadnak össze nem hasonlítható halmazok (parciálisan
rendezett), ilyen össze nem hasonlítható halmazok az {1} és a {2,3}. A Hasse-diagram
pedig:
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∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Ha értelmezve van egy adott halmazon egy adott rendezési reláció, akkor a halmaz ele-
meivel kapcsolatban feltehetjük a kérdést, hogy melyik a legelső(legkisebb), legutolsó(legnagyobb)
elem. A következő fogalmakat eképpen definiáljuk:
Definíció 8.2.3 — Legnagyobb elem. A H halmazon adott parciális rendezés szerinti
legnagyobb elem N, ha ∀h ∈H-ra teljesül, hogy h≤N .

A legnagyobb elem az összes többi elemmel összehasonlítható, globális.
Definíció 8.2.4 — Legkisebb elem. A H halmazon adott parciális rendezés szerinti legkisebb
elem k, ha ∀h ∈H-ra teljesül, hogy k ≤ h.

A legkisebb elem az összes többi elemmel összehasonlítható, globális.

Tétel 8.2.1 Ha van legnagyobb/legkisebb elem, akkor az egyértelmű.

Bizonyítás 8.2 Indirekt tegyük fel, hogy van legnagyobb elem, de nem egyértelmű. Ebből
adódik, hogy van legalább két legnagyobb elem: M1 és M2. M1 legnagyobb elem, ezért
definíció szerint: M2 ≤M1 és M2 is legnagyobb elem ezért definíció szerint: M1 ≤M2.
A rendezési reláció antiszimmetrikus, ezért (M2,M1) ∈ R és (M1,M2) ∈ R csak akkor
lehetséges, ha M1 =M2. Tehát egyértelmű. �

Definíció 8.2.5 — Maximális elem. A H halmazon adott parciális rendezés szerinti max-
imális elem M, ha nem létezik olyan h ∈H, hogy M ≤ h teljesülne.

A definíció szerint a maximáis elem nem biztos, hogy minden elemmel összehason-
lítható.Lokális, több is lehetséges.
Definíció 8.2.6 — Minimális elem. A H halmazon adott parciális rendezés szerinti min-
imális elem m, ha nem létezik olyan h ∈H, hogy h≤m teljesülne.

A definíció szerint a maximáis elem nem biztos, hogy minden elemmel összehason-
lítható.Lokális, több is lehetséges.

A fenti definíciók a Hesse-diagramról könnyen leolvashatóak. A fenti példa alapján:
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∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3} Legnagyobb elem és Maximális elem

Legkisebb elem és Minimális elem

Egy másik példa, maximális elem megértésére:

növény

egér nyúl kecske

bagoly kígyó sakál

sas tigris

oroszlán

Legnagyobb elem nincs

Maximális elem

Legkisebb elem és Minimális elem



9. Hálók - Lattice (order)

A Háló is egy speciális struktúra. A számítástudományban és konkrétan a programozási
nyelvekben a hálóknak nagy szerepe van. Például a Prolog programozási nyelv szemantikája
az alább bizonyított Tarski-féle fix-pont tételen alapul.
Definíció 9.0.1 — Felső korlát. A részben rendezett H halmaz valamely H1 részhalmazának
K ∈H felső korlátja, ha minden h1 ∈H1-re h1 ≤K.

Definíció 9.0.2 — Alsó korlát. A részben rendezett H halmaz valamely H1 részhalmazának
k ∈H alsó korlátja, ha minden h1 ∈H1-re k ≤ h1.

Definíció 9.0.3 — Supremum. A legkisebb felső korlát.

Definíció 9.0.4 — Infimum. A legnagyobb alsó korlát.

Definíció 9.0.5 — Háló 1. A H részben rendezett halmaz háló, ha bármely véges részhal-
mazának van infimuma és supremuma. A H háló teljes, ha bármely részhalmazának van
infimuma és supremuma.

Definíció 9.0.6 — Háló 2. A H halmaz háló, ha értelmezve van rajta két művelet, melyekre
az alábbi tulajdonságok: mindkét művelet asszociatív és kommutatív. A két műveletre
teljesül az elnyelési tulajdonság: a◦ (b∗a) = a és a∗ (b◦a) = a.

Bizonyítás 9.1 — A két definíció ekvivalens. Ha értelmezve van egy rendezési reláció,
akkor az infimum és a supremum (kételemű részhalmazokon) segítségével definiálható
a két művelet: a ◦ b := inf(a,b) és a ∗ b := sup(a,b). Ezekre kell belátnunk a műveleti
tulajdonságokat:

1. Kommutatív X



68 9. Fejezet: Hálók - Lattice (order)

2. Asszociatív:

a◦ (b◦ c) = inf(a, inf(b,c)) = inf(inf(a,b), c) = (a◦ b)◦ c)

a∗ (b∗ c) = sup(a,sup(b,c)) = sup(sup(a,b), c) = (a∗ b)∗ c)

3. Elnyelés:

a◦ (b∗a) = a= inf(a,sup(a,b)) =
{

inf(a,b) = a ha a≤ b
inf(a,a) = a ha b≤ a

a∗ (b◦a) = a= sup(a, inf(a,b)) =
{

sup(a,a) = a ha a≤ b
inf(a,b) = a ha b≤ a

Fordítva: Ha létezik két ilyen tulajdonságú művelet, akkor konstruáljuk meg a
rendezési relációt eképpen: R= {(a,b)|a,b ∈H a◦ b= a}.

1. Relfexív: a◦a= a

2. Antiszimmetrikus: a◦ b
Kommutatív

↓= b◦=⇒ a= b
3. Tranzitív: HA a◦ b= a és b◦ c= b akkor:

a= a◦ b= a◦ (b◦ c)
Asszociatív

↓= (a◦ b)◦ c= a◦ c

�

Az adott halmaz elemeinek sorbarendezése számos előnnyel gazdagít minket. Például
lehetőségünk van új fogalmakat kialakítani. Ilyen fogalom a függvények monotonitása. Ha
adott egy függvény, ami a mi H halmazunkon van értelmezve, akkor az elemek sorbarendezése
nélkül nem tudnánk azt pl koordinátarendszerben ábrázolni - nem tudnánk megmondani,
hogy növekszik-e vagy csökken, hiszen nincsen "a következő elem", amihez néznénk az értéket.
De így hogy sorbarendeztük a halmazt, már meg tudjuk mondani, hogy mikor monoton egy
függvény.
Definíció 9.0.7 — Monoton függvény. Valamely H rendezett halmazon értelmezett f :
H →H függvény monoton, ha minden H halmazbeli h1 ≤ h2- re f(h1)≤ f(h2).

A definícióból adódik, hogy a monoton függvény rendezéstartó, nagyobb elem nagyobb
értéket kap.
Definíció 9.0.8 — Fixpont. Adott H rendezett halmazon értelmezett f :H →H függvény
fixpontja h ∈H, ha f(h) = h.

Más szavakkal a fixpont olyan eleme a halmaznak, melyhez önmagát rendeljük. (Fixen
nem változik.)

Tétel 9.0.1 — Tarski fixpont tétele. Teljes hálón értelmezett monoton (rendezéstartó)
függvénynek van legkisebb és legnagyobb fixpontja.
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Bizonyítás 9.2 A.) Legkisebb fixpont létezése: Tekintsük a G := {x|x ∈ Hf(x) ≤
x} ⊆H halmazt. Mivel H teljes −→ ∃g := inf(G). (Azaz a háló definíciójából kiindulva,
ha kiragadunk egy halmazt, annak tuti van infimuma.) Erről az infimumról fogjuk belátni,
hogy ő a legkisebb fixpont.

1. Lássuk be, hogy g ∈G, azaz g olyan infimum, amely része is a G halmaznak.

g

Inf def
↓
≤ x

f(g)
monoton
↓
≤ f(x)

G def
↓
≤ x

Tehát f(g) alsó korlátja G-nek. Mert f(g) alsó korlát, és g pedig a legnagyobb
alsókorlát (infimum) ezért:

f(g)≤ g = inf(G)
G def
↓=⇒ g ∈G

2. Most azt bizonyítjuk, hogy g fixpont. Láttuk, hogy

f(g)≤ g

f monotonitása miatt
f(f(g))≤ f(g)

Tehát f(g) ∈G, de G alsó korlátja g

g ≤ f(g)

Az előző lépésben láttuk, hogy f(g)≤ g és most láttuk, hogy g ≤ f(g), ≤ rendezési
reláció, így antiszimmetrikus: f(g) = g, azaz g fixpont.

3. Végül azt bizonyítjuk be, hogy g legkisebb fixpont. Tekintsük a G∗ fix-
pontok halmazát:

G∗ := {x|x ∈H f(x) = x}

g ∈G∗ és legyen g∗ := inf(G∗)

Könnyen bizonyítható, hogy valamely halmaz és részhalmaza alsó korláti között
igaz az alábbi összefüggés:

G∗ ⊆G=⇒ inf(G)≤ inf(G∗)

Tehát a tartalmazott halmaz infimuma a nagyobb g ≤ g∗. Viszont a g∗ az infimuma
a fixpontoknak, ezért g∗ ≤ g. Megint, mivel rendezési relációról van szó, ami
antiszimmetrikus, ez csak úgy lehetséges, ha g∗ = g. Azaz ez a g valóban a legkisebb
fixpont.

B.) Legnagyobb fixpont létezése A fenti A. rész 3 lépéséhez hasonlóan a G =
|x ∈Hx≤ f(x)} halmaz g := sup(G) eleméről belátjuk, hogy legnagyobb fixpont.

�
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Következmény: : a fixpontok halmaza is háló, ugyanarra a rendezésre.

9.1 Formal Concept Analyses
A hálók talán egyik legkönnyebben látható alkalmazása a Formal Concept Analyses (FCA),
melynek lényege, hogy egy adott halmaz elemeit attribútumainak segítségével rendezünk
sorba, a sorbarendezés során az attribútumokat is elemeknek tekintjük. Ekkor a Hasse-
diagramm felrajzolásával következtetéseket tudunk levonni. Például lehetnek az elemek a
betegségek, az attribútumok a tünetek. Egy egyszerűbb példán máris látni fogjuk, legyen a
példa az innivalók, készítsünk egy táblázatot a tulajdonságaikkal:

Ital Nem alkoholos Bubis alkoholos forró Koffeines Szőlőből Búzából
Tea × × ×
Kávé × × × ×
Kóla × × × ×
Sör × × × ×

Pezsgő × × × ×
Bor × × ×

Ásványvíz × × ×
Ital

Alkoholmentes Bubis Alkoholos

Forró Koffeines Szőlőbő

Búzából

Tea

Kávé Kóla
Sör

Pezsgő

Bor
Ásványvíz



10. Gráfelmélet

(Bércesné Novák Ágnes, Hosszú Ferenc, Rudas Imre: Matematika II,OE- BDMF, 2000
jegyzet alapján átdolgozta: Bércesné Novák Ágnes) Kiegészítette: Miski Marcell.

10.1 Bevezetés
A gráfelmélet a kombinatorikának az elmúlt száz évben jelentős fejlődést elért ága, bár
komoly eredmények már a XVIII. században is születtek. Az első ismert publikáció Eulertől
származik (1736), amelyben megoldást adott az ú.n. königsbergi hidak problémájára.

A probléma, amelyet a város polgárai vetettek fel, a következő:
Lehet-e olyan sétát tenni a városban, hogy a várost átszelő Pregel folyó mindegyik hídján

egyszer és csak egyszer haladjanak át?
A feladat szempontjából lényegtelen, hogy a parton, ill. a szigeteken hogyan közlekedünk,

csak a hidakon való áthaladásra kell figyelnünk. Ily módon a megoldás szempontjából csak
arra kell koncentrálnunk, hogy hány szárazföld (part, vagy sziget ) van, és ezeket hány híd
és mily módon köti össze. Ennek megfelelően készült az 10.1. ábra,

melyet egyszerűbben is felrajzoltunk lásd 10.2. ábra.
A königsbergi probléma ily módon a következőképpen fogalmazható meg:
Be lehet-e járni a fenti, gráfnak nevezett, ábra éleit oly módon, hogy minden élen

pontosan egyszer megyünk végig? (A feladatot Euler általánosan megoldotta, a megoldásra
az anyag tárgyalása során visszatérünk. )

A gráfelmélet következő jelentős állomásának Kirchoff 1847-ben publikált eredményei
tekinthetők, melyben gráfelméleti módszereket alkalmazott villamos hálózatok analízisére.
Kirchoff ezen eredményei tekinthetők a gráfelmélet első műszaki alkalmazásainak is.

A gráfelmélet iránti érdeklődés felkeltésében nagyobb szerepe volt azonban a térképek
négy színnel való kiszínezhetőségére vonatkozó sejtésnek. A négyszín-sejtés azt mondja ki,
hogy ha egy térképet sík lapra felrajzolunk, akkor az egyes országok kiszínezhetők úgy, hogy
a szomszédos országok színei különbözők legyenek. Ha a térképen látható valamennyi ország
egy-egy pontját megjelöljük, és két pontot akkor és csak akkor kötünk össze, ha az ezeket
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Figure 10.1: Königsbergi Hidak sematikusan

tartalmazó országok szomszédosak, akkor egy ú.n. síkba rajzolható gráfhoz jutunk.
A négyszín-sejtés ezek után a következőképpen fogalmazható meg:
A síkba rajzolható gráfok kiszínethetők négy színnel úgy, hogy az éllel összekötött pontok

eltérő színűek legyenek (10.3. ábra).
A sejtést először Francis Guthrie fogalmazta meg a metemetika nyelvén, bizonyítását

valószínűleg előszür Möbius kísérelte meg 1840 körül és azóta is a matematikai kutatások
homlokterében állt, de bizonyítani egészen a legutóbbi időkig nem sikerült. 1976-ban azonban
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Figure 10.2: Leegyszerűsített gráf a hidakra

Figure 10.3: Négyszínsejtes

Kenneth Appel és Wolfgang Haken egy - a matematikában rendkívülinek számító - bizonyítást
adtak a sejtésre, ugyanis a bizonyítás egy lényeges része számítógépes futtatásokból állt. A
bizonyítás elfogadhatóságáról azóta is viták folynak, azonban a matematikusok zöme ma
már teljes értékűnek fogadja el.

10.2 Alapfogalmak
Definíció 10.2.1 — Gráf. Egy G=[V,E,f] gráf
• pontok/csúcsok egy V halmazából,
• élek egy E halmazából és
• egy f függvényből áll, amely

minden egyes a ∈ E élnek egy (u,v) = (v,u) rendezetlen párt feleltet meg, ahol u,v ∈ V
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pontok, amelyeket az a él végpontjainak nevezünk.

Definíció 10.2.2 — Izolált pont. Olyan pont, amelyhez nem illeszkedik él.

Definíció 10.2.3 — Hurokél. (u,u) él.

Definíció 10.2.4 — Többszörös él. Ha ugyanazt a két pontot több él is összeköti.

Definíció 10.2.5 — Irányított él. Ha az (u,v) ∈ E él rendezett,

Definíció 10.2.6 — Irányított gráf. Ha minden éle irányított.

Jelölések:
• A pontokat kis körökkel jelőljük. A pont nevét vagy a kör mellé, vagy a kör belsejébe
írjuk.
• Az irányítatlan éleket olyan görbékkel jelőljük, amelyek az él két végpontja között
haladnak.
• Az irányított éleket nyíllal ellátott görbével jelőljük.
A továbbiakban gráfon mindíg irányítatlan gráfot fogunk érteni, míg ha irányított gráfról

beszélünk, akkor ezt külön hangsúlyozzuk.
Definíció 10.2.7 — Izomorf gráfok. Két gráf izomorf, ha egyikük pontjai és élei kölcsönösen
egyértelmű és illeszkedéstartó módon megfeleltethetők a másikuk pontjainak, ill. éleinek.

Szemléletesen ezt úgy lehet elképzelni, hogy a gráf pontjai merev karikák, élei pedig
ezekhez rögzített nyújtható gumizsinórok. Ezt a gráfot most akárhogyan mozgatjuk, nyújtjuk,
zsugorítjuk, mindíg izomorf gráfot kapunk. Általában izomorf gráfok között nem teszünk
különbséget.

Definíció 10.2.8 — Fokszám. A gráf v pontjához illeszkedő élvégek számát v fokszámának
vagy röviden v fokának nevezzük, és φ(v)-vel jelőljük. Ha a v foka n, akkor azt is mondjuk,
hogy v n-edfokú.

Példa Az alábbi ábrán látható gráfnak 4 pontja van, 7 éle, ebből egy hurokél. A pontok
fokszámai: φ(a1) = φ(a2) = 4, φ(a3) = 5, φ(a4) = 1 .
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A pontok fokszáma és az élek száma közötti összefüggésre mutat rá a következő tétel.

Tétel 10.2.1 — Handshaking-kézfogási tétel. Minden gráfban a fokszámok összege az élek
számának kétszeresével egyenlő.

Bizonyítás 10.1 Tegyük fel, hogy az e él az u és v pontokhoz illeszkedik, azaz u és v az e
él két végpontja. Ekkor, ha u 6= v , akkor az e élt φ(u)-nál és φ(v)-nél is beszámoltuk.
Ha pedig u= v , akkor az e él hurokél, és így φ(u)-nál számoltuk kétszer. Tehát a gráf
összes pontjainak a fokszámát összeadva éppen az élek számának kétszeresét kapjuk. �

Példa Egy körmérkőzéses bajnokságon bizonyos csapatok már játszottak egymással.
Bizonyítsuk be, hogy páros azoknak a csapatoknak a száma, akik páratlan sok csapattal
játszottak!

Megoldás Jelőljék a gráf pontjai a csapatokat, két pont közötti él pedig azt, hogy a
két csapat már játszott egymással. Így egy csapat annyi más csapattal játszott, ahány él
illeszkedik az adott ponthoz.

Azt kell tehát bizonyítani, hogy a páratlan fokszámú pontok száma páros.
Mint láttuk minden gráfban a fokszámok összege páros, amely a páros és páratlan

fokszámok összegéből tevődik össze. A páros fokszámok összege nyilván páros, hiszen páros
számok összege páros. Így a páratlan fokszámok összegének is párosnak kell lenni. A
páratlan fokszámok összeke pedig csak úgy lehet páros, hogy páros sopkat adunk össze.

A példa során igazoltuk a következő tételt.

Tétel 10.2.2 Minden gráfban a páratlan fokszámú pontok száma páros.

Definíció 10.2.9 — Egyszerű gráf. Egy gráfot egyszerűnek nevezünk, ha sem hurokélt, sem
pedig többszörös élt nem tartalmaz.
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Tétel 10.2.3 — Skatulya elv (fiókok elve (Franciaország), galmabdúc elv (UK), Dirichlet-elv (Ru, Németország). 1.
Ha van n doboz és n+1 tárgy, akkor biztosan lesz legalább 1 doboz, amelyikben
legalább 2 tárgy lesz.

2. Ha m tárgyat osztunk szét n csoportba, és m > nk, ahol k egy természetes szám,
akkor legalább k + 1 tárgy fog kerülni az egyik csoportba.

Bizonyítás HF.

Tétel 10.2.4 Minden 1-nél több csúcsú egyszerű gráfban van két azonos fokú csúcs.

Bizonyítás 10.2 Ha a gráfnak n csúcsa van, a lehetséges fokszámok: 0, 1, 2, 3, . . . , n-1.
Azonban a 0 és az n-1 fokszám egy adott gráfban egyszerre nem fordulhat elő, hiszen ha
van 0 fokszámú pont, akkor az izolált, ezért ehhez nem illeszkedhet rá más csúcsból él,
nem lehet tehát más csúcsnak n-1 a fokszáma. Tehát az n-1 db lehetséges fokszámot n
csúcsra kell elosztani, így szükségképpen lesz két csúcs, amelyeknek azonos a fokszáma.
(1. skatulya elv) �

Definíció 10.2.10 — Teljes gráf. Egy gráfot teljes gráfnak nevezünk, ha bármely két
pontját pontosan egy él köti össze.

Tétel 10.2.5 Az n pontú teljes gráf éleinek száma: n(n−1)
2

Bizonyítás 10.3 A teljes n-gráf bármely két pontját pontosan egy él köti össze, így minden
egyes pont fokszáma n - 1, tehát a fokszámok összege n(n−1) . Tudjuk, hogy bármely
gráf esetén a fokszámok összege az élek számának kétszerese, amiből az állítás adódik. �

Definíció 10.2.11 — Részgráf. Egy G’ gráfot a G gráf részgráfjának nevezzük, ha G’ csak
G-beli pontokat és éleket tartalmaz. Ha a G’ nem azonos G-vel, akkor a G gráf valódi
részgráfjának nevezzük.

10.3 Utak és körök
Definíció 10.3.1 — Élsorozat. Élsorozatnak az élek olyan rendezett halmazát nevezzük,
amely a következő tulajdonságokkal rendelkezik:
• a sorozat első és utolsó élétől eltekintve bármely él egyik végpontja az előző élhez,
másik végpontja a következő élhez illeszkedik,
• az első él egyik végpontja a következő élhez illeszkedik, másik végpontja az élsorozat
kezdőpntja,
• az utolsó él egyik végpontja az előző élhez illeszkedik, másik végpontja az élsorozat
végpontja,
• minden él pontosan egyszer fordul elő.

Definíció 10.3.2 — Nyílt élsorozat. Nyílt élsorozatról beszélünk, ha az élsorozat kezdőpon-
tja és végpontja különböző. Ellenkező esetben zárt élsorozatról van szó.
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Definíció 10.3.3 Egy élsorozathoz tartozó gráf az a gráf, amelyet az élsorozat élei alkotnak.

Definíció 10.3.4 — Út. Az u és v pontok közötti út olyan nyílt élsorozat éleinek halmaza,
amely a következő tulajdonságokkal rendelkezik:
• u és v kezdő és végpontok,
• ezek foka 1, míg az összes többi foka 2.

Definíció 10.3.5 — Összefüggő gráf. Ha egy gráfban bármely két pont úttal elérhető,
akkor a gráfot összefüggőnek nevezzük.

Definíció 10.3.6 — Kör. Az olyan összefüggő gráfokat, melyekben minden pont foka 2,
körnek nevezzük.

A definícióból nyilvánvaló, hogy egy zárt élsorozat élei kört alkotnak, ha minden pont
foka 2.
Definíció 10.3.7 Út, ill. kör hosszán a benne lévő élek számát értjük.

Tétel 10.3.1 Az n pontú összefüggő gráfnak legalább n - 1 éle van.

Bizonyítás 10.4 A bizonyítás teljes indukcióval történik.
Az állítás n= 1 esetén nyilvánvalóan igaz.
Tegyük fel, hogy valamely n > 1 esetén minden n pontú összefüggő gráfnak van n−1

éle.
Belátjuk, hogy akkor minden n+1-pontú összefüggő gráfnak (továbbiakban G) van n

éle.
Ha G-nek van elsőfokú pontja, akkor a hozzátartozó éllel együtt töröljük a gráfból.

Nyilván n pontú összefüggő gráfot kapunk, melyre érvényes az indukciós feltétel, azaz
minimum n−1 éle van. A törölt élt hozzávéve adódik, hogy G-nek minimum n éle van.

Ha nincs elsőfokú pontja, akkor minden pont foka legalább 2, és így a fokszámok
összege minimum 2(n+ 1)> n. �

Tétel 10.3.2 Ha egy gráfban minden pont foka legalább 2, akkor a gráfban van kör.

Bizonyítás 10.5 Alkalmazzuk az un. leghosszabb út módszerét! Legyen az 1hosszúságú L
út a G gráf egy leghosszabb útja, és ennek egy végpontja v. Tekintsük most G-nek v-hez
illeszkedő éleit! Ezek közül bármelyiknek a végpontja L-hez tartozik, ugyanis ellenkező
esetben L hossza 1-nél nagyobb lenne, ami ellentmond annak, hogy L a leghosszabb út.

Ha G minden pontjának foka legalább 2, akkor illeszkedik v-hez egy e él is. Ha e
hurokél, akkor ez G egy körét kijelöli. Ha e nem hurokél, akkor u-nak v-től különböző w
végpontja L-ben van, tehát L-nek a v és w pontokat összekötő része e-vel együtt G egy
körét alkotja.

�
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10.4 Euler út/kör:

Euler-gráf
A königsbergi hidak problémájának megoldásához akkor jutnánk el, ha találnánk a

gráfban egy olyan élsorozatot, amely a gráf minden élét tartalmazza. Ezt az élsorozatot
bejárva minden hídon pontosan egyszer haladnánk át, és végül a kiindulási pontba érnénk
vissza. A probléma megoldásához vizsgáljuk meg, hogy mely gráfoknak van ilyen zárt
élsorozata.
Definíció 10.4.1 — Euler út/kör. G gráfban Euler-útnak nevezünk egy olyan élsorozatot,
amely G összes élét pontosan egyszer tartalmazza. Ha ez az élsorozat zárt, akkor
Euler-körről beszélünk.

Ha egy gráfban van Euler-kör, akkor azt Euler gráfnak nevezzük.

Megjegyzés: Ezen definíció alapján minden Euler-kör Euler-út is.
Általában egy Euler-kör, vagy Euler-út, nem kör vagy út, hiszen egy csúcson többször is

áthaladhat. Az elnevezés csak a hagyományt követi.
Példa
http://www3.cs.stonybrook.edu/ skiena/combinatorica/animations/euler.htm
Algoritmus Euler kör keresésére:

Tétel 10.4.1 Ha egy gráf Euler-gráf, akkor minden pontjának foka páros. Ha egy (izolált
pontot nem tartalmazó) gráfnak van nyílt Euler-vonala, akkor két pontjának foka páratlan,
a többié pedig páros.



10.4 Euler út/kör: 79

Bizonyítás 10.6 Tegyük fel, hogy a G gráf Euler-gráf. Ekkor létezik G-ben olyan élsorozat,
amelyben G valamennyi éle szerepel. Ha a gráf pontjait bejárjuk az Euler-vonal mentén,
akkor a kezdőpontba érkezünk vissza, és a bejárás során valahányszor egy pontba érünk
onnan ki is kell lépni, azaz két illeszkedő élvéget járunk be. Ha ezeket párosítottnak
tekintjük, és figyelembe vesszük, hogy a kezdőpontba érkeztünk vissza, akkor nyilván
minden pont foka páros kell legyen.

Ha egy izolált pontot nem tartalmazó gráfnak van nyílt Euler-vonala, és bejárjuk
a gráf éleit, akkor minden pont foka az előző szerint páros lesz, kivéve a kezdő és a
végpontot, hiszen az elsőnek és utolsónak bejárt élvégek pár nélkül maradnak. Így a gráf
két pontjának foka páratlan, a többié pedig páros. �

Figyelem, a fenti tétel csak implikáció. Megfordítva nem biztos, hogy igaz.
Tehát, ha egy gráf minden foka páros, nem biztos, hogy Euler-gráf is. Hiszen a
gráf lehet, hogy minden foka páros, de nem összefüggő, ekkor nyílván nincsen
Euler kör, kivéve, ha egy komponenst leszámítva minden komponens izolált
pont.

Tétel 10.4.2 Ha egy gráf Euler-gráf és nincs izolált pontja, akkor az összefüggő. (Ez is
csak implikáció! Nem megfordítható!)

Ellenben a következő tétel már oda-vissza igaz lesz:

Tétel 10.4.3 Az összefüggő gráfok halmazán egy gráf akkor és csak akkor Euler-gráf, ha
minden foka páros.

Halmazokkal szemléltetve az összefüggő gráfok és a minden foka páros gráfok metszete
az Euler-gráfok.

Euler-gráf

Összefüggő gráf

Minden foka páros gráf

Euler-gráf legalább egy izolált ponttal

Csupán az implikációkat és az ekvivalenciát szemléltetve a három tétel:
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Euler-gráf

Összefüggő vagy van izolált pontjaMinden foka Páros

Összefüggő és minden foka Páros

Példa A königsbergi probléma.
Tekintsük a probléma átfogalmazásával nyert gráfot.

A probléma tehát az, hogy bejárható-e az ábrán látható gráf oly módon, hogy a gráf
élein pontosan egyszer haladunk végig. Az előző tétel szerint, ha egy gráf éleit be tudjuk
járni úgy, hogy minden élen pontosan egyszer haladunk át, akkor a gráf két pontjának foka
páratlan, a többié páros, vagy valamennyi pontjának foka páros. Mint láthatő az ábrán lévő
gráf három pontjának foka három, egy pontjának pedig öt, azaz négy páratlan fokszámú
pontja van. Így a gráf nem járható be.

„Euler mester fejét búsan rázza: Oly talány ez, nincsen megoldása; nincs oly út, mint
uraságtok kérik, amely minden hidat egyszer érint.”

(Eredeti szöveg: Bohdan Zelina, magyar szöveg: Ádám András, Ponticulus Hungaricus,
II. évfolyam, 11. szám, 1998 november)

Tétel 10.4.4 Ha egy n pontú gráfnak legalább n éle van, akkor van benne kör.

Bizonyítás 10.7 A bizonyítást n-re vonatkozó teljes indukcióval végezzük. Az állítás n =
1 esetén nyilvánvalóan igaz. Tegyük fel, hogy valamely -re minden n pontú és legalább n
élű gráfban van kör. Legyen G egy n + 1 pontú gráf, amelynek legalább n + 1 éle van.
Ha van elsőfokú éle, töröljük a rá illeszkedő éllel együtt. A maradék gráfban az indukciós
feltétel szerint van kör. Visszavéve az elsőfokú pontot és a rá illeszkedő élet, az előző kört
uu. tartalmazza a kapott gráf.

Ha nincs elsőfokú pontja, akkor minden pont legalább másodfokú. Ekkor az előző
tétel szertint van a gráfban kör. �

10.5 Fa
Definíció 10.5.1 — Fagráf. Ha egy gráf összefüggő és nem tartalmaz kört, akkor fagráfnak
vagy röviden fának nevezzük.
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Tétel 10.5.1 Az n pontú fagráf éleinek száma n−1.

Bizonyítás 10.8 Tudjuk, hogy minden n pontú összefüggő gráfnak legalább n - 1 éle van.
Az előző tétel szerint, ha egy n pontú gráfnak legalább n éle van, akkor a gráfban van
kör. Eszerint minden n pontú körmentes összefüggő gráfnak pontosan n - 1 éle van, ami
az állítást igazolja. �

Tétel 10.5.2 Az n pontú és n - 1 élű összefüggő gráfok fák.

Bizonyítás 10.9 Tegyük fel ugyanis, hogy a G gráf nem fa, azaz tartalmaz kört. Ha a kör
egy élét töröljük, akkor n pontú, n - 2 élű összefüggő gráfot kapunk, ami ellentmond
annak, hogy egy n pontú összefüggő gráfnak legalább n - 1 éle van. Be kell még látnunk,
hogy ha egy összefüggő gráf valamely körének egy tetszőleges élét töröljük, akkor ismét
összefüggő gráfot kapunk. Tegyük fel ehhez, hogy a törölt él nem hurokél, hiszen hurokél
törlése nem szünteti meg az összefüggőséget. Töröljük a G gráf K körének (u,v) élét. A
G gráfban az u-ból a v-be most is el tudunk jutni a K kör megmaradt élein keresztül,
azaz az (u,v) törlése után is eljuthatunk bármelyik pontból bármelyik pontba, tehát a
kapott gráf is összefüggő. �

10.5.1 Fa ekvivalens definíciói:
Tétel 10.5.3 Egy összefüggő gráf akkor és csak akkor fa, ha bármely két pontja között
pontosan egy út van. (Biz.: HF)

Tétel 10.5.4 a fa összefüggő körmentes gráf

Tétel 10.5.5 az n pontú, n-1 élú összefüggő gráf fa.

10.5.2 Prüfer kód

A fák tárolására használjuk. (Prüfer kód és a fák közötti bijekció)
A Prüfer kód előállítása:
1. a fa csúcsait sorszámozzuk meg 1-től n-ig
2. keressük meg a legkisebb sorszámú levelet
3. ezt a levelet hagyjuk el a hozzá illeszkedő éllel együtt, az él másik csúcsát pedig a

Prüfer kód végére írjuk
4. az előző két lépést addig ismételjük, amíg csak 2 csúcsunk marad
Az így kapott kód n-2 hosszú lesz n db. csúcs esetén, továbbá az eredeti fa

leveleinek sorszáma nem lesz benne a kódban!
Feladatok Írjuk fel az alábbi gráfok Prüfer kódját, majd a kódok alapján írjuk rajzoljuk

fel a gráfot.
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1. 5,3,5,3,5
2. 3,3,5,5,6,7,6,6,10,11
3. 1,1,1,1,6,5
4. 5,1,6,6
5. 3,3,3,6

10.5.3 Feszítőfák - Prim, Kruskal algoritmusok
Prim algoritmus
A Prim-algoritmus egy összefüggő súlyozott gráf minimális feszítőfáját határozza meg mohó
stratégia segítségével.

Az algoritmus:
1. Kiválasztjunk egy tetszőleges, legkisebb élt.
2. Ezután a keletkezett él egy egy élő részfa. Ehhez a részfához kiválasztunk egy másik

hozzá kapcsolódó legkisebb élt. A hozzávett él nem hozhat létre kört a részfában!
3. Ezt addig tesszük, amíg minden pontot nem értünk el.

Kruskal algoritmus
A cél ugyanaz, mint a Prim algoritmus esetében, de itt nem kell, hogy összefüggő legyen
menet közben a részfa, a végén a kialakult feszítőfa úgyis az lesz.

Az algoritmus:
1. Kiválasztjuk az egyik legkisebb élt.
2. A maradék összes él közül kiválasztjuk a legkisebbet, amellyel a részgráfunkban nem

keletkezik kör.
3. Addig ismételjük, amíg minden csúcshoz el nem jutunk.



10.6 Olvasmány- címkézett gráfok 83

10.5.4 Fabejárások: pre-, in-, post-order bejárások

Preorder

Ha a gyökérelemet először, a bal és jobb oldali részfa bejárásai előtt közvetlenül érintjük,
akkor preorder bejárásról beszélünk.

Inorder

Amikor a gyökérelemet a bal és jobb oldali részfa bejárásai között érjük el, akkor inorder
bejárást valósítunk meg.

Postorder

Ha a gyökérelemhez a bal és jobb oldali részfa bejárásai után jutunk el, akkor postorder
bejárást valósítunk meg.

10.6 Olvasmány- címkézett gráfok

Definíció 10.6.1 Cimkézett irányított gráfnak nevezzük azokat az irányított gráfokat,
amelyekben a pontokat és/vagy az éleket külön megcimkézzük.

A cimkézett irányított gráfok alkalmazására mutatnak példát a játékok gráfjai. Ezen
gráfok segítségével sok kétszemélyes játék, így pl. a sakk, a malom, stb., nyerő stratégiája
analizálható. Minden ilyen játékhoz hozzárendelhető egy gráf, melynek pontjai a különböző
lehetséges állások, élei pedig a megengedett lépések, amelyeket annak a játékosnak a jelével
cimkézünk meg, aki ezeket a lépéseket megteheti.

Példa. Tekintsük a halomjáték egy egyszerű változatát. A játékot két játékos játssza,
tetszőleges számú gyufából álló gyufahalommal. A játékosok lépésenként felváltva 1, 2 vagy
3 db. gyufát vehetnek el. Az nyer aki az utolsó gyufát elveszi.

Reprezentáljuk a játékot egy olyan cimkézett irányított gráffal, melynek pontjai a
lehetséges állások ( a halomban lévő gyufák száma ), élei pedig a megengedett lépések,
melyeket annak a játékosnak a jelével cimkézünk meg, aki ezeket a lépéseket megteheti.

A sötét játékos utolsó nyerő lépéseit ábrázolja az alábbi gráf.
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Az ábrából leolvasható, hogy sötét ( s ) akkor nyer, ha világos ( v ) utolsó lépése előtt 4
gyufa van a halomban. A nyerő stratégia tehát az, hogy a világos által elvett gyufák számát
ki kell egészíteni 4-re, vagyis világos lépése előtt a halomban mindíg néggyel osztható számú
gyufának kell lenni.

10.7 Gráfok mátrix reprezentációja

Definíció 10.7.1 — Adjacenciamátrix. Jelöljék a gráf pontjait u1,u2, . . . ,un , az ui és uj

pontokat összekötő élek számát pedig aij . Az A = [aij ] n× n-es mátrixot a gráf
csúcsmátrixának, vagy adjacenciamátrixának nevezzük.

Irányított gráf esetén az csúcsmátrix aij eleme az ui kezdőpontú és uj végpontú irányított
élek számát jelenti.

Példa. Tekintsük az alábbi ábrán látható gráfokat.
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A gráfok csúcsmátrixai:

Megjegyzés.
Ha a gráf egyszerű, akkor nyilván aij értéke 0, vagy 1 lehet, aszerint, hogy az ui és uj

pontok között halad-e él, vagy sem.
Legyen G egy egyszerű gráf, és emeljük négyzetre az A= [aij ] adjacenciamátrixát. Az

A2 = [a(2)
ij ] elemei ekkor

a
(2)
ij =

n∑
k=1

aik ·akj

. Az aik azt mutatja meg, hogy hány 1 hosszúságú út vezet az ui csúcsból az uk csúcsba,
az akj pedig azt, hogy hány él megy az uk pontból az uj pontba. Nyilvánvaló így, hogy
az aik ·akj szorzat azoknak az ui pontból az uj pontba vezető kettő hosszúságú utaknak
a számát adja meg, melyek középső pontja uk. Az a(2)

ij tehát az összes ui pontból az uj

pontba vezető kettő hosszúságú utak számát adja meg.
Olvasmány Ezek alapján teljes indukcióval igazolható a következő tétel.

Tétel 10.7.1 Legyen G egyszerű gráf, és jelölje adjacenciamátrixát A = [aij ] . Az A
mátrix k-adik hatványának a(k)

ij eleme megegyezik az ui csúcsból az uj csúcsba vezető k
hosszúságú utak számával.
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Definíció 10.7.2 Jelölje az ui pontból az uj pontba vezető legrövidebb út hosszát ρ(ui,uj)
. A fentiek alapján az adjacenciamátrix ismeretében bármely gráfban ρ(ui,uj) értéke a
következőképpen határozható meg: hatványozzuk az A mátrixot addig a k hatványig,
amíg a(k)

ij elem először nullától különböző nem lesz. Ekkor a(k)
ij = k .

Az adjacenciamátrix egy lehetséges alkalmazását mutatja be a következő példa.

Példa. Két misszionárius és két kannibál egyszerre érkezik egy folyó partjára, és min-
dannyiuknak át kell jutniuk a folyó tulsó partjára. Az átkeléshez csak egyetlen csónak áll
rendelkezésre, amely egyszerre két embert bír el. A kannibálok száma egyik parton sem
haladhatja meg a misszionáriusok számát ( kivéve azt az esetet, amikor a misszionáriusok
száma nulla ), mert akkor veszélyeztetik az életét. Adjuk meg az átkelés algoritmusát!

Megoldás. Jellemezze a kiindulási part egy állapotát az a rendezett számpár, melynek
első eleme azon a parton lévő misszionáriusok, második eleme pedig pedig a kannibálok
száma. A megengedett állapotok ekkor a következők:

α1 = (2,2) α2 = (2,1) α3 = (2,0) α4 = (1,1) α5 = (0,2) α6 = (0,1) α7 = (0,0)

Vezessük be a G irányított gráfot, melynek (αi,αj) éle azt jelenti, hogy az αi állapotból
az αj állapot közvetlenül elérhető, ha a csónak átmegy a túlsó partra.
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A gráf adjacenciamátrixa a következő:

A=



0 1 1 1 1 0 0
0 0 1 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0



Az αi állapotból az αj állapot akkor és csak akkor érhető el a túlsó partra történő
átevezés után, ha az αj állapotból az αi állapot elérhető a visszaevezés során. Tehát, ha a
kiindulási irányított G gráf mindem élét megfordítjuk, olyan G1 gráfhoz jutunk, melynek
élei azt adják meg, hogy mely állapotok érhetők el közvetlenül a visszaevezés során. A G1
gráf adjacenciamátrixa A’. Az A ·A′ mátrix cij eleme:

cij = ai1j1 +ai2j2 + · · ·+ai7j7

ami megadja, hogy az αi állapotból az αj állapot hányféleképpen érhető el egyszeri
oda-vissza csónakúttal.

Képezzük az (A ·A′) ·A szorzatot. Az i-edik sor j-edik eleme megadja, hogy hányfélekép-
pen érhető el az αi állapotból az αj állapot oda-vissza, majd a túlpartra evezve.

Az eljárást folytatva láthatjuk, hogy ha ∃k ∈ Z , hogy az (A ·A′)k ·A mátrix első
sorának hetedik oszlopában nem zérus elem áll, akkor az αi állapotból az αj állapot elérhető
utolsóként a túlsó partra történő átevezéssel, éspedig 2k+ 1 lépésben. k-szor oda és vissza,
majd végül a túlsó partra evezve.

A feladat megoldásához nyilván a legkisebb ilyen k-t célszerű megkeresnünk. Képezzük
ehhez az

(A ·A′) ·A,(A ·A′)2 ·A,(A ·A′)3 ·A.. .

szorzatokat. Ha nem vagyunk kíváncsiak arra, hogy a feladat hányféleképpen oldható
meg, akkor a fenti szorzatokban a nem zérus elemek helyére mindenhol 1-et írhatunk.

Az így nyert szorzatok:
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A feladat tehát megoldható 5 lépésben. A megoldás menetét visszafelé haladva tudjuk
megadni. Az (A ·A′)2 ·A mátrix (1,7) indexű eleme az (A ·A′)2 mátrix első sorának és
az A mátrix hetedik oszlopának szorzataként adódik. Nézzük meg, hogy az (A ·A′)2 első
sorának melyik eleme ad A utolsó oszlopának megfelelő elemével szorozva nullától különböző
eredményt. Az egyik lehetőség az (1,4) és (4,7), a másik pedig az (1,5) és (5,7) indexű
elemek szorzata. Válasszuk ebből az elsőt. Ez azt jelenti, hogy a megoldás utolsó lépése az
(α4,α7) .

Vizsgáljuk most az (A ·A′)2 mátrix (1,4) indexű elemét. Ide az (A ·A′) ·A mátrix (1,6)
indexű eleméből és az A mátrix (6,4) indexű eleméből kerülhet 1-es. Az utolsó előtti lépés
tehát (α6,α4).

Az (A ·A′) ·A mátrix (1,6) indexű eleme az A ·A′ (1,2) és az A (2,6) indexű elemeiből
adódik. Tehát visszafelé a következő állapot az (α2,α6) .

Az eljárást hasonlóan folytatva a megoldásra a következő ( visszamenő ) algoritmus
adódik:

(α4,α7),(α6,α4),(α2,α6),(α3,α2),(α1,α3)

ami a kiindulási oldal állapotaival kifejezve:

(2,2),(2,0),(2,1),(0,2),(1,1),(0,0)

Definíció 10.7.3 — Incidencia/illeszkedési-mátrix. Jelöljék a gráf pontjait u1,u2, . . . ,un

éleit pedig e1,e2, . . . ,em . Az A= [aij ] n×m-es mátrixot illeszkedési, vagy incidencia-
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mátrixnak nevezzük, ha

aij

{
1, ha ejnem hurokél, és illeszkedik az ui ponthoz,
0, ha ejhurokél, vagy nem illeszkedik az ui ponthoz,

Irányított gráfok esetén az incidenciamátrixnak elemei a következők:

aij


1, ha ejnem hurokél, és kezdőpontja az ui pont,
0, ha ejhurokél, vagy nem illeszkedik az ui ponthoz,
1, ha ejnem hurokél, és végpontja az ui pont,

Példa Tekintsük következő gráfokat.

A gráfok incidencia-mátrixai:

10.8 Hamilton út és kör
Definíció 10.8.1 — Hamilton kör:. Egy P kör egy G = (V, E) gráfban Hamilton-kör, ha P
a V összes elemét pontosan egyszer tartalmazza.

Egyszerűbb szavakkal a cél, hogy úgy járjuk be a gráfot, hogy minden csúcsot egyszer
érintünk és a kezdő csúcsból a kezdő csúcsba érkezünk. Amennyiben nem a kezdő csúcsba
érkezünk, de minden csúcsot egyszer érintettünk, Hamilton útról beszélünk.

Tétel 10.8.1 — Szükséges feltétel Hamilton-kör létezésének kizárására. Ha egy gráfban k
pontot elhagyva k-nál több komponens keletkezik, akkor a gráf nem tartalmaz Hamilton-
kört.
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Figure 10.4: Hamilton-kör komponensei legrosszabb esetben.

Bizonyítás 10.10 — Indirekt. Tegyük fel, hogy a gráfban k pontot elhagyva k-nál több
komponens keletkezik és a gráf tartalmaz Hamilton-kört. a

Vegyük a gráfban lévő Hamilton-kört és hagyjuk el belőle ezt a k pontot. Legrossz-
abb esetben a Hamilton-körben nem szomszédosak ezek a pontok, ekkor minden pont
elhagyásával két élt is elhagyunk a Hamilton körből, ebben az esetben pontosan k kom-
ponensre esik szét, nem tud k+ 1 komponensre szétesni a Hamilton-kör miatt. Ez teljes
indukcióval belátható minden n csúcs és minden k pont esetében lerajzolva. �

aIndirekt bizonyítás során az állítás tagadására látjuk be, hogy kontradikció. Itt az állításunk egy
Ha-akkor kapcsolat, azaz implikáció, tehát az implikáció tagadása pedig a feltétel éselve az akkor uténi
taggal: (¬(α→ β)≡ α∧¬β)

Tétel 10.8.2 — Ore-tétel (1961). Legyen G egy olyan n≥ 3 pontú egyszerű gráf melyben
∀x,y ∈ V (G) nem szomszédos pontpárra teljesül a deg(x) + deg(y) ≥ n feltétel. Ekkor
G-ben van Hamilton-kör.

A fenti tételek implikációk, megfordítva NEM használhatóak, csak elégséges feltételek.

Bizonyítás 10.11 Indirekt bizonyítás, tegyük fel az inplikáció tagadását: Legyen G′ egy
olyan n≥ 3 pontú egyszerű gráf melyben ∀x,y ∈ V (G) nem szomszédos pontpárra teljesül
a deg(x) + deg(y)≥ n feltétel és nincsen benne Hamilton-kör,

Húzzunk be G′-be további éleket úgy, hogy az új gráf is ellenpélda legyen (továbbra
sincs benne Hamilton-kör). Ezt tegyük mindaddig, amíg ha mégegyet behúznánk már
tartalmazna Hamilton-kört.

Egy n csúcsú teljes gráfban van Hamilton-kör ezért biztosan létezik két nem szomszédos
pont {x,y} /∈ E(G).

Ekkor viszont a G∪{x,y} gráfban van Hamilton-kör, tehát G -ben van Hamilton-út
(Hamilton körből elhagysz egy élt, Hamilton utat kapsz). A Hamilton-út kezdetét és
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végét összekötve kapnánk a kört.
Legyenek a P Hamilton-út csúcsai: v1 = x,v2, ...,vn = y Ha x szomszédos a P

út valamely vi+1 pontjával, akkor y nem lehet összekötve vi-vel, mert ez esetben
v1,v2, ...,vi,vn,vn−1, ...,vi+1,v1 egy Hamilton-kör lenne.

Tehát az y nem lehet összekötve az x szomszédainak szomszédaival, azaz legalább
deg(x) ponttal.

deg(y)≤ n−1−deg(x)

d(y) +d(x)≤ n−1

ami viszont ellentmond az indukciós feltevésnek, miszerint

d(y) +d(x)≥ n

. �

v1 v2 ... vi vi+1 ... vn

�

Tétel 10.8.3 — Dirac-tétel (1952). Ha G egy egyszerű, legalább 3 pontú gráf, amelynek
minden pontjának legalább deg(v) = |V (G)|

2 ∀v a foka, akkor G tartalmaz Hamilton-kört.

Bizonyítás 10.12 A Dirac tétel az Ore tételnél erősebb feltételt fogalmaz meg, mivel ha
minden pont fokszáma legalább |V (G)|

2 , akkor teljesül az Ore tétel feltétele. Bármely két
pont összegét tudjuk ez alapján becsülni, hogy

deg(x) + deg(y)≥ |V (G)|
2 + |V (G)|

2 ≥ |V (G)|

�

10.9 Dijkstra algorimusa minimális út kresésére
Példa még kidolgozás alatt, addig itt egy YouTube linkem: https://youtu.be/_qALeHcCmm0
Dijkstra algoritmus lényege, hogy egy súlyozott gráf adott pontjából megkeressük a legrövidebb
(legolcsóbb) utat az összes többi pontba. Ezt táblázat segítségével tudjuk a legkönyebben
megcsinálni. A táblázat oszlopai a csúcsokat reprezentálják, amelyekbe el akarunk jutni, a
sorok azt, hogy éppen mely csúcsnál tartunk.

Az első sor első cellájába (sorcímke) felírjuk a kiválasztott csúcsot (ahonnan indulni
akarunk az összes többibe.) A sor többi cellájába felírjuk az első cellában szereplő csúcs
szomszédaihoz vezető élek súlyát. Amely csúcsokba nem tudunk közvetlenül elérni végtelen
távolságúnak vesszük és végtelent írunk a celláiba.

Kiválasztjuk a sorban a legkisebb számot kapó oszlopot - ezzel végeztünk, az oszlop alá

https://youtu.be/_qALeHcCmm0
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már nem írunk több számot. Az oszlop oszlopcímkéjét leírjuk a következő sor sorcímkéjébe.
A következő sor sorcímkéjéből ismételjük meg azt, amit az előbb csináltunk, de úgy, hogy

nem felejtjük el, hogy a leírandó számhoz hozzávesszük azt is, hogy ide mennyivel jutottunk
el, azaz, hogy mi volt az előzőleg kiválasztott legkisebb szám. Tehát itt már a sorcímke
értékét és az innen a szomszédaiba jutás összegét kell leírnunk. Az adott cellába akkor
írjuk bele ezt az értéket, ha kisebb, mint a felette levő szám(azaz valóban rövidebb utat
találtunk). Ezután megkeressük a legkisebb számú oszlopot, amelyet szintén befejezettnek
tekinthetünk. Ez a szám lesz az, ami megmutatja, hogy ezen oszlophoz tartozó csúcsba
mennyi volt eljutni. A következő sor megint így történik, vesszük, hogy a csúcsba eddig
mennyi volt eljutni, majd hozzáadjuk hogy a szomszédaiba mennyi eljutni, ha ez kisebb,
mint amit eddig láttunk adott csúcs esetén, akkor leírjuk, ha nem akkor lemásoljuk a felette
levő értéket ide is.

Ha minden oszlopot kiválasztottunk már, akkor végeztünk.
Az adott csúcsba való eljutást visszafejthetjük, ha megfigyeljük, melyik csúcsba melyikből

jutottunk el, ezért célszerú a számok alsó indexébe beírni, hogy melyik csúcsból jutottunk
oda, így amikor a felette levő számot másoljuk le az alsóindexxel egyből látni fogjuk, honnan
jutottunk oda.

Egy példán a legegyszerűbb megérteni, melyeket a videókban is megtaláltok.

10.10 Gráfbejárások: szélességi keresés, mélységi keresés
A gráfbejárások célja, hogy minden csúcsot elérjünk egyszer, valamilyen útvonalon.

10.10.1 Szélességi keresés
A nevéből is adódóan a végeredményben egy széles feszítőfát kapunk, ha berajzoljuk a bejárt
útvonalakat. Az eljárás során először a gyökeret járjuk be, majd annak a szomszédait sorban,
ezután az első szomszédjának szomszédait, majd a második szomszédjának szomszédait etc.
És így tovább.

Úgy is mondhatnánk, hogy felírjuk a gyökeret, majd első szomszédját, majd második
szomszédját, majd harmadik szomszédját. Ezután az első szomszéd első szomszédját, majd
az első szomszéd második szomszédját. Hamár az első szomszédnak nincs több szomszédja,
akkor felírjük a gyökér második szomszédjának első szomszédját és így tovább.

1
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10.10.2 Mélységi keresés
A nevéből is adódóan a végeredményben egy mélyrenyúló feszítőfát kapunk, ha berajzoljuk
a bejárt útvonalakat. Az eljárás során először a gyökeret járjuk be, majd az első szomszédja
irányában megyünk olyan mélyre amennyire csak tudunk, ha már nincs több szomszédja
az adott szomszédnak, akkor felírjuk, majd visszalépünk és ha a felette levőnek van még
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szomszédja, akkor lemegyünk megint addig, amíg találunk szomszédot és leírjuk a legmé-
lyebben levőt, majd visszalépünk, ha nincs több szomszédja, felírjuk és feljebb lépünk egyel
és megyünk mélyebbre megint. Fontos kitétel, hogy kör nem ehetséges, hiszen már jártunk
arrafelé.

14

13 11 8 5

3 12 9 6

1 2 10 7 4

10.11 Síkgráfok
Definíció 10.11.1 — Síkgráf. Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy
a síkba, hogy élei csak a szögpontokban metszik egymást.

Tétel 10.11.1 — Fáry-Wagner tétel. Ha G egy síkbarajzolható gráf, akkor létezik olyan
síkbarajzolása amelyben minden él egyenes szakasz.

Tétel 10.11.2 — Euler-féle poliéder tétel. A G összefüggő, egyszerű síkgráf esetében, ha
• p= gráf pontjainak (csúcsainak száma),
• e=gráf éleinek száma,
• t= a sík gráf által létrehozott területeinek száma, a végtelen területet is számolva

, akkor:

p−e+ t= 2

Bizonyítás 10.13 Lássuk be teljes indukcióval.
1. p=1-re igaz, hiszen 1−0+1 = 2 és p=2-re is igaz: 2−1+1 = 2. (a tartomány maga

a végtelen tartomány, nem osztja több részre a lapot egyik sem.)
2. Tegyük fel, hogy adott egy G gráf, melyre igaz p−e+ t= 2.
3. A következő lépés kétféle lehet:

(a) vagy meglévő csúcsokat kötünk össze egy új éllel: ekkor élek száma eggyel,
területek száma eggyel növekszik, pontok szám a változatlan: igaz-e az állítás?

p−e+ t= 2⇐⇒ p− (e+ 1) + (t+ 1) = 2

(b) egy új csúcsot rajzolunk be (a rá illeszkedő éllel együtt), amelynek szomszédja
már a meglévő lerajzolt gráfban van : ekkor a csúcsok száma eggyel nő, élek
száma eggyel nő, területek száma változatlan: igaz-e az állítás?

p−e+ t= 2⇐⇒ (p+ 1)− (e+ 1) + t= 2

�
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Következmény 10.11.3 — min 3p. Ha az összefüggő, egyszerű sík gráf pontjainak száma
legalább 3, akkor

e≤ 3p−6

Bizonyítás 10.14 Mivel egyszerű gráfról van szó, ezért minden területet legalább 3 él
határol (legalább 3 a fokszáma - háromszög) A területeket határoló éleket összeadva
az élek számának kétszeresét kapjuk, hiszen minden területet határoló él két területhez
tartozik, így kétszer számoljuk őket össze. Vagyis:

2e≥ 3t

, hiszen ha MINDEGYIK terület háromszög lenne, akkor lenne a fokszáma 3 (ez a
legkisebb eset, ennél csak többél határolhat egy területet).

t≤ 2
3e

p−e+ t= 2

e-t kifejezve, t-t alulról becsülve:

e= p+ t−2≥ p+ 2
3e−2

, ebből
e≤ 3p−6

.
�

Következmény 10.11.4 Ha G egyszerű síkbarajzolható gráf, akkor a minimális fokszáma
legfeljebb 5.

Bizonyítás 10.15 Indirekt: tegyük fel, hogy G egyszerű síkbrajzolható gráf és a minimális
fokszám legalább 6.

A fokszámok összege az élek számának kétszerese (kézfogás-Handshaking ), így

6p≤ (fokszámok összege)≤ 2e.

. Az előző tétel:
e≤ 3p−6−→ 2e≤ 6p−12



10.11 Síkgráfok 95

, ez ellentmondás:
6p≤ 2e≤ 6p−12�

�

Következmény 10.11.5 Ha egy síkbarajzolható gráfban a minimális fokszám 5, akkor
legalább 12 db 5-öd fokú pontja van.

Bizonyítás 10.16 pM legyen a minimális fokszámú pontok száma, vagyis, amelyek fokszáma
5. A fokszámösszeg akkor legalább 5pM + az ennél nagyobb fokszámú pontok, legalább 6
fokszámúak, azaz alulról tudjuk becsülni az élek kétszeresét:

5pM + 6(
Összes csúcs száma

↓
n−pM )≤ 2e

1.következmény
↓
≤ 6n−12

Ebből:
12≤ pM

�

Következmény 10.11.6 — nincs háromszög min 3p. Ha az összefüggő, egyszerű sík gráf
pontjainak száma legalább 3, és nincsen 3 hosszú köre (nincsen benne háromszög), akkor
e≤ 2p−4. Euler tétel következménye.

Bizonyítás 10.17 A feltételek miatt most minden területet legalább 4 él határol (legalább
négyzet), fokszáma legalább 4,tehát:

2e≥ 4t−→ 1
2e≤ t

p−e+ t= 2−→ e= p+ t−2
becslés
↓
≤ p+ 1/2e−2

ebből:
e≤ 2p−4

�

Ez a következmény segít belátni, hogy a K3,3 gráf nem síkbrajzolható, de a K5 sem. A
tételek alapján ezek belátását az olvasóra bízom. Viszont ezek miatt tudjuk kimondani a
Kuratoeski tételt.
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Figure 10.5: Kuratowski gráfok

Tétel 10.11.7 — KURATOWSKI. Valamely gráf akkor és csak akkor sík gráf, ha nem
tartalmaz K5 -tel vagy K3,3-mal homeomorf részgráfot.

Definíció 10.11.2 — Homeomorf. Két gráf akkor homeomorf, ha az alábbi módosításokkal
egymásba alakíthatóak:

1. az élekre beilleszthetünk új pontot
2. ha a G gráfnak van olyan részgráfja, amelyben minden csúcspont fokszáma kettő,

de nem alkotnak kört, akkor ezeket a pontokat törölhetjük

Tétel 10.11.8 — Sztereografikus projekció. A G gráf akkor és csak akkor síkba rajzolható,
ha gömbre rajzolható.

Bizonyítás 10.18 Sztereografikus projekció. A gömböt a síkra helyezzük, (déli pólus),
majd az északi pólusból egyeneseket húzunk a gráf pontjaihoz (éleinek pontjaihoz), ezen
egyeneseknek a gömbbel levő másik metszéspontja lesz a vetített képpont. �

10.11.1 Síkgráfok színezése
Definíció 10.11.3 — Gráf színezése. Minden csúcshoz hozzárendelünk egy színt úgy, hogy
ha két csúcs között van él, akkor a csúcsok nem lehetnek azonos színüek.

Definíció 10.11.4 — Kromatikus szám. A csúcsok színezéséhez minimálisan szükséges
színek száma. Jele:χ(G)

Kromatikus szám becslése:
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Figure 10.6: Sztereografikus projekció: https://www.youtube.com/watch?v=usCCkgkD_2s
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Klikkszám:legnagyobb teljes részgráf mérete
↓

ω(G)≤ χ(G)≤

Legnagyobb fokszámy
∆(G) + 1

Tétel 10.11.9 — Négyszín-tétel. bármely enklávék nélküli térképet ki lehet úgy színezni
legfeljebb négy szín felhasználásával, hogy ne legyen két azonos színű szomszédos régió.

Tétel 10.11.10 — Ötszín-tétel. Ha G síkba rajzolható gráf, akkor χ(G)≤ 5.

Bizonyítás 10.19 Teljes indukcióval a gráf pontszámára.
1. Ha a gráfnak max 5 db csúcs van, akkor nyilvánvalóan kiszínezhető 5 színnel.
2. Tegyük fel, hogy n csúcsú gráf kiszínezhető öt színnel.
3. Kérdés: n+1 csúcsú gráfra is igaz-e?

(a) Az egyik következmény miatt létezik olyan csúcs (a minimális fokszámú),
melynek a fokszáma maximum 5.

(b) Ha a legkisebb fokszám 4 (vagy annál kisebb, akkor hasonlóan):
i. Ezt a csúcsot a rá illeszkedő élekkel együtt elhagyva a csúcsok száma

eggyel csökken, azaz n csúcsú gráfot kapunk, tehát az indukciós feltevés
miatt ez kiszínezhető 5 színnel.

ii. Ha visszavesszük ezt a csúcsot, akkor már csak a szomszédai és a csúcs
színe a kérdéses. A szomszédait ki lehet színezni 4-gyel, + egy színt maga
a visszavett pont kapja ez az 5. szín!

(c) Ha a legkisebb fokszám 5:
i. ha elhagyjuk ezt a csúcsot, akkor az előzőhöz hasonlóan az indukciós

feltevés miatt az n csúcsú gráf kiszínezhető. Visszavéve ezt a csúcsot
akkor már csak ennek a csúcsnak és a szomszédainak a színe a kérdéses.

ii. Öt darab szomszédja van, minden szomszéd nem lehet minden szomszéddal
szomszédos, mert akkor K5 lenne, amelyről tudjuk, hogy síkgráfban nem
lehetséges. Tehát Létezik két nem szomszédos szomszédja ennek
a pontnak. Ebből adódóan az öt darab szomszéd kiszínezhető 4 színnel,
mert a két nem szomszédos pont kaphatja ugyanazt a színt. Az ötödik
szín a visszavett csúcsé.

�

10.11.2 Színezés alkalmazásai
1. Memória regiszterek allokációja:

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/17/ Slides17.pdf
2. Sudoku
3. Térkép színezés
4. Ütemezési feladatok: vizsga, órarend, stb.
5. Mobil telefonok frekvencia kiosztás - 4 –féle frekvencia
6. Repülőgépek ütemezése: k db repülő, n db járat
7. Biztonsági kamerák tervezése – minimális szám
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8. Levelek osztályozása
9. Multiprocesszorok – feladatmegosztás

10. Számítógépes grafika: www.cs.unc.edu/ isenburg/slides/cpmcddp.ppt
11. Ültetés: http://www.weddingseatplanner.com/

R
Leírás: Applications of Graph Coloring in Modern Computer Science, Shamim Ahmed

https://www.youtube.com/watch?v=y4RAYQjKb5Y

10.12 Hálózati folyamok
Definíció 10.12.1 — Hálózat. A hálózat egy (G;S;T ;c) négyes. Egy irányított G gráf

melynekEgyik kitüntetett pontja a Forráspont Jele: S (source) Másik kitüntetett
pontja a Nyelőpont. Jele: T (target) és az éleken van értelmezve egy kapacitás
függvény c : E(G)→ R+

0 .
Definíció 10.12.2 — Folyam. Az f :E(G)→R függvényt folyamnak hívjuk, ha teljesül-
nek a következők:

a folyamnak van iránya: f(n1,n2) =−f(n2,n1) ∀(n1,n2) ∈ E(G),n1,n2 ∈ V (G)

kapacitásnál több nem fér el: f(n1,n2)≤ c(n1,n2) ∀(n1,n2) ∈ E(G)
Definíció 10.12.3 — Vágás. Legyen H = (G,S,T,c) egy hálózat. Legyen egy V1,V2 ⊆ V
partíciója V-nek. Legyen továbbá S ∈ V1 és S ∈ V2. Ekkor a V1,V2 halmazt vágásnak
hívjuk.
Definíció 10.12.4 — Vágás értéke. A vágás élein a kapacitások összege.

10.12.1 Maximális folyam megkeresése
Minden egyes lépésnél segédgráfot fogunk felrajzolni és a segédgráf segítségével fogunk
javítóutakat keresni. A javítóút olyan út a segédgráfon, amelyből S-ből eljut a T-be. Ha
elfogytak ezek a javítóutak, akkor maximális folyam halad át a hálózaton - nem javítható
tovább.

Segédgráf elkészítése
:

A segédgráf különbözik az aktuális folyamot mutató gráftól - javítóutakat mutat!! (Lásd
a videómban)
•••1. Felrajzoljuk a pontokat.
2. Berajzolunk minden olyan élt, amelyen még növelhető a folyam értéke (videómon zöld

színnel): c(e)−f(e)> 0 e ∈ E(H). Az élnek adunk egy segédértéket, ez lesz az, hogy
mennyivel növelhető még azaz c(e)−f(e).

3. Berajzolunk minden olyan élt visszafele, amelyen halad át folyam (videómon piros
színnel). Az élnek azt az értéket adjuk, hogy mennyivel lehetne visszafordítani a
folyamot, azaz: f(e) e ∈ E(H). Tehát magát a folyamértéket adjuk neki.
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Ekkor minden lehetséges élt berajzoltunk, valamelyiket zölddel, valamelyiket pirossal és
adtunk nekik értékeket, a zöldön, hogy mennyivel tudunk növelni, a piroson, hogy mennyivel
tudunk csökkenteni.

A segédgráf felrajzolása után meg kell keresnünk egy javítóutat. A javítóút mindne
olyan út, amely elvezet az S-ből a T-be a segédgráfon. Nem számít a nyilak színe, csak az
iránya.

A javítóút megtalálása után kiválasztjuk a szűk keresztmetszetet - ez lesz a legkisebb
segédérték (mindegy hogy zöld vagy piros az érték, a legkisebb kell közülük.) Ezzel a
szűk keresztmetszettel fogjuk az eredeti gráfban változtatni a kiválasztott útvonal éleinek
folyamértékét: ahol a segédgráfban zöld élünk volt, ott a szűkkeresztmetszettel növeljük,
ahol piros él volt, ott az eredeti élt a szűkkeresztmetszettel csökkentjük.

Ekkor új folyamot kaptunk. Kezdhetjük az új segédgráf felrajzolását. Addig csináljuk
ezeket a lépéseket, amíg van javítóút a segédgráfban.

Tétel 10.12.1 A folyam értéke egyenlő bármelyik vágáson átfolyó folyammal.

Bizonyítás 10.20 Az anyagmegmaradás (Kirchoff) törvénye szerint, ami egy pontba be-
folyik az ki is folyik rajta.

∑
f(v-be befolyó élek)−

∑
f(v-ből kifolyó élek) =

{
0 ha v /∈ {S,T}
folyamérték ha v = S

Azaz csak a vágásból kimutató élek folyamértékei számítanak, a többi kioltja egymást.
�

Következmény 10.12.2 — Felső becslés a folyam értékére. A folyam értékére – nem lehet
nagyobb mint BÁRMELYIK vágás kapacitása.

Bizonyítás 10.21

c(V1,V2) :=
∑

v1∈V1,v2∈V2

(v1,v2) A V1-ből kifolyó élek kapacitásának összege

f(V1,V2) :=
∑

vi∈V1,vj∈V2

f(vi,vj)−
∑

vk∈V1,vl∈V2

f(vl,vk) a V1-ből kifolyó −V1-be folyó élek

f(V1,V2)
Ebből vonunk ki valamennyit, ha kivonunk.

↓
≤

∑
vi∈V1,vj∈V2

f(vi,vj)

a baloldal részhalmazay
≤ c(V1,V2)

�
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Tétel 10.12.3 — Ford-Fulkerson tétel. A maximális folyam értéke megegyezik a minimális
vágás értékével.

Bizonyítás 10.22 A minimális vágás azokat a csúcsokat tartalmazza, ahova még a Source-
ból el tudunk jutni a legutoló segédgráfon (a legutoló segédgráf = tehát amikor már
a targetbe több javítóút nem érkezik.) Ebben az esetben maximális folyamunk van.
Ekkor viszont a fenti tétel alapján a folyam értéke nem lehet nagyobb, mint ennek a
vágásnak a kapacitása. Tehát a maximális folyam nem lehet nagyobb a minimális vágás
kapacitásánál. Azt kell belátnunk, hogy nem is lehet ennél kissebb sem.

A folyam értéke egyenlő bármelyik vágáson átfolyó folyammal tétel alapján a folyam
értéke meg is egyezik ezzel a minimális vágás értékkel. �





11. Algoritmusok műveletigénye, komplexitás

(Átdolgozta Miski Marcell http://tamop412.elte.hu/tananyagok/algoritmusok/lecke2_lap1.html#hiv5)

11.1 Bevezetés
Az adatszerkezeteket és algoritmusokat mindig jellemezzük hatékonyság szempontjából,
mert az a célunk, hogy minél hatékonyabb algoritmusokat találjuk (olcsóbb legyen, gyorsabb
legyen etc.). Az adatszerkezetek egyes ábrázolásairól megállapítjuk a helyfoglalásukat, az
algoritmusoknál pedig a műveletigényt becsüljük, mindkettőt az input adatok méretének
függvényében. Általában megelégszünk mindkét adat nagyságrendben közelítő értékével.
Amint látjuk majd, egy sajátos matematikai határérték-fogalmat vezetünk be és alkalmazunk
a hatékonyságra irányuló számításainkban.

A műveletigény számításakor eleve azzal a közelítéssel élünk, hogy csak az algoritmus
meghatározó műveleteit vesszük számításba. Általában kijelölhető egyetlen meghatározó
művelet, amelyre a számítást elvégezzük. A műveletigényt a kiszemelt művelet végreha-
jtásainak számával adjuk meg, mivel az egyes műveletek végrehajtási ideje gépről-gépre
változhat. A lépésszám közelítéssel kiszámolt nagyságrendje – gyakorlati tapasztalatok
szerint is – jól jellemzi az algoritmus tényleges futási idejét.
Definíció 11.1.1 — Nagy-Ordó. Legyen f , g két függvény, amelyek a valós vagy az egész
számok halmazából képeznek a valós számok halmazába. Azt mondjuk, hogy f(x) =
O(g(x)) (ejtsd:f(x) nagy-Ordó g(x)), ha létezik olyan C,k pozitív konstans, amelyekre:

|f(x)| ≤ C · |g(x)| ∀x > k

Azaz egy adott küszöbindex után egy konstans nyújtástól eltekintve mindig nagyobb a
g. Ekkor azt mondjuk, hogy g(x) aszimptotikus felső korlátja f(x) - nek.
Definíció 11.1.2 — Nagy-Omega. legyen f,g két függvény, amelyek a valós vagy az egész
számok halmazából képeznek a valós számok halmazába. Azt mondjuk, hogy f(x) =
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Ω(g(x)) (f(x) nagy-Omega g(x)), ha létezik olyan C,k pozitív konstans, amelyekre:

|f(x)| ≥ C · |g(x)| ∀x > k

Ekkor azt mondjuk, hogy f(x) aszimptotikus felső korlátja g(x) - nek.
A két definíció között szoros kapcsolat áll fenn:

f(x) =O(g(x))⇐⇒ g(x) = Ω(f(x))

Definíció 11.1.3 — nagy-Theta. legyen f,g két függvény, amelyek a valós vagy az egész
számok halmazából képeznek a valós vagy az egész számok halmazába. Azt mondjuk,
hogy f(x) = Θ(g(x)) (f(x) nagy-Theta g(x)), ha f(x) = Ω(g(x)) és f(x) =O(g(x)).

Ez a rendőrelvhez hasonlatos gondolatmenet. Érezhető, hogy a nagy-Theta ekvivalencia
relációként is felfogható függvények között.

1. Relfexív: f = Θ(f)
2. Szimmetrikus f(x) = Θ(g(x))⇐⇒ g(x) = Θ(f(x))
3. Tranzitív f = Θ(g)∧g = Θ(h) =⇒ f = Θ(h)
Ebből adódóan a nagy-Theta partíciókra, azaz ekvivalenciaosztályokra osztja a füg-

gvények halmazát. Szokás a tipikus nagyságrendekről beszélni.
Az aszimptotikusság, határérték tulajdonságok, kis-omega és kis-ordó fogalmakat is

bevezetik.
Definíció 11.1.4 — kis-ordó. legyen f,g két függvény, amelyek a valós vagy az egész
számok halmazából képeznek a valós vagy az egész számok halmazába. Azt mondjuk,
hogy f(x) = o(g(x)) (f(x) kis-ordo g(x)), ha

lim
n→∞

f(n)
g(n) = 0

.

Definíció 11.1.5 — kis-omega. legyen f,g két függvény, amelyek a valós vagy az egész
számok halmazából képeznek a valós vagy az egész számok halmazába. Azt mondjuk,
hogy f(x) = ω(g(x)) (f(x) kis-omega g(x)), ha

lim
n→∞

f(n)
g(n) =∞

.

11.2 Tipikus nagyságrendek

Az ekvivalenciaosztályok megléte miatt szokás tipikus nagyságrendekről beszélni, úgy is
gondolhatnánk, hogy az általunk ismert legegyszerűbb függvényekhez próbáljuk viszonyítani
az algoritmusokat, vagy a többi függvényt, mert az egyszerű függvényekről mind érezzük
nagyságrendjét. Ezek a függvényeket a 11.1. ábra mutatja.

Algoritmusok aszimptotikus futási ideje:
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Figure 11.1: Tipikus nagyságrendek
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Verem vagy sor bármely művelete Θ(1)
Logaritmikus (=bináris) keresés Θ(log(n))

Prímszámteszt (n1/2-ig) Θ(
√
n)

Lineáris keresés Θ(n)
Kupacrendezés Θ(n log(n))
Shell rendezés Θ(n

3
2 )

Buborékrendezés Θ(n2)
Mátrixszorzás Θ(n3)
Hanoi tornyai Θ(2n)

Utazó ügynök probléma Θ(n!)



12. List of Pseudocodes

Listing 12.1: Dijkstra Algoritmus
1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: // Initialization
3 dist[v] := infinity // initial distance from source to vertex v is set to infinite
4 previous[v] := undefined // Previous node in optimal path from source
5 dist[source] := 0 // Distance from source to source
6 Q := the set of all nodes in Graph // all nodes in the graph are unoptimized − thus

↪→ are in Q
7 while Q is not empty: // main loop
8 u := node in Q with smallest dist[ ]
9 remove u from Q
10 for each neighbor v of u: // where v has not yet been removed from Q.
11 alt := dist[u] + dist_between(u, v)
12 if alt < dist[v] // Relax (u,v)
13 dist[v] := alt
14 previous[v] := u
15 return previous[ ]

Listing 12.2: Prim Algoritmus
1 function Prim(G, w, s):
2 //Input: undirected connected weighted graph G = (V,E) in adj list representation,source

↪→ vertex s in V
3 //Output: p[1..|V|], representing the set of edges composing an MST of G
4 for each v in V
5 color(v) <− WHITE
6 key(v) <− infinity
7 p(v) <− NIL
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8 Q <− empty list // Q keyed by key[v]
9 color(s) <− GRAY
10 Insert(Q, s)
11 key(s) <− 0
12 while Q != empty
13 u <− Extract−Min(Q)
14 for v in Adj[u]
15 if color(v) = WHITE
16 then color(v) <− GRAY
17 Insert(Q,v)
18 key(v) <− w(u,v)
19 p(v) <− u
20 elseif color(v) = GRAY
21 then if key(v) > w(u,v)
22 then key(v) <− w(u,v)
23 p(v) <− u
24 color(v) <− BLACK
25 return(p)

Listing 12.3: Kruskal Algoritmus
1 //Diszjunktiv halmazok strukturajat alkalmazva
2 //Az ehhez kello fuggvenyek
3 function MakeSet(x) is //Uj halmazt general aminek egyetlen eleme x
4 if x is not already in the forest then
5 x.parent := x
6 x.size := 1 // if nodes store size
7 x.rank := 0 // if nodes store rank
8 end if
9 end function
10
11 function FindSet(x) is //Elmegy a gyokerig es megkeresi azt
12 if x.parent x then
13 x.parent := FindSet(x.parent) //Rekurzivan megyunk
14 return x.parent
15 else
16 return x
17 end if
18 end function
19
20 function Union(x, y) is Kicsereli az x−et es az y−t tartalmazo halmazt egyetlen halmazra

↪→ − a ketto uniojara
21 // Replace nodes by roots
22 x := Find(x)
23 y := Find(y)
24
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25 if x = y then
26 return // x and y are already in the same set
27 end if
28
29 // If necessary, rename variables to ensure that
30 // x has at least as many descendents as y
31 if x.size < y.size then
32 (x, y) := (y, x)
33 end if
34
35 // Make x the new root
36 y.parent := x
37 // Update the size of x
38 x.size := x.size + y.size
39 end function
40
41 //Maga az algoritmus a fenti fgveket felhasznalva
42 function Kruskal(G):
43
44 F:= //Ureshalmazt hozunk letre
45 for each v G.V do // A graf minden pontjan vegigmegyunk
46 MakeSet(v)
47 for each (u, v) in G.E ordered by weight(u, v), increasing do
48 if FindSet(u) not = FindSet(v) then
49 F:= F {(u, v)}
50 Union(FindSet(u), FindSet(v))
51 return F

Listing 12.4: Pascal Háromszög
1 function pascal_triangle(MAXN)
2 intialize a matrix dp[MAXN][MAXN] with 0
3 for i = 0 to MAXN
4 dp[i][0]=dp[0][i]=1
5 endfor
6 for i = 1 to MAXN
7 for j = 1 to MAXN
8 dp[i][j] = dp[i−1][j]+dp[i][j−1]
9 endfor
10 endfor
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