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1. Bevezetés

1.1 Motivacié

A konyv megirdsdnak célja, hogya diszkrét matematika témakoréhez tartozo jegyzeteket
minél jobban 6sszegytijtse, de leginkabb az, hogy bemutassa, mi mindenrol is szdl.

"Az absztrakcionak rossz hire van: szintelennek, céltalannak, a vilagtol el-
szakadtnak és tartalom nélkiilinek tartjik. Terméketlennek. A matematikat
néha megrojik azért, mert absztrakt: mintha ez egy veszélyes lejton tett rossz
lépés lenne. Pontosan az absztrakcié az azonban, ami a matematika feltiiné és
gyakran nem is vart hatékonysiaga mogott rejtozik. Készség az Osszes 1ényegtelen
tényezo figyelmen kiviil hagydsara, a valdsdgosnal szélesebb tartomanyban vald
vizsgalddasra, Osszehasonlitani azt, ami van, azzal, ami lehetséges, s6t, ami
lehetetlen - ez a matematika sikerének titka."

Az idézet Karl Sigmundtol azért fogott meg, mert sok-sok elvont dologgal fogunk
talalkozni a tantargy, de a tobbi targy soran is. Ez elsére sokszor ijesztonek tiinhet. Nehéz
elképzelni valamit, amirdl el6tte nem hallottal. Viszont igérem, a konyv végére mindenkinek
sikeriil majd megérteni példaul a végtelen viselkedését. Szerencsére a legtobb absztrakt
fogalmunk mogott ott rejlik valami szikra, kiindulépont, ami nagyon is valésagos. Ezeket,
ha megtalaljuk nem csak magat a fogalmat értjiikk meg jobban, de azt is, hogy miért alakult
ki, miért van nekiink sziikségiink arra, hogy ennyire altalanositsunk vagy elrugaszkodjunk a
megszokottol.

Eppen ez a miért az, amiért tanuljuk a targyat, ami miatt a diszkrét matematika ismerete
nélkiil a mérnék nem mérnok igazan. Ahogyan Ty Pennington is alapozéssal kezd, amikor
felépit egy héazat, éppigy a mérnéknek is sziiksége van mélyrehatolé fogodzdkra ahhoz, hogy
ténylegesen valami olyat tudjon létrehozni, ami konnyedén megallja a helyét a nagyvildgban.

Amiket most tanulni fogunk kézosen, azokat a legtobb esetben a gyakorlatban is fel-
hasznaljak a mérnokok. Talan, ha az algoritmusok idGigényérdl vagy memoériaigényérol
beszélek, akkor az olvasd egybdl bdélogat, hogy: igen, én is oriilnék, ha minél gyorsabban
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végeznék a feladattal. Mindazondltal vannak olyan rések is, melyeket olvasva nem esik le
elsének, mégis miért tanuljuk mi ezt. Ezeknél és a legtobb fejezetnél igyekeztiink minél
tobb applikaciérdl is beszélni, megmutatni, hogy szinte nincs olyan tantargy, ahol nem fog
valahol el6jonni a most tanultak valamelyike.

Egy kis kontextus

Jé, de pontosan mi az a diszkrét matematika és mitol diszkrét? A kés6bbiekben latni
fogjuk, hogy vannak megszamlalhato és megszamlalhatatlan elemsziimi halmazok. Talan a
diszkrét matematikat is tigy lehetne megfogni a legjobban, hogy a megszamlalhaté, vagy
az egészekhez (integerek) hasonlatos halmazokkal foglalkozunk. Ett6l diszkrét, azaz nem
folytonos - a folytonos dolgokkal inkdbb az analizis foglalkozik. A példanyok megfoghatéak,
kénnyedén elkiilonithetéek a t6bbitél, mintha egyszert targyak lennének.

A diszkrét matematika a digitalis szamitégépek alap leiré nyelve, mert foglalkozik a
logikéval, a strukturdkkal és reldcidkkal, eképp a haldkkal és a szdmelmélettel. Foglalkozik
tovabba a kombinatorikdval, a valdszinliségekkel, tehdt magdval a lehetségessel. Azaz
Osszességében minden olyan alap matematikaval, amelyek sziikségesek a szamitégépek
megértéséhez és irdnyitasdhoz. Nevezhetnénk ugy is, hogy: "A digitdlis szdmitdgépek
matematikdja".

Koszonetnyilvanitas

Elsdlegesen szeretném megkdszonni Bércesné dr. Novidk Agnes faradhatatlan munkajat,
amelyet a tantargy kidolgozasaval toltott, valamint, hogy megtanitotta a matematika
legérdekesebb részeit és mindig gondosan odafigyelt arra, hogy érdeklédésemet a teriilet
irdnt és a motivaciomat ne veszitsem el. A konyv a Tanarné jegyzeteit veszi alapul és azokat
egésziti ki én inkabb csak Osszeraktam egy helyre az anyagot. A konyv tovabbra sem teljes
és folyamatos feliilbiraldst és hozzaadést igényel, de remélhetdleg segiti a kdzos munkat.
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2. Kombinatorika

Bevezeto

Itt most megprébalom bemutatni eléggé konyhanyelven a mar gimnaziumban is ismert
kombinatorikai fogalmakat: Permutécié, Varidcié, Kombinacié (PVC).

A kombinatorika szamos helyen eléfordul a val6é életben is. Komputerchipek pro-
venni. FPGA-k esetén a logikai kapuk elhelyezése, sorrendje kulcsfontossagi. Fehérjék
és DNS molekuldk szekvencia problémai, illesztések, lehetséges mutacidk stb. mind mind
kombinatorikai kihivasok.

Permutacio

A permutécié a kombinatorika alapja, minden erre vezethet$ vissza. A permutdcié a latin
permutare igébdl szdrmazik, aminek jelentése per-at mutare- mozdit. Atmozdit, felcserél,
athelyez stb. Ebbdl adéddan a permutacié probléma a sorbarendezés probléméja.

Ismétlés nélkuli Permutacio

Megmondja, hogy n darab kiilonb6z6 valamit hanyféleképpen tudunk sorbarendezni. Ekkor
nagyon egyszeriien beldathaté, mit kell csindlni: Van n darab helyiink, amikre el kell
helyezniink a valamiket. Az els6 helyre logikusan n darab kiilonb6z6 valamit tehetiink,
azonban a masodik helyre, mivel az els6t mar elhelyeztiik mar csak n — 1 valamit tehetiink.
Ekkor a harmadik helyre mar csak n —2 darab valami koziil tehetiink. Azaz a k. helyre
n—k darab valami kiizll tehetiink. Tekintve, hogy mit tehetiink az egyes helyekre , fligg

az el6zlleg felhaszndlt elemektdl is, ezért a fenti lehetGségek szorzata fogja adni a teljes
permutacioé szamat.

P, =n! (2.1)
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Figure 2.1: Faktorialis fa: A helyek az egyes szinteket jelolik, mig a graf elemei a lehetséges
szamokat az adott helyen. Hogy megkapjuk a permutaciok szamat, elég az utolsd helyen
levé elemeket Osszeszamolni: ez hat darab. Ha nem akarunk sokat szamolni, észrevehetjiik,
hogy mindegyik azonos szinten levé elembdl ugyanannyi gyermek szarmazik. Elég csupan
megnézni, hogy adott szinten, egy elembdl hany gyermek szarmazik és ezeket Gsszeszorozva
megkapjuk az utolsé szint elemeinek szamat:3-2-1

Mintafeladat

Az {1,2,3} szdmokat hanyféleképpen rendezhetjiik sorba?

Megoldas:

Természetesen az 2.1 abran is lathato, konnyen fel lehet sorolni a lehetoségeket egy fa
felrajzolasaval. Ebbdl ugyanigy megkaphatd, hogy a vilasz ismétlés nélkiili permutacio:
P,=31=3-2-1=6

Ismétléses Permutacio

Ismétléses Permutaciordl akkor beszéliink, amikor vannak azonos elemeink a sorbaren-
dezend§ elemek kozott. Az azonos elemek esetén természetesen, hogy az egyik, vagy a
masik all-e az adott helyen végeredményben lényegtelen. Ebbdl az kovetkezik, hogy a
lehetséges Permutaciok szama ismétléses esetben kevesebbnek kell lennie - nem szamitjuk
kiilon esetnek, ha azonos elemek azonos helyen szerepelnek. Példaul: {a1,az,l,m} betiiket
szeretnénk sorbarendezni, és csak a betiikre vagyunk kivancsiak, hogy milyen karaktersoroza-
tok lehetségesek(also index nélkiil): akkor az ajlmas és az aslma; lehetéségek ugyanazon
karaktersorozatnak szamitanak. Nem tekinthetok kiilonbo6z6 szénak, hisz alma, alma.
ailmas = aslmay;aiaslm = asailm;ailaom = aslaim; ...

Lathaté, ha kirakunk egy szét, amelyben azonos betiik szerepelnek, ha az azonos betiik
indexeinek ismétlés nélkiili permuticidjat vessziik, akkor megkapjuk, hogy hany azonos szdt
kapnank adott karaktersorozatot tekintve, ha az indexelt betiiket is megkiilénboztetve irnank
fel a lehetséges karaktersorozatokat. Tehat megkapjuk, hanyszor tébb karaktersorozatunk
lenne, ha megkiilonboztetnénk az indexek segitségével az azonos betiiket. Ebbdl adéddan
egyszerl a képlet: az indexek szerint megkiilonboztetett ismétlés nélkiili permutacié szamat
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c sz

! P,
phuke,. — n 2.2
Az almis esetben:
4!
Pf:5:4-3:12 (2.3)

Variacio
Mint emlitettem, minden az ismétlés nélkiili Permutaciébdl szarmaztathatd, igy a Varidcio is.
A Variéci6 a latin variare - valtoztat szobdl ered. Varidcié esetén arra vagyunk kivancsiak,

hogy hanyféleképpen tudunk sorbarendezni k elemet n elembél kivalasztva. (Mivel n elemb6l
valasztunk, ezért k < n.) Beldthatd, ha k =n akkor Permutaciot kapunk.

Ismétlés nélkiili Variacio

Itt is egyértelmii, hogy a Permutacidohoz képest kevesebb Variaciot kell kapnunk, hiszen
kevesebb elemet vdlasztunk ki. Ha példaul a 2.2.1 esetén most nem mindharom elemet
vessziik, hanem csak kett6t, akkor a harmadik helyet az 2.1 abrabdl levaghatjuk, azaz a
szorzatbol is az utolsé elemet elhagyhatjuk. Természetesen a fenti példaban ez az eredményen
nem fog valtoztatni, mert a faktoridlisban az utolsé elem az egyes szorzé. De hasonléan kell
eljarnunk magasabb n és k esetén: n — k helyet le kell vignunk az n helybol.

Tehat, ha n elembdl k elemet kivalasztunk és sorbarendeziink:

n! )
Ve=om - 1L =57 (24)

Bizonyitas 2.1 — Hivatalos. Ebben az esetben eldszor kivdlasztunk k elemet (lasd ismétlés
nélkiili kombindci6), majd utdna ezeket rendezziik sorba k! féleképpen:

n n! n!
(k) k= Kl(n—k)! k= (n—k)!

Ismétléses Variacio

Ebben az esetben azt az elemet, amit mar felhasznaltunk, ismételten felhasznalhatjuk, tehat
a 2.2.1 esetén, ha két helyiink van, elérodulhatnak a kovetkezd esetek: 11,22,33. Az ismétlés
nélkiili Permutécié képletének megalkotdsakor hasznélt logikat kell kovetniink. Azaz n
elembdl k elemet sorbarendezve: az els6 helyre tehetiink n elemet, de mivel az els6 helyen
szerepl6 elemet ismét felhasznalhatjuk, a méasodik helyre szintén n elemet tehetiink és igy
tovabb: a k. helyre tovabbra is n elem keriilhet.

vkt = nk (2.5)



2.4

241

12 2. Fejezet: Kombinatorika

{I11. hely}

Figure 2.2: Az ismétléses variaci6 faja: A helyek az egyes szinteket jelolik, mig a graf
elemei a lehetséges szamokat az adott helyen. Hogy megkapjuk a varidcidk szamat, elég
az utolsé helyen levo elemeket Osszeszamolni: ez kilenc darab. Ha nem akarunk sokat
szdmolni, észrevehetjiik, hogy mindegyik elembdl ugyanannyi gyermek szarmazik (nem csak
az azonos szinten levékbdl). Elég csupdn annyiszor Osszeszorozni egy elem gyermekeinek
szamat onmagaval, ahany hely van: 3-3=9

Kombinacio

A Kombinéacié a latin combinare - egyesit igébdl szarmazik con- egyiitt, bini-kettessével
azaz kettobol egyet alkot. Valami hasonld torténik a matematikaban is: tobb elembdl egy
halmazt alkotunk. A halmaz a kivalasztott elemeket tartalmazza. Mivel halmazrdl beszéliink,
nem szamit a sorrend! Ez a lényegi kiilonbség, ami megkiilonbozteti a Permutéciotol és a
Variaciotol, de ezekbdl szarmaztathato.

Ismétlés nélkiili Kombinacié

Ebben az esetben n elembdl valasztunk ki k elemet, de a sorrend nem szamit. Ha szdmitana?
Ismétlés nélkili Variaciot kapnank. De most nem szamit a sorrend. Mi a teend6? Nem
tobb, nem kevesebb, mint meg kell szabadulni a f6losleges megismételt elemektsl. Le kell
osztanunk a lehetséges Variacidék szamat a kivalasztott elemek Permutécidinak szamaval.

vk n! n
Cn P, (n—Fk)!- k! <k> (2:6)

Tipikus ilyen eset, hédnyféle billentytikombinécié &llithaté eld a billentytizeten. :) Errél
talan konnyl megjegyezni, hogy a kombinacié esetén nem szamit a sorrend - a billentyiikom-
binédcidk esetén egyszerre kell leiitni a billentyliket. De ugyanez érvényes a lottdszelvényre is
- nem szamit, melyik szamot ikszeltiik be el6szor.
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Bizonyitas 2.2 — Hivatalos. Felfoghatjuk gy is a problémét, hogy el6szor sorbarendezziik
az Osszes elemet (n!). Az els6 k elem lesz, amit kivalasztottunk. Ekkor nem szamit a
kivalasztottak sorrendje k!, sem a ki nem valasztottak sorrendje (n—k)!.

n!
kEl(n—E)!

Ismétléses Kombinacié

Az ismétléses Kombindcid visszavezethetd ismétléses Permutéciéra egy kis absztrakt gondo-
lkodassal. A feladat az, hogy n kiilonb6z6 elembdl valasszunk ki k elemet Ugy, hogy egy
elemet tObbszor is valaszthatunk (sorrend nem szamit). Példaul visszatevéses hizds esetén.

Mondjuk azt, hogy van az {A,B,C} elemek, melyekbél szeretnénk 6t elemet kivalasztani
(a visszatevés miatt lehetséges az n < k feldllds is). Ezt meg is tessziik, majd rendezziik 6ket
sorba gy, hogy el6sszor a kivilasztott A-kat rakjuk le, majd a kivalasztott B-ket és végiil a
kivalasztott C-ket.

A kiilonb6zok kozé tegyiink egy elvalasztojelet, példaul egy minuszjelet. Példaul ha két
A-t és egy B-t valamint két C-t valasztottunk ki: AA-B-CC, ha két A-t nulla B-t és harom
C-t: AA- -CCC.

De ez igy még zavaros. Azért kértem, hogy rakjuk bele az elvilasztojeleket, mert amig
a konkrét betiiket irjuk le, addig nem vagyunk sokkal elérébb. Ha most atirjuk a betiiket
azonos szimbélumra, példaul a plusz jelre, az elébbi két esetiink a kévetkezoképp alakul:
++-+-++ valamint a ++- -+++.

Ezt az elvontsagot konnyen visszafejthetjiik, ha akarjuk, hiszen az elvalasztdjelek még
mindig jelzik nekiink az eredeti elemeket, viszont maris kezd Osszedllni a kép: Két eshetGséget
is felirva ez a probléma mar emlékeztet minket az ismétléses Permutaciéra, Van 6t darab
kapjuk meg.

Csindltunk egy egyértelmii hozzarendelést az ismétléses Kombinacié és az ismétléses
Permutécié kozott. (Aki tudott kévetni konnyen vissza tudja fejteni a +- jelek permutaci6jat

Lathato, hogyha n elembdl k elemet kivalasztunk, tgy hogy ismétlédhetnek az elemek
és a sorrend nem szamit, akkor ismétléses Permutéciéként tekintve k darab plusz jelet és
n—1 darab - jelet kell permutéalnunk.Azaz:

ki _ plkn—1) _ (ntk—1)!
Cn _PkJrnfl - (n—l)'k:' (27)

Hogyha elvégezziik az N =n+ k — 1 behelyettesitést:

; N! N
ok = N <k> (2.8)

Azaz:

: n+k—1
Cpt=Cpip1 = < . ) (2.9)
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Azt kapjuk, hogy feltudjuk {rni az ismétléses Kombinaciot ismétlés nélkiili Kombindcidként.

2.5 Feladatok

1. A 32 hallgaté kozott szeretnék kiosztani 32 kiillonbo6zé jegyzetetet, hogy az egyiittan-
ulast szorgalmazzam. Hanyféleképpen tehetem meg?

2. Most a 32 tanulé kozott 6 darab A tipust ZH-t és 26 B tipusi ZH-t szeretnék kiosztani
(vélhet6en mindig a masik csoportté a konnyebb), hanyféleképpen tehetem meg?

3. A 32 hallgaté koziil hdrom kiilonb6z6 feladatra szeretnék kihivni egy-egy didkot. Egy
didkot csak egy feladatra. Hanyféleképpen tehetem meg?

4. A 32 hallgato6 koziil harom kiilonb6z6 feladatra szeretnék kihivni egy-egy didkot. Most
egy didk tobb feladatra is vallalkozhat. Hanyféleképpen tehetem meg?

5. A 32 didkot megszeretném jutalmazni egy csokival. De csak tiz ugyanolyan tabla
csokim van. Hanyféleképpen tehetem meg? Egy hallgaté csak egy jutalmat kaphat.

6. A 32 didkot megszeretném jutalmazni, most tiz ugyanolyan alméval. Egy didk tébb
almat is kaphat. Hanyféleképpen tehetem meg?

2.6 Megoldas

1. Ha a hallgatdkat veszem a helyeknek és a jegyzeteket a sorbaallitandoknak akkor ez:
ismétlés nélkiili permutéicio: 32! féleképpen tehetem meg.
2. Kétféleképpen is gondolkodhatunk:
(a) Az eléz6 feladatok kovetve most: ismétléses permutécio: 6!3_—?6!
(b) De donthetiink ugy is, hogy a 32 hallgaté koziil kivilasztjuk azt a hatot, aki az
A tipust ZH-t kapja: ismétlés nélkiili kombinacio: (362) = 6?%!6!

3. Most a feladatok a helyek és a hallgatok a sorbarendezendok: ismétlés nélkiili variacio:
32!

(32-3)!

4. Az €l6z6hoz hasonléan most: ismétléses varidci6: 323

5. Mivel ugyanolyan csokirdl van sz, ezért nem szamit, hogy melyik csokit kapja, ha
kap: ismétlés nélkiili kombindcié: (%7)

6. Az el6z6hoz hasonldéan, csak most egy didkot tobbszor is valaszthatok: ismétléses

kombinécié: (32+1100_1)

2.7 Klasszikus Valdsziniiség

kedvez6 esetek szédma

valség = (2.10)

0sszes eset szama

2.7.1 Feladat

Matematikailag helyes-e azt mondani, hogy hanyféle kombinéciét kell kiprobalnom ahhoz,
hogy feltorjem az elfelejtett PIN kédomat? Mennyi az esélye, hogy nem kell PUK kédot
hasznalnom?

Megoldas: Matematikailag helytelen, hiszen PINkéd esetén szamit a sorrend, igy
varidciokrol beszélhetiink. Az Gsszes variaciot kénnyen megkapjuk 10 szamjegybdl négyet
kell kivélasztanunk és sorbarendezniink. Egy szamot tobbszor is hasznalhatunk (lehet, hogy
0000 a jelszavam): ismétléses variacié 10
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Ez azonban még nem szadmit az Osszes esetnek, mert az esemény most az, hogy a
lehetséges PINkédokbdl kivalasztunk harmat. Az nem szdmit, hogy hanyadjara taldlom
el a PIN kédomat, csak az, hogy a hdromban benne legyen. Tehat az Gsszes varidciéboél
kivdlasztva hdrmat: ismétlés nélkiili kombindcio: (134). Ez lesz az dsszes esetiink. A kedvezd
esetek szdma pedig tgy all eld, hogy rogzitjiik a helyes PINkédot, ekkor mar csak két mésik
PINké6dot kell valasztanunk. Ezek mind kedvezéek szamunkra, mert sikeril feltorném a
telefont. Attol most tekintsiink el, hogy ha elsére sikeriil normél esetben t6bbszér nem
prébélkozom. Tehat (19 1)

A valdszintlisége, hogy benne van a hdrom prébélkozdsomban a jé PINk6d, a kovetkezo: P =
)

('7)

2.8 Binomialis tétel és a binomialis egyiitthatok

Tétel 2.8.1 — Binomialis tétel.

Bizonyitas 2.3 (a+0)" = (a+b)(a+D)...(a+b) Mindent mindenkivel beszorozva, minden
zar6jelbdl vagy a-t, vagy b-t kell valasztanunk. Ezzel megkapjuk az a™ *b* alaki tagokat.
A kérdés, hogy az adott alakot hanyszor kaptuk meg vajon? A véalasz, pontosan annyiszor,
ahanyféleképpen tudjuk kivalasztani azokat a zardjeleket, amelyekbdl a b-t valasztottuk.
Azaz ez egy kombinécié: Ck = (7). .

2.8.1 Binomialis egyiitthatdok tulajdonsagai
L Yoo (p) =2"

Bizonyitas 2.4 Ez gyakorlatilag tekinthet6 annak, hogy egyszer 0 majd 1 majd 2
stb. elemet valasztok ki adott halmazbdl. Azaz ez a hatvanyhalmazok szdmossiga.
Algebrai bizonyitashoz lasd a Pascal haromszog soranak 6sszegét. "

2. Xhoo(-1)* () =0
I Bizonyitas 2.5 A binomialis egyiithatok szimmetriajabol kovetkezik. "
3.3k k() =n2""t | n>1
. o —1)! -
Bizonyitas 2.6 Y_i_ k(3) = Yioy kpptgy = 1 k- m =nYh (307) =
n2n—1 "

4 3o (DG ) = (T 10<rr<m,r<n

Bizonyitas 2.7 Két diszjunkt halmazom van, egyikbol k-elemet vélasztok, a masikbol
r-k-t akkor ez olyan, mintha a két halmaz uniéjabél valasztanék ki r elemet. "

5. > 1o (2)2 = (2711) (Vandermonde-azonossag)
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I Bizonyitas 2.8 Ez a fenti eset speck6 m=n és r=n m
ny _ (m—1 n—1
6. () =("%)+G)

Bizonyitas 2.9 A kérdés tovabbra is az, hogy egy n elemii halmazbdl hanyféleképpen
valaszthatunk ki k£ elemet? Rogzitsiink egy elemet és ehhez képest nézziik meg a
kivalasztasokat. Ez az elem a kivalasztott elemek kozott vagy szerepel vagy sem.
Ha szerepel, akkor a maradékbdl mar csak k —1 darab elemet kell kivalasztanunk:

(Zj) Ha nem szerepel, akkor az 6sszes elemet a maradékbdl kell kivalasztanunk:

(";1) Az 6sszes eset ennek a kettének az dsszege. .
Pascal Haromszog
n=>0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=>5 1 5 10 10 5 1
n==~6 1 6 15 20 15 6 1

0 1 2 3 4 5 6
Binomidlis egyiitthatokkal:

Row 0: (8)
Row 1: ((1)) G)
Row 2: © 6 6

Row 3: (g) (?) (g) (g)
Row 4: 0 @) @ 6 @
Row 5: (3) (?) (g) (g) (451) (g)
Row 6: © O G 6 @O 6 ©
Row T: © @ 6 6@ @6 6 6
Rows: (1) () @) G @) 6 6 @) @)
Rowo: (5) (1) G) G (@) G) 6 () () ©)
Row 10{100) (110) (120) (130) (140) (150) (160) (170) (180) (190) Gg)
Tétel 2.9.1 — Pascal Haromszog soranak dsszege. Pascal haromszog n. soranak Osszege

2",

Bizonyitas 2.10 — Pascal Haromszog soranak Osszege.
n
k=0 k

Felismerehetjiik, hogy ez hasonlit a binomidlis tételre, csak hidnyzik beldle az a és a b, de
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17

valoban hianyzik? Felfoghatjuk gy is, hogy nem hidnyoznak, hanem a =1 és b= 1.

3 (Z) 1F1m 7k = (14 1) = 2"

k=0
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Egy elem
Sorrend . Nem csak Nem|  Ismétléses (n—i—k— 1)
szamit? egyszer va- Kombinéacio k
laszthato?
Igen
Ismétlés nélkuli (n)
Kombindcid k
_ Egy elem
Osgze}s{e’h Nem csak egy Ismétléses s
SOIba KE helyre Variacid n
rendezni? tehotd?
Igen
Ismétlés nélkuli n!
Variacié (n—k)!
Nem|  Ismétléses n!
Permutéacié kilkl...

Ismétlés nélkuli |
7/ ./ n-
Permutacio




3. Halmazalgebra

A halmazalgebra a mar gimnaziumban is tanult halmazmiveletekkel foglalkozik, dsszetett
miiveletek egyszertisitésével, atalakitdsaval, adott halmaz elemeinek megvizsgalasaval talalkozhatunk
a fejezetben. Ilyen miiveletek az nid, a metszet, a komplementer képzés és ezek kombiné-

ci6i. A miiveletek adott tulajdonsdgokkal rendelkeznek, melyek egyiittesét a kés6bbiekben

Bool Algebrianak fogjuk nevezni. A Logikai miiveletek pontosan gy viselkednek, mint

a halmazmiiveletek, ezért, amit a nulladrendii logikdban a miiveletekkel kifejtek, azok
vonatkoznak a halmazmiiveletekre is, eképpen, ha az egyiket tudjuk, a masikat nem ne-
hezebb elsajatitanunk.

Definici6 3.0.1 — Halmaz. A halmaz alapfogalom. Mondhatjuk, hogy targyak, fogalmak,
matematikai objektumok Osszessége, de ezzel nem jutunk elébbre, hiszen akkor az
Osszesség szot kellene megmagyarazni. Ezért csupan azt koveteljiik meg, hogy a halmazt
az elemei egyértelmilen meghatarozzak.

A halmazokat jelolhetjilkk nagybetiikkel, vagy kozé irva az elemeit, illetve annak tulaj-
donsagait, 1d. kovetkezé alfejezet.

Ha egy ,,a” azonositéju dolog eleme az A halmaznak,igy jeloljik, hogy: a € A . Ha
valamely ,,b” azonositdju dolog nem eleme az A halmaznak, akkor jelolése: b ¢ A.

Tehat csakis olyan halmazokkal foglalkozunk, amelyeknél az a € A Allitas igazsaga
egyszersmind a ¢ A allitds hamis voltat vonja maga utan, illetve az a ¢ A allitas igaz
voltabdl az a € A allitds hamissaga kovetkezik. A logikdval kapcsolatos hasonlésagok részben
ebbdl is erednek, valami vagy eleme, vagy nem eleme a halmaznak (logikaban valami vagy
igaz, vagy hamis - boolean valtozd).

Egyszerre nem lehet valami eleme is és nem eleme is az adott halmaznak.

A halmazelmélet fentieken alapulé targyalasat naiv médszernek, naiv halmazelmélet-
nek nevezik. Az itt ismertetett targyaldsmod Cantor nevéhez fliz6dik. Abban az idében
még nem tisztult le a matematikai logika elmélete olyan mértékben, ami lehetové tette
volna az aldbbi ellentmondasok, az Gin. antinomidk magyardzatit. Az antinomia
kikiiszObolése az tn. axiomatikus targyalasi modszerrel lehetséges, ez azonban megha-
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ladja e jegyzet kereteit. Csupéan arra szoritkozunk, hogy az antinomidk bemutatasaval
megindokoljuk a halmaz alapfogalomként valé kezelésének praktikus hasznossagat.

Egyértelmiien el kell tudnunk dénteni, hogy valami az adott halmaz eleme-e
vagy sem!

Példa antinomiara: Tekintsiik a magyar nyelven legfeljebb 100 karakterrel definidlhaté
egész szamok halmazat, jeloljiik ezt H-val. Példaul, a 6 definicioja lehetne a kovetkezd: a
harmadik pdros szdam. Mivel ez a definicié kevesebb, mint szdz karakterbdl all, ezért a 6
eleme a H halmaznak.

Legyen az n egész szam definicidja az alabbi: A legkisebb, magyar nyelven szdz irdsjellel
(a székozt beleértve) NEM definidlhatd természetes szam.

A definici6 pontosan 100 karakter. Vajon n € H igaz, vagy n ¢ H? Akar egyik, akar
masik feltevést tekintjik igaznak, ellentmonddasra jutunk.

Az olyan halmazokkal,melyeknél antinomia léphet fel nem foglalkozunk!

Feladat 3.1 A falu borbélya mindazokat a férfiakat megborotvalja, akik nem maguk
borotvalkoznak. Tekintsiik a borbély altal borotvalt férfiak B halmazat. Vajon ennek a
B halmaznak eleme-e a borbély maga?

Halmazok megadasa, elemei, részhalmazok

A halmazok megadhatoéak:

e felsorolassal: A:= {3,4}

e valamely jellemz0 tulajdonsdg megadasaval, melyet halmazjelet hasznélva a kovetkezokép-

pen irhatunk: B := {z|z € R,zmegoldasa a (z —3)(x —4) = Oegyenletnek}

Vannak olyan szubjektiv értékelések, amelyek énmagukban is indokolhatjiak, hogy a
halmaz fogalmat elemein keresztiil ragadjuk meg. Pl. tekintsiik az alabbi , halmazokat” :

o C:={s | s jo sorozat }

e D:={o | o okos hallgaté }

Meg tudjuk-e egyértelmiien mondani, hogy egy adott sorozat, egy adott hallgatd
beletartozik-e a C illetve a D halmazba? Nyilvanvaléan az igy leirt halmazok tartalma szemé-
lyenként valtozik, nem jol definialt. Tehat csak olyan tulajdonsagokkal irhatunk
le egy halmazt, melyek megléte egyértelmiien eldonthetd, és igy egyértelmii az
is, hogy egy adott dolog, objektum eleme-e a halmaznak.

I Definicié 3.1.1 — egyenlé halmazok. Két halmaz akkor egyenld, ha ugyanazok az elemeik.

Fenti példankban A=B.

I Definici6 3.1.2 — Ures halmaz. Olyan halmaz, mely egy elemet sem tartalmaz. Jele: ()

I Definici6 3.1.3 — Részhalmaz. Az A halmaz részhalmaza a B halmaznak, ha A minden
eleme B-nek is eleme. Jele: A C B.

Definicié 3.1.4 — Valédi részhalmaz. Ha A C B és A # B, akkor A valddi részhalmaza
B-nek. Jele: AC B.

c s

eleme, amely ne lenne B-nek is eleme. Ennélfogva: () C A, hiszen nincsen eleme.



3.2 Halmazmiiveletek és tulajdonsagaik 21

A definicié szerint minden halmaz részhalmaza énmaganak. Ezt a tulajdonsagot a
reflexiv széval fejezziik ki: A C A : reflexiv tulajdonsag

Feladat 3.2 o Igaz-e, ha AC B és B, akkor AC C ? (Ez az Gn. tranzitivitas)
e Igaz-e, ha A C B, akkor B C A? (Ez az tn. kommutativitas)
hint: rendezési relacio. "

A részhalmaz fogalom felhasznédlasdval mar ismertetni tudunk egy masik antindémiat is,
amely Russeltdl szarmazik. Elképzelheto, hogy vannak olyan halmazok, amelyek énmagukat
tartalmazzak. Ugyanigy, vannak olyan halmazok, amelyek 6nmagukat nem tartalmazzak.

2. Antinomia (Russel): Legyen a H halmaz azon halmazok halmaza, amelyek
onmagukat nem tartalmazzdk. Vajon H eleme-e énmagénak? Ha igen-nel valaszolunk
az antinémiaban feltett kérdésre, akkor H eleme énmaganak, de ez a H definiciéja miatt
lehetetlen. Ha nem-mel valaszolunk, akkor viszont éppen a H definiciéja miatt H nem
tartalmazhatja onmagat.

Definici6 3.1.5 — Hatvanyhalmaz. Az A halmaz hatvidnyhalmazin az A részhalmazainak
halmazat értjiik. Jele: P(A) (az angol power - hatvany sz6bol).

Példaul:
o A:=1{1,2} P(A)={0,{1},{2},{1,2}}
e ) P(0)={0}

o {0} P{0})={0,{0}}

Feladat 3.3 Adja meg az aldbbi halmazok hatvanyhalmazat:

o B:={0{1}}
o C:={{1},C}

3.2 Halmazmiiveletek és tulajdonsagaik

Definici6 3.2.1 — Uni6. Az A és B halmazok unidja (egyesitése, Osszege) az a halmaz,
amelynek elemei vagy A-nak, vagy B-nek elemei. Jele: AU B:

AUB:={zx € A VAGY z € B}

Feladat 3.4 Tekintsiik a raciondlis (Q), természetes (N), irraciondlis (Q*), egész (Z) és
valés szamok (R) halmazat. Mi az eredményhalmaza a kovetkezo kifejezéseknek:

NUZ,QUN,Q+xUQ,RUQ*, RUQ

Definicié 3.2.2 — Metszet. : Az A és B halmazok metszete (k6z0s része, szorzata) az a
halmaz, amelynek elemei A-nak is és B-nek is elemei. Jele: AN B:

ANB:={xc AES z € B}
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Feladat 3.5 Tekintsiik a raciondlis (Q), természetes (N), irraciondlis (Q*), egész (Z) és
valés szamok (R) halmazat. Mi az eredményhalmaza a kovetkez6 kifejezéseknek:

NNZ,QNN,Q*xNQ,RNQ*, RNQ

Definicié 3.2.3 — Diszjunkt. Ha az A és B halmazoknak nincsen kozos része, vagyis
AN B =0, akkor azt mondjuk, hogy az A és B halmazok diszjunktak.

Feladat 3.6 Tekintsiik a raciondlis (Q), természetes (N), irracionalis (Q*), egész (Z) és
valés szamok (R) halmazat. Ezek koziil melyik kett6 diszjunkt? (t6bb pér is lehet) =

Definici6 3.2.4 — Halmazok kiilonbsége. Az A és a B halmazok A\ B-vel jelolt kiilonbsége
az A halmaz azon elemeinek halmaza, amelyek nincsenek B-ben. Ezt mésképpen a B
halmaz A halmazra vonatkozé komplementerének nevezziik, jele: B 4.

Feladat 3.7 Tekintsiik a raciondlis (Q), természetes (N), irraciondlis (Q*), egész (Z) és
valés szamok (R) halmazat. Mit jelent

Q\Q%Q@*\Q,R\N,R\Q,Q\ R, Z\N,N\ Z,Q\ Z,Z\Q,A\),0\ A

Definicié 3.2.5 — Univerzum. Az univerzalis halmaz a feladattal kapcsolatos Osszes lehet-
séges objektumok Gsszessége, jele: U.

A B halmaz adott U univerzumra vonatkozé komplementerének jele: B. (Nem kell kifrni,
altaldnos esetben mindig az adott univerzumra vonatkozik.)

Feladat 3.8 o Mi a pozitiv egész szamok halmazara vonatkoz6 komplementere a paros
pozitiv egészek halmazanak? Hogyan jelclhetjik?
e Mi a valés szamok halmazara vonatkoz6 komplementere a racionalis szamok hal-
mazanak? Hogyan jelolhetjik?
e Tekintsiik a valés szamok halmazat univerzumnak. Adjuk meg a raciondlis (Q),
természetes (N), irraciondlis (Q*), egész (Z) és valds szdmok (R) halmazanak
komplementereit (jeloléssel egyiitt) erre az univerzumral

Definici6 3.2.6 — Szimmetrikus differencia. Az A és B halmaz szimmetrikus differenciaja
azon elemek halmaza, amelyek A és B halmaz koziil pontosan (CSAKIS) az egyiknek
elemei. (Késébb logikdndl lasd kizarévagy)

AAB := (A\ B)U(B\ 4)
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3.2.1 A miiveleti definicidk egyszerii kovetkezményei
AuU=U ANnU=A4A
AUA=A ANA=A
AUup=A Anb=10
A=A 0\A=0

3.2.2 Miveleti azonossagok

1. AUB=BUA ANB=BNA Kommutativ
2. (AUB)UC =AU(BUCQ) (ANB)NC=An(BNC) Asszociativ
3. AN(BUC)=(ANB)U(ANC) AU(BNC)=(AUB)N(AuC) Disztributiv
4. AUB=ANB ANB=AUB De Morgan
5. AAB = (AUB)\ (ANB)

3.3 Bizonyitas kétoldali tartalmazas moédszerével

I Allitas 3.3.1 A=B akkor és csak akkor, ha A C B és B C A.

Az allitas alapjan, ha be tudjuk latni, hogy egy adott egyenlOség kétoldalat tekitve
a baloldal részhalmaza a jobboldalnak és a jobboldal részhalmaza a baloldnak, akkor a
jobboldal és a baloldal egyenl6.

Annal belatasara, hogy A részhalmaza B-nek azt kell megnézniink, hogy HA z € A,
AKKOR x € B. Ezt az implikéci6t fogjuk beldtni, egyszer gy hogy, HA x eleme baloldalnak,
akkor x eleme a jobboldalnak és utana forditva.

Bizonyitsuk be, hogy a metszet disztributiv az uniéra nézve:

AN(BUC) = (ANB)U(ANC)

Bizonyitas 3.1 1. El6szor lassuk be, hogy a baloldal részhalmaza a jobboldalnak.
2. Tegyiik fel, hogy = € b.o. — 2z € AES z € (BUQ)
3. € (BUC)—x€ BVAGY z€C
4. Az €l626 két sorbol adédéan: z € A ES z € B azaz z € (ANB) VAGY = € A ES
x€C azaz x € (ANC)
5. Tehat z € (ANB)U(ANC), azaz x € j.o.
6. Tehat a baloldal részhalmaza a jobboldalnak.
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xe AN(BUCQC)

Grafikusan:

FEzek utan Be kell latnunk, hogy a jobboldal részhalmaza a baloldalnak.

1. Tegytik fel, hogy = € j.o. —x € ANB VAGY z € ANC

2. Az els§ esetben 2 € A ES x € B a mésodik esetben z € A ES x € C

3. 2€ AES 2z € B— 2 € BUC Hiszen ha B-nek eleme, akkor a BUC-nek is eleme.
Emellett az ES mésik oldala miatt (z € A) z € AN(BUC)

4. A mésodik esetben: € A ES z € C — 2 € BUC valammint az ES elsé tagja
miatt: x € AN(BUC)

5. Tehat mindkét esetben teljesiil, hogy x € b.o.

Grafikusan:

zeEANB Yz ANC

Azaz belattuk, hogy a jobboldal részhalmaza a baloldalnak. El6tte pedig belattuk,
hogy a baloldal részhalmaza a jobboldalnak. Ez csak akkor lehetséges, ha a baloldal és a
jobboldal megegyezik.

Bizonyistuk be a az egyik De Morgan azonossagot: AUB = AN B!
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Bizonyitas 3.2

A baloldali dbran belattuk, hogy a baloldal részhalmaza a jobboldalnak, mig a
jobboldali &bran, hogy a jobboldal részhalmaza a baloldalnak. Tehat az egyenloség két
oldala megegyezik. "

Feladat 3.9 e Igazolja a t6bbi felsorolt azonossigot!
e [gaz-e, hogy a szimmetrikus differencia kommutativ?
o [gaz-e, hogy a szimmetrikus differencia asszociativ?

3.4 Szamossag és logikai szita
Definicié 3.4.1 — Szamossag. Halmaz szdmossagan a halmaz elemeinek szamat értjiik.
Jelolés: |A|. Ha ez véges szam, akkor azt mondjuk, hogy az A halmaz véges, ellenkez$
esetben az A halmaz végtelen. A legegyszeriibb mérték.

Tovabbi mértékekrol a késcbbi években lesz sz6, mint példdul a valészintiségi mértékrol.

Logikai szita alatt a halmazok unidjanak szdmossigara vonatkozo Gsszefiiggést értjiik,
ami a kovetkezo:

Két halmaz esetén:

|AUB| = |A|+|B|—|ANBj

Hérom halmaz esetén:

|JAUBUC| =|A|+|B|+|C|—|ANB|—|ANC|—|BNC|+|ANBNC|

Az Osszefiiggés lathatd, mindig egyre tobb halmazt magéba foglalé metszetek keriilnek a
képletbe, méghozza tgy, hogy a paratlan halmazokat tartalmazé metszetek pozitiv elGjellel
keriilnek a képletbe, mig a paros halmazokat tartalmazé metszetek negativ eldjellel keriilnek
a képletbe.
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Definicié 4.0.1 — Megegyez6 szamossag. A és a B halmaz szdmossaga egyenld, ha elemeik
kozott kolesonosen egyértelmii (egy-egy értelmii) megfeleltetés 1étesitheté. Ekkor azt
mondjuk, hogy A ekvivalens B-vel. Jelolés: A~ B

Erezhetd, hogy ekvivalenciarelaciorél beszélhetiink.

Tétel 4.0.1 A halmazok ekvivalencidja ~ valéban ekvivalencia relacié.

Bizonyitas 4.1 1. Reflexiv: Minden A-ra A ~ A - az 1-1 értelmi fgv. az identitas
2. Szimmetrikus: Ha A ~ B akkor B ~ A Ha az A és B kozott f az egy-egy értelmii
hozzarendelés, ez invertalhatd, ezért B és A kozott f~1 az egy-egy értelmdi hoz-
zarendelés
3. Tranzitiv: A~ B és B~ C akkor A~ C Ha az A és B kozott f az egy-egy értelmii
hozzérendelés:(f(a) =b), B és C kozott g: (g(b) = ¢), akkor az A és C kozott a két
fiiggvény kompozicidja lesz az egy-egyértelmii hozzarendelés: fog: (g(f(a) =c).
| |

Mit tudunk mondani azokra a halmazokra, melyeknek végtelen a szamossiga? Ilyen
halmaz példaul a valés szamok halmaza is, de a természetes szamok halmaza is. Vajon
melyikb6l van tobb? Mindkettd végtelen szamossagi, de érezziik, hogy a szamossidguk
nem egyezik meg. Megkiilonboztetjiik a megszdmlalhatéan végtelent (természetes szamok
halmaza) a nem megszamlalhatéan végtelentél. A kettd kozott az a kiilonbség, hogy a
természetes szamok elemeirél tudjuk, hogy hanyadik a sorban, ha sorbarendezem, mig a
valés szamoknal bajban lennénk.

Definici6 4.0.2 — Megszamlalhat6an végtelen. Adott H halmaz szdmossidga megszamlal-
hat6éan végtelen, ha ekvivalens a természetes szamok halmazdval. H ~ N. Jele: |[H| =N,
ejtsd (alef null, héber abc elsé betiije).
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I Tétel 4.0.2 A racionalis szaimok halmaza megszamldlhaté (sorbarendezhetd)

Bizonyitas 4.2 A megszamlalhatosagnak a sorbarendezhetéségét kihaszndalva, sorba fogjuk
rendezni a raciondlis szdmokat. Minden racionalis szam felirhat6 két egész szam hanya-
dosaként. Ezt tegyiik is meg: a = %, majd ezek alapjan készitsiink egy tablazatot, hogy az
a a tablazat i. sordaba és j. oszlopdba keriiljon. Ekkor csak egy tutvonalat kell felvazolnunk
az elemek kozott, hogy melyik elemet hanyadiknak latogatjuk meg:

1/1 1/2=1/3 1/4=1/5 1/6-1/7 1/8=»
e A 7
2/1 2/3 /5 217
v A v A7
31 372 3/4 35 37 3/8
VA s AL P
4/1 4/3 4/5 47
Pl AT A .
5/1 5/2 5/3 5/4 5/6 5/7 5/8
v 7 _ :
6/1 6/5 6/7
v A
1 72 N3 T4 WS TG 7/8
VA
B/1 B3 8/5 8/7

Tétel 4.0.3 Ha B C A, akkor az aldbbiak teljesiilnek:
e ha A véges, B is véges
e ha A megszamlalhato, akkor B is megszamlalhaté
e ha B megszamldlhatd, A lehet megszamlélhatatlan
e B megszamlalhatatlan, akkor A is megszamlalhatatlan

Tétel 4.0.4 Ha A megszamlalhatd, valamint B véges és A diszjunkt, akkor AU B is
megszamlalhatoé.

Bizonyitas 4.3 Tekintsiik A elemeinek egy sorbarendezését. Ha |B| =k, akkor az A j.
eleme legyen a (k+j). elem, és az elejére vegyiik 1-tél k-ig a B elemeit. Ezzel az 1]
sorszamozassal megadtunk egy bijekciot AU B és a természetes szamok kozott. "

Ez pontosan az a mddszer, melyet a végtelen szalloda esetén is hasznalnak.

I Tétel 4.0.5 Véges sok diszjunkt megszamlalhaté halmaz uniéja is megszamlalhato.

Bizonyitas 4.4 Legyen k db halmaz. A feladat a k halmaz uniéjanak sorbarendezése.
Készitsiink egy tablazatot: Az els§ halmaz elemeit irjuk az 1., a masodik halmaz elemeit
irjuk a 2., a k. halmaz elemeit a k. sorba (mindegyik sor végtelen sok elemet tartalmaz.)
A raciondlis szamok megszamldlhaté voltanak bizonyitasandl latott médon sorolhatjuk
fel e két dimenzids tomb elemeit. "
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I Tétel 4.0.6 Megszamlalhatéan végtelen sok diszjunkt halmaz unidja is megszamlalhato.

Bizonyitasa az el6zotétel szerint miikddik, csak nem csak az oszlopok, mar a sorok szama
is végtelen.

I Tétel 4.0.7 A valds szamok halmaza NEM megszamldlhato.

Bizonyitas 4.5 — Cantor féle atlés médszerrel. R helyett elegend6 valamely részhalmazarél
bizonyitani, hogy nem megszamlalhato, hiszen ha egy A halmaznak van megszamlél-
hatatlan részhalmaza, akkor az A halmaz sem megszamlalhat6. Legyen ez a részhalmaz
a (0,1) intervallum. Errél belatjuk, hogy nem megszamlalhatd, igy R sem. Cantor
féle atlés eljaras: Bebizonyitjuk, hogy a (0,1) intervallum elemei nem megszamlélhaté
halmazt alkotnak. Bizonyitas: indirekt, tegyiik fel, hogy e szdmok (szakaszos és nem
szakaszos tizedes tortek) sorbarendezhetdk: rendezziik is sorba ket és irjuk éket egymas
ala, tizedestort alakban:

r1=0,211,212,%13, 14, T15, - - -, L1ks - - -
r9g = 0,T21,%22,%23,724, 25, - -, T2k, - -
r3 = 0,231,%32,733,Z34,L35,-- -, L3k
Tn :O7xnl7$n27$n3axn47xn57---axnk“-

Egy olyan maétrixot kaptunk, melynek z;; elemei az i. szadm j. szémjegye. KON-
STRUALJUNK egy 1j szdmot, ami nincs ebben a felsorolasban felirva:

p 2 1, ha z; # 1
UJ_SZAM i. jegye = it 7

0, ha Ty — 1
Az 1j szdm nem lehet felirva, mert ez kiilonbizik mindegyik felirt szamtél, méghozz4 az i.
szamtol az i. szamjegyben biztosan kiilonbozik - tehat a f6atlo elemeiben. Nincs felirva,
minimum egy szam létezik, amit nem tudtam bepaszirozni a sorba - nem sorbarendezheto.

Az a kérdés, hogyha nem sorbarendezhetd, akkor nagyobb-e a szamossdga, mint a
sorbarendezhet$ halmazoknak. A vélasz érezhetd: igen.

Tétel 4.0.8 A valds szdmok halmaza nagyobb szamossigi, mint a természetes szamok
halmaza. |R| > R

Bizonyitas 4.6 Megint lassuk be a (0,1) intervallumra. Legaldbb megszamlalhaté, mert

tartalmazza a kovetkezé halmazt: {%,1,...} C (0,1). De nem egyenldk. Mivel a (0,1)

intervallum szamossiaga nagyobb, mint Ry, ezért R szamossaga is nagyobb. "

I Definicié 4.0.3 — Kontinuum szamossag. R szamossiga. Jele: p

Egységnégyzet szamossaga megegyezik a (0,1) szamossagéval. Ezen Cantor



4.0.1

30 4. Fejezet: Végtelen Szamossagok

maga is meglepodott, mikor azt akarta bizonyitani, hogy nagyobb a szdmosséiga.

Bizonyitas 4.7 Vegyiik a koordindta pontjait (x,y), mindkét szdmra igaz, hogy: x,y € (0,1).
Tehat felirhatbak tizedestort alakban, bijekciot fogunk megadni, amely a tizedes tortek
alapjan fog megtorténni: vessziik az x els6, majd az y elsé, majd az x masodik, majd az
y méasodik etc. tizedesjegyeit és egymasmogé pakoljuk. Az lesz a (0,1)-ben levd szam.

T =0,r1290324X5,...,Tk, ..
_0’ TR = = X Y1 T2 Yo T3YS - - -
Y=Y,919Y2Y3Y4Y5,-- -y Yky- - -

[ |

Tudjuk, hogy véges szdmossdgu halmaz esetén hatvanyhalmazanak szdmossaga: |H| =
n— 2] = 2"
Bizonyitasa kombinatorikai médszerekkel.

Tétel 4.0.9 1. |H|=n— [2H|=2"
2. |H|<|2%| VH
3. |R|=2%
4. Megszamlalhatéan végtelen szamossag halmaz hatvanyhalmaza kontinuum sza-
mossagi. |H| =Ry — 27| =p

Kontinuum Hipotézis

Kontinuum hipotézisnek nevezziik Cantor azon elméletét, hogy az Ng és a kontinuum
szamossag kozott NINCS masik szamossag, azaz egymas utan jonnek.

Az igazsag viszont az, hogy ez a hipotézis se nem tdmogathatd, se nem megcafolhaté. A
meglevo axiémarendszeriinket a matematikarél nem donti meg se a hipotézis elfogadasa, se
annak tagadésa.

Godel 1940-ben belatta, hogy az elfogaddsa nem okoz, mond ellent az axiéméknak, majd
Cohen 1963-ban kiegészitette azzal, hogy a tagadasa sem mond ellent az axiéméknak. Fz a
gyakorlatban azt jelenti, hogy az axidmarendszertiinkbe a hipotézis elfogadasa és tagadasa is
berakhaté.
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5. Nulladrendii logika

A logika kulcsfontossdgi ahhoz, hogy az élet kérdéseiben el tudjunk igazodni, minden gond
nélkiil automatikusan. Hasznat tébbek k6zott programozasban lelitek meg, mikor logikai
vitozokat kell 1étrehozni és koztiik miveleteket 6sszerakni. De ugyanilyen hasznat latja a
biologus is, aki példaul fehérje-fehérje halozatokat szeretne megismerni és bioinformatikai
mébdszerekkel kutatni azt. Sokszor idétspérolhatunk meg, ha egy rendszerre elészor logikailag
tekintiink ra.

Dr. Bércesné Dr. Novak Agnes a logikarél: A logikdt, mint a filozdfia eqy részét, mdr
az okori a gorog tuddsok is igen magas szinten mivelték, pl. Platén (Kr. e. 427- Kr. e. 847),
Arisztotelész (Kr.e. 384- Kr. e. 311), Euklidész (Kr. e. 300 koril sziletett). Az in. matem-
atikai logika azonban csak XIX. szdzadban fejlodott ki. Sok vilaghiri matematikus foglalkozott
logikaval, a magyar matematikusok kozil pédaul Bereczki Ilona, Kalmdr Laszlo, Neumann
Janos, Péter Rézsa, Pdsztorné Varga Katalin, Urbin Janos, Lovdsz Laszlo. E fejezet célja,
hogy mindazon matematikai logikai ismereteket dsszefoglalja, amelyek alapjin megérthetjik
majd a mesterséges intelligencidban alkalmazott, logikai alapid kovetkeztetd, dontéseldokészitd,
szakértd rendszereket, és logikai alapi programnyelveket, pl. a Prolog Programming in Logic)
nyelvet. A Prolog nyelvnek fontos magyar vonatkozdsa is van: Szeredi Péter és Futo Ivin
fejlesztették ki annak moduldris vdltozatdt, amely abban az idében nagy elérelépést jelentett.
Az itt tanultakat a Mesterséges intelligencia tantdrgy nemcsak felhaszndlja, hanem tovdbbi
fontos ismeretekkel is kiegésziti majd. Mesterséges Intelligencia (MI) igen nagy részének
matematikai alapja a matematikai logika. Az automatizdlt gydrtésorok, robotok miikddésében
pedig az MI igen nagy szerepet jdtszik. Az igazsdag az, hogy az emberi kovetkeztetés nem
a logika szabdlyai szerint torténik. Az emberi intuicid az, amit a logika sem tud pdtolni,
sot esetenként a matematikai szigorusdg rugalmatlansdga akaddlyozhatja a kovetkeztetést.
Ezzel egyiitt o logika mégis az emberi gondolkodds egyfajta modelljének tekinthetd, kilondsen
a XX. szdzadtol bevezetett ujfajta logikdk: tobbértékid, fuzzy, tempordlis, moddlis logikdk,
melyekben példdul az igazsdgértékek az igaz-hamis klasszikus modelltdl eltéréen finomod-
hatnak (igaz, hamis, részben igaz, A matematikai logikdt a gondolkodds tudomdnydnak is
nevezik. A matematikai logika f6 feladata helyes kovetkeztetési sémadk kialakitdsa, helyességiik
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bizonyitdsa. (tébbnyire igaz, stb.), lehetdség van az idébeliség modellezésére és sok minden
eqyéb olyan folyamat leirdsdra, amely a mindennapos gondolkoddsunkban eldfordulhat. A
Mesterséges Intelligencia nevét onnan kapta, hogy az itt kidolgozott programok, algoritmusok,
modszerek az emberi gondolkoddst probdljak utinozni, és a technikdban alkalmazhatovd tenni.
Ez manapsdg mar igen sikeresnek mondhato: példaul az un. ,,0kos” termékek mdr mindenk:
dltal elérhetdek. E logikdrol szolo fejezetekben tehdt megadjuk azokat az alapokat, melyek
segitségével az automatikus tételbizonyitas megérthetd. Ez az ut azonban nagyon hasznos
szemléletet is ad mds intelligens rendszerek miikddésének megértéséhez. "

Szintaxis vs Szemantika megértése

A két fogalmat a programozas példajan keresztil kisérlem jobban bemutatni, de a logikdban
éppen ehhez hasonléan miikédnek.

A szintaxis a nyelv felépitésére vagy nyelvtandra vonatkozik. A szintaxis megvalaszolja a
kérdést: hogyan &llithatok el6 egy érvényes mondatot? Minden nyelvnek, még az angolnak
és mas emberi (mas néven "természetes") nyelveknek is vannak nyelvtanjai, azaz olyan
szabélyokkal rendelkeznek, amelyek meghatarozzak, hogy a mondat helyesen van-e felépitve.

Néhany C nyelvbeli szabaly:

e A mondatokat pontosvesszével vilaszd el

o Zard zéardjelek kozé az IF (ha) mondat feltételét

e Csoportosits tobb allitast egyetlen allitassa bajuszok kozé zarassal

e Az els6 futtathaté mondat el6tt deklarald a valtozokat és az adattipusokat

A Szemantika a mondat jelentésével foglalkozik. A szemantika megvalaszolja a koévetkez6
kérdést, ha a mondat helyes: mit jelent a mondat?

Példaul:

e x++; // x novelése

e foo(xyz, —b, qrs); // foo meghivasa

Szintaktikailag helyes mondatok. De mit jelentenek?

Vegyiik figyelembe a ++ operatort az elso kijelentésben.

Ha x float adattipus, akkor ennek az &llitdsnak nincs értelme (a C nyelvi szabélyok
szerint), és igy hiba, még akkor is, ha az allitas szintaktikailag helyes.

Ha x egy pointer valamilyen adattipusra, akkor az utasitds azt jelenti, hogy "adjunk
hozza az adattipus méretét (sizeof( some data type)) az x cim értékéhez, és az eredményt az
x cimen taroljuk”.

Ha x egy skalaris, akkor az allitas jelentése "adjon egyet az x cimhez tartozé értékhez, és
az eredményt az x cimre térolja".

A ++ operator példaban, ha x mar meghaladja az adattipus maximalis értékét, mi
torténik, amikor megkisérel hozza 1-et hozzdadni? Egy maéasik példa: mi torténik, ha a
program megkisérel levonni egy NULL értékii pointert?

Osszefoglalva: a szintaxis az a fogalom, amely csak arra vonatkozik, hogy a
mondat érvényes-e a nyelv nyelvtanara vagy sem. A szemantika arrdl sz6l, hogy
a mondatnak van-e érvényes jelentése és mi az.

A kiilénbség értheté megvalaszoldsahoz az alabbi linket vettem segitségiil és a benne
foglatak lényegét ragadtam ki ebben a részben:
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https://stackoverflow.com/questions/17930267 /what-is-the-difference-between-syntax-
and-semantics-in-programming-languages

A boritékép az aldbbi cikkbdl szdrmazik: Tasuku Kitada*,t, Breanna DiAndreth*, Brian
Teague*®, Ron Weiss:Programming gene and engineered-cell therapies with synthetic biol-
ogy, Science 09 Feb 2018: Vol. 359, Issue 6376, eaad1067 DOI: 10.1126/science.aad1067

5.2 Nulladrendii szintaxis
5.2.1 Jelkészlet

e betiik (itéletvaltozdok) -atom

e [.H (konstansok) -atom

e —,V,A,— (miiveleti szimb6lumok)
e zardjelek

5.2.2 Formulaképzés

Minden atom formula

Ha «, 8 formula akkor —a,aV 3,aAB,a — § is formulak

a fenti két szabdly véges sokszori alkalmazasaval kapjuk a(z Osszetett) formuldkat

A magyar betiikkel az atomi formuldkat, a gérog betiikkel az Gsszetett formuldkat
jeloljik.

5.3 Fiiggvény vs miivelet

Ahhoz, hogy elinduljunk, tudnunk kell, hogy mi a kiilénbség a fiiggvény és a mivelet kozott.
Miivelet alkot6 folyamat, létrehozol valami tjat, a fiiggvény ezzel szemben leir6é folyamat
leirod, amit tudsz. Két molekulabdl lesz egy harmadik az példaul miivelet lehetne, de
fliggvénynek szamit az, ha a molekuldhoz hozzarendelem a molekula silyat. Ha két szinbdl
kikeverek egy 1j szint az mivelet, de ha adott szinhez megadom a html kédjat, az egy
fliggvény.

Természetesen fel lehet fogni a miiveletet, mint egy specidlis fiiggvényt, ami megmondja,
hogy milyen valtozok 6sszemiivelésére milyen 4j valtozot kapok. Példaul, ha az egész szamok
halmazan az egyet és a kettot Osszeadom, akkor harmat kapok. De ha az egyet osztom
kett&vel, akkor felet kapok (att6l még miivelet, hogy kimutat az eredeti halmazombdl).

Programozas soran valtozdkat deklaralhatunk, melyek eltérhetnek a szokvanyos tipusoktol
(string, egész, valds, logikai (bool)) és ezek kozott definidlhatunk 4j miiveleteket, amik
megmondjak, hogy mi lesz a miivelettel 1étrehozott valtozém eredménye.

Definicié 5.3.1 — Interpretacié. Azon fiiggvény, amely a betiikkel jelolt valtozékhoz
hozzarendeli a lehetséges igazsagértékek valamelyikét.
n valtozo esetén szama: 2

I Definicié 5.3.2 — Modell. Azon interpreticié, amelyben a formula igaz.

Tehat a tautolégianak minden interpretaciéja modell, mig a kontradikciénak nincsen
modellje.
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5.4 Logikai és halmaz (bool) miiveletek

Azt méar tudjuk, hogy a miivelet két vagy tobb valtozd egylittesébdl egy 1j valtozét hoz
létre, melynek szintén lesz egy adott értéke. Ebben az esetben mivel a nulladrendii logika
esetén bindrisan gondolkodunk - azaz a valtozdink csak két érték koziil vehetik fel az egyiket
(IGAZ vagy HAMIS) - ezért véges szamu lehet6ségiink van, a két eredeti valtozé értékét
tekintve. Ezeket a lehetGségeket nevezziik interpretaciénak. Adott bemenetekre mindig
ugyanazt értékeljik ki. Ha ugyanazt a két dolgot adom 6ssze, mindig ugyanazt a kiértékelést
kapom (142 = 3). Példaul, ha 16t adok 6ssze szamarral, mindig 6szvért kapok.

Ebbdl adéddan, mivel végesek ezek az interpretaciok, a miiveleteket definidlhatjuk az
agyis, hogy megadjuk az Osszes lehetséges bemenetre a kimenetet, azaz a kiértékelést.

5.4.1 ES - Metszet - Konjunkcié

Az 14j valtozém értéke, CSAK akkor lesz igaz, ha mindkét bemeneten igaz volt.

A|B| AAB
010 0
011 0
110 0
111 1
A B

ANB

:

5.4.2 VAGY - Unié6 - Diszjunkcio
Az 1j véltozém értéke, akkor lesz igaz, ha LEGALABB AZ EGYIK bemeneten igaz volt.

A|B|AvVB
010 0
011 1
110 1
1]1 1
A B

@

AV B
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5.4.3 Kizaré vagy (XOR)

Az 4j valtozém értéke, akkor lesz igaz, ha CSAK AZ EGYIK bemeneten volt igaz.

A|B| AeB
00 0
011 1
110 1
1)1 0
A B

ﬁﬁDA@B

5.4.4 Negacio - Komplementer

A bemenetiink ellenkez6jére valtozik.

Al -A
0] 1
110
A B

A— -4

5.4.5 Implikacié

Az 1j valtozom értéke, CSAK akkor lesz HAMIS, ha az A bemeneten igaz volt, de a B
bemenetem hamis.

A|/B|A—B
010 1
0] 1 1
110 0
11 1
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Az implikéci6 valdjaban részhalmazként is felfoghaté A — B az tekintheté annak is, hogy
A C B. Hiszen, ha x € A akkor tuti, hogy = € B, viszont ha = ¢ A, akkor z-rél nem tudjuk
eldonteni, hogy = € B vagy x ¢ B. Ellenben a torténelem egy kicsit megtréfalt minket,
mert az implikdcié masik jelolése: A D B. Ez miért alakulhatott ki, szamunkra hibasan? A
torténelem folyaman a logikdt és a halmazelméletet az elején kiillon kezelték. Logika soran
mondatokat probaltak meg formalizdlni, igy jott létre, az 3 szimbodlum is, mely az exist
sz6 elsé E betiijének megforditasa, majd megalkottdk a is contained in jelét is, mely C
bettijének megforditasa. Igy ragadt rénk ez a latszélag hibas jelolés.

®

Errdl az alabbi oldalon tdjékozédhatunk: https://math.stackexchange.com/questions/1146443/is-
there-any-connection-between-the-symbol-supset-when-it-means-implication-a

A— B=-AVB

AB@ -AV B

5.4.6 Ekvivalencia

Akkor igaz, ha a valtozék azonos értékiiek. (A két halmaz megegyezik.) Konnyen lathato,
hogy a kizard vagy negaltja.

A|B| A< B
010 1
011 0
110 0
11 1
A B

5.5 Miiveletek tulajdonsagai (Bool Algebra)
I Definicié 5.5.1 — Ekvivalens formulak. Két formula ekvivalens, akkor és csak akkor, ha
igazsagértékilk minden interpretaciéban megegyezik.
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Tétel 5.5.1 — Az ekvivalencia ekvivalencia relacié (azaz particiét alkotnak).
o o = « reflexiv
o = [ & =« szimmetrikus
o a=[AB=v= a=" tranzitlv

Mivel djfajta miveletekrdl beszéliink, nem elhanyagolhat6 azok tulajdonsaga is. Példaul
az implikacié az nem megfordithaté mivelet, hiszen:ha eszem, akkor iszom, az nem ugyanaz,
mint ha iszom, akkor eszem.

5.5.1 Konjunkcio

Felcserélheté/Kommutativ ANB=BAA

Csoportosithat6/Asszociativ (AAB)AC = AN(BAC)

Kiesés AN(AVB)=A

Hamissal éselés tovabbra is hamis: 0ANA =0

ES disztributiv a VAGYra nézve: AA(BVC)=(AAB)V(AAC)

Onmaga éselése Onmaga negaltjaval kontradikcié (mindig hamis) AAN-A4 =0

S Gtk W

5.5.2 Diszjunkcid

Felcserélheté/Kommutativ AV B =BV A

Csoportosithaté/Asszociativ (AVB)VC = AV (BVCO)

Kiesés AV(AANB)=A

Igazzal vagyolas tovabbra is igaz: 1VA=1

VAGY disztributiv az ESre nézve: AV (BAC) = (AVB)A(AVC)

Onmaga vagyoldsa Onmaga negaltjaval tautolégia (mindig igaz) AV-A =1

ANl

5.56.3 Konjunkcié tulajdonsagainak belatasa igazsagtablaval

1. AAB=BAA

A[B|AAB | BAA
00 0 0
01 0 0
11]0 0 0
1)1 1 1

2. (ANB)ANC=AN(BAC)
A[B|[C[]AAB[(AAB)AC
0l0]0 0 0
0l0]1 0 0
0110 0 0
011 0 0 ES
1100 0 0
1101 0 0
1110 1 0
1]1]1 1 1
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A[B[C[BAC[AAN(BAC)
0]0]0] 0 0
olol1] o 0
ol1l0] o 0
0O]1]|1 1 0
1lojo] o 0
1jol1] o 0
110 o 0
1 (111 1 1

A két végeredmény minden interpretaciéban megegyezik, azaz a két oldal ekvivalens.
3. AN(AvB)=A

A|B|AVB | AN(AVB)

0|0 0 0

01 1 0

110 1 1

1]1 1 1

Az A val6ban megegyezik minden interpretdciéban a legutolsé oszloppal.

4. ONA=0

A|B|OAA

0|0 0

0|1 0
5. AN(BVC)=(AANB)V(AAQ)
6. AN-A=0

5.6 Formalizalas

A formalizdlas sordn matematikai nyelvre megfogalmazzuk, az adott kijelentéseket.

Kijelentés Formula
Tanulok és dolgozom tAd
Eszem vagy iszom eVi
Vagy jatszom vagy tanulok jpt
Ha esik, hozok eserny6t e—h
Nem olvasok kényvet -0

5.7 Normalformak

A normalformék célja, hogy adott sorrendben végezziik el az adott miiveleteket.
Konjunktiv normalforma esetén utoljara éseliink, diszjunktiv normélforma esetén

viszont utoljara vagyolunk. Az utébbinak jelentésége pl az FPGA programozasnal van.
Minden kifejezésnek létezik a konjunktiv vagy diszunktiv normalformaja. Ezeket ek-

vivalens atalakitdasokkal tudjuk elérni. Az atalakitdsok Konjunktiv NorméalFormara a

kovetkezdk: )
Miivelet Atalakitott forma

A®B (AVB)A(—AV~-B)

A+ B (A= B)AN(B— A)

A—B -~AVDB
AV(BAC) | (AVB)A(AVC)
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Konjunktiv Normalforma

(Ll V —|L2) A (L2 V L3 \/L4) A (Ll \/Lg)

Amiket 6sszeéseliink egymassal, klézoknak hivjuk (zardjelek). A zérdjeleken beliili elemi
valtozokat pedig lietralnak, ezek tagadhatbak.

Vannak Normalformak: Konjunktiv NormalForma: alap miveleteink vannak mér
csak, a tagadasa a legkisebb valtozénak, valamint el6bb a vagy miivelet majd utoljéra az ES
miiveletet végezziik el (konjugaljuk, ésszekapesoljuk) Azaz a Klézok kozott ESek vannak.

KNF-re hozas 1épései:

1.
Ao Bw» —(A=B)
2.
A=Bw» (A—-B)AN(B—A)
3.

A— Bw» —-AVB

4. Disztribuciok és tagaddsok(DeMorgan)

Diszjunktiv Normalforma

(Ll A —|L2) vV (L2 /\L3) V (Ll A Ls /\L4)

Itt a klézokban ések vannak, a klozok kozott pedig vagyok. Diszjunktiv NormalForma
esetén el6bb éseliink és utoljara VAGYolunk (A klézok kozott VAGYok vannak).

Kifejezések tautolégiajanak bizonyitasa Rezolicidval

Ekkor azt akarjuk beldtni, hogy adott kifejezés minden interpretacidban igaz (azaz tautold-
gia). Indirekt bizonyitdst alkalmazunk, azaz a kifejezés negaltjardl bizonyitjuk be, hogy
kontradikci6 (minden interpretéciéban hamis).
1. Kifejezés negaldsa
2. Konjunktiv norméalformara hozas
3. kiejtéses modszer (rezolicid lényege)
Rezolucié gyakorlati 1épései:
Formalizécié
Premisszak (feltételek) egymés ala irva
Premisszak KNF-re hozasa
Kovetkezmény tagadasa
Tagadott kovetkezmény KNF-re hozasa
Klézok egymaés ald irdsa
Kiejtegetés
NIL - iires kloz

XN ootk W
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5.8.1 Példa mint kifejezés

5.9

5.9.1

(AN(A—B))—» B

Ezt a kifejezést kell tagadnunk és konjunktiv normalforméra hoznunk, azaz:

-((AN(A— B))— B)=—-(-(AAN(A— B))VB) =
=—(-(AAN(=AVB))VB)=—~((wAV—(-AVB))VB) =
=-((wAV(AA-B))VB)=—-(-AV(AN-B))A-B =
=(AAN-(AAN-B)A-B=(AAN(=AVB))A—-B=
=AAN(-AVB)AN-B

Majd a Harom klézt leirnunk és kiejteniink, ami kiesik.

A -AVB

NS

B -B

~_

|

Figure 5.1: Rezoluciés graf: Tehat valéban azt kapjuk, hogy a kifejezésiink tagadasa
kontradikci6, hiszen tires klézt (NIL) kapunk. Ebbél adédéan az eredeti kifejezés tautologia.

Logikai kovetkezmény fogalma

I Definici6 5.9.1 Adott formula logikai kovetkezménye feltételeinek (premisszainak), akkor
és csak akkor, ha legalabb ott igaz, ahol a feltételek egyiitt igazak.

Szintaktikai vs Szemantikai kovetkezmény

Szintaktikai kévetkezmény: val6jaban megfoghaté tgy is, hogy a nyelv nyelvtanjabol
fakadé atalakitdasokkal levezethetd, adott kifejezésbél egy masik kifejezés. Valdjaban a
matematikai miiveletek és azonossagok alkalmazasaval alakitjuk at a kifejezést anélkiil,
hogy kiértékelnénk, azaz értelmeznénk, mit is jelent a mondat. Példaul: "It is great"
mondatot atalakithatjuk tgy, hogy "It’s great" . Latszik, hogy az el6z6bol a masodik
allitas kovetkezik, de valdéjaban nem kell tudnom a mondat jelentését ahhoz, hogy ezt
az atalakitast elvégezzem: csak hasznaltam az "it’s = it is" azonossagot.

Szemantikai kévetkezmény: Ebben az esetben nem matematikai atalakitasokkal jutunk
a kovetkeztetésiinkhoz, hanem az allitdsaink jelentéstartalmat felhasznalva jutunk
el oda. Példaul: "The man was the first in the game.", "The first player get golden
medal" kévetkezménye lehet, hogy "The man got the golden medal". Anélkiil, hogy
értelmeznénk a jelentését a mondatoknak ezt a kovetkeztetést nem tudnank levonni.
A logikai kovetkezmény egy fiiggvény, mely egy vagy tobb logikai kifejezéshez egy
masikat rendel hozza, adott logika alapjan. Ez a logika pedig az, hogy a kifejezések
egyiittes IGAZ &llasa soran (tehat és elve a feltételeket (premisszékat)) a kovetkeztetés-
nek is IGAZnak kell lennie, minden esetben. Tehat a kovetkezmény legalabb ott
IGAZ, ahol a feltételek IGAZak.
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Basic kovetkeztetési sémak (innent6l szemantikai)

A kapcsos zardjelben vesszével elvalasztva a feltételeink, premisszaink vannak, a furcsa
eyenléség jel jobb oldalan pedig a kévetkeztetésiink. Mind a feltételek mind a kovetkeztetések
adott mondatok, formulédk.

Modus ponens {A — B, A} = B

Modus tollens {A — B,-B} =—-A

Diszjunktiv szillogizmus{AV B,-~A} = B

Hipotetikus szillogizmus{A — B,B—C} A —C
Konstruktiv dilemma {AV B,A— C,B— D} =CVD

St W=

5.9.3 A logikai kdvetkezmény mikor helyes?

Tétel 5.9.1 — Logikai kbvetkezmény helyességérdl:. o |= [ logikai kovetkezmény akkor és
csak akkor HELYES, ha o — f logikai miivelet tautolégia (V interpretacioban IGAZ).

Bizonyitas 5.1 A bizonyitdst konstruktivan oldjuk meg, amihez fel fogjuk hasznalni a

c s 2

A B|A—B
010 1
01 1
110 0
1|1 1

A szemantikai kovetkezmény definicija alapjan B akkor kévetkezménye A-nak, hogyha
legaldbb ott igaz, ahol az A igaz. Ez a tédblazatban harom sort (interpretéciét jelent),
egyediil a harmadik sorra nem igaz, emiatt azt az interpretaciét nem kell figyelembe
venniink. Ekkor a maradék interpretacioban minden esetben az implikaci6 értéke IGAZ.
Tehat, ha minden esetben az A — B implikacié értéke IGAZ, azaz tautoldgia, akkor a B
logikai kovetkezmanye A-nak és forditva is.

Tétel 5.9.2 — Logikai kdvetkezmény helyességérél 2:. a = [ logikai kovetkezmény akkor
és csak akkor HELYES, ha aA —f formula kontradikci6 (V interpretacioban HAMIS).

Bizonyitas 5.2 A logikai kévetkezmény helyességérdl tételt felhasznilva a tautoldgia
tagadésa kontradikci6 (ellentmondés - V interpretaciéban HAMIS). Az implikéci6 tagadasa
pedig a kovetkezo:

(= p)=-(maVh)=an-p

Tehat rezolucié sordn (ami indirekt bizonyitas) valéjaban azt fogjuk belatni, hogy
a A - kifejezés kontradikeio.
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Miért indirekt bizonyitas a rezoliicié

Azért indirekt bizonyitas, mert adott a mésodik tételiink, miszerint: oA - kontradikcio.
De mi megprébaljuk igazza tenni, viszont j6 esetben nem sikeril - mert meglatjuk, hogy
igazzé akarjuk tenni, de mégsem lesz az.

Mikor van vége a rezollcionak?

Ha talalunk egy tires klozt - tehat nem kell feltétleniil mindenkinek kiesnie. Ha mar iires
klézt sikeriilt kihozni, akkor mar meg vagyunk.

Modus ponens {A — B, A} = B
P, | Ha alszom, akkor kipihent vagyok.
Py Alszom.
K Kipihent vagyok.

Bizonyitas 5.3 — Definicié alapjan. Definici6 alapjan igazsagtablaval tudjuk belatni, azaz
a séma jobb oldalanak legaldbb ott igaznak kell lennie, ahol a bal oldala igaz.
A|B|A—-B | AAN(A—B)

0|0 1 0
011 1 0
110 0 0
1|1 1 1

Lathatjuk, hogy az utolsé interpretacié az egyetlen kérdéses interpretacié, mert a
bal oldal csak akkor igaz. Ebben az esetben viszont a jobb oldal, a B is igaz. Tehat a
definici6 teljesiil "

Bizonyitas 5.4 — A f6tételt igazsagtablaval csekkolva. Az el6z6 igazsagtablat kibévitettem
az implikacié oszlopaval.

A|B|A—-B|AANA—B)| (AN(A—B))— B

00 1 0 1
0|1 1 0 1 Ekkor valéban latszik, hogy
110 0 0 1
1] 1 1 1 1
minden interpretdcé megallja a helyét, azaz a bal oldala a sémanak implikalva a
kovetkeztetéssel tautologia. "

A rezoliciés bizonyitasok NEM VALODI BIZONYITASOK - csak szemléltetés, hiszen
ezeket a sémékat hasznaljuk rezoliciéndl - tehat 6nmagédval nem bizonyithatom (ezeket a
megnevezett kvetkeztetési sémakat)! Az igazsdgtablds bizonyitas teljes értéki.

a Alszom.

k | Kipihent vagyok.
Formalizalnunk kell, majd el6szor a premisszakat Konjunktiv NormalFormara kell

hoznunk.

Bizonyitas 5.5 — rezolucié. Lassuk be, hogy helyes a kdvetkeztetési séma.
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P la—k=-aVk
Py a
K k
Tagadni kell a kévetkezményt, tehat —K : =k lesz. Ekkor meg vannak a klézaink.
Ezeket kell egymés ald vagy egymés mellé irni, hisz a klézok kozott most ES kapcsolat

van.
—aVk

v
e

Modus tollens {4 — B,-~B} =-A

P, | Ha alszom, akkor kipihent vagyok.

Py Nem vagyok kipihent.

K Nem alszom.

A|B|-B|A—-B|(A—-B)A—-B | -4

00| 1 1 1 1
Bizonyitas 5.6 — Definicié alapjan. 0 | 1 | 0 1 0 1 A kérdéses

1 /0| 1 0 0 0

1110 1 0 0
interpretdci6 csupéan az els6 interpretacié, mert a feltételek ott igazak csak (utsé elétti
oszlop). A kovetkeztetés ebben az interpretaciéban szerencsére igaz. n

Alszom.

Bizonyitas 5.7 — rezolucié. k | Kipihent vagyok.

Léassuk be, hogy helyes a kovetkeztetési séma. Formalizalnunk kell, majd el6szor a
premisszakat Konjunktiv NormalForméara kell hoznunk.
P la—k=—-aVk
Py -k
K -a
Tagadni kell a kovetkezményt, tehat —K : a lesz. Ekkor meg vannak a klézaink.
Ezeket kell egymés ald vagy egymés mellé irni, hisz a klézok kozott most ES kapesolat
van.
—aVk

—Q
—k > 0
a

Diszjunktiv szillogizmus {AV B,—A} =B

P, | Eszem vagy iszom.

Py Nem eszem.

K Iszom.
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A|B|-A|AVB | -AA(AVB)
00| 1 0 0
Bizonyitas 5.8 — Definicié. | 0 | 1 1 1 1
110] 0 1 0
1]11] 0 1 0
Latjuk, hogy a feltételek egyiitt egyediil csak a masodik interpretaciéban igazak, és
itt szerencsére a kovetkeztetés (B) is igaz. n
Bizonyitas 5.9 — rezolicié. ;f) ]?SSZZ;T' Lassuk be, hogy helyes a kovetkeztetési séma.

Formalizalnunk kell, majd el6szor a premisszakat Konjunktiv NormélFormara kell hoz-
nunk.

P | eV
P2 -e
K i

Tagadni kell a kovetkezményt, tehat —K : — lesz. Ekkor meg vannak a klézaink.
Ezeket kell egymas ald vagy egyméas mellé irni, hisz a klézok kozdtt most ES kapcsolat

van.
3 >
_ 0
¢ >

eV

Hipotetikus szillogizmus {A — B,B—-C} A —C
A hipotetikus szillogizmus gyakorlatilag az implikacié tranzitiv tulajdonsigat mutatja be.
P Ha esik a ho, akkor fazom.

P Ha fazom, akkor kabatot veszek fel.
K | Ha esik a ho, akkor kabatot veszek fel.

Bizonyitas 5.10 — Definicié alapjan. Nézziik meg az igazsagtablat.

A|B|C|A—-B|B—-C|(A—-BANB—-C)|A=C
000 1 1 1 1
001 1 1 1 1
0110 1 0 0 1
011 1 1 1 1
11010 0 1 0 0
1701 0 1 0 1
11110 1 0 0 0
11111 1 1 1 1

A feltételek egyiittese itt mar tobb interpretaciéban is igaz, de szrerencsére minden
ilyen interpretaciéban a kovetkeztetésiink is igaz. "
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h Havazik.
Bizonyitas 5.11 — rezoluciéval. f Fazom.
k | Kabatot veszek fel.
Lassuk be, hogy helyes a kovetkeztetési séma. Formalizalnunk kell, majd el6szor a
premisszakat Konjunktiv NormélFormara kell hoznunk.
P|h—=f=-hVf
Pl f—ok=-fVEk
K h—k
Tagadni kell a kovetkezményt, tehdt =K : —=(h — k) = —(=hV k) = (hA—k) lesz. Ekkor
a kovetkeztetés klozai a h és a —k. Ezeket kell egymas ald vagy egymas mellé irni, hisz a
klézok kozott most ES kapesolat van.

-fVk
-hVEk
v >k
h >D
-k

Konstruktiv dilemma {AVB,A— C,B— D} =CVD
P, Alszom vagy tanulok.

P Ha alszom, akkor kipihent vagyok.
Ps Ha tanulok, akkor 6tost kapok DM-bdl.
K | Kipihent vagyok vagy 6tost kapok DM-bdl.

A|B|C|D|P |P|P|PANPANP;|CVD
0]0]0|0] O 1 1 0 0
0]0]0|1 0 1 1 0 1
0j]0]110]O0 1 1 0 1
0[]0 |11 0 1 1 0 1
0j1]0|0]|1 1 0 0 0
01|01 1 1 1 1 1
O|1 1110 1 1 0 0 1
Bizonyitas 5.12 — Definicié alapjan. | 0 | 1 | 1 | 1 | 1 1 1 1 1
11010]O0 0 1 0 0 0
110101 1 0 1 0 1
110 11]0 1 1 1 1 1
17011 1 1 1 1 1
11110]0 1 0 0 0 0
111101 1 0 1 0 1
1{11]0 1 1 0 0 1
1111 1 1 1 1 1
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a Alszom.
t Tanulok.
k Kipihent vagyok.
6 | Otost kapok DM-bél.
Léassuk be, hogy helyes a kévetkeztetési séma. Formalizalnunk kell, majd el6szor a
premisszakat Konjunktiv NormalForméara kell hoznunk.
P aVt
Pla—k=-aVk
P3 t—0=-tVo
K kVo
Tagadni kell a kovetkezményt, tehdt =K : —(kV06) = -k A—06 lesz. Ekkor a kovetkeztetés
klozai a -k és a —6. Ezeket kell egymas ald vagy egymas mellé irni, hisz a klézok kozott
most ES kapcsolat van.

_‘kk> —a

—aV

aVit
_'6>ﬁt>a

-tV O

Bizonyitas 5.13 — Rezolucio.

5.9.4 Szokasos axiomarendszer nulladrendben (vannak mas axiémarendszerek is):
Axiémarendszer olyan allitdsok rendszere, melyek igazsigat konszenzus alapjan bizonyitéds
nélkiil elfogadjuk és az axidmakat alkalmazva vezetiink le egyéb Osszefiiggéseket.

l.a— (8—a)
2. (a=(B—=7) = (a= )= (a—=7))
3. (ra—p) = ((~a— —p) = «)

5.9.5 Ellentmondasos rendszer
Tétel 5.9.3 Ellentmonddésos rendszerbdl minden is levezethets. {a,—a} =

Azaz ha egy érvelés soran egy o mondatot elfogadunk, de elfogadjuk a tagadasat, vagyis
‘nem «’-t is, akkor innentél kezdve akarmelyik 8 mondatot el kell fogadnunk. Az '« és -«
ellentmondasbdl ugyanis barmi és barminek az ellenkezéje is kovetkezik.

Y

Bizonyitas 5.14 Az 6sszekotogetéseknél a Modus Ponens kovetkeztetést hasznidlom min-
denhol.
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Premissza (feltétel): -«

1. axiéma: ~a — (=8 — )
3. axiéma: (=f — -a) — ((-8 — a) — B)
Premissza(feltétel): «

1. axibma: a — (=5 — «)






AU fuiv are mortal.
| o mortal.

Therefore | am a
APP?

6. Elsorendii logika

Az elsérendii logika a nulladrendii logika kib&vitése komplexebb folyamatok, ¢sszefliggések
megértése céljabol. Minden, amit a nulladrendil logikaban megtanultunk tovabbra is
érvényesek maradnak.

A leglényegesebb kiilonbség, hogy mostmar az elemi allitdsainkat alanyokhoz is tudjuk
tarsitani. Azaz adott egy H halmaz, melynek vannak elemei. Haromféle dolgot tudunk
megkiilonboztetni:

1. a halmaz minden elemérél beszéliink,

2. van olyan eleme a halmaznak, akir6l beszéliink

3. és hogy egy konkrét elemrol beszéliink.

A jelkészletink ezeket megjelenitendd a kovetkezOképpen véltozik:

e Prédikatum: P(x) - allitds, mely az x € U elemre vonatkozik

e Vx - Univerzélis kvantor, azt jelenti, hogy az x valtozd az univerzum minden elemére

vonatkozik

e dx - Egrisztencidlis kvantor, azt jelenti, hogy van olyan eleme az Univerzumnak, akit

x-nek jelolink.

e Konstans - Az Univerzum egy konkrét elemére vonatkozik

e Fiiggvény f(x) - Az univerzum elemei altal egy méasik elemre vonatkozik pl valakinek a

kutyaja.

6.1 Szintaxis:

valtozdszimbolumok:x, y, z. ..

konstansszimbélumok: a, b, c,
prédikatumszimbdélumok (allitas) — Jel: P, Q, S ...
fliggvényszimbolumok: f, g

logikai 6sszekotok (logikai miiveletek jelei): A,V,—,—
kvantorok: V,d

zardjelek: (, )
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Kvantorok hataskore és tulajdonsagai

Megallapodas alapjan a kvantorok hataskore mindig a kozvetlentil utana jovo prédikdtumig
tart. Azaz VaxP(x). Ha a hatdskort tobb prédikdtumra is ki szeretnénk fejteni, akkor
zardjelezéssel tudjuk megtenni, ekkor a kézvetleniil utana jovo zardjelig tart pl: Jx(P(x) A
Qx)).

e VzVy ugyanaz, mint VyVz
dxdy ugyanaz, mint a dydz
JaVy NEM ugyanaz, mint Vy3dz
JxVySzeret(x,y) : “Van olyan ember, aki mindenkit szeret a vildgon.”
Vy3zSzeret(x,y) : “Mindenkit szeret legalabb egy ember.”
Kvantor dualitas: egymdasbdl kifejezhetéek (DeMorganl) VaSzeret(z, JégKrém) =
—Jx—Szeret(x, JégKrém) JxSzeret(x, Brokkoli) = —-Vx—Szeret(x, Brokkoli)

Term

A term, azaz kifejezést az Individumvaltozokra és a konstansokra értjik. Ezek az Univerzum
adott elemeire vonatkoznak. Ha t1,to,...,t, kifejezés, és f ,n” valtozds fv.szimbdlum, akkor
f(t1,ta,... t,) is kifejezés (fiiggvény argumentumaiba irhatunk véltozdkat, konstansokat, de
bedgyazhatok fiiggvényértékekek is).

A termek vagy prédikatumszimbdélumok, vagy fliggények argumentumaiban
fordulhatnak el6, onalléan nem.

Definici6é 6.3.1 — Atomi formulak. Ha a P ,n” argumentumi prédikatumszimboélum, és
t1,t2,,t, termek, akkor P(t1,t2, - ,t,) atomi formula. A nulla argumentumos prédikéa-
tumszimboélumot az itéletvaltozdknak feleltetjiik meg. Ily médon az elsérendii logika a
nulladrend kiterjesztése.

Prenex és Skélem Normalformara hozas gyakorlati Iépései:
1. Kizarévagy eliminidlasa
Ekvivalencia eliminalasa
Implikacié eliminédlasa
DeMorganl —VxP(x) = Jx—-P(x) vagy ~3xP(x) =Vax—P(x)
DeMorgan0
Valtozok standardizalasa
(a) Atnevezni minden kvantor utani valtozét kiilonbézére (kivéve, ha disztribiicié él -
V disztributiv A-re 3 disztributiv a V-ra.)

Kvantorok kiemelése (prenex)
8. Skolemizéalas (Létezik kvantor kikiiszobolése)

(a) Skolem konstans

(b) Fiiggvény (fiigg egy vagy tobb univerzédlisan kvantalt valtozétdl (ha a létezik

adott mindenek utan van))

oot W

=~

Rezolucié elsorendben

A rezolici6 hasonléan miikédik mint elsérendben, csak most Skélem Normaélforméra kell
hoznunk a kifejezéseket - ekkor elértiik, hogy minden bennmaradt valtozé univerzalisan
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kvantalt, egyébként fligggvények és konstansok vannak benne.
Ahhoz, hogy ki tudjuk ejtegetni a tagokat, egységesen kell kinézniiik azoknak (a tagadést
leszamitva), ehhez az un. egységesité behelyettesitést kell elvégezni.

Definicié 6.5.1 — Egységesitd helyettesités. Amennyiben egy azonos predikdtum szim-
bélummal kezd6do literdlok argumentumai nem egyforméak, megvizsgdljuk, hogy van-e
olyan helyettesités, amely egyforma argumentumokat eredményez. Az ilyen helyettesitést
illeszt6 vagy egységesito vagy egyesito helyettesitésnek nevezik.

6.6 Az elsérendii nyelv szokasos hasznalata
I Definicié 6.6.1 — Nyelv. Prédikadtumok halmazabdl és fiiggvények halmazabdl all.

Az els6rendii nyelv tulajdonképpen matematikai struktarak leirasara jott létre. Haszndlata
kétiranyu: Lehet, hogy adott formulanak keresiink modellt. Lehet azonban, hogy meglévé
elméletet vagy matematikai struktirat szeretnénk formalizalni. Ekkor fel kell tarni a struk-
tardban hasznélt miveleteket Sket fiiggvényekkel irjuk le. A miveleteket azért irjuk le
fliggvénnyel, mert a logikaban a fiiggvény az adott alanyhoz rendel egy masik alanyt, akir6l
majd beszélhetiink - a mivelet is ezt csindlja, adott elemekhez rendel egy masik elemet.
Szintén felmérjiitk a relacidok tulajdonsagait, dket prédikatumokkal irjuk le, hiszen az alanyok
kapcsolatardl allitunk valamit. Ha ezeket felmértiik és leirtuk, akkor elsérendii nyelven meg
is tudjuk fogalmazni a tulajdonsédgokat.

6.6.1 Abel-csoport leirasa elsérendii nyelven

e Predikdtum: az egyenléség, jele: =
e Fiiggvények:
— e: kivalasztja az adott nemiires Halmazbdl az egységelemet,
— i(x): baloldali inverze x € H -nak,
— f(x,y): a csoportmiivelet, amely az adott H nemiires halmaz minden a,b € H
eleméhez hozzérendel egy masik H-beli elemet, c-t. f(a,b) = c.
A csoportelmélet axiémai ezen az elsorendii nyelven megfogalmazva:
. f(f(a,b),c) = f(a, f(b,c)) asszociativitas
f(e,a) = a bal egység
f(i(b),b) = e bal inverz
f(a,

1
2.
3.
4. b) = f(b,a) kommutativ






7.1

7. Struktarak

Amikor egy adott objektumot hozunk 1étre pl programozas sordan, akkor altaldban azért
tessziik, hogy a késdbbiekben dolgozzunk veliik, azaz miveletek végezziink el az objek-
tumainkkal. A létrehozott struktira vagy osztaly esetén az adott példanyok elemei egy
halmaznak, amely Osszefoglalja az Osszes példanyat az adott struktiranak. Ezen halmazbeli
elemek kozott szeretnénk miiveleteket vagy fliggvényeket definidlni. Szerencsére vannak
egységesito fogalmaink, fliggetleniil attél, hogy ténylegesen miket takarnak a példanyok és a
miiveletek, lehetnek azok kutya, macska vagy akar auté is és koztiik lehet ezerféle dolog a
miivelet. Viszont ha vesziink egy halmazt és hozza egy vagy tobb miiveletet, akkor azoknak
a miiveleteknek lesznek tulajdonsigai is. Adott tulajdonsagi miiveletekkel rendelkezé halma-
zokat fogunk adott struktiranak nevezni. gy fiiggetleniil a tényleges objektumokrdl, valaki
azt mondja, hogy egy gylriit programozott le, mindenki fogja érteni, milyen tulajdonsagokat
elégitenek ki a példanyok és a koztiik meghatarozott miiveletek. Ebbdl adéddéan egyenle-
trendezéseket tud végrehajtani veliik konnyedén, adott tulajdonsagokat ismerve. Ennek a
fejezetnek az a célja, hogy ezeket az elemi és Osszetett strukturakat révideb bemutassa és
példakat adjon ra.

Struktira és miivelet altalanos fogalma
Definicié 7.1.1 — Miivelet. Tekintsiik a "matematikai" objektumok egy H halmazat. A
miivelet olyan fliggvény, amely az adott objektumok halmazabdl vett objektum (ok)hoz
egy (masik) halmazbeli objektumot rendel.

Definicié 7.1.2 — Egyvaltoz6s/unaris miivelet. Az f miivelet unéris, ha egy objektumhoz
egy (mésik) objektumot rendel. f: H — H.

Definicié 7.1.3 — Kétvaltozés/binaris miivelet. Az f miivelet binaris mivelet, ha az f
fliggvény értelmezési tartomanya Dy C H x H, értékkészlete Ry C H. Azaz f: H x H — H

(Rendezett objektumpérhoz, rendel egy méasik objektumot.)
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Definicié 7.1.4 — n-valtozés miivelet. Olyan miivelet, melynek az értelmezési tartoméanyas:
Dy CHxXHx---xH=H"és értékkészlete: Ry C H. Azaz: f:H" — H.

Definicié 7.1.5 — Algebrai struktara. Olyan nem iires H halmaz, amelyben legalabb egy *
miivelet van definidlva. Jele: < H|x > , tobb miivelet esetén:< H|*,o0,--- >

I Definicié 7.1.6 — Osszetett algebrai struktira. fliggvényekkel 6sszekotott tobb algebrai
struktira. Példaul: vektortér.

7.2 Miveleti tulajdonsagok
Definicié 7.2.1 — Asszociativ (csoportosithaté). Egy H-n értelmezett * bindris miivelet
asszociativ, ha barmely a,b,c € H-ra teljestl, hogy: a* (bxc) = (a*b)*c

I Definicié 7.2.2 — Kommutativ (felcserélhetd). Egy H-n értelmezett * bindris miivelet
kommutativ, ha barmely a,b € H-ra teljesiil, hogy: axb=bxa

Definicié 7.2.3 — Baloldali egységelem. A H halmazon értelmezett * bindris miivelet bal
oldali egységelemének egy olyan e, € H elemet neveziink, melyre Va € H esetén teljesiil,
hogy ey *a = a.

Tétel 7.2.1 Legyen értelmezve H-n egy * bindris, asszociativ miivelet. Ha a kétoldali
egységelemek léteznek, akkor e, = e; = e, vagyis az egység kétoldali és egyértelmii.

Bizonyitas 7.1 ej*e; = e; baloldali egységelem definicidja miatt és e, * e; = e; a jobboldali
egységelem definicidja miatt, tehat e, = ey *xe; = ¢; "

Definicié 7.2.4 — (Kétoldali) egységelem. Az ¢ € H elem a * binéris miivelet egységeleme,
ha mind bal- mindpedig jobboldali egységelem. Azaz Va € Hexa=axe = a.

Definicié 7.2.5 — Balinverz. Az a € H elem * bindris miiveletre vonatkozd bal oldali
inverze, egy olyan a;l € H elem, melyre a;l xa = e, ahol az e a * miivelet egysége.

Definici6 7.2.6 — (Kétoldali) inverz. Az a € H elem inverze, egy olyan a~' € H elem, az
a-nak mind bal, mindpedig jobboldali inverze. Azaz: a !+xa=axa"! =e, ahol az e a *
miivelet egysége.

Tétel 7.2.2 Legyen értelmezve H-n egy * bindris, asszociativ miivelet. Ha a kétoldali
inverzek léteznek, akkor a;l =aq;j—1= a~ !, vagyis az inverz kétoldali és egyértelmi
asszociativ miivelet esetén.

Bizonyitas 7.2

a*a71) = (a;l * @) *a;l =a;t

=1l 1 1
( J J

CLb :ab *GZCLb *
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Definici6 7.2.7 — Disztributiv. A H halmazon értelmezett * miivelet disztributiv a H
halmazon értelmezett o miveletrenézve, ha barmely a,b,c € H-ra ax (boc) =axboaxc
és (boc)xa=b*aocxa teljesiil.

Fontos strukturak

Az itt megadott definicidkat szokés axiomatikus definicidknak nevezni.

Félcsoport - Semigroup
Definicié6 7.3.1 — Félcsoport. Egy G nem iires halmazt félcsoportnak neveziink, ha

értelmezve van G-n egy * bindris miivelet, amely asszociativ. Va,b,c € G (a*b)*c =
ax(bxc)

Példaul az n x n-es matrixok a szorzasra nézve félcsoportot alkotnak.

Példa: Legyen a H halmaz adott karakterekbdl sszerakott Gsszes lehetséges stringek
halmaza. H = {"a”,”b",”c”,”d”,”ab”,”ba”,..., aaa”,"aaab”,...}. A miivelet legyen az
Osszeflizés (concatenate), azaz két stringet egymds mellé fuzve létrehozunk egy tjabb
stringet. Az asszociativitast egy példan keresztiil mutatom meg:

concatenate(concatenate("alma',"fa"),"héz")=concatenate("alma",concatenate("fa","haz"))
Az eredmény mindkét esetben az "almafahdz'.

Csoport - Group
Definici6é 7.3.2 — Csoport. Egy G nemiires halmazt csoportnak neveziink, ha értelmezve

van G-n egy * binaris miivelet, amely
1. asszociativ: Va,b,c € G (a*b)*xc=ax*(bxc)
2. létezik egységelem: de € G Va € G exa=a
3. létezik inverz elem: Va € GIa~' € G, a '*xa=e

Példaul: Az egyik legkorabbi titkositdsi protokoll, a Caesar rejtjel, (nagyon egysz-
erli) csoportmiiveletként is értelmezhetd. A legtobb kriptografiai séma valamilyen médon
hasznélja a csoportokat. Kiilénosen a Diffie — Hellman kulcscsere véges ciklikus csopor-
tokat hasznal. Tehat a csoport-alapi kriptografia kifejezés els6sorban olyan kriptografiai
protokollokra utal, amelyek végtelen nem-abelian csoportokat hasznalnak.

A Caesar eltolds lényege, hogy egy adott szét tgy kddolunk, hogy adott szdmmal eltoljuk
az ABC-ben a betiliket. Példaul +3-as eltolassal kapjuk: "ALMA" — "DOPD". Az angol
ABC-t vegyiik alapul, ekkor 26 féle eltolasunk lehetséges. Legyen a H halmaz az adott
szamu eltolds, a rajta értelmezett miivelet pedig az eltolasok Osszeflizése, tehat t6bbszor
alkalmazzuk a Caesar-eltolast nem feltétleniil ugyanazzal az értékkel. Csoportot alkot,
hiszen:

1. zart: Ha eltolom egy adott szammal (legyen a) a betiliket, majd ezt megismétlem egy
mésik szdmmal (legyen b), akkor valdjaban tovéabbra is egy Caesar-eltolast hajtottunk
végre a—+ b szamu eltolassal. (Ertelem szerlien, ha tilcsordul a 26-n, akkor az megfelel
annak, ahova érkezik pl 26 eltolés a nulladik eltolésnak 27. eltolds az 1. eltolasnak.)

2. Asszociativ: (S - o 02) C RN (01 o C') hiszen a baloldala az
egyenletnek az ugyanaz, mintha R Cg C a jobboldala pedig: S 2 C’l S ¢
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+6
+7

3. Egységeleme a nullaval valé eltolas "ALMA" +0 "ALMA".
4. Inverz elem esetén az egységelemet kell megkapnunk, azaz a két eltolds Osszegének
26-nak kell lennie, mert ekkor:

+3

‘ DOPD '632

+26=+0

Definicié 7.3.3 — Abel-csoport. Olyan csoport, melyre még teljesiil, hogy a mivelet
kommutativ is: Va,b € G a*xb=bxa.

Tovabbi példak:
e <térbeli vektorok|+>

o <egész szamok|+>

e <raciondlis szamok|+>

e <pozitiv raciondlis szamok|->
e <val6s szamok|+>

e <pozitiv valés szamok|->

e <n x m-es matrixok|+>

o <{—1,1}|->

Az egyenletek megszokott rendezéséhez sziikséges tételek

A tételeket mindkét iranyban ki kell mondani, mert nem feltétel, hogy kommutativ legyen a
csoport. Csak az egyik oldalra bizonyitom, a t6bbit az olvaséra bizom.

Tétel 7.3.1 Ha G csoport, akkor Va,x,y € G-re ha axx = a*xy, akkor z =y és ha rxa=1y+*a,
akkor x =y.

Bizonyitas 7.3

inverzelem def asszociativ feltétel asszociativ inverzelem def
egységelem def l egységelem def

r=exx=(a x(axx) =a ' x(axy) = (a 1*a)*y:e*yiy (7.1)

Tétel 7.3.2 Ha G csoport, akkor Va,z,y € G esetén, ha axx = b, akkor z =a ' %, illetve
ha x%a =0, akkor  =b*a~!
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Bizonyitas 7.4

inverz elem def asszociativ
egységelem def feltétel
rZexz=(atxa)xr=a tx(axz) Za b (7.2)

7.3.3 Gyiirii - Ring
A gytiriben két méas-mas tulajdonsiaggal rendelkezé miivelet van, és a miiveletek kozotti
kapcsolatot is egy tulajdonsag fejezi ki.

Definicié 7.3.4 — Gyiirii. Egy R nemiires halmazt gytlirlinek neveziink, ha van R-en két
miivelet: * és o. E miiveletekre a kovetkezdk teljestilnek:
1. a * mivelet Abel-csoport
2. a o miivelet asszociativ ( félcsoport)
3. a két miiveletet a disztributiv szabdly koti ossze:
ao(bxc)=(aob)*(aoc) és (bxc)oa= (boa)*(coa)

A * miiveletet 6sszeaddsnak, a masik miiveletet szorzésnak hivjuk, a megszokott klasszikus
miiveletekre valé hasonlitas miatt. Amennyiben a szorzds is kommutativ, Kommutativ
gylriir6l beszéliink.

Képfeldolgozas gyiiriivel

Természetes azt gondolni, hogy két kép hasonld, ha a pixelenkénti kivondsa a pixel értékeinek
egymasbdl kozelit a nulldhoz. Ennek az 6tletnek az a probléméja, hogy altalaban, amikor a
kivonas negativ értékeket ad, sok szerzé gy gondolja, hogy ezeket az elemeket nulldnak
veszi. Ez a megfontolas altalaban nem irja le a két kép kozotti kiillonbséget, és bizonyos
esetekben lehetséges, hogy fontos informéaciék vesznek el. Ezért olyan strukturat kellett
definidlni, hogy a két kép kézotti miiveletek stabilak legyenek.

Tekintsiik a képet egy egész szamokbdl 4ll6 vektornak: Z™, ekkor a pixelenkénti 6sszeadés
és miivelet ezen a képek halmazén gyfrit alkot: < Z"|+,- >. Tekintve, hogy pixelenkénti
Osszeadasrol és szorzasrdl beszéliink, ezért ezeket konnyt belatni. Az Osszeadas egységeleme,
azaz a nullelem, az a kép, amely csupa nullakat tartalmaz, mig a szorzas egységeleme, az a
kép, amely csupa egyeseket tartalmaz, a tobbi tulajdonsdgot az olvaséra bizom.

Garcés, Yasel Torres, Esley Pereira, Osvaldo Pérez, Claudia Morales, Roberto. (2014).
Application of the Ring Theory in the Segmentation of Digital Images. International
Journal of Soft Computing, Mathematics and Control. 3. 10.14810/ijscmc.2014.3405.

A gylirli elmélet segit bevezetni olyan fogalmakat, mint példaul, erésen ekvivalens képek
fogalmat. A és B kép erdsen ekvivalens akkor, ha 1étezik egy S - skalar kép, melyre teljesiil,
hogy A=B+S. Azaz egy konstanssal van eltovla a két kép értéke (képzelhetd el uigy, hogy
egyneletesen fényesebb vagy sotétebb a kép).

Képszegmenticiés algoritmus:

Szukséges: A(Eredeti kép); e (Megéllas kiiszobértéke); h,., hs(Kernel paraméterek)

1. Inicializdlas: B1 = A, By = A and errabs = oo

2. while errabs > ¢ do
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Eredeti kép filterelése Mean Shift Algorithmussal

Boy=filretelt kép

By és By kiilonsbségének szamitdsa: v = entropia(B; — (B2))

3

4

5

6. errabs = v
7 Update By = Bs

8. end while

9. return B (szegmentalt kép)

Tovabbi példak:

1. n X n-es matrixok a szokdasos Osszeadasra és szorzasra nézve
2. paros szamok szokasos Osszeaddasra és szorzasra nézve - kommutativ is

Test- Field

Definicié 7.3.5 — Test. Egy T legaldbb kételemii halmazt kommutativ Testnek neveziink,
ha értelmezve van T-n két miivelet, melyeket 6sszeadasnak és szorzésnak hivunk. Mindkét
miivelet Abel-csoport, kivéve, hogy az Osszeadds egységelemének nincsen a szorzasra
vonatkoztatott inverze. A szorzas disztributiv az 6sszeadasra nézve.

I Definicié 7.3.6 — Ferdetest. Minden tulajdonsiga egyezik a Test tulajdonsigaival, kivéve,

hogy a szorzas nem kommutativ, azaz sima csoport.

Test felhasznalasa bitekkel valé szamolas soran

Legyen a Bool-Algebrabdl ismert Igaz (1) és Hamis (0) elemek halmaza. Ekkor a XOR
megfeleltethetd az 6sszeaddsnak, mig az ES a szorzésnak.

Lassuk be, hogy valéban test:

Bizonyitas 7.5 Kizaré vagy:

1. Zart, hiszen a XOR miivelet nem vezet ki az igaz,hamis halmazbdl.

A|B|C|B+C | A+(B+C) | (A+B)+C
0100 0 0 0
0101 1 1 1
0[1]0 1 1 1
2. Asszociativ - igazsagtdablaval belathaté: 0 | 1 | 1 0 0 0
1101]0 0 1 1
11011 1 0 0
11110 1 0 0
1 (171 0 1 1
A Két oszlop megegyezik minden interpretacidéban.
A | E? | A+E=A
3. egységelem A+E=A 0 | 0 0 Tehat az egyégelem (nullelem) az azonosan

110 1
HAMIS.

A| A1 A+A 1 =F

4. Tnverz elem: A+ A~'=FE 0 0
1 1

0
0

Tehat az inverzelem 6nmaga.

5. Kommutativ - XOR igazsagtablajabol tudjuk, hogy kommutativ, olvasora bizom.
Tehat a kizaré vagy valéban Abel-csoport. A kérdés, hogy az ES miivelet is az-e?

>
=

SO R EFERHOO 4
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1. Zart v
2. Asszociativ v’
A|E|A-E=A
3. Egységelem: E=1, mert 0 | 1 0
1)1 1
4. Inverz elem (nullelemre nem kell 1éteznie inverz elemnek, igy csak az IGAZ-ra kell
megnézniink: 1-1 =1 Tehat az 1 inverze az 1, mert IGAZ ES IGAZ = IGAZ.

5. Kommutativ v/
Tehét az ES valéban Abel-csoport az dsszeadds egységelemének inverzét nem keresve. A
két miiveletet 6sszekdto disztribuciét kell még belatni:

A|B|C|B+C| A-(B+C) | A-B| A-C | (A-B)+(A-C)
olo|o| o 0 0 0 0
ojo|1] 1 0 0 0 0
ol1|0]| 1 0 0 0 0
o|1|1] o 0 0 0 0
1{ofo]| o 0 0 0 0
1]o|1] 1 1 0 1 1
110 1 1 1 0 1
111 0 0 1 1 0

=
]

Tehat a disztributiv szabaly is teljesii

Tovabbi példak:
1. <raciondlis szdmok | +,->

2. <valés szamok | +,->
3. <komplex szdmok | +,->

7.3.5 Vektortér - Vector Space

A vektorterek targya a Linearis Algebra, itt csak a definiciéval foglalkozunk most. A
vektortér mar Osszetett struktira, egy csoport elemeit egy fiiggvény segitségével kapcsolatba
hozzuk egy test elemeivel.

Definicié 7.3.7 — Vektortér -Vector Space. A V nem iires halmazt vektortérnek nevezziik
a T test felett, ha az alabbi tulajdonsagok teljseiilnek:

1. A V halmazon értelmezve van egy 0sszeadas nevii miivelet, mely barmely vy,vo € V
elemekhez egyértelmiien hozzarendel egy V-beli elemet, amelyet v; 4 va-vel jeloliink.
Az 6sszeadds Abel(kommutativ)-csoport.

2. A T test és a V halmaz kozott értelmezve van a skalarral valo szorzas (roviden,
skalarszoros, szdmszoros): barmely A\ € T un. skaldrhoz és barmely v € V' un.
vektorhoz egyértelmiien hozzarendel egy V-beli elemet, amelyet Av-vel jeloliink. A
skaldrszoros a kévetkezo tulajdonsagokkal rendelkezik barmely A, u € T és v,vq,v9 €
V esetén:

(a) lv=v, ahol az 1 a T test szorzasra vonatkoztatott egységeleme
(b) vegyes asszociativ: (Ap)v = A(uv)
(c) vegyes disztributiv szabaly:

i A+ p)v=Av+pv

ii. AM(v1+v2) = Avg + Avg
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A vektortereknek szamos alkalmazasa ismert, mind a nyelvtechnolégiaban, mindpedig a
kvantummechanika teriiletén vektorokkal operalunk. Ezekkel az adott tantargyakon sokat
fogtok taldlkozni.

Tovabbi példak:

1. A sik és a tér vektorai a valés szamok felett

2. Valds szamok a valds szamok teste felett

3. A természetes szamok a valds szamok teste felett

4. Az n X m-es matrixok a valds szdmok teste felett

A Vektortér (Vector Space) nem Osszekeverend6 a Vektormezivel (Vector-
field). A vektormez6 egy fiiggvény, amely a tér adott pontjahoz rendel egy vektort, azaz
F: R3 — R3. Ezzel analizisen fogtok talalkozni, vagy fizikabél, ahol a tér adott pontjaira
adott irdnyu erék hatnak.

Osszefoglalas

Nulladik: a halmaznak zartnak kell lennie a miiveletre nézve! Egymiiveletes struktirak
esetén:

Félcsoport

Kétmiiveletes struktirak esetén a @ miivelet béviilése a meghatarozé kiillonbség:

® disztributiv a € nézve.
: Abel-csoport Gytrti
Ferdetest
&): Félcsoport Test
®: Csoport
): Abel-csoport

A szorzésnak az Osszeadds egységelemére nézve nem kell inverzének lennie.

Abel-csoport

A Caesar cipher ésa boritén levs kép: https://www.wikiwand.com/en/Caesar_ cipher
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A halmazok elemei kozott nem csak miiveleteket definidlhatunk, hanem sziikségiink lehet
egyéb Osszefliggések megadasara is. Példaul adott egy adag valami, meg kell tudnunk
hatarozni, hogy két valami mikor egyenld, de meg kell tudnunk hatarozni azt is, hogy milyen
modon rendezziik sorba az elemeket. Példaul legyen a halmaz a hallgaték halmaza. Torna-
sorba akarjuk allitani az embereket, miszerint tessziik, kor vagy magassag szerint? Ezeket
az Osszefliggéseket hivjuk reldciéknak, mikor egyenlGséget hatarozunk meg, ekvivalencia
relaciérdl beszéliink, mikor sorbarendezziik valamilyen tulajdonsag, vagy logika alapjin a
halmaz elemeit, akkor rendezési relaciorol beszéliink.
Definici6é 8.0.1 — Descartes (direkt) szorzat. Legyenek Dy, Ds,..., D, adott halmazok. E
halmazok Descartes (direkt) szorzata: Dy X Da X --- X Dy, :={(d1,da,...,dy)|dr € Dy 1 <
k <n} A direkt szorzat tehat olyan rendezett érték n-eseket (n=2 esetén parokat,n=3
esetén harmasokat) tartalmaz, amelynek k. eleme a k. halmazbdl valé.

Direkt szorzat példéak:

1. A={1,2} B={7,8,9}, akkor Ax B=1{(1,7),(1,8),(1,9),(2,7),(2,8),(2,9)}

2. Adatok:= Nevek x Véarosok x Utcanevek x Hazszamok={(Nagy Janka, Budapest, F§
u., 1),... (Nagy Janka, Budapest, F6 u., 16), (Nagy Janka, Budapest, F6 u., 17),.....
(Nagy Janka, Budapest, Kossuth L. u., 1), .... (Nagy Janos, Budapest, F6 u. 1.),

3. RxR={(z,y)|x €R és y € R}, Descartes koordindta-rendszer

I Definici6 8.0.2 — Relacié. D1, Ds,..., D, direkt szorzat barmely részhalmaza.

Példa relacioras:

{ (Nagy Janka, Budapest, Kossuth L. u., 1), (Nagy Jénos, Budapest, F6 u., 1)} C
Adatok
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I Definicié 8.0.3 Bindris relacié, han=2:r C Dy x Dy

Ekvivalencia relacio
Definici6 8.1.1 — Ekvivalencia relacié. Olyan binaris relacio, melyre teljesiilnek a kdvetkez6

tulajdonsagok:
1. Reflexiv: (z,z) € R
2. Szimmetrikus: Ha (z,y) € R, akkor (y,z) € R
3. Tranzitiv: Ha (z,y) € R és (y,2) € R, akkor (z,z) € R

Példaul a Modulo k maradékosztalyok ekvivalencia relaciét hataroznak meg. Azaz
(a,b) € R, ha k-val osztva ugyanazt a maradékot adjak. Jele: a =b mod (k) kimondva: a
kongruens b modulo k.

Definicié 8.1.2 — Particié. A particié a H halmaz egy olyan részhalmazrendszere, amelyre:
n
HinHj=0é | JHi=H
i=1

A particiora ugyis gondolhatunk, mint amikor a memoriat osztjuk fel, azaz particionaljuk,
hogy dualbootot tudjunk ra telepiteni. Ertelemszertien, ha metszete lenne a particicknak,
akkor amikor a Linuxot a Windows mellé telepitem, akkor az szépen feliilirnd a metszetet is,
igy a Windowsom 6szeomlana. Eppigy, amikor particiondlunk, tigyeliink arra, hogy az Gsszes
memoriateriillet megmaradjon. Ha nem tenné ki a particidk inidja a teljes memoriatriiletet,
akkor lennének ki nem hasznalt er6forrasaink.

Tétel 8.1.1 Az R binaris relacé a H halmazon ekvivalencia relacié akkor és csak akkor,

c s 2

c s

ekvivalencia osztdlyai nem a H halmaz particidjat adjak. Ekkor példaul a két osztalynak
lehet metszete.
Z;’é] HiﬂHj#(D—)HaEHiﬂHj

a€ Hi—Ybe Hi<= (a,b) € R

a€ Hi—Vce Hj <= (a,c) €R

A szimmetria miatt (b,a) € R. Tehat latjuk, hogy (b,a) € R és (a,c) € R, igy a tranzitiv
tulajdonsag miatt: (b,c) € R. Tehat b és ¢ ekvivalens egymdssal, azaz ugyanabban az
ekvivalencia osztalyban vannak, azaz H; = H;, azaz ugyanazt a particiot alkotjak.

Ha a H; halmazrendszer a H halmaz egy particidja, akkor a H; halmazok ekvivalencia
relaciét hataroznak meg: Tegylik fel, hogy a H; egy particid, lassuk be az ekvivalencia
relacio tulajdonsagait.

1. Relfexiv, mert a € H;, akkor a € H;, tehét (a,a) € R
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2. Szimmetrikus, mert a € H; és b € H; az ugyanaz, mintha azt mondanam, hogy
b€ H; és a € H;, tehat ha (a,b) € R — (b,a) € R.

3. Tranzitiv, ha a és b ugyanabban a halmazban vannak és b és ¢ szintén ugyanabban
a halmazban vannak, akkor a és c is ugyanabban a halmazban vannak. Azaz: Ha
(a,b) € R és (b,c) € R, akkor (a,c) € R

Feladat 8.1 Legyen a H = {1,2,3,4,5,6,7,8,9,10}. és legyen R = {(a,b) € Rla =b
mod (3)}, adja meg az ekvivalenciaosztalyokat. n

8.2 Rendezési relacié
Definicié 8.2.1 — Parcialis rendezési relacié. Az R binéaris relacié a H halmazon parcialis
rendezési relacié, ha teljesiilnek ra a kovetkez6 tulajdonsagok:
1. Reflexiv: (z,x) € R
2. Antiszimmetrikus: Ha (z,y) € R és (y,x) € R, akkor és csak akkor, ha 2 =y
3. Tranzitiv: Ha (z,y) € R és (y,z) € R, akkor (z,z) € R
Szokasos jelolés (x,y) € R-re: © <y. Utalva arra, hogy a kisebb-nagyobb viszony a valds
szadmok kozott is rendezési reldcié (rdadasul teljes).

Definicié 8.2.2 — Teljes rendezési relacié. R rendezési relacié H halmazon akkor teljes, ha
(z,y) € R és az (y,z) € R kozil legaldbb az egyik teljesiil. Azaz barmely két eleme a H
halmaznak 6sszehasonlithaté.

8.2.1 Pointer iteralasa teljesen rendezett halmazon lehetséges

Amennyiben van egy osztalyunk, amelyet magunk hoztunk létre, akkor amig nem &llitjuk
sorrendbe a példanyokat, addig nem tudunk rajta ciklussal végigfutni pointer segitségével.
Hiszen a pointer nem fogja tudni, melyik példany a rakévetkezd példany.

Listing 8.1: C++ pointer iterdlds

1 class Car{

2 public:

3 szgk sz;

4 Car(string marka, string tipus){

5 sz.marka=marka;

6 sz.tipus=tipus;

7 }

8

9 friend ostream & operator<<(ostream & out, const Car & car_ ){
10 return out << car__.sz.marka <<" "<< car__.sz.tipus;;
11 }
12 bool operator <( const Car& rhs) const
13 {
14 return sz.marka+sz.tipus < rhs.sz.marka+rhs.sz.tipus;
15 }

—
D
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17}
18
19
20 class CarDealer{
21 public:
22 map<Car, int> cars;
23 int darab;
24
25 ...
26 friend ostream& operator<<(ostream & out, CarDealer & card){
27 map<Car, int>:iterator it=card.cars.begin();
(%
28
29 while(it!=card.cars.end()){
(_>
30 out<<it—>first<<" — "<<it—>second<<"db"<<endl;
31 it++;
32 }
33 out<<"Itt jart GatZo.";
34 return out;
35
36 b

8.2.2 Hasse-diagram

A rendezési relaciot Hasse diagrammal szoktuk szemléltetni. A Hasse-diagram-ban a halmaz
elemeit lerajzoljuk gy, hogy a diagramban feljebb rajzoljuk azokat az elemeket, amelyeknél
vannak kisebbek. Az elemeket akkor kotjik oOssze, ha azok az adott rendezés szerint
kozvetleniil 6sszehasonlithatok. Nem kotjlik Ossze sem a reflexiv, sem a tranzitiv tulajdonsag
miatt relacidban 4ll6 elemeket.

PéldAaul a a rendezési relacié legyen értelmezve a H = {1,2,3} halmaz hatvinyhalmazén.
Tehat a sorbarendezni kivant elemek: 27 = {0, {1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
Ekkor az a halmaz, amely benne van a masikban, az el6rébb keriil a sorban, azaz pl:
{1} <{1,2,3} viszont ebbél adéddan, akadnak éssze nem hasonlithaté halmazok (parcidlisan
rendezett), ilyen 6ssze nem hasonlithaté halmazok az {1} és a {2,3}. A Hasse-diagram
pedig:
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{1,2} {1,3}

Ha értelmezve van egy adott halmazon egy adott rendezési relicié, akkor a halmaz ele-
meivel kapcsolatban feltehetjiik a kérdést, hogy melyik a legels6(legkisebb), legutols6(legnagyobb)
elem. A kovetkezd fogalmakat eképpen definidljuk:

Definicié6 8.2.3 — Legnagyobb elem. A H halmazon adott parcidlis rendezés szerinti
legnagyobb elem N, ha Vh € H-ra teljesil, hogy h < N.

A legnagyobb elem az 6sszes tobbi elemmel 6sszehasonlithatd, globalis.

I Definici6 8.2.4 — Legkisebb elem. A H halmazon adott parcidlis rendezés szerinti legkisebb
elem k, ha Vh € H-ra teljesiil, hogy k < h.

A legkisebb elem az Osszes tobbi elemmel Gsszehasonlithatd, globalis.

I Tétel 8.2.1 Ha van legnagyobb/legkisebb elem, akkor az egyértelmii.

Bizonyitas 8.2 Indirekt tegyiik fel, hogy van legnagyobb elem, de nem egyértelmi. Ebbdl
adédik, hogy van legalabb két legnagyobb elem: M; és My. M; legnagyobb elem, ezért
definicié szerint: My < My és My is legnagyobb elem ezért definicié szerint: M; < Ms.
A rendezési relaci6é antiszimmetrikus, ezért (Ma,M1) € R és (M1,M>) € R csak akkor
lehetséges, ha My = Ms. Tehat egyértelmi. "

I Definicié 8.2.5 — Maximalis elem. A H halmazon adott parcidlis rendezés szerinti max-
imalis elem M, ha nem létezik olyan h € H, hogy M < h teljesiilne.

A definici6é szerint a maximaéis elem nem biztos, hogy minden elemmel 6sszehason-
lithat6.Lokalis, tobb is lehetséges.

I Definici6 8.2.6 — Minimalis elem. A H halmazon adott parcidlis rendezés szerinti min-
imalis elem m, ha nem létezik olyan h € H, hogy h < m teljesiilne.

A definicié szerint a maximais elem nem biztos, hogy minden elemmel Gsszehason-
lithaté.Lokalis, tobb is lehetséges.

A fenti definicidk a Hesse-diagramrél kénnyen leolvashatéak. A fenti példa alapjan:
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{1,2} {1,3} {2,3}

XX

{2}

)

Egy masik példa, maximalis elem megértésére:

roszlan

o
5as tigris

nyl kecske

novény




A HAlo is egy specidlis struktira. A szamitdstudoményban és konkrétan a programozasi
nyelvekben a haléknak nagy szerepe van. Példaul a Prolog programozasi nyelv szemantikaja
az alabb bizonyitott Tarski-féle fix-pont tételen alapul.

Definici6 9.0.1 — Fels korlat. A részben rendezett H halmaz valamely H; részhalmazénak
K € H fels6 korlatja, ha minden hy € Hi-re b1 < K.

Definicié 9.0.2 — Als6 korlat. A részben rendezett H halmaz valamely Hp részhalmazdnak
k € H also6 korlatja, ha minden hy € Hi-re k < hy.

I Definicié 9.0.3 — Supremum. A legkisebb fels6 korlat.
I Definicié 9.0.4 — Infimum. A legnagyobb alsé korlat.

Definici6 9.0.5 — Halé 1. A H részben rendezett halmaz halé, ha barmely véges részhal-
mazanak van infimuma és supremuma. A H hal6 teljes, ha barmely részhalmazanak van
infimuma és supremuma.

Definici6 9.0.6 — Halé 2. A H halmaz halé, ha értelmezve van rajta két miivelet, melyekre
az alabbi tulajdonsagok: mindkét miivelet asszociativ és kommutativ. A két miiveletre
teljesiil az elnyelési tulajdonsag: ao(bxa) =a és ax(boa)=a.

Bizonyitas 9.1 — A két definicié ekvivalens. Ha értelmezve van egy rendezési relacio,
akkor az infimum és a supremum (kételemt részhalmazokon) segitségével definidlhatéd
a két miivelet: aob:=inf(a,b) és a*xb:=sup(a,b). Ezekre kell belatnunk a miveleti
tulajdonsagokat:

1. Kommutativ v/
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2. Asszociativ:
ao(boc) = inf(a,inf(b,c)) = inf(inf(a,b),c) = (aob)oc)

a* (bxc) =sup(a,sup(b,c)) = sup(sup(a,b),c) = (a*b) *c)
3. Elnyelés:

inf(a,b) =a haa<b
ao(b*a) = a = inf(a,sup(a,b)) = inf(a,b) =a ha a <

inf(a,a) =qQ ha b S a
sup(a,a) =a ha a <b

Forditva: Ha létezik két ilyen tulajdonsagi miivelet, akkor konstrualjuk meg a
rendezési relaciét eképpen: R = {(a,b)|la,b€ H aob=a}.

1. Relfexiv: aoca=a
Kommutativ

2. Antiszimmetrikus: aob £3 bo=—=a=0>
3. Tranzitiv: HA aob=a és boc = b akkor:

Asszociativ

a=aob=ao(boc)=(aob)oc=aoc

Az adott halmaz elemeinek sorbarendezése szamos elénnyel gazdagit minket. Példaul
lehet&ségiink van 4j fogalmakat kialakitani. Ilyen fogalom a fiiggvények monotonitédsa. Ha
adott egy fliggvény, ami a mi H halmazunkon van értelmezve, akkor az elemek sorbarendezése
nélkiil nem tudnank azt pl koordinatarendszerben abrazolni - nem tudnank megmondani,
hogy novekszik-e vagy csokken, hiszen nincsen "a kovetkezo elem", amihez néznénk az értéket.
De igy hogy sorbarendeztiik a halmazt, mar meg tudjuk mondani, hogy mikor monoton egy
fliggvény.

Definicié 9.0.7 — Monoton fiiggvény. Valamely H rendezett halmazon értelmezett f :
H — H fiiggvény monoton, ha minden H halmazbeli hy < ho- re f(h1) < f(h2).

A definiciébdl adédik, hogy a monoton fliggvény rendezéstartd, nagyobb elem nagyobb
értéket kap.
Definici6 9.0.8 — Fixpont. Adott H rendezett halmazon értelmezett f: H — H fiiggvény
fixpontja h € H, ha f(h) =h.

Mas szavakkal a fixpont olyan eleme a halmaznak, melyhez énmagat rendeljiik. (Fixen
nem valtozik.)

Tétel 9.0.1 — Tarski fixpont tétele. Teljes halén értelmezett monoton (rendezéstartd)
fliggvénynek van legkisebb és legnagyobb fixpontja.
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Bizonyitas 9.2 A.) Legkisebb fixpont létezése: Tekintsik a G := {z|z € Hf(z) <
x} C H halmazt. Mivel H teljes — Jg := inf(G). (Azaz a halé definiciéjabdl kiindulva,
ha kiragadunk egy halmazt, annak tuti van infimuma.) Errél az infimumrél fogjuk beldtni,
hogy 6 a legkisebb fixpont.
1. Lassuk be, hogy g € G, azaz g olyan infimum, amely része is a G halmaznak.
Inf def
i)

g<x

monfton Gfef
flo)<fl@)<z

Tehat f(g) alsé korlatja G-nek. Mert f(g) alsé korlat, és g pedig a legnagyobb
alsékorlat (infimum) ezért:

Gfef
flg) <g=inf(G)=geG

2. Most azt bizonyitjuk, hogy g fixpont. Lattuk, hogy

flg)<yg
f monotonitasa miatt
f(f(9) < f(9)
Tehat f(g) € G, de G alsé korlatja g
g< f(g)

Az el6z6 1épésben lattuk, hogy f(g) < g és most lattuk, hogy g < f(g), < rendezési
reldcid, igy antiszimmetrikus: f(g) = g, azaz g fixpont.
3. Végiil azt bizonyitjuk be, hogy g legkisebb fixpont. Tekintsiikk a G* fix-
pontok halmazat:
G*:={zlzx € H f(x) =1z}

g € G* és legyen ¢g* :=inf(G")

Konnyen bizonyithaté, hogy valamely halmaz és részhalmaza alsé korlati kozott
igaz az alabbi Osszefiiggés:

G* C G = inf(G) < inf(G*)

Tehat a tartalmazott halmaz infimuma a nagyobb g < g*. Viszont a ¢* az infimuma
a fixpontoknak, ezért ¢g* < g. Megint, mivel rendezési relaciérél van szd, ami
antiszimmetrikus, ez csak Ugy lehetséges, ha ¢* = g. Azaz ez a g valéban a legkisebb
fixpont.
B.) Legnagyobb fixpont létezése A fenti A. rész 3 1épéséhez hasonléan a G =
|z € Hz < f(x)} halmaz g := sup(G) elemérdl belatjuk, hogy legnagyobb fixpont.
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Kovetkezmény: : a fixpontok halmaza is hdl6, ugyanarra a rendezésre.

Formal Concept Analyses

A hélok talan egyik legkonnyebben lathat6 alkalmazasa a Formal Concept Analyses (FCA),
melynek lényege, hogy egy adott halmaz elemeit attribitumainak segitségével rendeziink
sorba, a sorbarendezés soran az attributumokat is elemeknek tekintjik. Ekkor a Hasse-
diagramm felrajzolasaval kovetkeztetéseket tudunk levonni. Példaul lehetnek az elemek a
betegségek, az attribitumok a tinetek. Egy egyszerlibb példan maéris latni fogjuk, legyen a
példa az innivalék, készitsiink egy tablazatot a tulajdonsagaikkal:

Ital | Nem alkoholos | Bubis | alkoholos | forré | Koffeines | Sz616bol

Tea X X X

Kavé X X X X

Koéla X X X X
Sor X X X

Pezsg6 X X X X
Bor X X X
Asvanyviz | x X X

Alkoholmentes

Koffeines

Alkoholos

Buzabol

Sz016b6

Buzabol
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~A -10. Grafelmélet

(Bércesné Novak Agnes, Hosszti Ferenc, Rudas Imre: Matematika II,OE- BDMF, 2000
jegyzet alapjan atdolgozta: Bércesné Novak Agnes) Kiegészitette: Miski Marcell.

10.1 Bevezetés

A grafelmélet a kombinatorikdnak az elmilt szdz évben jelentés fejlédést elért aga, bar
komoly eredmények mar a XVIII. szazadban is sziilettek. Az els6 ismert publikacié Eulertol
szarmazik (1736), amelyben megoldast adott az G.n. konigsbergi hidak problémaéjara.

A probléma, amelyet a varos polgarai vetettek fel, a kovetkezo:

Lehet-e olyan sétat tenni a varosban, hogy a varost atszelé Pregel folyé mindegyik hidjan
egyszer és csak egyszer haladjanak at?

A feladat szempontjabdl lényegtelen, hogy a parton, ill. a szigeteken hogyan kozlekediink,
csak a hidakon valé dthaladasra kell figyelniink. Ily médon a megoldas szempontjabdl csak
arra kell koncentrdlnunk, hogy hény szdrazfold (part, vagy sziget ) van, és ezeket hany hid
és mily médon koti 6ssze. Ennek megfeleloen késziilt az 10.1. dbra,

melyet egyszeriibben is felrajzoltunk lasd 10.2. abra.

A konigsbergi probléma ily médon a kovetkezOképpen fogalmazhatd meg:

Be lehet-e jarni a fenti, grafnak nevezett, abra éleit oly médon, hogy minden élen
pontosan egyszer megyiink végig? (A feladatot Euler dltaldnosan megoldotta, a megoldasra
az anyag targyaldsa soran visszatériink. )

A grafelmélet kovetkezo jelentds dllomédsanak Kirchoff 1847-ben publikélt eredményei
tekinthetdk, melyben grafelméleti médszereket alkalmazott villamos halézatok analizisére.
Kirchoff ezen eredményei tekintheték a grafelmélet els6 miiszaki alkalmazédsainak is.

A grafelmélet iranti érdekl6dés felkeltésében nagyobb szerepe volt azonban a térképek
négy szinnel valé kiszinezhetdségére vonatkozé sejtésnek. A négyszin-sejtés azt mondja ki,
hogy ha egy térképet sik lapra felrajzolunk, akkor az egyes orszagok kiszinezheték tgy, hogy
a szomszédos orszagok szinei kiilonbo6zok legyenek. Ha a térképen lathaté valamennyi orszag
egy-egy pontjat megjeloljik, és két pontot akkor és csak akkor kotiink Gssze, ha az ezeket
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Figure 10.1: Konigsbergi Hidak sematikusan

tartalmazo orszdgok szomszédosak, akkor egy 1.n. sikba rajzolhaté grafhoz jutunk.

A négyszin-sejtés ezek utdn a kovetkezOképpen fogalmazhaté meg:

A sikba rajzolhaté grafok kiszinetheték négy szinnel gy, hogy az éllel 6sszekotétt pontok
eltéré szintiek legyenek (10.3. dbra).

A sejtést el6szor Francis Guthrie fogalmazta meg a metemetika nyelvén, bizonyitasat
valoszintileg elosziir Mobius kisérelte meg 1840 koriil és azéta is a matematikai kutatéasok
homlokterében allt, de bizonyitani egészen a legutobbi idokig nem sikeriilt. 1976-ban azonban
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Figure 10.2: Leegyszeriisitett graf a hidakra

Figure 10.3: Négyszinsejtes

Kenneth Appel és Wolfgang Haken egy - a matematikdaban rendkiviilinek szamité - bizonyitdst
adtak a sejtésre, ugyanis a bizonyitas egy lényeges része szamitégépes futtatasokbdl allt. A
bizonyitas elfogadhatésagardl azédta is vitak folynak, azonban a matematikusok zéme ma
mar teljes értékiinek fogadja el.

10.2 Alapfogalmak
Definici6 10.2.1 — Graf. Egy G=[V E,{] graf
e pontok/csticsok egy V halmazabdl,
o élek egy E halmazabodl és
e egy f figgvénybdl all, amely
minden egyes a € E élnek egy (u,v) = (v,u) rendezetlen pért feleltet meg, ahol u,v € V'
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I pontok, amelyeket az a él végpontjainak neveziink.

I Definicié 10.2.2 — lzolalt pont. Olyan pont, amelyhez nem illeszkedik él.

| Definici6 10.2.3 — Hurokél. (u,u) él.

I Definicié 10.2.4 — Tobbszoros él. Ha ugyanazt a két pontot tobb él is 6sszekdti.
I Definici6 10.2.5 — Iranyitott él. Ha az (u,v) € E él rendezett,

I Definicié 10.2.6 — Iranyitott graf. Ha minden éle iranyitott.

Jelolések:

e A pontokat kis korokkel jeléljiik. A pont nevét vagy a kor mellé, vagy a kor belsejébe
irjuk.
e Az irdnyitatlan éleket olyan gorbékkel jel6ljik, amelyek az él két végpontja kdzott
haladnak.
e Az irdnyitott éleket nyillal ellatott gorbével jeléljiik.
A tovabbiakban grafon mindig irdnyitatlan grafot fogunk érteni, mig ha irdanyitott grafrol
beszéliink, akkor ezt kiilon hangsilyozzuk.
I Definicié 10.2.7 — lzomorf grafok. Két graf izomorf, ha egyikiik pontjai és élei klcséndsen
egyértelmii és illeszkedéstarté médon megfeleltethet6k a méasikuk pontjainak, ill. éleinek.

Szemléletesen ezt tigy lehet elképzelni, hogy a graf pontjai merev karikdk, élei pedig
ezekhez rogzitett nytjthaté gumizsinorok. Ezt a grafot most akarhogyan mozgatjuk, nyijtjuk,
zsugoritjuk, mind{g izomorf grafot kapunk. Altaldban izomorf grafok kozott nem tesziink
kiilonbséget.

Definicié 10.2.8 — Fokszam. A graf v pontjahoz illeszked6 élvégek szamat v fokszaméanak
vagy roviden v fokdnak nevezziik, és ¢(v)-vel jeléljiik. Ha a v foka n, akkor azt is mondjuk,
hogy v n-edfokui.

Példa Az alabbi abran lathat6 grafnak 4 pontja van, 7 éle, ebbdl egy hurokél. A pontok
fokszdmai: ¢(a1) = ¢(az) = 4, ¢(as) =5, Glas) =1 .
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Ay

A pontok fokszama és az élek szama kozotti dsszefiiggésre mutat ra a kovetkezd tétel.

Tétel 10.2.1 — Handshaking-kézfogasi tétel. Minden grafban a fokszamok Osszege az élek
szamanak kétszeresével egyenld.

Bizonyitas 10.1 Tegyiik fel, hogy az e él az u és v pontokhoz illeszkedik, azaz u és v az e
él két végpontja. Ekkor, ha u # v , akkor az e élt ¢(u)-nal és ¢(v)-nél is beszamoltuk.
Ha pedig u = v , akkor az e él hurokél, és igy ¢(u)-nal szdmoltuk kétszer. Tehét a graf
Osszes pontjainak a fokszamat osszeadva éppen az élek szamanak kétszeresét kapjuk. m

Példa Egy kormérkozéses bajnoksiagon bizonyos csapatok mar jatszottak egymaéssal.
Bizonyitsuk be, hogy paros azoknak a csapatoknak a szama, akik paratlan sok csapattal
jatszottak!

Megoldas Jeldljék a graf pontjai a csapatokat, két pont kozotti él pedig azt, hogy a
két csapat mar jatszott egymassal. Igy egy csapat annyi mas csapattal jatszott, ahany él
illeszkedik az adott ponthoz.

Azt kell tehat bizonyitani, hogy a paratlan fokszamu pontok szama paros.

Mint lattuk minden grafban a fokszamok Osszege paros, amely a paros és paratlan
fokszdmok 0sszegébdl tevddik Ossze. A paros fokszamok Osszege nyilvan péaros, hiszen paros
szdmok Osszege paros. Igy a pératlan fokszdmok osszegének is parosnak kell lenni. A
paratlan fokszamok Osszeke pedig csak tigy lehet paros, hogy paros sopkat adunk Ossze.

A példa sordn igazoltuk a kiévetkezd tételt.

I Tétel 10.2.2 Minden grafban a paratlan fokszami pontok szama péros.

I Definici6é 10.2.9 — Egyszerii graf. Egy grafot egyszerlinek neveziink, ha sem hurokélt, sem
pedig tobbszoros élt nem tartalmaz.



76 10. Fejezet: Grafelmélet

Tétel 10.2.3 — Skatulya elv (fiokok elve (Franciaorszag), galmabdic elv (UK), Dirichlet-elv (Ru, Németorszag).
Ha van n doboz és n+1 targy, akkor biztosan lesz legalabb 1 doboz, amelyikben
legalabb 2 targy lesz.
2. Ha m targyat osztunk szét n csoportba, és m > nk, ahol k egy természetes szam,
akkor legalabb k + 1 targy fog kertilni az egyik csoportba.

Bizonyitas HF.

Tétel 10.2.4 Minden 1-nél tobb csiicsu egyszerl grafban van két azonos foki csucs.

Azonban a 0 és az n-1 fokszam egy adott grafban egyszerre nem fordulhat eld, hiszen ha
van 0 fokszamu pont, akkor az izolalt, ezért ehhez nem illeszkedhet rd mas cstucsbdl él,
nem lehet tehat mas csicsnak n-1 a fokszama. Tehat az n-1 db lehetséges fokszamot n
csucsra kell elosztani, igy sziikségképpen lesz két csiics, amelyeknek azonos a fokszama.
(1. skatulya elv) n

Definicié 10.2.10 — Teljes graf. Egy grifot teljes grafnak neveziink, ha barmely két
pontjat pontosan egy él koti Gssze.

n(n—1)

Tétel 10.2.5 Az n pontu teljes graf éleinek szama: ==

‘ Bizonyitas 10.2 Ha a grafnak n csicsa van, a lehetséges fokszamok: 0, 1, 2, 3, ..., n-1.

Bizonyitas 10.3 A teljes n-graf barmely két pontjat pontosan egy él koti 6ssze, igy minden
egyes pont fokszdma n - 1, tehat a fokszamok osszege n(n—1) . Tudjuk, hogy barmely
graf esetén a fokszdmok Osszege az élek szamanak kétszerese, amibdl az allitas adédik. =
Definici6 10.2.11 — Részgraf. Egy G’ grafot a G graf részgrafjanak nevezziik, ha G’ csak
G-beli pontokat és éleket tartalmaz. Ha a G’ nem azonos G-vel, akkor a G graf valodi
részgrafjanak nevezzik.

10.3 Utak és korok

Definicié6 10.3.1 — Elsorozat. Elsorozatnak az élek olyan rendezett halmazét nevezziik,
amely a kovetkez6 tulajdonsagokkal rendelkezik:
e a sorozat elsd és utolsd élétol eltekintve barmely él egyik végpontja az el6z6 élhez,
masik végpontja a kévetkezd élhez illeszkedik,
e az elsé él egyik végpontja a kivetkezo élhez illeszkedik, masik végpontja az élsorozat
kezddépntja,
e az utolso él egyik végpontja az el6z6 élhez illeszkedik, mésik végpontja az élsorozat
végpontja,
e minden él pontosan egyszer fordul el6.

I Definicié 10.3.2 — Nyilt élsorozat. Nyilt élsorozatrél beszéliink, ha az élsorozat kezd6pon-
tja és végpontja kiillonbo6z6. Ellenkez6 esetben zart élsorozatrol van szé.
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Definicié 10.3.3 Egy élsorozathoz tartozo graf az a graf, amelyet az élsorozat élei alkotnak.

Definicié 10.3.4 — Ut. Az u és v pontok kozotti Gt olyan nyilt élsorozat éleinek halmaza,
amely a kovetkezd tulajdonsdgokkal rendelkezik:

e u és v kezdd és végpontok,

e ezek foka 1, mig az Gsszes tobbi foka 2.

Definicié 10.3.5 — Osszefiiggé graf. Ha egy grafban barmely két pont tuttal elérhetd,
akkor a grafot osszefiiggbnek nevezziik.

Definici6 10.3.6 — Kor. Az olyan 6sszefiiggd grafokat, melyekben minden pont foka 2,
kornek nevezziik.

A definicidbdl nyilvanvald, hogy egy zart élsorozat élei kort alkotnak, ha minden pont

foka 2.

Definicié 10.3.7 Ut, ill. kor hosszén a benne 16vé élek szamat értjiik.

Tétel 10.3.1 Az n pontu Gsszefiiggd grafnak legalabb n - 1 éle van.

Bizonyitas 10.4 A bizonyitéas teljes indukcival torténik.

Az allitds n =1 esetén nyilvanvaléan igaz.

Tegyiik fel, hogy valamely n > 1 esetén minden n pontti 6sszefiiggd grafnak van n —1
éle.

Belétjuk, hogy akkor minden n + 1-pont 6sszefiiggd grafnak (tovabbiakban G) van n
éle.

Ha G-nek van els6fokti pontja, akkor a hozzatartozo éllel egyiitt toroljiik a grafbol.
Nyilvan n ponti Gsszefiiggd grafot kapunk, melyre érvényes az indukcids feltétel, azaz
minimum n — 1 éle van. A t6rolt élt hozzavéve adodik, hogy G-nek minimum n éle van.

Ha nincs els6fokil pontja, akkor minden pont foka legalabb 2, és igy a fokszamok
6sszege minimum 2(n+1) > n. n

I Tétel 10.3.2 Ha egy grafban minden pont foka legalabb 2, akkor a grafban van kor.

Bizonyitas 10.5 Alkalmazzuk az un. leghosszabb Ut moddszerét! Legyen az 1hossztusagu L
ut a G graf egy leghosszabb 1tja, és ennek egy végpontja v. Tekintsiik most G-nek v-hez
illeszked? éleit! Ezek koziil barmelyiknek a végpontja L-hez tartozik, ugyanis ellenkez6
esetben L hossza 1-nél nagyobb lenne, ami ellentmond annak, hogy L a leghosszabb 1t.

Ha G minden pontjanak foka legaldabb 2, akkor illeszkedik v-hez egy e él is. Ha e
hurokél, akkor ez G egy korét kijeloli. Ha e nem hurokél, akkor u-nak v-t6l kiilonb6z6 w
végpontja L-ben van, tehat L-nek a v és w pontokat 0sszekoto része e-vel egyiitt G egy
korét alkotja.
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10.4 Euler ut/kor:

Euler-graf
A konigsbergi hidak problémajanak megoldasahoz akkor jutnank el, ha taldlndnk a

grafban egy olyan élsorozatot, amely a graf minden élét tartalmazza. Ezt az élsorozatot
bejarva minden hidon pontosan egyszer haladnank at, és végiil a kiindulasi pontba érnénk
vissza. A probléma megoldasiahoz vizsgaljuk meg, hogy mely grafoknak van ilyen zart
élsorozata.

Definici6 10.4.1 — Euler at/kor. G grafban Euler-uitnak neveziink egy olyan élsorozatot,

amely G Osszes élét pontosan egyszer tartalmazza. Ha ez az élsorozat zart, akkor

Euler-korrél beszéliink.

Ha egy grafban van Euler-kor, akkor azt Euler grafnak nevezziik.

Megjegyzés: Ezen definicié alapjan minden Euler-koér Euler-ut is.

Altaldban egy Euler-kér, vagy Euler-it, nem kér vagy tt, hiszen egy csticson tobbszor is
athaladhat. Az elnevezés csak a hagyoméanyt koveti.

Példa
http://www3.cs.stonybrook.edu/ skiena/combinatorica/animations/euler.htm
Algoritmus Euler kor keresésére:

Pelda az Cl:abca, C2:bdetb, ==C3:abdefbca.
algoritmus C4:eijhcge. C3+C4=>abdeijhcgefbea

mukddéseére:
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Tétel 10.4.1 Ha egy graf Euler-graf, akkor minden pontjanak foka paros. Ha egy (izolalt
pontot nem tartalmazé) grafnak van nyilt Euler-vonala, akkor két pontjanak foka paratlan,
a tobbié pedig paros.
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Bizonyitas 10.6 Tegyiik fel, hogy a G graf Euler-graf. Ekkor 1étezik G-ben olyan élsorozat,
amelyben G valamennyi éle szerepel. Ha a graf pontjait bejarjuk az Euler-vonal mentén,
akkor a kezdopontba érkeziink vissza, és a bejaras soran valahanyszor egy pontba ériink
onnan ki is kell 1épni, azaz két illeszked6 élvéget jarunk be. Ha ezeket parositottnak
tekintjiik, és figyelembe vessziik, hogy a kezdépontba érkeztiink vissza, akkor nyilvan
minden pont foka paros kell legyen.

Ha egy izolalt pontot nem tartalmazoé grafnak van nyilt Euler-vonala, és bejarjuk
a graf éleit, akkor minden pont foka az el6z6 szerint paros lesz, kivéve a kezdo és a
végpontot, hiszen az elsének és utolsénak bejart élvégek par nélkiil maradnak. Igy a graf
két pontjanak foka paratlan, a toébbié pedig péros. "

Figyelem, a fenti tétel csak implikacié. Megforditva nem biztos, hogy igaz.
Tehat, ha egy graf minden foka paros, nem biztos, hogy Euler-graf is. Hiszen a
graf lehet, hogy minden foka paros, de nem Gsszefiiggd, ekkor nyilvan nincsen
Euler kor, kivéve, ha egy komponenst leszamitva minden komponens izolalt
pont.

Tétel 10.4.2 Ha egy graf Euler-graf és nincs izolélt pontja, akkor az 6sszefiiggs. (Ez is
csak implikacié! Nem megfordithatd!)

Ellenben a kévetkezo tétel mar oda-vissza igaz lesz:

Tétel 10.4.3 Az Gsszefiiggd grafok halmazan egy graf akkor és csak akkor Euler-graf, ha
minden foka paros.

Halmazokkal szemléltetve az 6sszefiiggd grafok és a minden foka paros grafok metszete
az Euler-grafok.

Euler-graf

Osszefiiggd graf

Minden foka paros graf

Euler-graf legalabb egy izolalt ponttal

Csupéan az implikacidékat és az ekvivalenciat szemléltetve a harom tétel:
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Osszefiiggé vagy van izolalt pontja

Minden foka Paros

Osszefiiggd és minden foka Péros Euler-graf

Példa A konigsbergi probléma.
Tekintsiik a probléma atfogalmazéasaval nyert grafot.

A probléma tehat az, hogy bejarhaté-e az abran lathaté graf oly médon, hogy a graf
élein pontosan egyszer haladunk végig. Az el6zd tétel szerint, ha egy graf éleit be tudjuk
jarni ugy, hogy minden élen pontosan egyszer haladunk at, akkor a graf két pontjanak foka
paratlan, a tobbié paros, vagy valamennyi pontjanak foka paros. Mint lathaté az abran 1év6
graf harom pontjanak foka harom, egy pontjanak pedig 6t, azaz négy paratlan fokszamu
pontja van. Igy a graf nem jarhaté be.

»Euler mester fejét buiisan razza: Oly talany ez, nincsen megoldédsa; nincs oly t, mint
urasagtok kérik, amely minden hidat egyszer érint.”

(Eredeti széveg: Bohdan Zelina, magyar szoveg: Adam Andras, Ponticulus Hungaricus,
II. évfolyam, 11. szam, 1998 november)

I Tétel 10.4.4 Ha egy n pontu grafnak legalabb n éle van, akkor van benne kor.

Bizonyitas 10.7 A bizonyitast n-re vonatkozo teljes indukcioval végezziik. Az allitds n =
1 esetén nyilvanvaléan igaz. Tegyiik fel, hogy valamely -re minden n pontu és legalabb n
éli grafban van kor. Legyen G egy n + 1 pontu graf, amelynek legaldbb n + 1 éle van.
Ha van elséfoku éle, toroljiik a ra illeszked6 éllel egyiitt. A maradék grafban az indukciés
feltétel szerint van kor. Visszavéve az els6fokt pontot és a ra illeszked6 élet, az el6z6 kort
uu. tartalmazza a kapott graf.

Ha nincs elséfokt pontja, akkor minden pont legaldbb mésodfoki. Ekkor az el6z6
tétel szertint van a grafban kor. "

10.5 Fa
I Definici6é 10.5.1 — Fagraf. Ha egy graf 6sszefliggd és nem tartalmaz kort, akkor fagrafnak

vagy réviden fanak nevezziik.
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I Tétel 10.5.1 Az n pontt fagraf éleinek szama n — 1.

Bizonyitas 10.8 Tudjuk, hogy minden n pontu 6sszefiigg6é grafnak legaldabb n - 1 éle van.
Az el6z6 tétel szerint, ha egy n ponti grafnak legaldbb n éle van, akkor a grafban van
kor. Eszerint minden n pontd kérmentes Osszefliggé grafnak pontosan n - 1 éle van, ami
az allitast igazolja. "

I Tétel 10.5.2 Az n pontd és n - 1 éll Osszefiiggd grafok fak.

Bizonyitas 10.9 Tegyiik fel ugyanis, hogy a G graf nem fa, azaz tartalmaz kort. Ha a kor
egy €lét toroljiik, akkor n pontd, n - 2 éli Gsszefiiggd grafot kapunk, ami ellentmond
annak, hogy egy n pontu sszefiiggd grafnak legalabb n - 1 éle van. Be kell még latnunk,
hogy ha egy Osszefligg6 graf valamely korének egy tetszdleges élét toroljilk, akkor ismét
Osszefiiggo grafot kapunk. Tegyiik fel ehhez, hogy a torélt él nem hurokél, hiszen hurokél
torlése nem sziinteti meg az Osszefiigg6séget. Toroljitk a G graf K korének (u,v) élét. A
G grafban az u-bdl a v-be most is el tudunk jutni a K kér megmaradt élein keresztiil,
azaz az (u,v) torlése utan is eljuthatunk barmelyik pontbdl barmelyik pontba, tehat a
kapott graf is Osszefliggd. "

Fa ekvivalens definiciéi:

Tétel 10.5.3 Egy 6sszefliggd graf akkor és csak akkor fa, ha barmely két pontja kdzott
pontosan egy ut van. (Biz.: HF)

I Tétel 10.5.4 a fa Osszefiiggd kormentes graf

I Tétel 10.5.5 az n pontt, n-1 élu Gsszefliggd graf fa.

Priifer kod

A fak taroldsara haszndljuk. (Priifer kod és a fak kozotti bijekeid)

A Priifer kéd elééllitésas:

1. a fa csicsait sorszdmozzuk meg 1-t6l n-ig

2. keressiik meg a legkisebb sorszamu levelet

3. ezt a levelet hagyjuk el a hozza illeszkedé éllel egyiitt, az él méasik csicsat pedig a
Priifer kod végére irjuk

4. az el6zo két 1épést addig ismételjuk, amig csak 2 csticsunk marad

Az igy kapott kéd n-2 hosszt lesz n db. cstcs esetén, tovabba az eredeti fa

leveleinek sorszama nem lesz benne a kédban!

Feladatok Irjuk fel az aldbbi grafok Priifer kédjat, majd a kédok alapjan irjuk rajzoljuk

fel a grafot.
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1 5 4
@ @
2 3 6
@ @
1)
5
1 2
6
3
3 4 1 a
5 " 5
4) 5)
1. 5,3,5,3,5
2. 3,3,5,5,6,7,6,6,10,11
3. 1,1,1,1,6,5
4. 5,1,6,6
5. 3,3,3,6

10.5.3 Feszitofak - Prim, Kruskal algoritmusok
Prim algoritmus
A Prim-algoritmus egy osszefiiggd silyozott graf minimalis feszit6fajat hatdrozza meg mohd
stratégia segitségével.
Az algoritmus:
1. Kivalasztjunk egy tetszoleges, legkisebb élt.
2. Ezutan a keletkezett él egy egy €16 részfa. Ehhez a részfahoz kivalasztunk egy masik
hozz4 kapcsolddo legkisebb élt. A hozzavett él nem hozhat 1étre kort a részfaban!
3. Ezt addig tessziik, amig minden pontot nem értiink el.

Kruskal algoritmus
A cél ugyanaz, mint a Prim algoritmus esetében, de itt nem kell, hogy Gsszefiiged legyen
menet kézben a részfa, a végén a kialakult feszitéfa igyis az lesz.

Az algoritmus:

1. Kivéalasztjuk az egyik legkisebb élt.

2. A maradék 6sszes él koziil kivalasztjuk a legkisebbet, amellyel a részgrafunkban nem

keletkezik kor.
3. Addig ismételjiik, amig minden csiicshoz el nem jutunk.
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Fabejarasok: pre-, in-, post-order bejarasok
Preorder

Ha a gyokérelemet el6szor, a bal és jobb oldali részfa bejarasai elott kozvetleniil érintjiik,
akkor preorder bejarasrél beszéliink.

Inorder

Amikor a gyokérelemet a bal és jobb oldali részfa bejarasai kozott érjiik el, akkor inorder
bejarast valésitunk meg.

Postorder

Ha a gytkérelemhez a bal és jobb oldali részfa bejarasai utan jutunk el, akkor postorder
bejarast valésitunk meg.

Olvasmany- cimkézett grafok

Definicié 10.6.1 Cimkézett irdnyitott grafnak nevezziik azokat az iranyitott grafokat,
amelyekben a pontokat és/vagy az éleket kiilon megcimkézziik.

A cimkézett irdanyitott grafok alkalmazasiara mutatnak példat a jatékok grafjai. Ezen
grafok segitségével sok kétszemélyes jaték, igy pl. a sakk, a malom, stb., nyer6 stratégiaja
analizalhat6. Minden ilyen jatékhoz hozzarendelhetd egy graf, melynek pontjai a kiilonb6z6
lehetséges allasok, élei pedig a megengedett 1épések, amelyeket annak a jatékosnak a jelével
cimkéziink meg, aki ezeket a 1épéseket megteheti.

Példa. Tekintsiik a halomjaték egy egyszerii viltozatat. A jatékot két jatékos jatssza,
tetszOleges szamu gyufabdl all6 gyufahalommal. A jatékosok 1épésenként felvaltva 1, 2 vagy
3 db. gyufat vehetnek el. Az nyer aki az utolsé gyufat elveszi.

Reprezentaljuk a jatékot egy olyan cimkézett irdnyitott graffal, melynek pontjai a
lehetséges &lldsok (a halomban 1év6 gyufdk szdma ), élei pedig a megengedett 1épések,

melyeket annak a jatékosnak a jelével cimkéziink meg, aki ezeket a 1épéseket megteheti.

A s6tét jatékos utolsé nyerd lépéseit dbrazolja az alabbi graf.
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v. - wvilagos 1db gyufat vesz el

i

s. - sotetidb gyufat vesz el i=1,2,3.

Az abrébdl leolvashatd, hogy sotét ( s ) akkor nyer, ha vildgos ( v ) utolsé 1épése el6tt 4
gyufa van a halomban. A nyer6 stratégia tehat az, hogy a vildgos altal elvett gyufak szamat
ki kell egésziteni 4-re, vagyis vilagos lépése el6tt a halomban mindig néggyel oszthatd szamu
gyufanak kell lenni.

Grafok matrix reprezentacidja

Definici6 10.7.1 — Adjacenciamatrix. Jeloljék a graf pontjait ui,us,...,u, , az u; és u;
pontokat Osszekotd élek szamat pedig a;; . Az A = [a;;] n X n-es matrixot a graf
csucsmatrixanak, vagy adjacenciamatrixdanak nevezziik.

Irdnyitott graf esetén az csticsmétrix a;; eleme az u; kezdSponti és u; végponti irdnyitott
élek szamat jelenti.

Példa. Tekintsiik az alabbi dbran lathaté grafokat.
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d,

a,

d
4 a,

A grafok cstcsmatrixai:

0 2 0

A =

]
o = b=
(g
[
— = O
o o O o
o = b=

o O o =

2 0
I 1
0 2

o

Megjegyzés.

Ha a graf egyszert, akkor nyilvan a;; értéke 0, vagy 1 lehet, aszerint, hogy az u; és u;
pontok kozott halad-e él, vagy sem.

Legyen G egy egyszer(i graf, és emeljitk négyzetre az A = [a,;] adjacenciamatrixat. Az
A% = [ag-)] elemei ekkor

n
(2)
;5 = Z Ak - Ak
k=1

. Az a;, azt mutatja meg, hogy hany 1 hosszisdga 1t vezet az u; cstcsbdl az uy cstucsba,
az ap; pedig azt, hogy hany él megy az uy pontbdl az u; pontba. Nyilvanval6 igy, hogy
az a;i, - ay;j szorzat azoknak az u; pontbdl az u; pontba vezetd kettd hossziisdgt utaknak
a szaméat adja meg, melyek kozéps6 pontja up. Az ag) tehat az Osszes u; pontbdl az u;
pontba vezetd ketto hossziisagu utak szamat adja meg.

Olvasmany Ezek alapjan teljes indukcioval igazolhatd a kovetkezd tétel.

Tétel 10.7.1 Legyen G egyszerii graf, és jelolje adjacenciamatrixat A = [a;;] . Az A
matrix k-adik hatvanyanak ag-g) eleme megegyezik az u; csticsbél az u; csicsba vezetd k

hosszisaga utak szaméaval.
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Definicié 10.7.2 Jel6lje az u; pontbdl az u; pontba vezet6 legrévidebb 1t hosszat p(u;,u;)
. A fentiek alapjan az adjacenciamatrix ismeretében barmely grafban p(u;,u;) értéke a
kovetkezOképpen hatarozhaté meg: hatvanyozzuk az A méatrixot addig a k hatvanyig,
(k) (k) _ 1

ij elem el6szor nullatdl kialonbozé nem lesz. Ekkor a;:

amig a ij

Az adjacenciaméatrix egy lehetséges alkalmazasat mutatja be a kovetkez6 példa.

Példa. Két misszionarius és két kannibal egyszerre érkezik egy foly6 partjara, és min-
dannyiuknak at kell jutniuk a foly6 tulsé partjara. Az atkeléshez csak egyetlen csénak all
rendelkezésre, amely egyszerre két embert bir el. A kannibalok szdma egyik parton sem
haladhatja meg a missziondriusok szamat ( kivéve azt az esetet, amikor a misszionariusok
szama nulla ), mert akkor veszélyeztetik az életét. Adjuk meg az atkelés algoritmusat!

Megoldas. Jellemezze a kiindulédsi part egy allapotat az a rendezett szampar, melynek
els6 eleme azon a parton 1év6 misszionariusok, méasodik eleme pedig pedig a kannibalok
szama. A megengedett dllapotok ekkor a kovetkezok:

a1 =(2,2) ag=1(2,1) a3 =(2,0) oy = (1,1) a5 =(0,2) ag = (0,1) a7 = (0,0)

Vezessiik be a G irdnyitott grafot, melynek (o, ) éle azt jelenti, hogy az «a; allapotbdl
az o  allapot kozvetleniil elérhetd, ha a csénak dtmegy a tuls6é partra.

p.(0.0) P(2:2)

Ps(0.1) pA(2,1)

py(0.2) |
5 p(L1) p(2.0)



10.7 Grafok matrix reprezentacidja 87

A graf adjacenciamatrixa a kévetkezd:

N

Il
O OO OO OO
SO OO O O
SO OO O =
SO OO O ==
OO OO OO
OO = = OO
O R = = =000

Az «; éallapotbdl az «; é4llapot akkor és csak akkor érhetd el a tulsé partra toérténd
atevezés utdn, ha az a; dllapotbdl az «; allapot elérhetd a visszaevezés sordn. Tehét, ha a
kiindulasi iranyitott G graf mindem élét megforditjuk, olyan G grafhoz jutunk, melynek
élei azt adjak meg, hogy mely allapotok érheték el kozvetleniil a visszaevezés sordn. A Gy
graf adjacenciamétrixa A’ Az A- A’ métrix ¢;; eleme:

Cij = Qi1j1 T Qizj2 + -+ + 757

ami megadja, hogy az «; allapotbdl az «; allapot hanyféleképpen érhetd el egyszeri
oda-vissza csénakittal.

Képezziik az (A- A")- A szorzatot. Az i-edik sor j-edik eleme megadja, hogy hényfélekép-
pen érhetd el az o; dllapotbdl az «; allapot oda-vissza, majd a talpartra evezve.

Az eljarast folytatva lathatjuk, hogy ha 3k € Z , hogy az (A-A')*- A matrix els6
sordnak hetedik oszlopdban nem zérus elem 4ll, akkor az «; allapotbdl az a; éllapot elérhetd
utolséként a tilsd partra torténd atevezéssel, éspedig 2k + 1 1épésben. k-szor oda és vissza,
majd végiil a tuls6é partra evezve.

A feladat megoldasidhoz nyilvan a legkisebb ilyen k-t célszerti megkeresniink. Képezziik
ehhez az

(A-A')- A, (A-A)2- A (A-A)3-A..

szorzatokat. Ha nem vagyunk kivancsiak arra, hogy a feladat hanyféleképpen oldhaté
meg, akkor a fenti szorzatokban a nem zérus elemek helyére mindenhol 1-et irhatunk.

Az igy nyert szorzatok:
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1 1 0 0 0 0 O (01 1 111 0]
1 101100 0111111
0011110 0000O0T1 1
AA'=/0 11111 of, (A-A’)-A=0 0 1 1 011
0111110 0011011
0011110 0000O0T1 1
000000 O] 000000 O
1 1. 011 0 0 0 1 1 1 1 1 1]
1111110 0111111
0111110 0011011
(A-AY=1 111110, (AA)YA=[01 111191
1111110 0111111
0111110 0011011
000000 O 0 000O0O0 O]

A feladat tehat megoldhat6 5 1épésben. A megoldas menetét visszafelé haladva tudjuk
megadni. Az (A-A")?- A métrix (1,7) index{i eleme az (A-A’)? matrix elsé sordnak és
az A métrix hetedik oszlopanak szorzataként adédik. Nézziik meg, hogy az (A- A")? elsé
soranak melyik eleme ad A utolsé oszlopanak megfelel§ elemével szorozva nullatdl kiilonb6z6
eredményt. Az egyik lehetéség az (1,4) és (4,7), a masik pedig az (1,5) és (5,7) indexii
elemek szorzata. Valasszuk ebbdl az elsét. Ez azt jelenti, hogy a megoldas utolsé 1épése az
(g, 7) .

Vizsgdljuk most az (A- A’)? métrix (1,4) index{i elemét. Ide az (A - A’)- A méatrix (1,6)
indexti elemébdl és az A matrix (6,4) indext elemébél keriilhet 1-es. Az utolsé el6tti 1épés
tehat (g, o).

Az (A-A’)- A métrix (1,6) indexii eleme az A- A" (1,2) és az A (2,6) index(i elemeibdl
adédik. Tehat visszafelé a kovetkez6 allapot az (aa, ) -

Az eljarast hasonléan folytatva a megoldédsra a kovetkez6 ( visszamend ) algoritmus
adddik:

(Oé4, OZ?), (aﬁa Oé4), (042, 046), (043, OZQ), (O[l,()ég)
ami a kiindulasi oldal allapotaival kifejezve:
(27 2)7 (270)7 (2? 1)? (072)7 (17 1)7 <O7 0)

Definicié 10.7.3 — Incidencia/illeszkedési-matrix. Jeloljék a graf pontjait uq,ue,...,u,
éleit pedig ey, ea,...,em . Az A=a;;] nxm-es matrixot illeszkedési, vagy incidencia-
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matrixnak nevezziik, ha

{1, ha e;nem hurokél, és illeszkedik az u; ponthoz,
ij

0, ha ejhurokél, vagy nem illeszkedik az w; ponthoz,
Irdnyitott grafok esetén az incidenciamatrixnak elemei a kovetkezok:

1, ha e;nem hurokél, és kezdépontja az u; pont,
ai;j 4 0, ha ejhurokél, vagy nem illeszkedik az u; ponthoz,

1, ha ejnem hurokél, és végpontja az u; pont,

Példa Tekintsiik kévetkezd grafokat.

A grafok incidencia-matrixai:

01110 0 0 -1 1 -1 0

001 010 0 0 -1 0 1
ngi.l: E] -';-1:

010111 101 -1 1

0 00 001 0o 0 0o 0 0 -1

10.8 Hamilton at és kor
I Definicié 10.8.1 — Hamiilton kér:. Egy P kor egy G = (V, E) grafban Hamilton-kor, ha P
a V Osszes elemét pontosan egyszer tartalmazza.

Egyszeriibb szavakkal a cél, hogy tgy jarjuk be a grafot, hogy minden cstcsot egyszer
érintiink és a kezdd csicsbdl a kezd6 cstucsba érkeziink. Amennyiben nem a kezdé csiicsba
érkeziink, de minden cstcsot egyszer érintettiink, Hamilton atrél beszéliink.

Tétel 10.8.1 — Sziikséges feltétel Hamilton-kor létezésének kizarasara. Ha egy grafban k
pontot elhagyva k-nal tobb komponens keletkezik, akkor a graf nem tartalmaz Hamilton-
kort.
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Figure 10.4: Hamilton-koér komponensei legrosszabb esetben.

Bizonyitas 10.10 — Indirekt. Tegyiik fel, hogy a grafban k pontot elhagyva k-néal tobb
komponens keletkezik és a graf tartalmaz Hamilton-kort. ¢

Vegyiik a grafban 1évé Hamilton-kort és hagyjuk el bel6le ezt a k pontot. Legrossz-
abb esetben a Hamilton-korben nem szomszédosak ezek a pontok, ekkor minden pont
elhagyasaval két élt is elhagyunk a Hamilton korbol, ebben az esetben pontosan & kom-
ponensre esik szét, nem tud k4 1 komponensre szétesni a Hamilton-kor miatt. Ez teljes
indukcioval belathaté minden n cstcs és minden k£ pont esetében lerajzolva. "

%Indirekt bizonyitds soran az allitids tagaddsara latjuk be, hogy kontradikcié. Itt az dllitdsunk egy
Ha-akkor kapcsolat, azaz implikacié, tehat az implikdcié tagaddsa pedig a feltétel éselve az akkor uténi

taggal: (=(a— B)=aA-p)

Tétel 10.8.2 — Ore-tétel (1961). Legyen G egy olyan n > 3 pontt egyszerli graf melyben
Vx,y € V(G) nem szomszédos pontparra teljesiil a deg(x) +deg(y) > n feltétel. Ekkor
G-ben van Hamilton-kor.

A fenti tételek implikacidk, megforditva NEM hasznalhatéak, csak elégséges feltételek.

Bizonyitas 10.11 Indirekt bizonyités, tegyiik fel az inplikéicié tagadasat: Legyen G’ egy
olyan n > 3 pontu egyszerii graf melyben Vz,y € V(G) nem szomszédos pontpérra teljesiil
a deg(x)+deg(y) > n feltétel és nincsen benne Hamilton-kor,

Huzzunk be G’-be tovabbi éleket tigy, hogy az 1j graf is ellenpélda legyen (tovabbra
sincs benne Hamilton-kor). Ezt tegyiik mindaddig, amig ha mégegyet behtiznank mar
tartalmazna Hamilton-kort.

Egy n csucsi teljes grafban van Hamilton-kor ezért biztosan 1étezik két nem szomszédos
pont {z,y} ¢ E(G).

Ekkor viszont a GU{z,y} grafban van Hamilton-kor, tehat G -ben van Hamilton-1t
(Hamilton korbél elhagysz egy élt, Hamilton utat kapsz). A Hamilton-tut kezdetét és
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végét Gsszekotve kapnank a kort.

Legyenek a P Hamilton-ut csicsai: vy = x,v2,...,v, =y Ha = szomszédos a P
ut valamely v;11 pontjaval, akkor y nem lehet Gsszekotve v;-vel, mert ez esetben
V1,02, eey Uiy Upy Up—1, -, Vig1, V1 €gy Hamilton-kor lenne.

Tehat az y nem lehet Gsszekotve az x szomszédainak szomszédaival, azaz legalabb
deg(x) ponttal.

deg(y) <n—1—deg(z)

d(y)+d(z) <n—1

ami viszont ellentmond az indukciés feltevésnek, miszerint
d(y)+d(z) >n
4

Q@O @

Vv a foka, akkor G tartalmaz Hamilton-kort.

Tétel 10.8.3 — Dirac-tétel (1952). Ha G egy egyszer, legalabb 3 ponta graf, amelynek
minden pontjanak legaldbb deg(v)

_ V(@)
2

Bizonyitas 10.12 A Dirac tétel az Ore tételnél erésebb feltételt fogalmaz meg, mivel ha

minden pont fokszama legalabb ‘V(iQG)‘, akkor teljesiil az Ore tétel feltétele. Barmely két

pont Osszegét tudjuk ez alapjan becsiilni, hogy

Vi) VG

d d >
eg(x) +deg(y) > 5 5

> V(@)

10.9 Dijkstra algorimusa minimalis Gt kresésére

Példa még kidolgozds alatt, addig itt egy YouTube linkem: https://youtu.be/__qALeHcCmm0
Dijkstra algoritmus lényege, hogy egy stilyozott graf adott pontjabdél megkeressiik a legrovidebb
(legolcsébb) utat az Gsszes tobbi pontba. Ezt tédblazat segitségével tudjuk a legkonyebben
megcsindlni. A tablazat oszlopai a csticsokat reprezentaljak, amelyekbe el akarunk jutni, a
sorok azt, hogy éppen mely csiicsndl tartunk.

Az els6 sor els6 celldjaba (sorcimke) felirjuk a kivalasztott csiicsot (ahonnan indulni
akarunk az Osszes tobbibe.) A sor tobbi celldjaba felirjuk az elsé celliban szerepld csics
szomszédaihoz vezet6 élek stulyat. Amely csticsokba nem tudunk kozvetlentl elérni végtelen
tavolsdgunak vessziik és végtelent irunk a cellaiba.

Kivalasztjuk a sorban a legkisebb szamot kapd oszlopot - ezzel végeztiink, az oszlop ala


https://youtu.be/_qALeHcCmm0
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mar nem irunk tobb szdmot. Az oszlop oszlopcimkéjét leirjuk a kévetkez6 sor sorcimkéjébe.

A kovetkezd sor sorcimkéjébél ismételjiik meg azt, amit az el6bb csindltunk, de tgy, hogy
nem felejtjik el, hogy a leirandé szamhoz hozzavessziik azt is, hogy ide mennyivel jutottunk
el, azaz, hogy mi volt az el6zbleg kivalasztott legkisebb szam. Tehat itt mar a sorcimke
értékét és az innen a szomszédaiba jutds Osszegét kell lefrnunk. Az adott celldba akkor
irjuk bele ezt az értéket, ha kisebb, mint a felette levé szdm(azaz valéban révidebb utat
talaltunk). Ezutdn megkeressiik a legkisebb szamu oszlopot, amelyet szintén befejezettnek
tekinthetiink. Ez a szdm lesz az, ami megmutatja, hogy ezen oszlophoz tartozé cstcsba
mennyi volt eljutni. A kdévetkez6 sor megint igy torténik, vessziik, hogy a csticsba eddig
mennyi volt eljutni, majd hozzdadjuk hogy a szomszédaiba mennyi eljutni, ha ez kisebb,
mint amit eddig lattunk adott csiics esetén, akkor leirjuk, ha nem akkor leméasoljuk a felette
lev6 értéket ide is.

Ha minden oszlopot kivdlasztottunk mar, akkor végeztiink.

Az adott csicsba valé eljutédst visszafejthetjiik, ha megfigyeljiik, melyik csticsba melyikbdl
jutottunk el, ezért célszert a szamok alsé indexébe beirni, hogy melyik csticsbol jutottunk
oda, igy amikor a felette levo szamot masoljuk le az alséindexxel egybdl latni fogjuk, honnan
jutottunk oda.

Egy példan a legegyszeriibb megérteni, melyeket a videdkban is megtaldltok.

Grafbejarasok: szélességi keresés, mélységi keresés

A grafbejarasok célja, hogy minden cstcsot elérjiink egyszer, valamilyen ttvonalon.

Szélességi keresés

A nevébdl is adoddan a végeredményben egy széles feszit6fat kapunk, ha berajzoljuk a bejart
utvonalakat. Az eljaras soran eldszor a gyokeret jarjuk be, majd annak a szomszédait sorban,
ezutdn az elso szomszédjanak szomszédait, majd a masodik szomszédjanak szomszédait etc.
Es igy tovabb.

Ugy is mondhatnénk, hogy felirjuk a gyokeret, majd els6 szomszédjat, majd masodik
szomszédjat, majd harmadik szomszédjat. Ezutdn az elsé szomszéd elsé szomszédjat, majd
az els6 szomszéd masodik szomszédjat. Haméar az elsé szomszédnak nincs tobb szomszédja,
akkor felirjiik a gyokér méasodik szomszédjanak elsé szomszédjat és igy tovabb.

Mélységi keresés

A nevébdl is adoddan a végeredményben egy mélyrenyild feszit6fat kapunk, ha berajzoljuk
a bejart utvonalakat. Az eljaras sordan el6szor a gyokeret jarjuk be, majd az els6 szomszédja
irdnyaban megyiink olyan mélyre amennyire csak tudunk, ha mar nincs t6bb szomszédja
az adott szomszédnak, akkor felirjuk, majd visszalépink és ha a felette levonek van még
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szomszédja, akkor lemegyiink megint addig, amig talalunk szomszédot és leirjuk a legmé-
lyebben levot, majd visszaléplink, ha nincs tobb szomszédja, felirjuk és feljebb 1épiink egyel
és megylink mélyebbre megint. Fontos kitétel, hogy koér nem ehetséges, hiszen mar jartunk
arrafelé.

10.11 Sikgrafok
I Definicié 10.11.1 — Sikgraf. Egy graf sikgraf=sikba rajzolhat6 graf, ha lerajzolhat6 tgy
a sikba, hogy élei csak a szogpontokban metszik egymast.

Tétel 10.11.1 — Fary-Wagner tétel. Ha G egy sikbarajzolhato graf, akkor 1étezik olyan
sikbarajzoldsa amelyben minden él egyenes szakasz.

Tétel 10.11.2 — Euler-féle poliéder tétel. A G Osszefiiggd, egyszerii sikgraf esetében, ha
e p= graf pontjainak (cstucsainak szama),
e e=graf éleinek szama,
o t= a stk graf altal 1étrehozott teriileteinek szama, a végtelen teriiletet is szamolva
, akkor:

p—e+tt=2

Bizonyitas 10.13 Lassuk be teljes indukcidval.
1. p=I-re igaz, hiszen 1 —0+1=2 és p=2-re is igaz: 2—1+1=2. (a tartomény maga
a végtelen tartomdny, nem osztja tobb részre a lapot egyik sem.)
2. Tegyiik fel, hogy adott egy G graf, melyre igaz p—e+t = 2.
3. A kovetkez§ 1épés kétféle lehet:
(a) vagy meglévé csticsokat kotiink ssze egy 1j éllel: ekkor élek szama eggyel,
teriiletek szdma eggyel névekszik, pontok szam a valtozatlan: igaz-e az allitas?

p—ett=2<—=p—(e+1)+(t+1)=2

(b) egy 1j csticsot rajzolunk be (a ré illeszked6 éllel egyiitt), amelynek szomszédja
mar a meglévd lerajzolt grafban van : ekkor a csiicsok szama eggyel no, élek

szama eggyel no, teriiletek szama valtozatlan: igaz-e az allitds?

p—et+t=2= (p+1)—(e+1)+t=2



94 10. Fejezet: Grafelmélet

Kovetkezmény 10.11.3 — min 3p. Ha az 6sszefiiggd, egyszerii sik graf pontjainak szama
legalabb 3, akkor
e<3p—=6

hatédrol (legaldbb 3 a fokszdma - haromszog) A teriileteket hatarolé éleket Gsszeadva
az élek szamanak kétszeresét kapjuk, hiszen minden teriiletet hatarolo él két teriilethez
tartozik, igy kétszer szamoljuk 6ket Gssze. Vagyis:

2e > 3t

, hiszen ha MINDEGYIK teriilet hdromszog lenne, akkor lenne a fokszama 3 (ez a
legkisebb eset, ennél csak tobbél hatarolhat egy teriiletet).

t< —e

p—e+t=2

e-t kifejezve, t-t alulrdl becsiilve:
2
e:p+t—22p+§e—2

, ebbél

Bizonyitas 10.14 Mivel egyszerii grafrél van szé, ezért minden teriiletet legalabb 3 él
e<3p—=6

Kovetkezmény 10.11.4 Ha G egyszeri sikbarajzolhat6 graf, akkor a minimalis fokszdama
legfeljebb 5.

Bizonyitas 10.15 Indirekt: tegyiik fel, hogy G egyszerti sikbrajzolhaté graf és a minimalis
fokszam legalabb 6.
A fokszamok Osszege az élek szaménak kétszerese (kézfogas-Handshaking ), igy

6p < (fokszamok Osszege) < 2e.

. Az el6zo tétel:
e<3p—6—2e<6p—12
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, €z ellentmondas:
6p < 2e < 6p—12#

Kovetkezmény 10.11.5 Ha egy sikbarajzolhaté grafban a minimaélis fokszam 5, akkor
legalabb 12 db 5-6d fokt pontja van.

Bizonyitas 10.16 p;s legyen a minimalis fokszdmu pontok szama, vagyis, amelyek fokszama
5. A fokszamosszeg akkor legalabb 5pas+ az ennél nagyobb fokszamu pontok, legalabb 6
fokszamuak, azaz alulrél tudjuk becsiilni az élek kétszeresét:

- . . _1.kovetkezmén
Osszes cstics szdma <OVetKezmeny

1
5par+ 6(1 — par) < 2e < 61— 12

Ebbol:
12<pum

Kovetkezmény 10.11.6 — nincs haromszég min 3p. Ha az Osszefiiggd, egyszerti stk graf
pontjainak szdma legaldbb 3, és nincsen 3 hosszt kore (nincsen benne haromszog), akkor
e < 2p—4. Euler tétel kovetkezménye.

Bizonyitas 10.17 A feltételek miatt most minden tertiletet legaldbb 4 él hatarol (legalabb
négyzet), fokszdma legaldbb 4,tehat:

1
2€Z4t—>§€§t

bec:flés
p—et+t=2—e=p+t—2<p+1/2e—2
ebbdl:
e<2p—4

Ez a kovetkezmény segit beldtni, hogy a K33 graf nem sikbrajzolhat6, de a K5 sem. A
tételek alapjan ezek belatasat az olvaséra bizom. Viszont ezek miatt tudjuk kimondani a
Kuratoeski tételt.
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I(gl‘g K5

Figure 10.5: Kuratowski grafok

Tétel 10.11.7 — KURATOWSKI. Valamely graf akkor és csak akkor sik graf, ha nem
tartalmaz K5 -tel vagy K3 3-mal homeomorf részgrafot.

Definici6 10.11.2 — Homeomorf. Két graf akkor homeomorf, ha az alabbi médositasokkal
egymasba alakithatéak:
1. az élekre beilleszthetiink 1j pontot
2. ha a G grafnak van olyan részgrafja, amelyben minden csiicspont fokszama ketto,
de nem alkotnak kort, akkor ezeket a pontokat torolhetjiik

Tétel 10.11.8 — Sztereografikus projekcié. A G graf akkor és csak akkor sikba rajzolhaté,
ha gémbre rajzolhato.

Bizonyitas 10.18 Sztereografikus projekci6. A gémbot a sikra helyezziik, (déli pélus),
majd az északi p6lusbol egyeneseket hizunk a graf pontjaihoz (éleinek pontjaihoz), ezen
egyeneseknek a gombbel levé masik metszéspontja lesz a vetitett képpont. "

10.11.1 Sikgrafok szinezése

Definici6é 10.11.3 — Graf szinezése. Minden csicshoz hozzarendeliink egy szint gy, hogy
ha két cstcs kozott van él, akkor a csticsok nem lehetnek azonos szintiek.

Definicié 10.11.4 — Kromatikus szam. A csiicsok szinezéséhez minimalisan sziikséges
szinek szdma. Jele:x(G)

Kromatikus szam becslése:
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Figure 10.6: Sztereografikus projekcié: https://www.youtube.com/watch?v=usCCkgkD_ 2s



98 10. Fejezet: Grafelmélet

Legnagyobb fokszam

Klikkszam:legnagyobb teljes részgraf mérete

w(b) <x(G) <A(G)+1

Tétel 10.11.9 — Négyszin-tétel. barmely enklavék nélkiili térképet ki lehet tigy szinezni
legfeljebb négy szin felhasznalasaval, hogy ne legyen két azonos szinti szomszédos régié.

I Tétel 10.11.10 — Otszin-tétel. Ha G sikba rajzolhat6 graf, akkor x(G) <5.

Bizonyitas 10.19 Teljes indukciéval a graf pontszamaéra.
1. Ha a grafnak max 5 db csics van, akkor nyilvanvaléan kiszinezhet6 5 szinnel.
2. Tegyiik fel, hogy n csicsi graf kiszinezhetd 6t szinnel.
3. Kérdés: n+1 csdcsu grafra is igaz-e?
(a) Az egyik kovetkezmény miatt 1étezik olyan csics (a minimalis fokszami),
melynek a fokszadma maximum 5.
(b) Ha a legkisebb fokszam 4 (vagy anndl kisebb, akkor hasonléan):

i. Ezt a cstucsot a ra illeszkedo élekkel egyiitt elhagyva a cstcsok szama
eggyel csOkken, azaz n cstucsu grafot kapunk, tehat az indukciés feltevés
miatt ez kiszinezhetd 5 szinnel.

ii. Ha visszavessziik ezt a csicsot, akkor mar csak a szomszédai és a csiics
szine a kérdéses. A szomszédait ki lehet szinezni 4-gyel, + egy szint maga
a visszavett pont kapja ez az 5. szin!

(c) Ha a legkisebb fokszam 5:

i. ha elhagyjuk ezt a cstcsot, akkor az el6z6hoz hasonléan az indukciés
feltevés miatt az n csicsu graf kiszinezhetd. Visszavéve ezt a csiicsot
akkor mér csak ennek a csicsnak és a szomszédainak a szine a kérdéses.

ii. Ot darab szomszédja van, minden szomszéd nem lehet minden szomszéddal
szomszédos, mert akkor K5 lenne, amelyrdl tudjuk, hogy sikgrafban nem
lehetséges. Tehat Létezik két nem szomszédos szomszédja ennek
a pontnak. Ebbdl adéddan az 6t darab szomszéd kiszinezhetd 4 szinnel,
mert a két nem szomszédos pont kaphatja ugyanazt a szint. Az 6todik
szin a visszavett csicsé.

10.11.2 Szinezés alkalmazasai

1. Memoria regiszterek allokaciéja:
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128 /lectures/17/ Slides17.pdf
Sudoku

Térkép szinezés

Utemezési feladatok: vizsga, 6rarend, stb.

Mobil telefonok frekvencia kiosztas - 4 —féle frekvencia

Repiil6gépek titemezése: k db repiilo, n db jarat

Biztonsagi kamerak tervezése — minimélis szam

ootk N
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8. Levelek osztalyozésa

9. Multiprocesszorok — feladatmegosztas

10. Szamitégépes grafika: www.cs.unc.edu/ isenburg/slides/cpmeddp.ppt
11. Ultetés: http://www.weddingseatplanner.com/

®

Leiras: Applications of Graph Coloring in Modern Computer Science, Shamim Ahmed

https://www.youtube.com/watch?v=y4RAYQjKb5Y

10.12 Halézati folyamok
Definici6 10.12.1 — Halézat. A halézat egy (G;S;T;c) négyes. Egy iranyitott G graf
melynekEgyik kitiintetett pontja a Forraspont Jele: S (source) Mésik kitiintetett
pontja a Nyel6pont. Jele: T (target) és az éleken van értelmezve egy kapacitds
fiiggvény c: E(G) — R§.
Definici6 10.12.2 — Folyam. Az f: E(G) — R fiiggvényt folyamnak hivjuk, ha teljesiil-
| nek a kovetkezok:

a folyamnak van irdnya: f(ni,n2) =—f(n2,n1) V(ni,n2) € E(G),n1,n2 € V(G)

kapacitasnal tobb nem fér el: f(ni,n2) <c(ni,n2) VY(ni,n2) € E(G)

Definicié 10.12.3 — Vagas. Legyen H = (G, S,T,c) egy halézat. Legyen egy V1,Vo CV
particiéja V-nek. Legyen tovabba S € V; és S € V. Ekkor a Vi, Vs halmazt vagasnak
hivjuk.

I Definicié 10.12.4 — Vagas értéke. A vagds élein a kapacitasok Gsszege.

10.12.1 Maximalis folyam megkeresése
Minden egyes 1épésnél segédgrifot fogunk felrajzolni és a segédgraf segitségével fogunk
javitoutakat keresni. A javitéut olyan it a segédgrafon, amelybél S-bél eljut a T-be. Ha
elfogytak ezek a javitoutak, akkor maximalis folyam halad at a halézaton - nem javithaté
tovabb.

Segédgraf elkészitése

A segédgraf kiillonbozik az aktudlis folyamot mutat6 graftdl - javitoutakat mutat!! (Lésd
a videémban)

le Felrajzoljuk a pontokat.

2. Berajzolunk minden olyan élt, amelyen még novelhet6 a folyam értéke (videémon zold
szinnel): c(e) — f(e) >0 e € E(H). Az élnek adunk egy segédértéket, ez lesz az, hogy
mennyivel névelheté még azaz c(e) — f(e).

3. Berajzolunk minden olyan élt visszafele, amelyen halad at folyam (videémon piros
szinnel). Az élnek azt az értéket adjuk, hogy mennyivel lehetne visszaforditani a
folyamot, azaz: f(e) e € E(H). Tehit magat a folyamértéket adjuk neki.
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Ekkor minden lehetséges élt berajzoltunk, valamelyiket z6lddel, valamelyiket pirossal és
adtunk nekik értékeket, a z6ldén, hogy mennyivel tudunk névelni, a piroson, hogy mennyivel
tudunk csokkenteni.

A segédgraf felrajzolasa utan meg kell keresniink egy javitoutat. A javitéit mindne
olyan 1t, amely elvezet az S-bol a T-be a segédgrafon. Nem szamit a nyilak szine, csak az
irdnya.

A javitout megtaldlasa utan kivalasztjuk a sziik keresztmetszetet - ez lesz a legkisebb
segédérték (mindegy hogy zold vagy piros az érték, a legkisebb kell koziilik.) Ezzel a
sziik keresztmetszettel fogjuk az eredeti grafban valtoztatni a kivalasztott ttvonal éleinek
folyamértékét: ahol a segédgrafban zold éliink volt, ott a sziikkeresztmetszettel néveljiik,
ahol piros él volt, ott az eredeti élt a sziikkeresztmetszettel csokkentjiik.

Ekkor 1j folyamot kaptunk. Kezdhetjiik az 0j segédgraf felrajzolasat. Addig csinaljuk
ezeket a lépéseket, amig van javitout a segédgrafban.

I Tétel 10.12.1 A folyam értéke egyenldé barmelyik viagason atfolyé folyammal.

Bizonyitas 10.20 Az anyagmegmaradas (Kirchoff) torvénye szerint, ami egy pontba be-
folyik az ki is folyik rajta.

0 ha v ¢ {S,T}

-be befoly6 élek) — -bél kifolyé élek) =
Zf(v e befoly6 élek) Zf(v 6l kifoly6 élek) {folyamértékhav:S

Azaz csak a vagasbol kimutaté élek folyamértékei szamitanak, a tobbi kioltja egymast.

Kovetkezmény 10.12.2 — Felsé becslés a folyam értékére. A folyam értékére — nem lehet
nagyobb mint BARMELYIK vagas kapacitasa.

Bizonyitas 10.21

c(V1, Vo) = Z (v1,v2) A V1-b6l kifolyé élek kapacitdsanak Osszege
v1EVY,v2E€V
fVa):= > flopv)— > flu,ve) a Vi-bél kifolyé — Vi-be folyé élek
’L}iEVl,UjEVQ v EVY v EV

a baloldal részhalmaza
Ebbdl vonunk ki valamennyit, ha kivonunk.

1
f) < > fluiy) < e(Vi,Va)
v; V1,0 €V
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Tétel 10.12.3 — Ford-Fulkerson tétel. A maximélis folyam értéke megegyezik a minimalis

vagas értékével.

Bizonyitas 10.22 A minimélis vigéds azokat a csiicsokat tartalmazza, ahova még a Source-
bél el tudunk jutni a legutold segédgrafon (a legutol6 segédgraf = tehat amikor mar
a targetbe tobb javitéit nem érkezik.) Ebben az esetben maximadlis folyamunk van.
Ekkor viszont a fenti tétel alapjan a folyam értéke nem lehet nagyobb, mint ennek a
vagasnak a kapacitdasa. Tehdt a maximélis folyam nem lehet nagyobb a minimélis vagés
kapacitasanal. Azt kell beldtnunk, hogy nem is lehet ennél kissebb sem.

A folyam értéke egyenld barmelyik vagason atfolyé folyammal tétel alapjan a folyam
értéke meg is egyezik ezzel a minimalis vagas értékkel. "
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11. Algoritmusok miiveletigénye, komplexitas

(Atdolgozta Miski Marcell http://tamop412.elte.hu/tananyagok/algoritmusok /lecke2_lap1.html#hiv5)

Bevezetés

Az adatszerkezeteket és algoritmusokat mindig jellemezziik hatékonysig szempontjabdl,
mert az a célunk, hogy minél hatékonyabb algoritmusokat talaljuk (olcs6bb legyen, gyorsabb
legyen etc.). Az adatszerkezetek egyes dbrazolasairdl megéllapitjuk a helyfoglaldsukat, az
algoritmusokndl pedig a miiveletigényt becsiiljiik, mindkett6t az input adatok méretének
fiiggvényében. Altaldban megelégsziink mindkét adat nagysdgrendben kozelits értékével.
Amint 1atjuk majd, egy sajatos matematikai hatarérték-fogalmat vezetiink be és alkalmazunk
a hatékonysagra iranyulé szamitasainkban.

A miiveletigény szamitasakor eleve azzal a kozelitéssel éliink, hogy csak az algoritmus
meghatérozé miiveleteit vesszitk szdmitdsba. Altaldban kijelslhetd egyetlen meghatérozé
miivelet, amelyre a szamitast elvégezziik. A miiveletigényt a kiszemelt miivelet végreha-
jtasainak szamaéaval adjuk meg, mivel az egyes miiveletek végrehajtasi ideje géprol-gépre
valtozhat. A 1épésszam kozelitéssel kiszamolt nagysdgrendje — gyakorlati tapasztalatok
szerint is — jol jellemzi az algoritmus tényleges futdsi idejét.

Definicié 11.1.1 — Nagy-Ordé. Legyen f, g két fiiggvény, amelyek a valés vagy az egész
szamok halmazabdél képeznek a valés szamok halmazdba. Azt mondjuk, hogy f(z) =
O(g(x)) (ejtsd:f(x) nagy-Ordé g(x)), ha létezik olyan C,k pozitiv konstans, amelyekre:

lf(x)| <C-|g(x)] Yx>k

Azaz egy adott kiiszobindex utdn egy konstans nyujtastél eltekintve mindig nagyobb a
g. Ekkor azt mondjuk, hogy g(x) aszimptotikus fels6 korlatja f(x) - nek.

Definicié 11.1.2 — Nagy-Omega. legyen f,g két fliggvény, amelyek a valés vagy az egész
szamok halmazabol képeznek a valés szdmok halmazaba. Azt mondjuk, hogy f(z) =
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Q(g(x)) (f(x) nagy-Omega g(x)), ha létezik olyan C,k pozitiv konstans, amelyekre:

|f(z)| > C-|g(z)] Yz >k

Ekkor azt mondjuk, hogy f(x) aszimptotikus fels6 korlatja g(x) - nek.
A két definicié kozott szoros kapcsolat 4ll fenn:

f(z) = 0(g(z)) <= g(x) = Q(f(x))

Definici6é 11.1.3 — nagy-Theta. legyen f,g két fiiggvény, amelyek a valds vagy az egész
szamok halmazabol képeznek a valds vagy az egész szamok halmazaba. Azt mondjuk,

hogy f(x) =©(g(x)) (f(x) nagy-Theta g(x)), ha f(z) = Q(g(z)) és f(z) = O(g(z)).

Ez a rendérelvhez hasonlatos gondolatmenet. Erezhetd, hogy a nagy-Theta ekvivalencia
relacioként is felfoghaté fiiggvények kozott.

1. Relfexiv: f=0O(f)
2. Szimmetrikus f(z) = O(g(x)) <= g(z) = O(f(x))
3. Tranzitiv f =O(g)ANg=0O(h) = f=0O(h)
Ebbdl adéddéan a nagy-Theta particidkra, azaz ekvivalenciaosztalyokra osztja a fiig-
gvények halmazat. Szokas a tipikus nagysagrendekrdl beszélni.
Az aszimptotikussag, hatarérték tulajdonsdgok, kis-omega és kis-ord6 fogalmakat is
bevezetik.
Definicié 11.1.4 — kis-ord6. legyen f,g két fliggvény, amelyek a valés vagy az egész
szamok halmazabdl képeznek a valds vagy az egész szamok halmazaba. Azt mondjuk,

hogy f(z) = o(g(z)) (f(x) kis-ordo g(x)), ha

im M =
nlaoo g(n) 4

Definicié 11.1.5 — kis-omega. legyen f,g két fliggvény, amelyek a valés vagy az egész
szamok halmazabdl képeznek a valds vagy az egész szamok halmazaba. Azt mondjuk,

hogy f(x) = w(g(x)) (E(x) kis-omega g(x)), ha
f(n)

lim —~ =0
n—00 g(n)

Tipikus nagysagrendek

Az ekvivalenciaosztalyok megléte miatt szokds tipikus nagysagrendekrdl beszélni, gy is
gondolhatnank, hogy az altalunk ismert legegyszeriibb fiiggvényekhez probaljuk viszonyitani
az algoritmusokat, vagy a tobbi fliggvényt, mert az egyszeri fiiggvényekrél mind érezziik
nagysagrendjét. Ezek a fiiggvényeket a 11.1. abra mutatja.

Algoritmusok aszimptotikus futési ideje:
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Figure 11.1: Tipikus nagysagrendek



106 11. Fejezet: Algoritmusok miiveletigénye, komplexitas

Verem vagy sor barmely miivelete o(1)
Logaritmikus (=bindris) keresés ©(log(n))
Primszamteszt (nl/2-ig) O(y/n)
Lineéris keresés O(n)
Kupacrendezés O(nlog(n))
Shell rendezés @(n%)
Buborékrendezés 0(n?)
Métrixszorzas O(n?)
Hanoi tornyai o(2")
Utazé tigynok probléma, O(n!)
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Listing 12.1: Dijkstra Algoritmus

function Dijkstra(Graph, source):

for each vertex v in Graph: // Initialization

dist[v] := infinity // initial distance from source to vertex v is set to infinite
previous[v] := undefined // Previous node in optimal path from source
dist[source] := 0 // Distance from source to source

Q := the set of all nodes in Graph // all nodes in the graph are unoptimized — thus
— are in Q
while Q is not empty: // main loop
u := node in Q with smallest dist] ]
remove u from Q
for each neighbor v of u: // where v has not vet been removed from ().
alt := dist[u] + dist__between(u, v)
if alt < dist[v] // Relax (u,v)
dist[v] := alt
previous[v] := u
return previous| ]

Listing 12.2: Prim Algoritmus

function Prim(G, w, s):
//Input: undirected connected weighted graph G = (V,E) in adj list representation,source

— vertex sin V

//Output: p[l..|V]], representing the set of edges composing an MST of G

for each vin V
color(v) <— WHITE
key(v) <— infinity
p(v) <— NIL



108 12. Fejezet: List of Pseudocodes

8 Q <— empty list // Q keyed by key[v]
9 color(s) <— GRAY
10 Insert(Q, s)

11 key(s) <— 0
12 while Q != empty

13 u <— Extract—Min(Q)

14 for v in Adj[u]

15 if color(v) = WHITE

16 then color(v) <— GRAY
17 Insert(Q,v)

18 key(v) <— w(u,v)
19 p(v) <—u

20 elseif color(v) = GRAY

21 then if key(v) > w(u,v)
22 then key(v) <— w(u,v)
23 p(v) <—u

24 color(v) <— BLACK
25  return(p)

Listing 12.3: Kruskal Algoritmus

1 //Diszjunktiv halmazok strukturajat alkalmazva
2 //Az ehhez kello fuggvenyek
3 function MakeSet(x) is //Uj halmazt general aminek egyetlen eleme x
4 if x is not already in the forest then
) x.parent := x
6 x.size := 1 // if nodes store size
7 x.rank := 0 // if nodes store rank
8 end if
9 end function
10
11 function FindSet(x) is //Elmegy a gvokerig es megkeresi azt
12 if x.parent x then
13 x.parent := FindSet(x.parent) //Rekurzivan megyunk
14 return x.parent
15 else
16 return x
17 end if
18 end function
19
20 function Union(x, y) is Kicsereli az x—et es az y—t tartalmazo halmazt egyetlen halmazra
— — a ketto uniojara
21 // Replace nodes by roots
22 x := Find(x)

23 y := Find(y)
24
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if x =y then
return // x and y are already in the same set

end if

// If necessary, rename variables to ensure that
// x has at least as many descendents as y
if x.size < y.size then
(x,y) = (y, x)
end if

// Make x the new root
y.parent := x

// Update the size of x
x.size := x.size + y.size

end function

//Maga az algoritmus a fenti fgveket felhasznalva

function Kruskal(G):

F:= //Ureshalmazt hozunk letre

for each v G.V do // A graf minden pontjan vegigmegyunk
MakeSet(v)

for each (u, v) in G.E ordered by weight(u, v), increasing do
if FindSet(u) not = FindSet(v) then

Fim P {(u, v)}
Union(FindSet(u), FindSet(v))
return F

Listing 12.4: Pascal Haromszog

function pascal triangle(MAXN)
intialize a matrix dp[MAXN][MAXN] with 0
fori =0 to MAXN
dp[i][0]=dp[0][i]=1
endfor
fori =1 to MAXN
for j = 1 to MAXN
apllfj] = dpli—1][j+dpfifj~1
endfor
endfor
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