
LinAlgDM I. 19-21. gyakorlat: Vektortér, altér, lineáris függetlenség,

bázis, generátorrendszer

2023. november 30–december 1.

1 Vektortér, altér

Definition 1. Vektortér (más néven: lineáris tér)

A V nemüres halmazt vektortérnek nevezzük az R test fölött, ha

1. a V halmazon értelmezhető egy összeadás nevű művelet, amely két tetszőleges V -beli elemhez hozzárendel egy
V -beli elemet úgy, hogy teljeśıti a következő axiómákat:

� zártság: ∀v1, v2 ∈ V esetén v1 + v2 ∈ V ,

� kommutativitás: ∀v1, v2 ∈ V esetén v1 + v2 = v2 + v1,

� asszociativitás: ∀v1, v2, v3 ∈ V esetén v1 + (v2 + v3) = (v1 + v2) + v3,

� létezik az összeadás egységeleme: ∃0 ∈ V amire igaz, hogy ∀v ∈ V esetén 0 + v = v (ezt h́ıvjuk a vektortér
nullvektorának),

� létezik az összeadásra vonatkozó inverz elem: ∀v ∈ V -re ∃(−v) ∈ V , amelyre (−v) + v = 0,

2. a V halmaz és R között értelmezhető a skalárral való szorzás nevű művelet, amely egy tetszőleges V -beli elemhez
és egy R-beli számhoz (vagyis skalárhoz) hozzárendel egy V -beli elemet úgy, hogy teljeśıti a következő axiómákat:

� zártság: ∀λ ∈ R és ∀v ∈ V esetén λv ∈ V ,

� vegyes disztributivitás V -re: ∀λ ∈ R és ∀v1, v2 ∈ V esetén λ(v1 + v2) = λv1 + λv2,

� vegyes disztributivitás R-re: ∀λ1, λ2 ∈ R és ∀v ∈ V esetén (λ1 + λ2)v = λ1v + λ2v,

� vegyes asszociativitás R-re: ∀λ1, λ2 ∈ R és ∀v ∈ V esetén λ1(λ2v) = (λ1λ2)v,

� ∀v ∈ V esetén 1v = v, ahol 1 ∈ R a valós számtest egységeleme.

A fent tárgyalt két műveletet közösen vektorműveleteknek nevezzük.

Megjegyzés 1. A skalárral (vagyis számmal) való szorzást ne tévesszük össze a skaláris szorzattal! A skalárral való
szorzás egy számmal szoroz meg egy vektort (pl: 3 · v), a skaláris szorzat viszont két vektort szoroz össze (pl. v · w).

Megjegyzés 2. A valós számtest egységeleme az 1 valós szám.

Definition 2. Altér (más néven: lineáris altér)

Tekintsük az R feletti V vektorteret. A W ⊆ V halmazt a V (lineáris) alterének nevezzük, ha W szintén R feletti vektortér
a V -n értelmezett műveletekre nézve.

Megjegyzés 3. Egy altér maga is vektortér!

Megjegyzés 4. Ebből következik, hogy az üres halmaz nem altér, mivel egy vektortér nem lehet üres halmaz.

Megjegyzés 5. A defińıcióban tartalmazás szerepel (és nem valódi tartalmazás), ı́gy minden vektortér altere önmagának.

Theorem 3. Altér zártsága

W altere V -nek akkor és csak akkor, ha W zárt az összeadásra és a skalárral való szorzásra nézve, vagyis:

1. ∀v1, v2 ∈ W esetén v1 + v2 ∈ W ,

2. ∀λ ∈ R és ∀v ∈ W esetén λv ∈ W .
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Megjegyzés 6. E két tulajdonságot egyszerre is megvizsgálhatjuk: W altere V -nek akkor és csak akkor, ha

∀λ ∈ R és ∀v1, v2 ∈ W esetén v1 + λv2 ∈ W.

Megjegyzés 7. Az összeadás és a skalárral való szorzás tulajdonságait a W altér a V vektortértől “örökli”.

1.1 Feladatok

Feladat 1. Tekintsük az A =

[
a b
c 0

]
alakú valós elemű mátrixok V halmazát.

(a) Bizonýıtsuk be, hogy V vektortér a valós számok halmaza felett, a mátrixok összeadására és a mátrixok
számszorosára nézve!

Megoldás.

V =

{
A =

[
a b
c 0

] ∣∣ a, b, c ∈ R
}

Vizsgáljuk a zártságot (egyszerre az összeadásra és a skalárral való szorzásra): legyen λ ∈ R és A =[
a b
c 0

]
, B =

[
d e
f 0

]
∈ V tetszőleges. Ekkor

A+ λB =

[
a b
c 0

]
+ λ

[
d e
f 0

]
=

[
a b
c 0

]
+

[
λd λe
λf 0

]
=

[
a+ λd b+ λe
c+ λf 0

]
∈ V.

A mátrixok összeadása és skalárral való szorzása tulajdonságaikból adódóan teljeśıtik az összes többi vek-
tortér-axiómát: legyen A,A1, A2 ∈ V , λ, λ1, λ2 ∈ R. Ekkor az összeadás műveletre teljesül, hogy

�� A1 +A2 = A2 +A1, mert a mátrixok összeadása kommutat́ıv,

� A1 + (A2 +A3) = (A1 +A2) +A3, mert a mátrixok összeadása asszociat́ıv,

� a vektortér ”nullvektora” a (2× 2)-es nullmátrix: O2×2 ∈ V , mert ∀A ∈ V esetén O2×2 +A = A,

� minden A =

[
a b
c 0

]
-hoz létezik inverz elem, és ez a (−A) =

[
−a −b
−c 0

]
, mert (−A) +A = O2×2,

továbbá a skalárral való szorzás műveletre teljesül, hogy

�� λ(A1 +A2) = λA1 + λA2,

� (λ1 + λ2)A = λ1A+ λ2A,

� λ1(λ2A) = (λ1λ2)A,

� Legyen 1 ∈ R a valós számtest egységeleme, ekkor 1A = A.

Tehát a V vektorteret alkot R felett a mátrixok összeadása és számszorosa vektorműveletekkel. A V vek-

tortér ”vektorai” az

[
a b
c 0

]
alakú valós elemű mátrixok.

(b) (Lineáris) alteret alkot-e V -ben a

[
0 b
c 0

]
alakú mátrixok halmaza?

Megoldás. Ehhez a zártságot kell megvizsgálnunk az összeadásra és a számszorosra nézve is. Ezt a Meg-

jegyzés 6 alapján megtehetjük egyszerre: legyen λ ∈ R és A =

[
0 b
c 0

]
∈ W, B =

[
0 e
f 0

]
∈ W tetszőleges.

Ekkor

A+ λB =

[
0 b
c 0

]
+ λ

[
0 e
f 0

]
=

[
0 b
c 0

]
+

[
0 λe
λf 0

]
=

[
0 b+ λe

c+ λf 0

]
∈ W.

Ezért W altere V -nek.

Feladat 2. Tekintsük a (3× 5)-ös valós elemű mátrixokat!

(a) Vektorteret alkotnak-e R felett, a mátrixok szokásos összeadására és a mátrixok számszorosára nézve?
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Megoldás. Az előző feladathoz hasonlóan bizonýıtható, hogy bármely (de rögźıtett) m,n ∈ N+-ra az
(m × n)-es valós elemű mátrixok vektorteret alkotnak R felett a fent értelmezett műveletekkel. Így R3×5

vektortér R felett a mátrixok összeadása és valós számmal való szorzása műveletekre nézve.

(b) A (3× 5)-ös nullmátrix alteret alkot-e R3×5-ben?

Megoldás. Az altér-jelöltünk a (3× 5)-ös nullmátrixot tartalmazó egyelemű halmaz:

N3×5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Vegyünk két tetszőleges elemet ebből a halmazból! Mivel mindkettő csak a (3× 5)-ös nullmátrix lehet, ezért
ezek összege is a nullmátrix lesz, illetve ezek bármely valós számmal való szorzása szintén a nullmátrixot
eredményezi. Mivel zárt a vektorműveletekre, a (3× 5)-ös nullmátrix alteret alkot R3×5-ben.

(c) Az egész elemű (3× 5)-ös mátrixok alteret alkotnak-e R3×5-ben?

Megoldás. Ha pl. irracionális számmal szorzunk olyan mátrixokat, amelyek csak egész számokat tartal-
maznak, akkor eredményül irracionális számokat (és nullákat) tartalmazó mátrixokat kapunk. Tehát az
egész elemű mátrixok halmaza nem zárt a valós számmal való szorzásra nézve, és ı́gy nem altere R3×5-nek.

(d) A (99×99)-es valós mátrixok alteret alkotnak-e a (100×100)-as valós mátrixok vektorterében?

Megoldás. Nem, a két térnek semmi köze egymáshoz. A (100× 100)-as mátrixok vektorterének alterében
csak (100× 100)-as mátrixok lehetnek!

Feladat 3. Vektorteret alkotnak-e a valós (vagyis az R-ből R-be képező, máshogy megfogalmazva: R → R t́ıpusú)
függvények R felett, a függvények szokásos összeadására és számmal való szorzására nézve?

Megoldás. A halmaz, amit megvizsgálunk, hogy vektortér-e:

V = {f : R → R} ,

Legyen f, g ∈ V . Két valós függvény összegén az alábbi függvényt értjük:

f + g : R → R, (f + g)(x) = f(x) + g(x), ∀x ∈ R esetén.

Ennek seǵıtségével megadhatjuk a ′′+′′-szal jelölt valós függvények összeadása műveletet, ami az alábbi
függvény lesz:

+ : V × V → V, + (f, g) = f + g

Ez teljeśıti az alábbi axiómákat:

� zártság: a fenti defińıcióból láthatjuk, hogy két valós (azaz R-ből R-be képező) függvény összege is valós
(R-ből R-be képező) függvény lesz, tehát ha f, g ∈ V , akkor f + g ∈ V , ami azt jelenti, hogy a függvények
összeadása nem vezet ki V -ből,

� kommutativitás: Tetszőleges, rögźıtett x ∈ R érték esetén f(x) és g(x) egy-egy valós szám lesz. Mivel a
valós számok összeadása kommutat́ıv, ezért f(x)+ g(x) = g(x)+ f(x). Mivel ez az összefüggés külön-külön
igaz lesz minden egyes rögźıtett x esetén, ı́gy x-től függetlenül mindig teljesül, vagyis f + g = g + f .

� asszociativitás: rögźıtett x ∈ R esetén f(x), g(x) és h(x) egy-egy valós szám lesz, a valós számok összeadása
pedig asszociat́ıv, ı́gy f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x). Mivel ez igaz minden rögźıtett x ∈ R
esetén, ezért x-től függetlenül teljesül, tehát f + (g + h) = (f + g) + h,
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� a vektortér nullvektora az azonosan nulla függvény lesz (ami minden valós számhoz a 0-t rendeli:
0R : R → R, 0R(x) = 0. Ez teljeśıti azt a feltételt, hogy ∀f ∈ V esetén f + 0R = f , mert f(x) + 0R(x) =
f(x) + 0 = f(x) minden x ∈ R-re. Vagyis ez lesz az összeadás egységeleme,

� minden f ∈ V -hez létezik az összeadásra vonatkozó, (−f)-fel jelölt inverz elem, és ennek hozzárendelési
szabálya: (−f)(x) = −f(x). Ugyanis ∀x ∈ R esetén (−f)(x) + f(x) = 0 teljesül, vaqyis x-től függetlenül
igaz, hogy (−f) + f = 0R.

Egy valós függvény számszorosa alatt az alábbi függvényt értjük:

λf : R → R, (λf)(x) = λ · f(x), ∀x ∈ R esetén.

Ennek seǵıtségével értelmezhető a ′′·′′-tal jelölt valós függvény számmal való szorzása művelet, ami az alábbi
függvény lesz:

· : V × R → R, · (f, λ) = λ · f

� zártság: valós függvény számszorosa is valós függvény lesz: ha f ∈ V , akkor λ · f ∈ V , vagyis a függvények
számmal való szorzása nem vezet ki V -ből,

� vegyes disztributivitás V -re: Rögźıtett x ∈ R esetén f(x) és g(x) egy-egy valós szám. A valós számokra
teljesül, hogy ∀λ, f(x), g(x) ∈ R esetén λ(f(x) + g(x)) = λf(x) + λg(x). Mivel ez az összefüggés minden
rögźıtett x esetén teljesül, ezért x-től függetlenül is igaz lesz, vagyis ∀f, g ∈ V és λ ∈ R esetén λ(f + g) =
λf + λg,

� vegyes disztributivitás R-re: ∀λ1, λ2 ∈ R és ∀f ∈ V esetén (λ1+λ2)f = λ1f+λ2f : ez az előzőhöz hasonlóan
bizonýıtható,

� vegyes asszociativitás R-re: ∀λ1, λ2 ∈ R és ∀f ∈ V esetén λ1(λ2f) = (λ1λ2)f : ez szintén az előzőekhez
hasonlóan bizonýıtható,

� ∀f ∈ V esetén teljesül, hogy (1f)(x) = 1 · f(x) = f(x), ahol 1 ∈ R a valós számtest egységeleme. Mivel
ez minden rögźıtett x ∈ R esetén igaz, ı́gy x-től függetlenül is igaz lesz, azaz ∀f ∈ V esetén teljesül, hogy
(1 · f) = f .

Tehát a valós függvények vektorteret alkotnak R felett a fent értelmezett két művelettel. Ebben a vektortérben a
”vektorok” a valós függvények lesznek. Például a vektortér két vektora: v1 = cos(x), v2 = x2 + ex. Ezek összege:
v1 + v2 = cos(x) + x2 + ex, az első vektor 5-szöröse: 5v1 = 5cos(x).

Feladat 4. Tekintsük a legfeljebb másodfokú polinomok terét:

P2 =
{
p(x) = ax2 + bx+ c

∣∣ a, b, c ∈ R
}

(1)

(a) Igazoljuk, hogy P2 a szokásos összeadásra és számszorosra nézve vektorteret alkot a valós számtest felett!

Megoldás. Zártság: legyen p, q ∈ P2 és λ ∈ R tetszőleges, ahol{
p(x) = ax2 + bx+ c

q(x) = dx2 + cx+ e

Ekkor:

(p+ q)(x) = (a+ d)x2 + (b+ c)x+ (c+ e) ∈ P2

λ · p(x) = λax2 + λbx+ λc ∈ P2

vagyis két legfeljebb másodfokú polinom összege is egy legfeljebb másodfokú polinom, illetve egy legfeljebb
másodfokú polinom számszorosa is egy legfeljebb másodfokú polinom. Tehát a fenti műveletek nem vezetnek
ki P2-ből.

Mivel a másodfokú polinomok valós függvények, és a valós függvények teljeśıtik a vektortér további 8 tu-
lajdonságát, a másodfokú polinomokra is igazak lesznek ezek a tulajdonságok. A vektortér nullvektora az
azonosan nulla polinom, mı́g a p(x) = ax2 + bx+ c polinomhoz tartozó, összeadásra vonatkozó inverz elem
a (−p)(x) = −ax2 − bx− c lesz. A konstanssal való szorzás egységeleme itt is az 1 ∈ R.
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A P2 vektortér vektorai tehát a legfeljebb másodfokú polinomok lesznek, Ilyenek például v1 = 3x2 − 3x+ 6
és v2 = −7x. A két vektor összege v1 + v2 = 3x2 − 3x + 6 − 7x = 3x2 − 10x + 6, a v2 vektor 3-szorosa:
3 · v2 = −21x

(b) Igazoljuk, hogy P2 altere a valós függvények vektorterének!

Megoldás. Az előbb beláttuk, hogy a legfeljebb másodfokú polinomok tere zárt az összeadásra és a számmal
való szorzásra nézve. Mivel a legfeljebb másodfokú polinomok valós függvények, ezért P2 a zártság miatt
altere lesz a valós függvények vektorterének.

(c) A legfeljebb elsőfokú polinomok tere (P1) altere-e P2-nek?

Megoldás. Mivel a P1-beli függvények benne vannak P2-ben is, továbbá a P1-beli függvények összege és
számszorosa is P1-beli (vagyis a zártság teljesül), P1 altere P2-nek.

(d) P2 altere-e önmagának?

Megoldás. Igen, minden vektortér altere önmagának (az altér defińıciójában tartalmazás szerepel, nem
pedig valódi tartalmazás).

(e) A másodfokú polinomok alteret alkotnak-e P2-ben?

Megoldás. Nem, mert a másodfokú polinomok halmaza nem zárt a vektorműveletekre (+, ·). Például:
v1 = x2 + x, v2 = −x2 + 3x + 2 másodfokú polinomok, de v1 + v2 = 4x + 2 nem másodfokú polinom. Ez
másképpen is igazolható: másodfokú polinom 0 ∈ R-val való szorzása nulladfokú polinomot ad, ami nem
másodfokú polinom.

(f) Vektorteret alkotnak-e a másodfokú polinomok R felett a szokásos műveletekre nézve?

Megoldás. Ahogy az előző válaszból láttuk, az axiómák közül a zártságra vonatkozóak nem teljesülnek, ı́gy
nem alkotnak vektorteret. (Ellenben a legfeljebb másodfokú polinomokkal, mert itt megengedtük az első- és
nulladfokú polinomokat is.)

Feladat 5. Jelöljük D-vel az (n × n)-es mátrixok halmazából azon mátrixokat, amelyeknek minden eleme nulla,
kivéve a főátlót, ahol bármely pozit́ıv valós szám állhat. Lineáris tér-e (vektortér-e) D a valós számtest felett, ha
D-ben az összeadást és a valós számmal való szorzást a mátrixoknál szokásos módon értelmezzük?

D =

A =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann


∣∣∣∣∣ a11, a22, . . . , ann ∈ R+

.

ahol R+ a pozit́ıv valós számok halmazát jelöli.

Megoldás. D nem altér R fölött, mert nem zárt a valós számmal való szorzásra nézve. Például λ = −1 ∈ R
esetén λA ̸∈ D. (Az axiómákat az összeadás vektorművelet sem teljeśıti: nincs egységelem az összeadásra nézve,
mert O ̸∈ D. Ennél fogva nem létezhet az összeadás inverz eleme sem.)

Feladat 6. Igazoljuk, hogy a (3 × 3)-as diagonális mátrixok alteret alkotnak a (3 × 3)-as mátrixok terében!

Megoldás. Jelölje L a (3 × 3)-as diagonális mátrixok terét. A mátrixok összeadása és skalárral való szorzása
- korábbi példánkhoz hasonlóan - teljeśıti a vektortér-axiómákat, egyedül azt kell belátnunk, hogy az összeadás
és a skalárral való szorzás nem vezet ki L-ből (zártság). Tudjuk, hogy bármely két diagonális mátrix összege
is diagonális mátrix lesz. Tudjuk azt is, hogy ha egy skalárral megszorzunk egy diagonális mátrixot, az szintén
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diagonális mátrix lesz. Így L zárt az összeadásra és a skalárral való szorzásra, vagyis altér a (3× 3)-as mátrixok
terében.

Feladat 7. A pozit́ıv számok halmaza, V = R+ vektorteret alkot-e R felett a következő (bekarikázással jelölt)
műveletekre?

a⊕ b = a · b
λ⊙ a = aλ

ahol a, b ∈ R+ és λ ∈ R, továbbá a ”hagyományosan” jelölt szorzás és hatványozás a valós számok halmazán
értelmezett szorzás és hatványozás.

Megoldás. Tehát a ”vektoraink” a pozit́ıv valós számok. A két, V = R+-on értelmezett ”speciális” műveletet ⊕
és ⊙ jelöli, mı́g a ”hagyományos” · a valós számokon értelmezett szorzást, a szokásosan jelölt hatványozás pedig
a valós számok hatványozását reprezentálja.

Ellenőrizzük a ⊕ műveletre vonatkozó axiómákat:

� zártság: ∀a, b ∈ R+ esetén a⊕ b = a · b ∈ R+,

� kommutativitás: ∀a, b ∈ R+ esetén a⊕ b = a · b = b · a = b⊕ a, mert a valós számok szorzása kommutat́ıv,

� asszociativitás: ∀a, b, c ∈ R+ esetén a⊕ (b⊕ c) = a · (b · c) = (a · b) · c = (a⊕ b)⊕ c, mert a valós számok
szorzása asszociat́ıv,

� létezik az összeadás egységeleme: ∃0 = 1 ∈ R+ amire igaz, hogy ∀a ∈ R+ esetén 0 ⊕ a = 1 · a = a. Tehát
0 = 1 lesz a tér nullvektora,

� létezik az összeadásra vonatkozó inverz elem: ∀a ∈ R+-ra ∃(−a) = 1

a
∈ R+, amelyre (−a) ⊕ a =

1

a
· a =

1 = 0,

Az ⊙ műveletre vonatkozó axiómákat is tudjuk ellenőrizni, felhasználva a valós számok hatványozásának ismert
azonosságait:

� zártság: ∀λ ∈ R és ∀a ∈ R+ esetén λ⊙ a = aλ ∈ R+ mert egy pozit́ıv szám bármely valós hatványa pozit́ıv,

� vegyes disztributivitás R+-ra: ∀λ ∈ R és ∀a, b ∈ R+ esetén λ⊙ (a⊕b) = (a ·b)λ = aλ ·bλ = (λ⊙a)⊕ (λ⊙b),

� vegyes disztributivitás R-re: ∀λ1, λ2 ∈ R és ∀a ∈ R+ esetén (λ1 ⊕ λ2) ⊙ a = aλ1·λ2 = aλ1 · aλ2 =
(λ1 ⊙ a)⊕ (λ2 ⊙ a),

� vegyes asszociativitás R-re: ∀λ1, λ2 ∈ R és ∀a ∈ R+ esetén λ1⊙ (λ2⊙a) = (aλ2)λ1 = aλ1·λ2 = (λ1 ·λ2)⊙a,

� ∀v ∈ R+ esetén 1⊙ a = a1 = a, ahol 1 ∈ R a valós számtest egységeleme.

Tehát V = R+ valóban R feletti vektortér a fenti két ”karikás” műveletre nézve, ”vektorai” pedig a pozit́ıv valós
számok.

2 Lineáris kombináció

A lineáris kombináció a vektorok lineáris függetlenségének vizsgálatánál is meghatározó szerepet játszik.

Definition 4. Lineáris kombináció

A v1, v2, . . . , vn vektorok lineáris kombinációján a következő kifejezést értjük:

λ1v1 + λ2v2 + · · ·+ λnvn,

ahol λ1, λ2, . . . , λn ∈ R. Azt mondjuk, hogy a v vektor a v1, v2, . . . , vn vektorok lineáris kombinációja (avagy a v vektor
előáll a v1, v2, . . . , vn vektorok lineáris kombinációjaként), ha léteznek olyan λ1, λ2, . . . , λn ∈ R számok, amelyekre

v = λ1v1 + λ2v2 + · · ·+ λnvn.

Egy lineáris kombináció triviális, ha minden λi skalár együttható 0. Ha van olyan skalár, ami nem nulla, a lineáris
kombináció nem triviális.

Megjegyzés 8. Nyilvánvaló, hogy bármely triviális lineáris kombináció a nullvektort adja.
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2.1 Feladatok

Feladat 8. Tekintsük a (2 × 2)-es mátrixok vektorterét. Ennek ”vektorai” a (2 × 2)-es mátrixok. Álĺıtsuk elő

a v =

[
0 8
2 1

]
”vektort” a v1 =

[
0 2
1 0

]
, v2 =

[
−1 3
1 2

]
, v3 =

[
−2 0
1 3

]
”vektorok” lineáris kombinációjaként!

Megoldás. Az alábbi egyenlet megoldását keressük λ1, λ2, λ3-ra:[
0 8
2 1

]
= λ1

[
0 2
1 0

]
+ λ2

[
−1 3
1 2

]
+ λ3

[
−2 0
1 3

]
Két mátrix akkor egyenlő, ha a megfelelő elemeik megegyeznek. Ezért a fenti mátrixegyenletünk az alábbi, 4 db
egyenletből álló egyenletrendszerrel ekvivalens:

0 =0λ1 − 1λ2 − 2λ3

8 =2λ1 + 3λ2 + 0λ3

2 =1λ1 + 1λ2 + 1λ3

1 =0λ1 + 2λ2 + 3λ3

Oldjuk meg ezt Gauss-Jordan eliminációval:
0 −1 −2 0
2 3 0 8
1 1 1 2
0 2 3 1

 ∼


1 1 1 2
2 3 0 8
0 −1 −2 0
0 2 3 1

 ∼


1 1 1 2
0 1 −2 4
0 −1 −2 0
0 2 3 1

 ∼


1 1 1 2
0 1 −2 4
0 0 −4 4
0 0 7 −7

 ∼

∼


1 1 1 2
0 1 −2 4
0 0 1 −1
0 0 1 −1

 ∼


1 1 1 2
0 1 −2 4
0 0 1 −1
0 0 0 0

 ∼

1 1 0 3
0 1 0 2
0 0 1 −1

 ∼

1 0 0 1
0 1 0 2
0 0 1 −1


Innen kiolvashatjuk, hogy λ1 = 1, λ2 = 2, λ3 = −1, azaz a mátrixegyenlet megoldása az alábbi lesz:[

0 8
2 1

]
= 1 ·

[
0 2
1 0

]
+ 2 ·

[
−1 3
1 2

]
+ (−1) ·

[
−2 0
1 3

]
Tehát v valóban előáll v1, v2 és v3 lineáris kombinációjaként:

v = 1 · v1 + 2 · v2 − 1 · v3

Feladat 9. Tekintsük a legfeljebb másodfokú polinomok vektorterében a következő “vektorokat”:

p(x) = 4x2 + 5x+ 5

p1(x) = x2 + 2x+ 3

p2(x) = −x2 + x+ 4

p3(x) = 3x2 + 3x+ 2

Előálĺıtható-e a p(x) ”vektor” a többi lineáris kombinációjaként?

Megoldás. A keresett lineáris kombinációban a skalárok ismeretlenek:

p(x) = c1p1(x) + c2p2(x) + c3p3(x)

Két polinom akkor egyenlő, ha az azonos hatványon szereplő tagokhoz tartozó együtthatóik egyenlőek. Ezért:4
5
5

 = c1

1
2
3

+ c2

−1
1
4

+ c3

3
3
2

 ,
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Vagyis az alábbi lineáris egyenletrendszert kell megoldani:

A ·

c1
c2
c3

 =

1 −1 3
2 1 3
3 4 2

c1
c2
c3

 =

4
5
5


Megoldjuk az egyenletrendszert Gauss-Jordan eliminációval:1 −1 3 4

2 1 3 5
3 4 2 5

 ∼

1 −1 3 4
0 3 −3 −3
0 7 −7 −7

 ∼

1 −1 3 4
0 1 −1 −1
0 0 0 0

 ∼
(
1 0 2 3
0 1 −1 −1

)

Az egyenletrendszernek végtelen sok megoldása van:
c1 + 2c2 = 3

c2 − c3 = −1

c3 = u

⇒


c1 = 3− 2u

c2 = u− 1

c3 = u

, u ∈ R

vagyis a p(a) ”vektor” végtelen sokféleképpen előáll többi ”vektor” lineáris kombinációjaként:

p(x) = (3− 2u)p1(x) + (u− 1)p2(x) + up3(x) , u ∈ R

Vagyis p(x) előálĺıtható p1(x) és p2(x) lineáris kombinációjaként is, nem szükséges p3(x)-at is bevonni (lásd az
u = 0 esetet).

3 Lineáris függetlenség

Definition 5. Lineáris függetlenség

A v1, v2, . . . , vn vektorok lineárisan függetlenek, ha
n∑

i=1

λivi = 0 csak úgy lehetséges, ha minden λi = 0, vagyis a

nullvektort csak triviális lineáris kombinációval álĺıtják elő.

A v1, v2, . . . , vn vektorok lineárisan összefüggőek, ha a
n∑

i=1

λivi = 0 lineáris kombinációban lehet nullától különböző

λi együttható, vagyis a nullvektort nemtriviális lineáris kombinációval is előálĺıtják.

3.1 Feladatok

Feladat 10. Döntsük el, lineárisan összefüggő-e a alábbi vektorrendszer R2-en:

(
1
1

)
,

(
1
−1

)
.

Megoldás. Azt kell megvizsgálni, miként álĺıtható elő a 0 vektor.

λ1

(
1
1

)
+ λ2

(
1
−1

)
=

(
0
0

)
⇒

{
λ1 + λ2 = 0

λ1 − λ2 = 0
⇒ λ1 = λ2 = 0

Mivel csak a triviális megoldás létezik, ezért az adott vektorok lineárisan függetlenek.

Feladat 11. Döntse el, lineárisan függetlenek-e az alábbi vektorok!

v1 =

1
2
1

 , v2 =

1
0
2

 , v3 =

1
1
0

 .
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Megoldás. A három vektor által meghatározott paralelepipedon előjeles térfogata nem nulla:

(v1 × v2) · v3 =

∣∣∣∣∣∣
1 1 0
1 2 1
1 0 2

∣∣∣∣∣∣ = 3 ̸= 0,

vagyis a vektorok nem egyśıkúak. Ennek következtében a három vektor lineárisan független.

3.2 Lineáris függetlenség kapcsolata a determinánssal és az előálĺıtás egyértelműségével

Theorem 6. Lineáris függetlenség vizsgálata determinánssal

Tetszőleges n db Rn -beli vektor lineárisan független pontosan akkor, ha a belőlük képzett determináns nem nulla (és
lineárisan összefüggő pontosan akkor, ha a determináns nulla).

Megjegyzés 9. Ugyanis, ha azt vizsgáljuk, hogy v1, v2, . . . , vn ∈ Rn függetlenek-e, akkor a

λ1v1 + λ2v2 + · · ·+ λnvn = 0

homogén lineáris egyenletrendszer megoldásainak számát vizsgáljuk (homogén esetben mindig van megoldás: vagy 1 vagy
∞ sok). A megoldások száma 1 - ami a triviális megoldás: λ1 = λ2 = · · · = λn = 0 - akkor és csak akkor, ha a vektorok
lineárisan függetlenek. Ellenben, végtelen sok megoldás akkor és csak akkor van, ha a vektorok lineárisan összefüggőek.
A fenti egyenletet feĺırhatjuk mátrixos alakban is, ahol az A mátrix oszlopai a vi vektorok:

A · λ = 0 , A =
[

v1 v2 . . . vn

]
∈ Rn×n, λ =


λ1

λ2

...
λn


Az egyenletrendszernek pontosan akkor lesz végtelen sok megoldása, ha a felsőháromszög-mátrix kialaḱıtása során - amit
Gauss-eliminációval végzünk - azonosan nulla sor keletkezik benne (mert ekkor e sor elhagyásával az A sorainak száma
(r) csökken, és mivel r < n, a szabadsági fok szf = n− r ≥ 1, ami legalább egy szabad paramétert jelent a megoldásban).
Ez pedig pontosan akkor lehetséges, ha det(A) = 0.

Megjegyzés 10. A determináns tulajdonságaiból adódik, hogy a vizsgált vektorok lineáris függetlenségét nem befolyásolja
sem a vektorok sorrendje (mivel egy sorcsere vagy oszlopcsere a determináns értékének csak az előjelét változtatja meg),
sem az, hogy sor- vagy oszlopvektorként szerepelnek a determinánsban (mivel det(A) = det

(
AT

)
).

Megjegyzés 11. A determinánsos módszer csak n db n komponensű vektor lineáris függetlenségének vizsgálatára alka-
lmas, mert egy determináns sorainak és oszlopainak száma egyenlő.

Theorem 7. Vektorok egyértelmű előálĺıtása

A v vektor v =
n∑

i=1

λivi = λ1v1+λ2v2+ · · ·+λnvn előálĺıtása akkor és csak akkor egyértelmű, ha v1, v2, . . . , vn lineárisan

független rendszer.

3.3 Feladatok

Feladat 12. Tekintsük a legfeljebb másodfokú polinomok vektorterét! Lineárisan függetlenek-e a

p1(x) = x2 + 2x+ 3

p2(x) = −x2 + x+ 4

p3(x) = 3x2 + 3x+ 2

”vektorok”?

Megoldás. Nem, hiszen láttuk a Feladat 9 megoldásában, hogy a p(x) = 4x2 + 5x + 5 ”vektor” végtelen
sokféleképpen előáll a p1(x), p2(x) és p3(x) lineáris kombinációjaként. Ha függetlenek lennének, akkor az
előálĺıtás egyértelmű lenne!
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Feladat 13. Tekintsük a 2× 2-es mátrixok vektorterét. Lineárisan függetlenek-e az alábbi ”vektorok”?

v1 =

[
0 2
1 0

]
, v2 =

[
−1 3
1 2

]
, v3 =

[
−2 0
1 3

]

Megoldás. A Feladat 8 megoldásában láthattuk, hogy az előálĺıtás egyértelmű volt, ezért lineárisan függetlenek.

Feladat 14. Lineárisan függetlenek-e az alábbi vektorok?

a =


4
−2
−4
−1

 , b =


−4
3
5
1

 , c =


−2
−3
−5
3

 , d =


−16
5
−5
4

 ∈ R4

Megoldás. Mivel 4 db R4-beli vektorunk van, determináns seǵıtségével is vizsgálhatjuk a függetlenséget. Feĺırjuk
a determinánst (ezúttal oszlopvektorként kezelve a vektorokat):∣∣∣∣∣∣∣∣

4 −4 −2 −16
−2 3 −3 5
−4 5 −5 −5
−1 1 3 4

∣∣∣∣∣∣∣∣
elim.↑
=

∣∣∣∣∣∣∣∣
0 0 10 0
0 1 −9 −3
0 1 −17 −21
−1 1 3 4

∣∣∣∣∣∣∣∣ = −(−1)

∣∣∣∣∣∣
0 10 0
1 −9 −3
1 −17 −21

∣∣∣∣∣∣ = −(−1)(−10)

∣∣∣∣1 −3
1 −21

∣∣∣∣ =
=− (−1)(−10)(−21 + 3) = 180 ̸= 0.

Mivel a determináns értéke nem 0, a vektorok lineárisan függetlenek.

Feladat 15. Milyen p ∈ R paraméter esetén lesznek az

a =

 2
−6
10

 , b =

 1
−2
7

 , c =

0
3
p


vektorok lineárisan összefüggőek?

Megoldás. Feĺırjuk a determinánst, és egyenlővé tesszük nullával:∣∣∣∣∣∣
2 1 0
−6 −2 3
10 7 p

∣∣∣∣∣∣ = −3(14− 10) + p(−4 + 6) = 2p− 12 = 0 ⇒ p = 6.

4 Generátorrendszer, bázis, dimenzió

Definition 8.

Generátum: A v1, v2, . . . , vk ∈ V vektorok generátumának nevezzük és < v1, v2, . . . , vk >-val jelöljük a v1, v2, . . . , vk
összes lehetséges lineáris kombinációjával előálĺıtható vektorok halmazát. Ez a halmaz alteret képez V -ben. A v1, v2, . . . , vk
generátumát nevezik a v1, v2, . . . , vk vektorok által kifesźıtett altérnek is, és span{v1, v2, . . . , vk}-val is jelölik.

Generátorrendszer: Azok a vektorok, melyek lineáris kombinációjaként a vektortér minden eleme előáll,
generátorrendszert alkotnak. (Vagyis egy generátorrendszer generátuma a vektortér lesz.)

Bázis: A V vektortérbeli b1, b2, . . . bn vektorok a V bázisát alkotják, ha

� minden V -beli vektor előáll a lineáris kombinációjukként és

� a b1, b2, . . . bn vektorok lineárisan függetlenek.

Másképp megfogalmazva: a bázis lineárisan független vektorokból álló generátorrendszer.

Dimenzió: Egy V vektortér bázisainak elemszáma állandó. Ezt a számot a vektortér dimenziójának nevezzük, és
dim(V )-vel jelöljük.
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Koordináták, koordináta mátrix: Legyen b1, b2, . . . , bn a V vektortér egy bázisa. A vektortér bármely v ∈ V vektora
egyértelműen előáll a bázisvektorok lineáris kombinációjaként: v = λ1b1 + λ2b2 + · · ·+ λnbn. Ekkor a λ1, λ2, . . . , λn ∈ R

számokat a v vektor b1, b2, . . . , bn bázisra vonatkozó koordinátáinak nevezzük, a


λ1

λ2

...
λn


[b1,b2,...,bn]

vektort pedig a v

vektor b1, b2, . . . , bn bázisra vonatkozó koordinátamátrixának h́ıvjuk.

Megjegyzés 12. A v ∈ V vektor koordinátamátrixa egy vektor !

Megjegyzés 13. A v ∈ V vektor koordinátamátrixának annyi komponense van, ahány dimenziós a V vektortér.

Megjegyzés 14. Minden bázis generátorrendszer, de nem minden generátorrendszer bázis. (De egy lineárisan összefüggő
generátorrendszer bázissá tehető a megfelelő vektorok elhagyásával.)

Theorem 9. Bázis megadása n-dimenziós vektortérben

Legyen dim(V ) = n. Ekkor bármely n db lineárisan független V -beli vektor bázist alkot V -ben.

4.1 Feladatok

Feladat 16. Igazoljuk, hogy a g
1
=

(
1
1

)
, g

2
=

(
1
−1

)
, g

3
=

(
−1
−1

)
vektorok az R2 egy generátorrendszerét alkotják!

Bázist alkotnak-e ezek a vektorok R2-en?

Megoldás. Azt kell bizonýıtani, hogy bármely v =

(
a
b

)
vektor feĺırható a g

1
, g

2
, g

3
lineáris kombinációjaként:

(
a
b

)
= λ1

(
1
1

)
+ λ2

(
1
−1

)
+ λ3

(
−1
−1

)
,

Gauss eliminációval megoldva:

(
1 1 −1 a
1 −1 −1 b

)
∼
(
1 1 −1 a
0 −2 0 b− a

)
∼

(
1 1 −1 a

0 1 0
a− b

2

)
∼

1 0 −1
a+ b

2

0 1 0
a− b

2


Tehát a megoldás: 

λ1 =
a+ b

2
+ λ3

λ2 =
a− b

2
λ3 ∈ R

Vagyis az R2 tetszőleges vektora (végtelen sokféleképpen) előáll g1, g2 és g3 lineáris kombinációjaként:(
a
b

)
=
(a+ b

2
+ λ3

)(1
1

)
+

a− b

2

(
1
−1

)
+ λ3

(
−1
−1

)
, λ3 ∈ R.

Például az

(
5
1

)
vektor előálĺıtásainak száma is végtelen. Két ilyen előálĺıtás:

egyik:


λ1 = 3

λ2 = 2

λ3 = 0

⇒
(
5
1

)
= 3g

1
+ 2g

2
+ 0g

3
= 3

(
1
1

)
+ 2

(
1
−1

)

másik:


λ1 = 4

λ2 = 2

λ3 = 1

⇒
(
5
1

)
= 4g

1
+ 2g

2
+ 1g

3
= 4

(
1
1

)
+ 2

(
1
−1

)
+

(
−1
−1

)
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Mivel bármely

(
a
b

)
∈ R2 vektor előáll a g

1
g
2
és g

3
vektorok lineáris kombinációjaként, ezért ezek generátorrendszert

alkotnak R2-en. Mivel ez az előálĺıtás nem egyértelmű, g
1
g
2
és g

3
lineárisan összefüggőek, ı́gy nem alkotnak

bázist R2-en. (Megjegyzés: ha g
1
és g

3
közül valamelyiket elhagyjuk, bázis kapunk, mert az előálĺıtás ı́gy már

egyértelmű lesz.)

Feladat 17. Adjuk meg a következő vektorok által generált alteret!

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Megoldás. Ezek a vektorok R3 kanonikus bázisának vektorai.

⟨e1, e2, e3⟩ =
{
λ1e1 + λ2e2 + λ3e3

∣∣∣ λ1, λ2, λ3 ∈ R
}
=

λ1

1
0
0

+ λ2

0
1
0

+ λ3

0
0
1

∣∣∣∣∣ λ1, λ2, λ3 ∈ R

 =

=


λ1

λ2

λ3

 ∈ R3

∣∣∣∣∣ λ1, λ2, λ3 ∈ R

 = R3.

Az eredmény nem meglepő, hiszen a térbeli felbontási tételből is adódik, amennyiben az i, j, k vektorokat tekintjük
az adott, páronként nem párhuzamos és nem egyśıkú vektorainak.

Feladat 18. Tekintsük a következő vektorokat:

v1 =

1
2
1

 , v2 =

1
0
2

 , v3 =

1
1
0

 .

Igaz-e, hogy

(a) lineárisan függetlenek?

(b) generátumuk megegyezik-e R3-mal, vagyis ⟨v1, v2, v3⟩ = R3?

(c) bázis alkotnak?

Megoldás. Ha a (b) kérdésre igen a válasz, akkor minden v =

a
b
c

 ∈ R3 -hoz léteznek olyan λ1, λ2, λ3 valós

számok, amelyekre

v =

a
b
c

 = λ1

1
2
1

+ λ2

1
0
2

+ λ3

1
1
0

 = λ1v1 + λ2v2 + λ3v3

vagyis 1 1 1
2 0 1
1 2 0

λ1

λ2

λ3

 =

a
b
c


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Gauss-Jordan eliminációval kiszámoljuk az egyenletrendszer megoldását:1 1 1 a
2 0 1 b
1 2 0 c

 ∼

1 1 1 a
0 −2 −1 b− 2a
0 1 −1 c− a

 ∼

1 1 1 a
0 1 −1 c− a
0 −2 −1 b− 2a

 ∼

1 1 1 a
0 1 −1 c− a
0 0 −3 b− 4a+ 2c

 ∼

∼


1 1 1 a

0 1 −1 c− a

0 0 1
4

3
a− 1

3
b− 2

3
c

 ∼


1 1 0 −1

3
a+

1

3
b+

2

3
c

0 1 0
1

3
a− 1

3
b+

1

3
c

0 0 1
4

3
a− 1

3
b− 2

3
c

 ∼


1 0 0 −2

3
a+

2

3
b+

1

3
c

0 1 0
1

3
a− 1

3
b+

1

3
c

0 0 1
4

3
a− 1

3
b− 2

3
c


A megoldás létezik és egyértelmű, vagyis az a, b, c paraméterekkel mindegyik együttható egyértelműen kifejezhető:

λ1 =
−2a+ 2b+ c

3

λ2 =
a− b+ c

3

λ3 =
4a− b− 2c

3

Tehát minden R3-beli vektor feĺırható a v1, v2, v3 vektorok lineáris kombinációjaként, ezért ezek a vektorok
generátorrendszert alkotnak R3-ban. Mivel az előálĺıtás egyértelmű, ezért e vektorok lineárisan függetlenek is.
Ennek következtében ez a lineárisan független generátorrendszer bázist alkot R3-ban.

A feladatot úgy is meg lehet oldani, hogy determináns seǵıtségével állaṕıtjuk meg a lineáris függetlenséget (lásd
Feladat 11). Tétel 9 alapján tudjuk azt is, hogy 3 db lineárisan független vektor R3-ban bázist alkot, a bázis pedig
egyben generátorrendszer is. A generátorrendszer generátuma pedig maga a vektortér, vagyis R3.

Feladat 19. Tekintsük a következő R4-beli vektorokat:

a =


0
3
1
−2

 , b =


3
−3
−2
1

 , c =


1
2
2
1

 , d =


3
3
2
−1

 .

(a) Bázist alkotnak-e R4-ben?

Megoldás.∣∣∣∣∣∣∣∣
0 3 1 3
3 −3 2 3
1 −2 2 2
−2 1 1 −1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−6 6 4 3
−3 0 5 3
−3 0 4 2
0 0 0 −1

∣∣∣∣∣∣∣∣ = (−6) ·

∣∣∣∣∣∣
−3 5 3
−3 4 2
0 0 −1

∣∣∣∣∣∣ = (−6) · (−1) ·
∣∣∣∣−3 5
−3 4

∣∣∣∣ =
= 6 · (−12 + 15) = 18 ̸= 0

Igen, mert a determináns értéke nem nulla, ı́gy a vektorok lineárisan függetlenek, és Tétel 9 alapján tudjuk,
hogy 4 db lineárisan független vektor R4-ben bázist alkot.

(b) Álĺıtsuk elő a v =


−1
4
0
−5

 vektort az a, b, c, d vektorok lineáris kombinációjaként! Adjuk meg a v vektor

{a, b, c, d} bázisra vonatkozó koordinátamátrixát!

Megoldás. Keressük az α, β, γ, δ ∈ R konstansokat, amelyekre αa + βb + γc + δd = v. Ez egy lineáris
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egyenletrendszerhez vezet, melyet most Gauss-Jordan eliminációval oldunk meg:
0 3 1 3 −1
3 −3 2 3 4
1 −2 2 2 0
−2 1 1 −1 −5

 sorcsere∼


1 −2 2 2 0
3 −3 2 3 4
0 3 1 3 −1
−2 1 1 −1 −5

 elim.↓∼


1 −2 2 2 0
0 3 −4 −3 4
0 3 1 3 −1
0 −3 5 3 −5


elim.↓∼


1 −2 2 2 0
0 3 −4 −3 4
0 0 5 6 −5
0 0 1 0 −1

 sorcsere∼


1 −2 2 2 0
0 3 −4 −3 4
0 0 1 0 −1
0 0 5 6 −5

 elim.↓∼


1 −2 2 2 0
0 3 −4 −3 4
0 0 1 0 −1
0 0 0 6 0


skálázás.∼


1 −2 2 2 0
0 3 −4 −3 4
0 0 1 0 −1
0 0 0 1 0

 elim.↑∼


1 −2 2 0 0
0 3 −4 0 4
0 0 1 0 −1
0 0 0 1 0

 elim.↑∼


1 −2 0 0 2
0 3 0 0 0
0 0 1 0 −1
0 0 0 1 0



skálázás.∼


1 −2 0 0 2
0 1 0 0 0
0 0 1 0 −1
0 0 0 1 0

 elim.↑∼


1 0 0 0 2
0 1 0 0 0
0 0 1 0 −1
0 0 0 1 0

 ⇒


α = 2

β = 0

γ = −1

δ = 0

⇒ v =


2
0
−1
0


[a,b,c,d]

Feladat 20. (a) Határozzuk meg az összes megoldását az alábbi egyenletnek!

x ·


2
1
−1
−7


︸ ︷︷ ︸

a1

+y ·


−4
−1
−1
−3


︸ ︷︷ ︸

a2

+z ·


3
−1
6
32


︸ ︷︷ ︸

a3

+u ·


3
0
3
15


︸ ︷︷ ︸

a4

=


0
0
0
0



Megoldás.
2 −4 3 3 0
1 −1 −1 0 0
−1 −1 6 3 0
−7 −3 32 15 0

 sorcsere∼


1 −1 −1 0 0
2 −4 3 3 0
−1 −1 6 3 0
−7 −3 32 15 0

 elim.↓∼


1 −1 −1 0 0
0 −2 5 3 0
0 −2 5 3 0
0 −10 25 15 0


elim.↓∼


1 −1 −1 0 0
0 −2 5 3 0
0 0 0 0 0
0 0 0 0 0

 skálázás.↓∼


1 −1 −1 0 0
0 1 −2.5 −1.5 0
0 0 0 0 0
0 0 0 0 0

 elim.↑∼


1 0 −3.5 −1.5 0
0 1 −2.5 −1.5 0
0 0 0 0 0
0 0 0 0 0


Az egyenletrendszer megoldása:

u = 2s

z = 2t

y = 5t+ 3s

x = 7t+ 3s

⇒


x
y
z
u

 = s ·


3
3
0
2

+ t ·


7
5
2
0


ahol s, t ∈ R.
A végtelen sok megoldásból rögtön következik, hogy a1, a2, a3, a4 lineárisan összefüggőek.

(b) Hány lineárisan független vektor választható ki az egyenlet bal oldalán álló vektorokból?

Megoldás. A Gauss elimináció végén zöld sźınnel jelölt egységmátrix oszlopainak megfelelően az első két
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vektort egész biztos válaszhatjuk mint lineárisan független vektorokat:

a1 =


2
1
−1
−7

 , a2 =


−4
−1
−1
−3

 .

(c) Adjuk meg a négy vektor által generált alteret!

Megoldás. Mivel a két lineárisan független vektor: a1, a2 előálĺıtja a másik két vektort is, ezért

span{a1, a2, a3, a4} = span{a1, a2} =
{
v ∈ R4

∣∣ v = λ1a1 + λ2a2, λ1, λ2 ∈ R
}
.

vagyis a generált altér a a1 és a2 vektorok által kifesźıtett kétdimenziós R4-beli hiperśık lesz.

Feladat 21. Tekintsük az A =

[
a b
c 0

]
alakú valós elemű mátrixok vektorterét:

V =

{
A =

[
a b
c 0

] ∣∣ a, b, c ∈ R
}
.

(a) Adjuk meg a vektortér egy bázisát! Adjuk meg az

[
a b
c 0

]
”vektor” e bázisra vonatkozó koordinátamátrixát

is!

Megoldás. Legyen b1 =

[
1 0
0 0

]
, b2 =

[
0 1
0 0

]
és b3 =

[
0 0
1 0

]
. Ezek lineárisan függetlenek, mert a

vektortér nullvektora, vagyis a (2x2)-es nullmátrix csak a triviális lineáris kombinációjukkal álĺıtható elő.
Továbbá generátorrendszert is alkotnak, mert a V vektortér összes vektorát előálĺıtják. Tehát {b1, b2, b3}
bázis, mivel lineárisan független generátorrendszer.

Tehát egy tetszőleges

[
a b
c 0

]
mátrix feĺırható a fenti bázisvektorok egyértelmű lineáris kombinációjaként,

amiből adódik a koordinátamátrix:[
a b
c 0

]
= a ·

[
1 0
0 0

]
︸ ︷︷ ︸

b1

+b ·
[
0 1
0 0

]
︸ ︷︷ ︸

b2

+c ·
[
0 0
1 0

]
︸ ︷︷ ︸

b3

= ab1 + bb2 + cb3 =

a
b
c


[b1,b2,b3]︸ ︷︷ ︸

koordinátamátrix

(2)

(b) Igaz-e, hogy a B =

[
1 e
π 0

]
mátrix az előző alpontban megadott bázisra vonatkoztatott koordinátamátrixa

egy 3-dimenziós vektor?

Megoldás. Igaz:

B =

[
1 e
π 0

]
=

1
e
π


[v1,v2,v3]

(c) (Lineáris) alteret alkot-e V -ben az

[
0 b
c 0

]
alakú mátrixok halmaza? Ha altér, adjunk meg egy bázist! Hány

dimenziós ez az altér?

Megoldás. Vizsgáljuk a zártságot: legyen λ ∈ R és A =

[
0 b
c 0

]
, B =

[
0 e
f 0

]
∈ W tetszőleges. Ekkor

A+ λB =

[
0 b
c 0

]
+ λ

[
0 e
f 0

]
=

[
0 b
c 0

]
+

[
0 λe
λf 0

]
=

[
0 b+ λe

c+ λf 0

]
∈ W.

Vagyis altere V -nek, mert zárt az összeadásra és a skalárral való szorzásra. Egy lehetséges bázisa pedig
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{b2, b3}, ahol a bázisvektorokat már a (2) egyenletben definiáltuk. Az altér (ami maga is egy vektortér)
dimenziója pedig a bázisának elemszáma, azaz 2.

Feladat 22. Tekintsük a legfeljebb másodfokú polinomok terét:

P2 =
{
p(x) = ax2 + bx+ c

∣∣ a, b, c ∈ R.
}

Adjunk meg egy bázist ebben a vektortérben! Adott bázisra vonatkozó koordinátákhoz mely polinom tartozik?
Adjuk meg P2 dimenzióját!

Megoldás. A bázisvektoraink lehetnek például: v1 = x2, v2 = x, v3 = 1, mert ezek lineárisan függetlenek
(mivel az azonosan nulla polinomot csak triviális lineáris kombinációval álĺıtják elő), és előálĺıtják a vektortér
tetszőleges p(x) elemét:

p(x) = a · v1 + b · v2 + c · v3 =

a
b
c


[v1,v2,v3]

.

Ámde választhatunk más bázisvektorokat is. Legyen pl. w1 = x2 + x+ 2, w2 = x+ 1, w3 = 1. Ekkor:

p(x) = a(x2+x+2)+(b−a)(x+1)+(c− b−a) = a ·w1+(b−a) ·w2+(c− b−a) ·w3 =

 a
b− a

c− b− a


[w1,w2,w3]

.

P2 dimenzióját a bázisainak elemszáma határozza meg: dim(P2) = 3.

Feladat 23. Igazoljuk, hogy az R3 vektortér v =

 0
c
3c

, c ∈ R t́ıpusú vektorai a vektortér egy alterét alkotják!

Mely vektorok fesźıtik ki az alteret? Írjuk fel a w =

 0
8
24

 vektort az altér egy bázisában!

Megoldás. Az altér-jelöltünk:

L =

v =

 0
c
3c

 ∈ R3
∣∣ c ∈ R


Zártság:

v + λw =

 0
c+ λd
3c+ 3λd

 = (c+ λd)

0
1
3

 ∈ L minden λ ∈ R és minden v, w ∈ L esetén.

Tehát L egy altér R3-ban. Mivel L = ⟨

0
1
3

⟩ = span
{0

1
3

}, ezért egy lehetséges bázisa:

{b}, ahol b =

0
1
3

 .

A w koordinátamátrixos alakja a következőképpen adható meg:

w =

 0
8
24

 = 8 ·

0
1
3

 = 8 · b =
(
8
)
[b]

.

Látható, hogy a koordinátamátrix az egydimenziós L altér esetén egy egydimenziós vektor (azaz egy skalár) lesz.
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