
LinAlgDM I. 4-5. gyakorlat: Lineáris egyenletrendszerek megoldása

Gauss-Jordan eliminációval

2023. október 19.

Ismételjünk át néhány fogalmat!
Lineáris egyenletrendszer. Az alábbi egyenletrendszert:

a11x1 + a12x2 + a13x3 + . . . + a1nxn = b1
a21x1 + a22x2 + a23x3 + . . . + a2nxn = b2
a31x1 + a32x2 + a33x3 + . . . + a3nxn = b3

...
...

...
. . .

...
...

am1x1 + am2x2 + am3x3 + . . . + amnxn = bm

(1)

ahol x1, . . . , xn változók, az aij és bi állandó (konstans) együtthatók, lineáris egyenletrendszernek nevezzük. A
fenti egyenletrendszer m db egyenletből áll, és n db változója van. (Az egyenletek és változók számának nem kell
megegyeznie.) Az egyenletrendszer lehet homogén, ha bi = 0 , i = 1, . . . , n (azaz a jobb oldalon csupa 0 áll), illetve
lehet inhomogén, ha van olyan i, amelyre bi ̸= 0 (azaz a jobb oldalon van legalább egy nem nulla együttható).

Az (1) lineáris egyenletrendszerben minden együttható konstans, és minden változónak csak az első hatványa
szerepel, továbbá ezek a változók egymással nem szorzódnak, csak a konstansokkal.

Kibőv́ıtett együtthatómátrix A Gauss-elimináció lépéseinek a léırását megkönnýıtettük azzal, hogy nem
”cipeltük” magunkkal feleslegesen a változókat, hanem csak az együtthatókat rendeztük el tömbszerűen. Ezért
definiáltuk az (1) lineáris egyenletrendszer kibőv́ıtett együtthatómátrixát az alábbi formában:

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

. . .
...

am1 am2 am3 . . . amn

∣∣∣∣∣∣∣∣∣∣∣

b1
b2
b3
...
bm


A Gauss elimináció lépéseit már ismerjük:

1. Lépcsős alak kialaḱıtása kiküszöbölés (elimináció) seǵıtségével (”alsó háromszögből” eltűnnek a változók),

2. Változók értékeinek meghatározása visszahelyetteśıtéssel, az utolsó egyenlettől az első felé haladva.

Ha a visszahelyetteśıtést nem szeretjük, inkább többet számolnánk a kibőv́ıtett együtthatómátrix seǵıtségével,
akkor az alábbi algoritmust nekünk találták ki:

Gauss-Jordan elimináció: Adott az (1) lineáris egyenletrendszer.

� Feladat: xi, i = 1, . . . , n meghatározása.

� Megoldás:

1. A lépcsős alakot kialaḱıtjuk kiküszöbölés (elimináció) seǵıtségével (”alsó háromszögből” eltűnnek a
változók),

2. Minden egyenletet elosztunk az ún. főegyütthatójával az alábbiak szerint. A k. egyenletet k = 1, . . . , n
az xk változó együtthatójával, vagyis akk-val osztjuk le. Ennek eredményeképp a lépcsős alak lépcsőjénél
minden együttható 1 lesz.

3. Az ún. redukált lépcsős alakot kialaḱıtjuk úgy, hogy a ”felső háromszögből” is kiküszöböljük a változókat
egy ”ford́ıtott Gauss” seǵıtségével: a jobb alsó sarokból indulva felfelé nullázunk, majd mindig eggyel
balra és felfelé lépünk és ott folytatjuk.
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� A megengedett műveletek ugyanazok, mint a Gauss-eliminációnál; ekvivalens átalaḱıtások, amelyek az egyen-
letrendszer érvényességét (megoldáshalmazát) nem befolyásolják. Szabad:

– Egyenletek sorrendjét megváltoztatni (pl. két egyenletet megcserélni),

– Egyenletet számmal szorozni,

– Egyik egyenlethez hozzáadni egy másik egyenlet számszorosát,

– Az azonosan nulla, azaz a 0x1 + 0x2 + · · ·+ 0xn = 0 alakú egyenleteket elhagyni.

� A Gauss-Jordan elimináció során is egyszerűbb a kibőv́ıtett együtthatómátrixot használni. Mivel ennek k.
sora a k. egyenletnek felel meg, ezért az algoritmus az alábbiak szerint fogalmazható meg:

1. Végrehajtjuk a Gauss-elimináció első lépését, kialaḱıtjuk a lépcsős alakot a bal felső sarokból indulva
(”alsó háromszög” minden elemét kinullázzuk),

2. Vezéregyesek kialaḱıtása: a kibőv́ıtett együtthatómátrix főátlójában csupa 1-est hozunk létre az adott
sor osztásával,

3. Kialaḱıtjuk a redukált lépcsős alakot úgy, hogy a ”felső háromszöget” is kinullázzuk egy ”ford́ıtott Gauss”
seǵıtségével, a jobb alsó sarokból indulva, felfelé nullázva.

� Szabad:

– Sorok sorrendjét megváltoztatni (pl. két sort megcserélni),

– Sort számmal szorozni,

– Egyik sorhoz hozzáadni egy másik sor számszorosát,

– Az azonosan nulla (kizárólag 0-kat tartalmazó) sorokat elhagyni.

1. Oldjuk meg az alábbi egyenletrendszert Gauss-Jordan elimináció seǵıtségével kétféleképpen: a) egyenletrend-
szer alakban, b) kibőv́ıtett együtthatómátrix seǵıtségével!

−x1 + 3x2 + 3x3 = 2

3x1 + x2 + x3 = 4

2x1 − 2x2 + 3x3 = 10

a) Megoldás egyenletrendszer alakban:

−x1 + 3x2 + 3x3 = 2
3x1 + x2 + x3 = 4
2x1 − 2x2 + 3x3 = 10

II.+3·I.
=⇒

III.+2·I.

−x1 + 3x2 + 3x3 = 2
10x2 + 10x3 = 10
4x2 + 9x3 = 14

II./10
=⇒

II./10
=⇒

−x1 + 3x2 + 3x3 = 2
x2 + x3 = 1

4x2 + 9x3 = 14

III.−4·II.
=⇒

−x1 + 3x2 + 3x3 = 2
x2 + x3 = 1

5x3 = 10

I./(−1)
=⇒
III./5

I./(−1)
=⇒
III./5

x1 − 3x2 − 3x3 = −2
x2 + x3 = 1

x3 = 2

I+3·III.
=⇒

II.−III.

x1 − 3x2 = 4
x2 = −1

x3 = 2

I.+3·II.
=⇒

I.+3·II.
=⇒

x1 = 1
x2 = −1

x3 = 2

A megoldást közvetlenül megkaptuk, nem kellett visszahelyetteśıteni.

b) Megoldás kibőv́ıtett együtthatómátrix seǵıtségével: −1 3 3
3 1 1
2 −2 3

∣∣∣∣∣∣
2
4

10

 II.+3·I.∼
III.+2·I.

 −1 3 3
0 10 10
0 4 9

∣∣∣∣∣∣
2

10
14

 II./10∼

II./10∼

 −1 3 3
0 1 1
0 4 9

∣∣∣∣∣∣
2
1
14

 III.−4·II.∼

 −1 3 3
0 1 1
0 0 5

∣∣∣∣∣∣
2
1
10

 I./(−1)∼
III./5
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I./(−1)∼
III./5

 1 −3 −3
0 1 1
0 0 1

∣∣∣∣∣∣
−2
1
2

 I+3·III.∼
II.−III.

 1 −3 0
0 1 0
0 0 1

∣∣∣∣∣∣
4

−1
2

 I.+3·II.∼

I.+3·II.∼

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1

−1
2


A kibőv́ıtett együtthatómátrix bal oldalán a főátlóban 1-esek állnak, mı́g a többi elem 0 (ez az ún. egységmátrix),
ı́gy az ennek megfelelő egyenletrendszer rendḱıvül egyszerű szerkezetű:

x1 + 0 + 0 = 1
0 + x2 + 0 = −1
0 + 0 + x3 = 2

Vagyis ebben a formában közvetlenül megkapjuk a megoldást:

x1 = 1

x2 = −1

x3 = 2

2. Van-e a következő egyenletű śıkoknak közös metszéspontja? Ha igen, adjuk meg!

x+ y + z = 1

8x+ 2y + 2z = −4

25x+ y + z = −23

Megoldás. 1 1 1 1
8 2 2 −4

25 1 1 −23

 eliminálás ↓∼

1 1 1 1
0 −6 −6 −12
0 −24 −24 −48

 eliminálás ↓∼

1 1 1 1
0 −6 −6 −12
0 0 0 0


∼

(
1 1 1 1
0 −6 −6 −12

)
vezéregyesek∼

(
1 1 1 1
0 1 1 2

)
eliminálás ↑∼

(
1 0 0 −1
0 1 1 2

)
A redukált lépcsős alakból feĺırjuk az egyenletrendszert:

x = −1

y + z = 2

Mivel a változók száma n = 3, és a redukált lépcsős alak sorainak száma r = 2, a szabadsági fok n− r = 1
lesz. Így az egyenletrendszer r = 2 ”kötött” változóval és sz = 1 ”szabad” változóval rendelkezik. Legyen z
a szabad változó: z = t ∈ R. Ekkor a megoldás:x

y
z

 =

 −1
2− z

z

 =

 −1
2− t

t

 , t ∈ R

3. Vizsgáljuk meg az alábbi egyenletrendszer megoldhatóságát, adjuk meg a megoldások számát! Ha van
megoldás, adjuk meg azt is!

x1 + 2x2 = 3

4x1 + 9x2 = 6

10x1 + 21x2 = 24

28x1 + 59x2 = 66
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Megoldás.
1 2 3
4 9 6

10 21 24
28 59 66

 elim. ↓∼


1 2 3
0 1 −6
0 1 −6
0 3 −18

 elim. ↓∼


1 2 3
0 1 −6
0 0 0
0 0 0

 ∼
(
1 2 3
0 1 −6

)
elim. ↑∼

(
1 0 15
0 1 −6

)

A változók száma n = 2, a redukált lépcsős alak sorainak száma r = 2. A szabadsági fok ı́gy sz = n−r = 0,
azaz nincs ”szabad” változónk, és r = 2 kötött változónk van. Ennek következtében egy megoldásunk lesz,
amely le is olvasható: (

x1

x2

)
=

(
15
−6

)

4. Oldjuk meg a következő egyenletrendszert (rögtön az együttható-mátrixos feĺırást használjuk):
1 1 1 2 −2
1 2 3 4 −6
2 1 3 2 −3
1 −1 1 −1 0



Megoldás.
1 1 1 2 −2
1 2 3 4 −6
2 1 3 2 −3
1 −1 1 −1 0

 eliminálás ↓∼


1 1 1 2 −2
0 1 2 2 −4
0 −1 1 −2 1
0 −2 0 −3 2

 eliminálás ↓∼


1 1 1 2 −2
0 1 2 2 −4
0 0 3 0 −3
0 0 4 1 −6


vezéregyesek∼


1 1 1 2 −2
0 1 2 2 −4
0 0 1 0 −1
0 0 4 1 −6

 eliminálás ↓∼


1 1 1 2 −2
0 1 2 2 −4
0 0 1 0 −1
0 0 0 1 −2


Ezzel a Gauss-Jordan elimináció 1. és 2. lépésének is a végére értünk, ugyanis egyszerűbb volt a számolás
úgy, hogy a vezéregyeseket ”menet közben” alaḱıtottuk ki. Most pedig végrehajtjuk a 3., lentről felfelé nullázó
eliminációs lépést:

1 1 1 2 −2
0 1 2 2 −4
0 0 1 0 −1
0 0 0 1 −2

 ∼


1 1 1 0 2
0 1 2 0 0
0 0 1 0 −1
0 0 0 1 −2

 ∼


1 1 0 0 3
0 1 0 0 2
0 0 1 0 −1
0 0 0 1 −2

 ∼


1 0 0 0 1
0 1 0 0 2
0 0 1 0 −1
0 0 0 1 −2

 .

Látható a kibőv́ıtett együttható-mátrix bal oldalán a az egységmátrix, ı́gy az ennek megfelelő egyenletrendszer
rendḱıvül egyszerű szerkezetű:

x1 + 0 + 0 + 0 = 1
0 + x2 + 0 + 0 = 2
0 + 0 + x3 + 0 = −1
0 + 0 + 0 + x4 = −2

Ebből a formából a megoldás egyszerűen kiolvasható:
x1 = 1

x2 = 2

x3 = −1

x4 = −2
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5. Oldjuk meg a következő egyenletrendszert (rögtön az együttható-mátrixos feĺırást használjuk):
1 2 3 4 −6
2 −2 1 −3 3
2 1 3 2 −3
1 −1 1 −1 0



Megoldás. Az egyszerűbb számı́tások érdekében megváltoztatjuk az egyenletek sorrendjét (a IV. egyenlet
kerüljön az I. helyre):

1 −1 1 −1 0
2 −2 1 −3 3
2 1 3 2 −3
1 2 3 4 −6

 eliminálás ↓∼


1 −1 1 −1 0
0 0 −1 −1 3
0 3 1 4 −3
0 3 2 5 −6

 sorrend csere∼


1 −1 1 −1 0
0 3 1 4 −3
0 3 2 5 −6
0 0 −1 −1 3


eliminálás ↓∼


1 −1 1 −1 0
0 3 1 4 −3
0 0 1 1 −3
0 0 −1 −1 3

 eliminálás ↓∼


1 −1 1 −1 0
0 3 1 4 −3
0 0 1 1 −3
0 0 0 0 0

 elim. ↑∼

 1 −1 0 −2 3
0 3 0 3 0
0 0 1 1 −3


vezéregyesek∼

1 −1 0 −2 3
0 1 0 1 0
0 0 1 1 −3

 eliminálás ↑∼

1 0 0 −1 3
0 1 0 1 0
0 0 1 1 −3


A kijelölt egységmátrix határozza meg a kötött változókat: x1, x2, x3 ⇒ r = 3. A fennmaradó oszlop a
szabad változónak (x4-nek) felel meg. Az egyenletrendszer szabadsági foka tehát sz = n − r = 1, ami azt
jelenti, hogy a megoldáshalmaza egy egyenes, melynek (paraméteres) egyenlete a következő (a paramétert
jelölje t = z4): 

x1 = t+ 3

x2 = −t

x3 = −t− 3

z4 = t

tehát x =


x1

x2

x3

x4

 =


1

−1
−1
1

 · t+


3
0

−3
0

 , t ∈ R

6. A c ∈ R paraméter minden lehetséges értékére vizsgáljuk meg az egyenletrendszer megoldhatóságát és
megoldásainak számát! Adjuk meg a megoldást is!

x1 − x2 + x3 − 3x4 = 7

x1 − 2x2 + 3x3 − 4x4 = 19

3x1 + 4x2 − x3 + 2x4 = −9

−2x1 + 3x2 + 2x3 + x4 = −2

2x1 − 3x2 + 4x3 − 7x4 = c

Megoldás. Feĺırjuk a kibőv́ıtett együttható-mátrixot, és végrehajtjuk a Gauss-Jordan eliminációt:
1 −1 1 −3 7
1 −2 3 −4 19
3 4 −1 2 −9

−2 3 2 1 −2
2 −3 4 −7 c

 elim. ↓∼


1 −1 1 −3 7
0 −1 2 −1 12
0 7 −4 11 −30
0 1 4 −5 12
0 −1 2 −1 c− 14

 elim. ↓∼


1 −1 1 −3 7
0 −1 2 −1 12
0 0 10 4 54
0 0 6 −6 24
0 0 0 0 c− 26


� Ha c ̸= 26, akkor az alsó sor TILOS SOR, ı́gy az egyenletrendszernek nincs megoldása.

� Ha c = 26, az utolsó sor azonosan nulla sor, ami elhagyható:
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
1 −1 1 −3 7
0 −1 2 −1 12
0 0 10 4 54
0 0 6 −6 24

 sorcsere∼


1 −1 1 −3 7
0 −1 2 −1 12
0 0 6 −6 24
0 0 10 4 54

 skalárral szorz.∼


1 −1 1 −3 7
0 −1 2 −1 12
0 0 1 −1 4
0 0 10 4 54


elim. ↓∼


1 −1 1 −3 7
0 −1 2 −1 12
0 0 1 −1 4
0 0 0 14 14

 vezéregyesek∼


1 −1 1 −3 7
0 1 −2 1 −12
0 0 1 −1 4
0 0 0 1 1

 elim. ↑∼


1 −1 1 0 10
0 1 −2 0 −13
0 0 1 0 5
0 0 0 1 1


eliminálás ↑∼


1 −1 0 0 5
0 1 0 0 −3
0 0 1 0 5
0 0 0 1 1

 eliminálás ↑∼


1 0 0 0 2
0 1 0 0 −3
0 0 1 0 5
0 0 0 1 1


A redukált lépcsős alak sorainak száma r = 4. Mivel n = 4 változónk van, ı́gy a szabadsági fok sz = n−r =
0, ezért mind a négy változónk kötött változó lesz, a megoldás pedig egyértelmű:

x =


x1

x2

x3

x4

 =


2

−3
5
1


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