LinAlgDM 1. 3. gyakorlat: Linearis egyenletrendszerek megoldasa Gauss
elimindcioval (folytatas)

2023. oktdéber 13.

1. Adjuk meg az aldbbi egyenletrendszer megolddsainak szdmat! Adjuk meg a megoldast is!
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3r1+ 29+ 33 — x4 =16

Megoldas. Felirjuk a kibovitett egyutthatomdtrizot, majd kialakitjuk a lépcsds alakot:
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A waltozok szama n = 4. A lépcsds alak sorainak szama r = 2, igy 2 "kétott” vdltozonk lesz; a szabadsdgi

fok n —r = 2, tehdt 2 ”szabad” wvdltozonk lesz a megolddsban. frjuk fel az egyenletrendszert a lépcsds
alakbol, majd vdlasszuk ”szabad” vdltozonak az x3-at €s az x4-et:
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x1=—-29—x3+x4+4=—(t—-2)—s+t+4=-5+6
2. Adja meg az aldbbi egyenletrendszer megoldasat és megoldasainak szdmét a ¢ € R paraméter értékétol fiiggéen!
Minden lehetséges ¢ értéket vegyen figyelembe!

T, + 2x9 + 323 =0
41 + cro + 623 =0
1 +ax9+23=0

Megoldas. Felirjuk a kibovitett egyutthatomdtrizot, majd kialakitjuk a lépcsds alakot:
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e Ha c =5, a lépcsds alak utolso sora azonosan nulla sor lesz, ami elhagyhato. Marad tehdt két sor
a lépesds alakban, igy a “kotott” vdltozok szdma r = 2, a "szabad” vdltozok szama pedign —r = 1,



vagyis végtelen sok megolddsunk lesz. A lépcsds alakbol visszairjuk az egyenletrendszert, majd x3-at
vdlasztjuk ”szabad” vdltozonak:
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e Ha c # 5, akkor az utolsé sor harmadik eleme nem nulla. A harmadik sor nem azonosan nulla sor,
de nem is tilos sor (tilos sorndl a jobb oldalon van 0-tél killonbézé szam), igy r = 3, a szabadsdgi
fok pedig n — r = 0, vagyis mindhdrom vdltozonk “kotott”, és 1 megolddsunk lesz. Felirjuk a lépcsds
alakbol az egyenletrendszert:

1+ 229+ 323 =0 x3 =0, mert (—2c+10) #0
To 4+ 223 =0 — To = —2x3=0
(=2¢+10)z3 =0 x1 = —2x9 —3x3 =0

3. Gauss eliminacié segitségével adja meg az aldbbi egyenletrendszer megoldédsait a p € R paraméter minden
lehetséges értékére! Adja meg a megoldasok szamat is!

911 + 29 = =2
4501 + (p — 10)zp = 10

Megoldas. Felirjuk a kibdvitett egytuitthatomdtrizot, kialakitjuk a lépcsds alakot:
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e Hap=1>5, a mdsodik sor azonosan nulla sor lesz, amit elhagyhatunk. fgy r =1 "kétott” vdltozonk, és
sz=n—r =1 "szabad” vdltozonk lesz, vagyis oo sok megolddst kapunk. Irjuk fel az egyenletrendszert,
és valasszuk most x1-et "szabad” vdltozonak:
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e Ha p # 5, akkor az utolsé sor mdsodik eleme nem nulla. Ekkor r = 2, a szabadsdgi fok pedig

sz=n—1r=20, fgy mindkét vdltozonk “kotott”, és 1 megoldasunk lesz:
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