Bevezetés a programozasba

11. El6adas
Esettanulmany

/

—PLanG —> C++

Nézzink meg egy példat

Feladat: szOveges labirintusos jaték

® A jatékban helyszinek vannak, amelyekrél a felhasznalé révid
leirast kap

® Minden helyszin 6sszekottetésben allhat mas helyszinekkel,
amerre tovabb lehet menni

® A felhaszndlé6 minden helyszinen megadhatja, hogy merre
megy tovabb

® Ha megérkezik a célba, nyer

/

1.0 Ahogy azt régen csinaltuk volna

#include<iostream>
using namespace std;

int main() {

int h = 1;
while(h!=4) {
if(h==1) {
cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;
}
if(h==2) {
cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
}
if(h==3) {
cout << "A boltndl vagy. Mehetsz a suliba, vagy haza." <<endl;
}
cout << "Hova mész? (l:haza, 2:park, 3:bolt, 4:suli) : ";
cin >> h;

}

cout << "Megérkeztél a suliba, éljen." <<endl;

return 0;

1.0 Ahogy azt régen csinaltuk volna

#include<iostream>
using namespace std;

int main() {

Gyanusan
int h = 1; o, 7 e
while(h!=4) {
v kod
if(h==1) {

cout << "Otthon vagy. Mehetsz a parkba, vagy a b 0z." <<endl;

}

if(h==2) {

cout << "A parkban vagy. Mehetsz a suliba, vagy haza." k<endl;

}

if(h==3) {

cout << "A boltndl vagy. Mehetsz a suliba, vagy haza." <<endl;

}

cout << "Hova mg§;? (1:haza, 2:park, 3:bolt, 4:suli) : ";

cin >> h;
} — °
cout << "Megérkeztél a suliba, éljen." <<endl; Lehet Csalnl

return 0;

o —

1.1 verzio: ne lehessen csalni

#include<iostream>
using namespace std;
int main() {

int h = 1;
while(h!'=4) {
if(h==1) {
cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;
}
if(h==2) {
cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
}
if(h==3) {
cout << "A boltnal vagy. Mehetsz a suliba, vagy haza." <<endl;
}
cout << "Hova mész? (l:haza, 2:park, 3:bolt, 4:suli) : “;

cin >> hova;
if((h==1 && (hova==2 || hova==3))
(h==2 && (hova==1 || hova==4))
(h==3 && (hova==1 || hova==4))
h = hova;
} else {
cout << "Arra nem lehet menni innen." <<endl;

|
|
) {

}

}
cout << "Megérkeztél a suliba, éljen." <<endl;
return 0;

—

1.1 verzid

#include<iostream>
using namespace std; Ve o o
int main() { Ez még mindig
int h = 1; .
while(h'=4) { s
TR repetitiv
cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;
}
if(h==2) {
cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
}
if(h==3) {
cout << "A boltnal vagy. Mehetsz a suliba, vagy haza." <<endl;
}
cout << "Hova mész? (l:haza, 2:park, 3:bolt, 4:suli) : “;
cin >> hova;
I
I

if((h==1 && (hova==2 || hova==

)) | P
(h==2 & (hova==1 || hova==4)) | Nehéz
(h==3 && (hova==1 || hova==4))) { \)
) etse (1 OV valtoztatni a
cout << "Arra nem lehet menni innen." <<endl;

- térképet, ez tul

cout << "Megérkeztél a suliba, éljen." <<endl; t)()r]‘,()llllt

return 0;

—

1.2 Hasznaljunk tarolot

#include<iostream>
#include <vector>
using namespace std;

int main() {
vector<string> terkep(4);

terkep[0] = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
terkep[1l] = "A parkban vagy. Mehetsz a suliba, vagy haza.";
terkep[2] = "A boltndl vagy. Mehetsz a suliba, vagy haza.";
terkep[3] = "Megérkeztél a suliba, éljen.";

int h = 0;

cout << terkep[h] <<endl;
while(h!'=3) {
cout << "Hova mész? (l:haza, 2:park, 3:bolt, 4:suli) : “;
int hova;
cin >> hova;
if((h==0 && (hova==1 || hova==2)) ||
(h==1 && (hova==0 || hova==3)) ||
(h==2 && (hova==0 || hova==3))) {
h = hova;
} else {
cout << "Arra nem lehet menni innen." <<endl;
}

Cout << terkep[h] <<endl;

}

return 0;

—

1.2 Hasznaljunk tarolot

#include<iostream>
#include <vector>
using namespace std;

int main() {
vector<string> terkep(4);

terkep[0] = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
terkep[1l] = "A parkban vagy. Mehetsz a suliba, vagy haza.";
terkep[2] = "A boltndl vagy. Mehetsz a suliba, vagy haza.";
terkep[3] = "Megérkeztél a suliba, éljen.";

int h = 0;

cout << terkep[h] <<endl;
while(h!=3) {
cout << "Hova mész? (l:haza, 2:park, 3:bolt, 4:suli) :
int hova;
cin >> hova;
if((h==0 && (hova==1 || hova==2)) ||
(h==1 && (hova==0 || hova==3)) ||

Ez még mindig
(h==2 && (hova==0 || hova==3))) { .
, = hova; tal merev

cout << "Arra nem lehet menni innen." <<endl;

} szerkezet

Cout << terkep[h] <<endl;

}

return 0;

mdat

Azt nevezzik ,bedrétozott”-nak, ami a programkdodban
fixen le van irva

® példaul jelen esetben a program a térképet inkdbb fajlbol
lenne j6 beolvasni

Altalaban az a cél, hogy a végleges programban mar ne
legyen olyan bedrétozott adat, ami a feladatban
megvaltozhat

Ez viszont sokszor nem tul egyszer(, at kell gondolni a
dolgokat

Jon a struct

Azt 1attuk, hogy ha szeretnénk kiemelni a
bedrétozott adatot, akkor kezelni kell a
kovetkezOket

® tijékoztatd szoveg kiirasa az egyes helyszineken

® az 6sszekottetések a helyszinek kozott

® esetleg a helyszinek neve

Ezek kozul az oOsszekottetések kezelése a
legnehezebb

/ /
A helyszin reprezentacidja
struct hely {
string nev;
string leiras;
vector<int> hova;

}i

A név és a leiras szoveges valtozdéval megoldhaté

Az 0Osszekottetéseket tombben reprezentaljuk,
amelynek az elemei az innen elérhetd helyszinek
indexei lesznek

20—

#include<iostream>
#include <vector>
using namespace std;

struct hely {
string nev;
string leiras;
vector<int> hova;

};

int main() {
vector<hely> terkep(4);
terkep[0].nev = "otthon";
terkep[0].leiras = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
terkep[0].hova.push_back(1);
terkep[0].hova.push_back(2);
terkep[1l].nev = "park";
terkep[1l].leiras = "A parkban vagy. Mehetsz a suliba, vagy haza.";
terkep[1].hova.push_back(0);
terkep[1].hova.push_back(3);
terkep[2].nev = "bolt";
terkep[2].leiras = "A boltnal vagy. Mehetsz a suliba, vagy haza.";
terkep[2].hova.push_back(0);
terkep[2].hova.push_back(3);
terkep[3].nev = "suli";
terkep[3].leiras = "Megérkeztél a suliba, éljen.";

.0

terkep[3].nev = "suli";
terkep[3].leiras = "Megérkeztél a suliba, éljen.";
int h = 0;

cout << terkep[h].leiras <<endl;
while(h!=3) {
cout << "Hova mész?" <<endl;
for(int i=0; i<terkep[h].hova.size(); i++) {
cout << i+l << ": " << terkep[terkep[h].hova[i]].nev <<endl;
}
int melyik;
cin >> melyik;
if(melyik>0 && melyik<=terkep[h].hova.size()) {
h = terkep[h].hova[melyik-1];
} else {
cout << "Hibas valasztds." <<endl;
}

cout << terkep[h].leiras <<endl;

}

return 0;

.0

terkep[3].nev = "suli";
terkep[3].leiras = "Megérkeztél a suliba, éljen.";
int h = 0;

cout << terkep[h].leiras <<endl;
while(h!=3) {
cout << "Hova mész?" <<endl;
for(int i=0; i<terkep[h].hova.size(); i++) {
cout << i+l << ": " g< terkep[terkep[h].hova[i]].nev <<endl;
}

int melyik; — Menu
cin >> melyik; «
if(melyik>0 && melyik<=terkep[h].hova.size()) {
h = terkep[h].hova[melyik-1];
} else {
cout << "Hibas valasztds." <<endl;
}

cout << terkep[h].leiras <<endl;

}

return 0;

/
—270 értékelés

Sikeresen szeparaltuk a konkrét adatokat az altalanos
mukodéstol

Felkészultink arra, hogy fajlbol toltsik be a konkrét
adatokat

Ezt azzal értik el, hogy

® Azonosithato helyszineket hasznaltunk
® A helyszinek tulajdonsagainak 6sszetartozasat is kifejeztiik

gy végiil a féprogram lényegi része fliggetlen lett az
aktualis térképtol

-1

adatok. txt I
otthon |
(Z)t;:-hczm vagy. Mehetsz a program])1th02.
park void betolt(ifstream& be, hely& mit) {
A parkban vagy. Mehets be >> ws;
203 getline(be, mit.nev);
bolt getline(be, mit.leiras);
A boltnal vagy. Mehets int 1sz, h:
sl be >> 1sz;
Megérkeztél a suliba, for(int 1=0; 1<lsz; 1++) {
0 be >> h;
e —————————— mit.hova.push back(h);

int main() {
ifstream f("adatok.txt");
int hsz, cel;
f >> hsz >> cel;
vector<hely> terkep(hsz);
for(int i=0; i<hsz; i++) betolt(f, terkep[i]);
int h = 0;
cout << terkep[h].leiras <<endl;
while(h'=cel) {
cout << "Hova mész?" <<endl;
for(int i=0; i<terkep[h].hova.size(); i++) {
cout << i+l << ": " << terkep[terkep[h].hova[i]].nev <<endl;
}
int melyik;
cin >> melyik;
if(melyik>0 && melyik<=terkep[h].hova.size()) {
h = terkep[h].hova[melyik-1];

} else {
cout << "Hibds valasztas." <<endl;
}
cout << terkep[h].leiras <<endl;

}

return 0;

/

—Tovabbi lehetdségek

A ,Térkép” fogalmanak bevezetése
® fajlnévbdl teljes térkép betoltés
® Gsszekottetések kezelése

Néhany lehetséges valtozas a feladatban
® targyak kezelése, pl. csak akkor lehet egy Osszekottetést hasznalni, ha
van nalunk kulcs/bérlet...

® Targy” és ,Osszekottetés” tipusok bevezetésével, a féprogram ciklusanak
érintése nélkil megoldhaté

® grafikus megjelenités
® A ,Hely” mezbinek kib6vitésével megoldhaté egyes helyszinek eltérd képe

ttekintés
Egy atlagos jatékprogramon kevés programozé dolgozik, és

nagyon sok designer
® Nem lehet bedrétozni semmit

Szét kell valasztani a konkrét adatokat az altalanos mikodéstol

Az altalanos mukodés megfogalmazasahoz j6, ha magasabb
szintd fogalmakat hasznalhatunk
® Problématér -- Megoldastér

Ebben segit a struct és a fliggvények...
...vagyis a sajat tipusaink, és azok muveletei

	Slide 1
	Gyakorlatban
	1.0 Ahogy azt régen csináltuk volna
	1.0 Ahogy azt régen csináltuk volna
	1.1 Tovább fejlesztés
	1.1 Tovább fejlesztés_clipboard0
	1.2 Használjunk tárolót
	1.2 Használjunk tárolót
	„Bedrótozott” adat
	Jön a struct
	A helyszín reprezentációja
	2.0 Használjunk struct-ot _clipboard0
	2.0 Használjunk struct-ot
	2.0 Használjunk struct-ot
	2.0 értékelés
	2.1
	2.1
	További lehetőségek
	Áttekintés

