
Bevezetés a programozásba

11. Előadás
Esettanulmány

Nézzünk meg egy példát
Feladat: szöveges labirintusos játék

A játékban helyszínek vannak, amelyekről a felhasználó rövid
leírást kap

Minden helyszín összeköttetésben állhat más helyszínekkel,
amerre tovább lehet menni

A felhasználó minden helyszínen megadhatja, hogy merre
megy tovább

Ha megérkezik a célba, nyer

PLanG → C++

1.0 Ahogy azt régen csináltuk volna
#include<iostream>
using namespace std;

int main() {

 int h = 1;
 while(h!=4) {

 if(h==1) {
 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;

 }
 if(h==2) {
 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {
 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }

 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> h;

}
cout << "Megérkeztél a suliba, éljen." <<endl;

return 0;

}

#include<iostream>
using namespace std;

int main() {

 int h = 1;
 while(h!=4) {

 if(h==1) {
 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;

 }
 if(h==2) {
 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {
 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }

 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> h;

}
cout << "Megérkeztél a suliba, éljen." <<endl;

return 0;

}

1.0 Ahogy azt régen csináltuk volna
#include<iostream>
using namespace std;

int main() {

 int h = 1;
 while(h!=4) {

 if(h==1) {
 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;

 }
 if(h==2) {
 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {
 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }

 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> h;

}
cout << "Megérkeztél a suliba, éljen." <<endl;

return 0;

}

#include<iostream>
using namespace std;

int main() {

 int h = 1;
 while(h!=4) {

 if(h==1) {
 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;

 }
 if(h==2) {
 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {
 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }

 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> h;

}
cout << "Megérkeztél a suliba, éljen." <<endl;

return 0;

}

Gyanúsan
repetitív kód

Lehet csalni

1.1 verzió: ne lehessen csalni
#include<iostream>
using namespace std;
int main() {
 int h = 1;
 while(h!=4) {
 if(h==1) {

 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;
 }
 if(h==2) {

 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {

 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> hova;
 if((h==1 && (hova==2 || hova==3)) ||
 (h==2 && (hova==1 || hova==4)) ||
 (h==3 && (hova==1 || hova==4))) {
 h = hova;
 } else {
 cout << "Arra nem lehet menni innen." <<endl;
 }
 }
 cout << "Megérkeztél a suliba, éljen." <<endl;
 return 0;
}

#include<iostream>
using namespace std;
int main() {
 int h = 1;
 while(h!=4) {
 if(h==1) {

 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;
 }
 if(h==2) {

 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {

 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> hova;
 if((h==1 && (hova==2 || hova==3)) ||
 (h==2 && (hova==1 || hova==4)) ||
 (h==3 && (hova==1 || hova==4))) {
 h = hova;
 } else {
 cout << "Arra nem lehet menni innen." <<endl;
 }
 }
 cout << "Megérkeztél a suliba, éljen." <<endl;
 return 0;
}

1.1 verzió
#include<iostream>
using namespace std;
int main() {
 int h = 1;
 while(h!=4) {
 if(h==1) {

 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;
 }
 if(h==2) {

 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {

 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> hova;
 if((h==1 && (hova==2 || hova==3)) ||
 (h==2 && (hova==1 || hova==4)) ||
 (h==3 && (hova==1 || hova==4))) {
 h = hova;
 } else {
 cout << "Arra nem lehet menni innen." <<endl;
 }
 }
 cout << "Megérkeztél a suliba, éljen." <<endl;
 return 0;
}

#include<iostream>
using namespace std;
int main() {
 int h = 1;
 while(h!=4) {
 if(h==1) {

 cout << "Otthon vagy. Mehetsz a parkba, vagy a bolthoz." <<endl;
 }
 if(h==2) {

 cout << "A parkban vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 if(h==3) {

 cout << "A boltnál vagy. Mehetsz a suliba, vagy haza." <<endl;
 }
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 cin >> hova;
 if((h==1 && (hova==2 || hova==3)) ||
 (h==2 && (hova==1 || hova==4)) ||
 (h==3 && (hova==1 || hova==4))) {
 h = hova;
 } else {
 cout << "Arra nem lehet menni innen." <<endl;
 }
 }
 cout << "Megérkeztél a suliba, éljen." <<endl;
 return 0;
}

Ez még mindig
repetitív

Nehéz
változtatni a

térképet, ez túl
bonyolult

1.2 Használjunk tárolót

#include<iostream>
#include <vector>
using namespace std;

int main() {
 vector<string> terkep(4);
 terkep[0] = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
 terkep[1] = "A parkban vagy. Mehetsz a suliba, vagy haza.";
 terkep[2] = "A boltnál vagy. Mehetsz a suliba, vagy haza.";
 terkep[3] = "Megérkeztél a suliba, éljen.";
 int h = 0;
 cout << terkep[h] <<endl;
 while(h!=3) {
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 int hova;
 cin >> hova;
 if((h==0 && (hova==1 || hova==2)) ||

 (h==1 && (hova==0 || hova==3)) ||
 (h==2 && (hova==0 || hova==3))) {
 h = hova;

 } else {
 cout << "Arra nem lehet menni innen." <<endl;

 }
 Cout << terkep[h] <<endl;
 }
 return 0;
}

#include<iostream>
#include <vector>
using namespace std;

int main() {
 vector<string> terkep(4);
 terkep[0] = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
 terkep[1] = "A parkban vagy. Mehetsz a suliba, vagy haza.";
 terkep[2] = "A boltnál vagy. Mehetsz a suliba, vagy haza.";
 terkep[3] = "Megérkeztél a suliba, éljen.";
 int h = 0;
 cout << terkep[h] <<endl;
 while(h!=3) {
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 int hova;
 cin >> hova;
 if((h==0 && (hova==1 || hova==2)) ||

 (h==1 && (hova==0 || hova==3)) ||
 (h==2 && (hova==0 || hova==3))) {
 h = hova;

 } else {
 cout << "Arra nem lehet menni innen." <<endl;

 }
 Cout << terkep[h] <<endl;
 }
 return 0;
}

1.2 Használjunk tárolót

#include<iostream>
#include <vector>
using namespace std;

int main() {
 vector<string> terkep(4);
 terkep[0] = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
 terkep[1] = "A parkban vagy. Mehetsz a suliba, vagy haza.";
 terkep[2] = "A boltnál vagy. Mehetsz a suliba, vagy haza.";
 terkep[3] = "Megérkeztél a suliba, éljen.";
 int h = 0;
 cout << terkep[h] <<endl;
 while(h!=3) {
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 int hova;
 cin >> hova;
 if((h==0 && (hova==1 || hova==2)) ||

 (h==1 && (hova==0 || hova==3)) ||
 (h==2 && (hova==0 || hova==3))) {
 h = hova;

 } else {
 cout << "Arra nem lehet menni innen." <<endl;

 }
 Cout << terkep[h] <<endl;
 }
 return 0;
}

#include<iostream>
#include <vector>
using namespace std;

int main() {
 vector<string> terkep(4);
 terkep[0] = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
 terkep[1] = "A parkban vagy. Mehetsz a suliba, vagy haza.";
 terkep[2] = "A boltnál vagy. Mehetsz a suliba, vagy haza.";
 terkep[3] = "Megérkeztél a suliba, éljen.";
 int h = 0;
 cout << terkep[h] <<endl;
 while(h!=3) {
 cout << "Hova mész? (1:haza, 2:park, 3:bolt, 4:suli) : ";
 int hova;
 cin >> hova;
 if((h==0 && (hova==1 || hova==2)) ||

 (h==1 && (hova==0 || hova==3)) ||
 (h==2 && (hova==0 || hova==3))) {
 h = hova;

 } else {
 cout << "Arra nem lehet menni innen." <<endl;

 }
 Cout << terkep[h] <<endl;
 }
 return 0;
}

Ez még mindig
túl merev
szerkezet

Azt nevezzük „bedrótozott”-nak, ami a programkódban
fixen le van írva
Például jelen esetben a program a térképet inkább fájlból

lenne jó beolvasni

Általában az a cél, hogy a végleges programban már ne
legyen olyan bedrótozott adat, ami a feladatban
megváltozhat

Ez viszont sokszor nem túl egyszerű, át kell gondolni a
dolgokat

„Bedrótozott” adat

Azt láttuk, hogy ha szeretnénk kiemelni a
bedrótozott adatot, akkor kezelni kell a
következőket
tájékoztató szöveg kiírása az egyes helyszíneken
az összeköttetések a helyszínek között
esetleg a helyszínek neve

Ezek közül az összeköttetések kezelése a
legnehezebb

Jön a struct

A név és a leírás szöveges változóval megoldható
Az összeköttetéseket tömbben reprezentáljuk,

amelynek az elemei az innen elérhető helyszínek
indexei lesznek

A helyszín reprezentációja

struct hely {
 string nev;
 string leiras;
 vector<int> hova;
};

struct hely {
 string nev;
 string leiras;
 vector<int> hova;
};

2.0
#include<iostream>
#include <vector>
using namespace std;

struct hely {
 string nev;
 string leiras;
 vector<int> hova;
};

int main() {
 vector<hely> terkep(4);
 terkep[0].nev = "otthon";
 terkep[0].leiras = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
 terkep[0].hova.push_back(1);
 terkep[0].hova.push_back(2);
 terkep[1].nev = "park";
 terkep[1].leiras = "A parkban vagy. Mehetsz a suliba, vagy haza.";
 terkep[1].hova.push_back(0);
 terkep[1].hova.push_back(3);
 terkep[2].nev = "bolt";
 terkep[2].leiras = "A boltnál vagy. Mehetsz a suliba, vagy haza.";
 terkep[2].hova.push_back(0);
 terkep[2].hova.push_back(3);
 terkep[3].nev = "suli";
 terkep[3].leiras = "Megérkeztél a suliba, éljen.";
// -

#include<iostream>
#include <vector>
using namespace std;

struct hely {
 string nev;
 string leiras;
 vector<int> hova;
};

int main() {
 vector<hely> terkep(4);
 terkep[0].nev = "otthon";
 terkep[0].leiras = "Otthon vagy. Mehetsz a parkba, vagy a bolthoz.";
 terkep[0].hova.push_back(1);
 terkep[0].hova.push_back(2);
 terkep[1].nev = "park";
 terkep[1].leiras = "A parkban vagy. Mehetsz a suliba, vagy haza.";
 terkep[1].hova.push_back(0);
 terkep[1].hova.push_back(3);
 terkep[2].nev = "bolt";
 terkep[2].leiras = "A boltnál vagy. Mehetsz a suliba, vagy haza.";
 terkep[2].hova.push_back(0);
 terkep[2].hova.push_back(3);
 terkep[3].nev = "suli";
 terkep[3].leiras = "Megérkeztél a suliba, éljen.";
// -

2.0
 terkep[3].nev = "suli";
 terkep[3].leiras = "Megérkeztél a suliba, éljen.";

 int h = 0;
 cout << terkep[h].leiras <<endl;
 while(h!=3) {
 cout << "Hova mész?" <<endl;
 for(int i=0; i<terkep[h].hova.size(); i++) {

 cout << i+1 << ": " << terkep[terkep[h].hova[i]].nev <<endl;
 }
 int melyik;
 cin >> melyik;
 if(melyik>0 && melyik<=terkep[h].hova.size()) {

 h = terkep[h].hova[melyik-1];
 } else {
 cout << "Hibás választás." <<endl;
 }
 cout << terkep[h].leiras <<endl;
 }

 return 0;
}

 terkep[3].nev = "suli";
 terkep[3].leiras = "Megérkeztél a suliba, éljen.";

 int h = 0;
 cout << terkep[h].leiras <<endl;
 while(h!=3) {
 cout << "Hova mész?" <<endl;
 for(int i=0; i<terkep[h].hova.size(); i++) {

 cout << i+1 << ": " << terkep[terkep[h].hova[i]].nev <<endl;
 }
 int melyik;
 cin >> melyik;
 if(melyik>0 && melyik<=terkep[h].hova.size()) {

 h = terkep[h].hova[melyik-1];
 } else {
 cout << "Hibás választás." <<endl;
 }
 cout << terkep[h].leiras <<endl;
 }

 return 0;
}

2.0
 terkep[3].nev = "suli";
 terkep[3].leiras = "Megérkeztél a suliba, éljen.";

 int h = 0;
 cout << terkep[h].leiras <<endl;
 while(h!=3) {
 cout << "Hova mész?" <<endl;
 for(int i=0; i<terkep[h].hova.size(); i++) {

 cout << i+1 << ": " << terkep[terkep[h].hova[i]].nev <<endl;
 }
 int melyik;
 cin >> melyik;
 if(melyik>0 && melyik<=terkep[h].hova.size()) {

 h = terkep[h].hova[melyik-1];
 } else {
 cout << "Hibás választás." <<endl;
 }
 cout << terkep[h].leiras <<endl;
 }

 return 0;
}

 terkep[3].nev = "suli";
 terkep[3].leiras = "Megérkeztél a suliba, éljen.";

 int h = 0;
 cout << terkep[h].leiras <<endl;
 while(h!=3) {
 cout << "Hova mész?" <<endl;
 for(int i=0; i<terkep[h].hova.size(); i++) {

 cout << i+1 << ": " << terkep[terkep[h].hova[i]].nev <<endl;
 }
 int melyik;
 cin >> melyik;
 if(melyik>0 && melyik<=terkep[h].hova.size()) {

 h = terkep[h].hova[melyik-1];
 } else {
 cout << "Hibás választás." <<endl;
 }
 cout << terkep[h].leiras <<endl;
 }

 return 0;
}

Menü

Sikeresen szeparáltuk a konkrét adatokat az általános
működéstől

Felkészültünk arra, hogy fájlból töltsük be a konkrét
adatokat

Ezt azzal értük el, hogy
 Azonosítható helyszíneket használtunk
 A helyszínek tulajdonságainak összetartozását is kifejeztük

Így végül a főprogram lényegi része független lett az
aktuális térképtől

2.0 értékelés

adatok.txtadatok.txt

2.1

otthon
Otthon vagy. Mehetsz a parkba, vagy a bolthoz.
2 1 2
park
A parkban vagy. Mehetsz a suliba, vagy haza.
2 0 3
bolt
A boltnál vagy. Mehetsz a suliba, vagy haza.
2 0 3
suli
Megérkeztél a suliba, éljen.
0

otthon
Otthon vagy. Mehetsz a parkba, vagy a bolthoz.
2 1 2
park
A parkban vagy. Mehetsz a suliba, vagy haza.
2 0 3
bolt
A boltnál vagy. Mehetsz a suliba, vagy haza.
2 0 3
suli
Megérkeztél a suliba, éljen.
0

programprogram

void betolt(ifstream& be, hely& mit) {
be >> ws;
getline(be, mit.nev);
getline(be, mit.leiras);
int lsz, h;
be >> lsz;
for(int i=0; i<lsz; i++) {

be >> h;
mit.hova.push_back(h);

}
}

void betolt(ifstream& be, hely& mit) {
be >> ws;
getline(be, mit.nev);
getline(be, mit.leiras);
int lsz, h;
be >> lsz;
for(int i=0; i<lsz; i++) {

be >> h;
mit.hova.push_back(h);

}
}

2.1
… … …
int main() {
 ifstream f("adatok.txt");
 int hsz, cel;
 f >> hsz >> cel;
 vector<hely> terkep(hsz);
 for(int i=0; i<hsz; i++) betolt(f, terkep[i]);
 int h = 0;
 cout << terkep[h].leiras <<endl;
 while(h!=cel) {
 cout << "Hova mész?" <<endl;
 for(int i=0; i<terkep[h].hova.size(); i++) {

 cout << i+1 << ": " << terkep[terkep[h].hova[i]].nev <<endl;
 }
 int melyik;
 cin >> melyik;
 if(melyik>0 && melyik<=terkep[h].hova.size()) {

 h = terkep[h].hova[melyik-1];
 } else {

 cout << "Hibás választás." <<endl;
 }
 cout << terkep[h].leiras <<endl;
 }
 return 0;
}

… … …
int main() {
 ifstream f("adatok.txt");
 int hsz, cel;
 f >> hsz >> cel;
 vector<hely> terkep(hsz);
 for(int i=0; i<hsz; i++) betolt(f, terkep[i]);
 int h = 0;
 cout << terkep[h].leiras <<endl;
 while(h!=cel) {
 cout << "Hova mész?" <<endl;
 for(int i=0; i<terkep[h].hova.size(); i++) {

 cout << i+1 << ": " << terkep[terkep[h].hova[i]].nev <<endl;
 }
 int melyik;
 cin >> melyik;
 if(melyik>0 && melyik<=terkep[h].hova.size()) {

 h = terkep[h].hova[melyik-1];
 } else {

 cout << "Hibás választás." <<endl;
 }
 cout << terkep[h].leiras <<endl;
 }
 return 0;
}

A „Térkép” fogalmának bevezetése
 fájlnévből teljes térkép betöltés
 összeköttetések kezelése

Néhány lehetséges változás a feladatban
 tárgyak kezelése, pl. csak akkor lehet egy összeköttetést használni, ha

van nálunk kulcs/bérlet…
 „Tárgy” és „Összeköttetés” típusok bevezetésével, a főprogram ciklusának

érintése nélkül megoldható

 grafikus megjelenítés
 A „Hely” mezőinek kibővítésével megoldható egyes helyszínek eltérő képe

További lehetőségek

Egy átlagos játékprogramon kevés programozó dolgozik, és
nagyon sok designer
Nem lehet bedrótozni semmit

Szét kell választani a konkrét adatokat az általános működéstől
Az általános működés megfogalmazásához jó, ha magasabb

szintű fogalmakat használhatunk
Problématér -- Megoldástér

Ebben segít a struct és a függvények…
…vagyis a saját típusaink, és azok műveletei

Áttekintés

	Slide 1
	Gyakorlatban
	1.0 Ahogy azt régen csináltuk volna
	1.0 Ahogy azt régen csináltuk volna
	1.1 Tovább fejlesztés
	1.1 Tovább fejlesztés_clipboard0
	1.2 Használjunk tárolót
	1.2 Használjunk tárolót
	„Bedrótozott” adat
	Jön a struct
	A helyszín reprezentációja
	2.0 Használjunk struct-ot _clipboard0
	2.0 Használjunk struct-ot
	2.0 Használjunk struct-ot
	2.0 értékelés
	2.1
	2.1
	További lehetőségek
	Áttekintés

