Bevezetés a programozasba

10. El6adas
Rekordok (folyt.)

ruct

#include<iostream>
using namespace std;

struct Rac {
int sz, ne;

};

void rac_hozzaad(Rac& rl, Rac r2) {
rl.sz = rl.sz * r2.ne + r2.sz * rl.ne;
rl.ne rl.ne * r2.ne;

}

int main() {
Rac rl = { 3, 6 };
Rac r2 = { 5, 6 };
rac_hozzaad(rl, r2);
// rl.sz == 48; rl.ne == 36; r2.sz == 5; r2.ne == 6;
return 0;

ruct

#include<iostream>
using namespace std;

struct Rac {
int sz, ne;

};

Rac rac_osszead(Rac rl, Rac r2) {
rl.sz = rl.sz * r2.ne + r2.sz * rl.ne;

rl.ne rl.ne * r2.ne;
return rl;
}
int main() {
Rac rl = { 3, 6 };
Rac r2 = { 5, 6 };
Rac r3;

r3 = rac_osszead(rl, r2); // r3.sz == 48; r3.ne == 36;
return 0;

Iba: Ismeretlen muvelet

#include<iostream>
using namespace std;

struct Rac {
int sz, ne;

};

int main() {
Rac rl =
Rac r2 =
Rac r3;

return 0;

}

e

/
—Operator

Két azonos struct tipusu valtozé egymasnak értékul adhato,

de sok mas muvelet (pl. az egyenléség vizsgalat) mar nem
mukodik

error: no match for 'operator+' in 'rl + r2°

Ha szikségunk van erre az operatorra, akkor meg kell irni

Az operatorok valojaban specialis nevd és hasznalatu
fuggvények, amelyeket ki lehet terjeszteni Uj tipusokra

perator elott

#include<iostream>
using namespace std;

struct Rac {
int sz, ne;

};

Rac rac_osszead(Rac rl, Rac r2) {
rl.sz = rl.sz * r2.ne + r2.sz * rl.ne;

rl.ne rl.ne * r2.ne;
return rl;
}
int main() {
Rac rl = { 3, 6 };
Rac r2 = { 5, 6 };
Rac r3;

r3 = rac_osszead(rl, r2); // r3.sz == 48; r3.ne == 36;
return 0;

/

—Operator tdlterheléssel

#include<iostream>
using namespace std;

struct Rac {
int sz, ne;

};

Rac operator+ (Rac rl, Rac r2) {
rl.sz = rl.sz * r2.ne + r2.sz * rl.ne;
rl.ne rl.ne * r2.ne;
return rl;

int main() {
Rac rl
Rac r2
Rac r3;
r3=rl+ r2; // r3.sz == 48; r3.ne == 36;
return 0;

{3, 61};
{5, 61};

/Oﬁok

Megvaldsithaté operatorok:
®@Aalaka: + - * & ! o~ H++ -

* operator@(A) {..}
® A@ alaku: ++ --

® operator@(A, int) {..}
®A@Balaka: + - * / % N & |,

< > == l= <= >= << > && ||
®* operator@(A,B) {..}
Az operatorok szerepét illik a neviikhoz és a szokasos jelentésiikh6z
igazodva hasznalni!

Alaptipusokra nem biralhatjuk feliil az operatort

Y 4 ::::::;§§§¢’/////444§§§;;;/,
/Oﬁok

Ami nem volt kozte: értékadas valamint értékadd osszetett
mUveletek (pl.: =, +=, -=, %=, ...)

Néhany jellegzetes, gyakori operatorhasznalat:
® ostream& operator<< (ostream& ki, T t)
® ijstream& operator>> (istream& be, T& t)

istream& operator>> (istream& be, pont& p) {
be >> p.x >> p.y;
return be;

}

pont a, b;
cin >> a >> b;

, : — ,/
/Oﬁok: visszatérési tipus

istream& operator>> (istream& be, pont& p) {
be >> p.x >> p.y;
return be;
}
pont a, b; .
(cin >> a) >> b; // OK (cin >> a) >> b;

cin >> b;

void operator>> (istream& be, pont& p) {
be >> p.x >> p.y;

}
pont a, b;
cin >> a >> b; // hiba!

(cin >> a) >> b:
>> b; //7?!

V4 V4 V4 Y 4 /
/Oﬁok készitése

Ha olyan tipust készitink, amelyre természetes moddon
értelmezhetdek az operatorok (pl. racionalis szam), valositsuk
meg! (természetesen minden mas fiiggvény mellett)

® Ezzel a tipusunk és a mUveleteink egységet alkothatnak

® A kod olvashatésaga javul

® A tipus ujrafelhasznalhatova valik, mas feladat megoldasara
valtoztatas nélkul atvihetd

® Csokken a kisértés, hogy a mezéket kozvetleniil megvaltoztassuk,
ezzel esetleg inkonzisztens allapotot |étrehozva

ervezési kérdések

A struct mezdinek valtozasa viszonylag gyakori esemény és
az a cél, hogy ennek a hatasa minimalis legyen

Azért minden olyan fuggvényben, amelynek a paraméterei

egy struct mezoi kozul kerulnek ki, ne kilon vegylk at a

mezoket, hanem egyben a teljes rekordot

® Ezzel a szignatura egyszerlsodik, de feladjuk azt a lehetéséget,
hogy struct nélkil is hasznalhato legyen a fliggvény. Ez utébbi

viszont csak jol behatarolhaté helyzetekben lehet fontos,
ritkdn merdl fel (pl. scriptnyelvek) és akkor is orvosolhato

ervezési kérdések

#include<iostream>
using namespace std;

struct pont {
double x, y;
}i

double tav(pont a, pont b) {
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

int main() {
pont a
pont b

{ 1.0, 1.0 };
{ 0.0, 0.0 };

cout << tav(a, b);

return 0;

/

—Rekord és fluggvényei

struct pont {
double x, y;

};

double tav(pont a, pont b) {
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
h

pont legtavolabbi(pont a, vector<pont> v) {
pont b = v[0];
double max = tav(a, b);
for(int 1i=1; i<v.size(); 1i++) {
if(tav(a, v[i]) > max) {
b = v[i];
max = tav(a, b);

}
}

return b;

/

—Rekord és fluggvényei

struct pont {
double x, vy, z;

};

double tav(pont a, pont b) {
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-

b.z));

}

pont legtavolabbi(pont a, vector<pont> v) {
pont b = v[0];

double max = tav(a, b);
for(int 1i=1; i<v.size(); 1i++) {
if(tav(a, v[i]) > max) {

b = v[i];

max = tav(a, b);

}
}

return b;

/

—Rekord és fluggvényei

struct pont {
double x, vy, z;

};

double tav(pont a, pont b) {
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-

b.z));

H

pont legtavolabbi(pont a, vector<pont> v) { 1
pont b = v[0]; absztrakcios
double max = tav(a, b); hatar

for(int 1i=1; i<v.size(); 1i++) {
if(tav(a, v[i]) > max) {

b = v[i];

max = tav(a, b);

}
}

return b;

ervezési kérdések

Az el6z6 példaban egy teljes fliggvényben megsporoltuk a
valtoztatasi kényszert

El6nyok:

® Kevesebbet kell gépelni, ha valtozas van

® Ez nem csak idobeli megtakaritas, de biztonsdgot is ad: ha nem kell atirni,
akkor nincs mit elfelejteni
® A kéd jobban tiikrozi a célt

® Korvonalazodik a tipus és a tipus muveleteinek a kapcsolata

® Vannak fliggvények, amelyek ,belelatnak”, és vannak, amelyek a ,belelato
fuggvények”-et hasznaljak

ervezési kérdések

Absztrakcio: egy entitds tulajdonsagainak olyan
szukitése, amely egy adott szempont szerint csak a
fontosakat tartja meg

A struct mezé6it tehat a felhasznalas szabja meg

))

Az entitdsok ,fontos” tulajdonsagai azok, amelyek
alapjan a feladat szempontjai szerint leirhatoak,
egymastdl megkulonboztethetbek az egyes objektumok

® Tipikus példa a jo kitoltendé Grlap

/

ervezési kérdések

A struct akkor jo, ha
® A neve és a szerepe jol illeszkedik egymashoz

® A szerepe és a mez6i kozott fenndll a kolcsonos sziikségesség

Csak a ,fontos” adatok vannak a mezoék kozott (nem kerul vele
irrelevans (pl. ciklusvaltozé) vagy mindenhol egyforma adat)

Minden ,fontos” adat benne van

® A mez6ék Aaltal meghatarozott szerep és a felhasznalas
harmonikus

Minden mez6t felhasznal a feladat megoldasa

/
—Tervezési kérdések: gyakorlatban

A feladat megértése utan a lehetséges megoldasokhoz
szukséges adatokat irjuk a mezékbe

Elkészitjik a sziikséges m(iveleteket, ilyenkor a main () -ben
csak teszteljuk ezek helyességét

Végul a mar egyszerien leirhatd feladatot implementaljuk a
main()-ben

Fontos, hogy folyamatosan, akar két-harom
programsoronként gy6zoédjink meg az eddigiek
mukodoképességérol

/
agfuggvények

A string s valtozo hosszat az s.length() fliggvénnyel kérjiik
le

® biztos, hogy fiiggvény: meg lehet hivni, és () van a végén

® biztos, hogy mez6: a valtozo utan '.' -al elvalasztva van irva

lgazabol mindkettd: tagfliggvény

A legfontosabb tulajdonsagai a tagfliggvénynek:

® mindig egy struct tipusu valtozéra hivjuk meg

® ezt a valtozdt a tagfliggvény implicit paraméterként megkapja (a
paraméterlistdjaban nem fog szerepelni)

® 3 struct tipus mezéneveit, mint 6nallé valtozokat hasznalhatja

/

mgvényként

#include<iostream>
using namespace std;

struct koord {
double x, y;

}:

koord olvas(istream& be) {
koord a;
be >> a.x >> a.y;
return a;

int main() {
koord a;
a = olvas(cin);
cout << a.x << "," << a.y << endl;
return 0;

agfuggvényként

#include<iostream>
using namespace std;

struct koord {
double x, y;

void olvas(istream& be) {
be >> x >> y;

}
}i

int main() {
koord a;
a.olvas(cin);
cout << a.x << "," << a.y << endl;
return 0;

/
agfuggvények

Az igazan szép megoldasok mindent amit lehet

tagfliggvényként adnak meg

® Néhany dolgot nem érdemes tagfliggvényként
megadni, tipikusan az operator<<(T), amit
ugyan el lehet késziteni, de ilyenkor kiulon ossze kell
hangolni a tagfiigevényt a rekorddal: friend
kulcsszé (Ez most nem képezi részét a torzsanyagnak)

Minden mas esetben a tagfliggvény a jobb

/
Mr tagfiggvény

A kimaradt operatorok is megvalosithatdak, de kizarolag tagfliggvényként
Tehat ha értékadast szeretnél a tipusodhoz, tagfliggvényként kell leirnod

struct S {

void operator= (S masik){
. mezo = masik.mezo; ..

};

:::::””7”///,%44§§§§§;/,
mw szintaxisa

#include<iostream>
using namespace std;

struct koord {
double x, y;

void operator= (koord masik){
X = masik.Xx;
y = masik.y;

}
}i

int main() {
koord a, b;
b = a;
return 0;

}

:::::””7”///,%44§§§§§;/,
mw hasznalata

#include<iostream>
using namespace std;

struct koord {
double x, y;

void operator= (koord masik){
X = masik.Xx;
y = masik.y;

}i

int main() {
koord a, b, c;
c=Db=a; // hiba
return 0;

:::=;”’%%’/////%4§§§§;;/,
mr hasznalata

#include<iostream>
using namespace std;
struct koord {
double x, y;
koord operator= (koord masik){ A *this jelentése: az az
X = mas;t.x; objektum, amelyen a
= masik.y; . , ,
),fetum *th)ils; - tagfliggvényt meghivtuk.
}
b Az Osszes értékado tagfliggvény
int main() { végén fontos
koord a, b, c;
c=b=a;
return 0;

o s o oo Y 4 /
magfu govények

Harom specialis tagfliggvényt néziink, mindben ko6zos, hogy a nevik
megegyezik a tipus nevével

struct S {

® S(paraméterek): konstruktor, minden valtozé deklaracional lefut
® igy mikodik pl.: az ofstream £("a.txt");

® ~S(): destruktor, a valtozo élettartamanak végén fut le
® S(const S& m): masolokonstruktor, inicializalaskor ez hivodik meg, és nem az
értékadas
}
Ezek nem kotelez6ek a kettesért, de roppant hasznosak.
® példaul kezdeti érték problémakat jol lehet kezelni

/
—(athatdsagi szabalyok

A struct-on belil lehetséges az egyes mezdk vagy tagfliggvények
lathatosaganak mddositasa
Lathatosagi modositok:
® public: mindenki mindent lat
® ez az alapértelmezett struct esetén
® private: ezeket a dolgokat csak a tagfliggvények lathatjak

A modositdk a rekord végéig vagy a kovetkezd modositdig hatnak

Ezekkel megel6zheté, hogy a program kritikus részérél
inkonzisztens allapot jojjon létre

Wcsak tagfliggvényekb6l™

erhetoek el

#include<iostream>
using namespace std;

struct koord {
private:
double x, y;

public:
void olvas(istream& be) {
be >> x >> y;

}
}:
int main() {
koord a;
a.olvas(cin); // OK
cout << a.x << "," << a.y << endl; // hiba

return 0;

Y 4 Y 4 Y 4 Y 4 /
Mg szabalyozasa

Atlatszatlan tipus” fogalma: a tipus reprezentacidja nem
ismert vagy nem hasznalhaté kozvetlenul, kizardlag a
tagfliggvényeken keresztil lehet a tipust hasznalni

Megvalositas: minden mezé private, (minden) tagfliggvény
public

Az absztrakcids hatar beleirasa ez a forraskodba, akinek nem
dolga, ne foglalkozzon a reprezentacioval

Ennek a technikdnak az elonyeit foleg a csoportos
programozasnal élvezhetjuk

/
—Kitekintés

A struct fogalma, a muveletek és a lathatosag
modositasa egyutt messzire vezet

® Az objektumorientalt programozas el6szobéja

Adat absztrakcio: a feladat megoldasat absztrakt
fogalmakkal is fel lehet irni, ha megvan a kapocs az
absztrakt fogalmak és az implementacioé kozott

® Az absztrakt fogalmak a rekordok
® A kapocs a megvalositott fliggvények

oo , /
/O(foglalas

A struct arra vald, hogy adatokat Osszefogva () tipust

hozzunk |étre

A tipusunkhoz muveleteket készittiink

® fliggvényekkel, amelyek paraméterként vagy visszatérési
tipusként hasznaljak

® operatorokkal

® tagfliggvényekkel

A lathatosag szabalyozasaval esetleg kikényszerithetjlk,

hogy a tipust kizarélag a muveleteivel hasznaljak

	Slide 1
	Struct
	Struct
	Hiba: Ismeretlen művelet
	Operátor
	Slide 6
	Operátor példa
	Operátorok
	Operátorok
	Operátorok: visszatérési típus
	Operátorok készítése
	Tervezési kérdések
	Tervezési kérdések
	Rekord és függvényei
	Slide 15
	Slide 16
	Tervezési kérdések_clipboard0
	Tervezési kérdések
	Tervezési kérdések
	Tervezési kérdések: gyakorlatban
	Tagfüggvények
	Külső függvényként
	Tagfüggvényként
	Tagfüggvények
	= operátor tagfüggvény
	= operátor használata
	= operátor használata
	= operátor használata
	Speciális tagfüggvények
	Láthatósági szabályok
	A private mezők csak tagfüggvényekből érhetőek el
	Láthatóság szabályozása
	Kitekintés
	Összefoglalás

