
Bevezetés a programozásba

10. Előadás
Rekordok (folyt.)

Struct
#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

void rac_hozzaad(Rac& r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
}

int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 rac_hozzaad(r1, r2);
 // r1.sz == 48; r1.ne == 36; r2.sz == 5; r2.ne == 6;
 return 0;
}

#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

void rac_hozzaad(Rac& r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
}

int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 rac_hozzaad(r1, r2);
 // r1.sz == 48; r1.ne == 36; r2.sz == 5; r2.ne == 6;
 return 0;
}

Struct
#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

Rac rac_osszead(Rac r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
 return r1;
}
int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;
 r3 = rac_osszead(r1, r2); // r3.sz == 48; r3.ne == 36;
 return 0;
}

#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

Rac rac_osszead(Rac r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
 return r1;
}
int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;
 r3 = rac_osszead(r1, r2); // r3.sz == 48; r3.ne == 36;
 return 0;
}

Hiba: Ismeretlen művelet
#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;

 r3 = r1 + r2;

 return 0;
}

#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;

 r3 = r1 + r2;

 return 0;
}

Két azonos struct típusú változó egymásnak értékül adható,
de sok más művelet (pl. az egyenlőség vizsgálat) már nem
működik

error: no match for 'operator+' in 'r1 + r2‘

Ha szükségünk van erre az operátorra, akkor meg kell írni
Az operátorok valójában speciális nevű és használatú

függvények, amelyeket ki lehet terjeszteni új típusokra

Operátor

Operátor előtt
#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

Rac rac_osszead(Rac r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
 return r1;
}
int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;
 r3 = rac_osszead(r1, r2); // r3.sz == 48; r3.ne == 36;
 return 0;
}

#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

Rac rac_osszead(Rac r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
 return r1;
}
int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;
 r3 = rac_osszead(r1, r2); // r3.sz == 48; r3.ne == 36;
 return 0;
}

Operátor túlterheléssel
#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

Rac operator+ (Rac r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
 return r1;
}
int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;
 r3 = r1 + r2; // r3.sz == 48; r3.ne == 36;
 return 0;
}

#include<iostream>
using namespace std;

struct Rac {
 int sz, ne;
};

Rac operator+ (Rac r1, Rac r2) {
 r1.sz = r1.sz * r2.ne + r2.sz * r1.ne;
 r1.ne = r1.ne * r2.ne;
 return r1;
}
int main() {
 Rac r1 = { 3, 6 };
 Rac r2 = { 5, 6 };
 Rac r3;
 r3 = r1 + r2; // r3.sz == 48; r3.ne == 36;
 return 0;
}

Megvalósítható operátorok:
@A alakú: + - * & ! ~ ++ --

 operator@(A) {..}
A@ alakú: ++ --

 operator@(A, int) {..}
A@B alakú : + - * / % ^ & | ,

 < > == != <= >= << >> && ||
 operator@(A,B) {..}

 Az operátorok szerepét illik a nevükhöz és a szokásos jelentésükhöz
igazodva használni!

 Alaptípusokra nem bírálhatjuk felül az operátort

Operátorok

Ami nem volt közte: értékadás valamint értékadó összetett
műveletek (pl.: =, +=, -=, %=, …)

Néhány jellegzetes, gyakori operátorhasználat:
ostream& operator<< (ostream& ki, T t)
istream& operator>> (istream& be, T& t)

Operátorok

istream& operator>> (istream& be, pont& p) {
be >> p.x >> p.y;
return be;

}
...
pont a, b;
cin >> a >> b;

istream& operator>> (istream& be, pont& p) {
be >> p.x >> p.y;
return be;

}
...
pont a, b;
cin >> a >> b;

Operátorok: visszatérési típus

void operator>> (istream& be, pont& p) {
be >> p.x >> p.y;

}
...
pont a, b;
cin >> a >> b; // hiba!

void operator>> (istream& be, pont& p) {
be >> p.x >> p.y;

}
...
pont a, b;
cin >> a >> b; // hiba!

istream& operator>> (istream& be, pont& p) {
be >> p.x >> p.y;
return be;

}
...
pont a, b;
(cin >> a) >> b; // OK

istream& operator>> (istream& be, pont& p) {
be >> p.x >> p.y;
return be;

}
...
pont a, b;
(cin >> a) >> b; // OK (cin >> a) >> b;

cin >> b;

(cin >> a) >> b;
 >> b; //?!

Ha olyan típust készítünk, amelyre természetes módon
értelmezhetőek az operátorok (pl. racionális szám), valósítsuk
meg! (természetesen minden más függvény mellett)

 Ezzel a típusunk és a műveleteink egységet alkothatnak
 A kód olvashatósága javul
 A típus újrafelhasználhatóvá válik, más feladat megoldására

változtatás nélkül átvihető
 Csökken a kísértés, hogy a mezőket közvetlenül megváltoztassuk,

ezzel esetleg inkonzisztens állapotot létrehozva

Operátorok készítése

A struct mezőinek változása viszonylag gyakori esemény és
az a cél, hogy ennek a hatása minimális legyen

Azért minden olyan függvényben, amelynek a paraméterei
egy struct mezői közül kerülnek ki, ne külön vegyük át a
mezőket, hanem egyben a teljes rekordot
Ezzel a szignatúra egyszerűsödik, de feladjuk azt a lehetőséget,

hogy struct nélkül is használható legyen a függvény. Ez utóbbi
viszont csak jól behatárolható helyzetekben lehet fontos,
ritkán merül fel (pl. scriptnyelvek) és akkor is orvosolható

Tervezési kérdések

Tervezési kérdések
#include<iostream>
using namespace std;

struct pont {
 double x, y;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

int main() {
 pont a = { 1.0, 1.0 };
 pont b = { 0.0, 0.0 };

 cout << tav(a, b);

 return 0;
}

#include<iostream>
using namespace std;

struct pont {
 double x, y;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

int main() {
 pont a = { 1.0, 1.0 };
 pont b = { 0.0, 0.0 };

 cout << tav(a, b);

 return 0;
}

Rekord és függvényei
struct pont {
 double x, y;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

pont legtavolabbi(pont a, vector<pont> v) {
 pont b = v[0];
 double max = tav(a, b);
 for(int i=1; i<v.size(); i++) {

if(tav(a, v[i]) > max) {
 b = v[i];
 max = tav(a, b);
}

 }
 return b;
}

struct pont {
 double x, y;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

pont legtavolabbi(pont a, vector<pont> v) {
 pont b = v[0];
 double max = tav(a, b);
 for(int i=1; i<v.size(); i++) {

if(tav(a, v[i]) > max) {
 b = v[i];
 max = tav(a, b);
}

 }
 return b;
}

Rekord és függvényei
struct pont {
 double x, y, z;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-
b.z));
}
pont legtavolabbi(pont a, vector<pont> v) {
 pont b = v[0];
 double max = tav(a, b);
 for(int i=1; i<v.size(); i++) {

if(tav(a, v[i]) > max) {
 b = v[i];
 max = tav(a, b);
}

 }
 return b;
}

struct pont {
 double x, y, z;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-
b.z));
}
pont legtavolabbi(pont a, vector<pont> v) {
 pont b = v[0];
 double max = tav(a, b);
 for(int i=1; i<v.size(); i++) {

if(tav(a, v[i]) > max) {
 b = v[i];
 max = tav(a, b);
}

 }
 return b;
}

Rekord és függvényei
struct pont {
 double x, y, z;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-
b.z));
}
pont legtavolabbi(pont a, vector<pont> v) {
 pont b = v[0];
 double max = tav(a, b);
 for(int i=1; i<v.size(); i++) {

if(tav(a, v[i]) > max) {
 b = v[i];
 max = tav(a, b);
}

 }
 return b;
}

struct pont {
 double x, y, z;
};

double tav(pont a, pont b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-
b.z));
}
pont legtavolabbi(pont a, vector<pont> v) {
 pont b = v[0];
 double max = tav(a, b);
 for(int i=1; i<v.size(); i++) {

if(tav(a, v[i]) > max) {
 b = v[i];
 max = tav(a, b);
}

 }
 return b;
}

absztrakciós
határ

Az előző példában egy teljes függvényben megspóroltuk a
változtatási kényszert

Előnyök:
Kevesebbet kell gépelni, ha változás van

 Ez nem csak időbeli megtakarítás, de biztonságot is ad: ha nem kell átírni,
akkor nincs mit elfelejteni

A kód jobban tükrözi a célt
Körvonalazódik a típus és a típus műveleteinek a kapcsolata

 Vannak függvények, amelyek „belelátnak”, és vannak, amelyek a „belelátó
függvények”-et használják

Tervezési kérdések

Absztrakció: egy entitás tulajdonságainak olyan
szűkítése, amely egy adott szempont szerint csak a
fontosakat tartja meg

A struct mezőit tehát a felhasználás szabja meg
Az entitások „fontos” tulajdonságai azok, amelyek

alapján a feladat szempontjai szerint leírhatóak,
egymástól megkülönböztethetőek az egyes objektumok
Tipikus példa a jó kitöltendő űrlap

Tervezési kérdések

A struct akkor jó, ha
A neve és a szerepe jól illeszkedik egymáshoz
A szerepe és a mezői között fennáll a kölcsönös szükségesség

 Csak a „fontos” adatok vannak a mezők között (nem kerül vele
irreleváns (pl. ciklusváltozó) vagy mindenhol egyforma adat)

 Minden „fontos” adat benne van

A mezők által meghatározott szerep és a felhasználás
harmonikus

 Minden mezőt felhasznál a feladat megoldása

Tervezési kérdések

A feladat megértése után a lehetséges megoldásokhoz
szükséges adatokat írjuk a mezőkbe

Elkészítjük a szükséges műveleteket, ilyenkor a main()-ben
csak teszteljük ezek helyességét

Végül a már egyszerűen leírható feladatot implementáljuk a
main()-ben

Fontos, hogy folyamatosan, akár két-három
programsoronként győződjünk meg az eddigiek
működőképességéről

Tervezési kérdések: gyakorlatban

A string s változó hosszát az s.length() függvénnyel kérjük
le
 biztos, hogy függvény: meg lehet hívni, és () van a végén
 biztos, hogy mező: a változó után '.' –al elválasztva van írva

Igazából mindkettő: tagfüggvény
A legfontosabb tulajdonságai a tagfüggvénynek:

 mindig egy struct típusú változóra hívjuk meg
 ezt a változót a tagfüggvény implicit paraméterként megkapja (a

paraméterlistájában nem fog szerepelni)

 a struct típus mezőneveit, mint önálló változókat használhatja

Tagfüggvények

Külső függvényként
#include<iostream>
using namespace std;

struct koord {
 double x, y;
};

koord olvas(istream& be) {
 koord a;
 be >> a.x >> a.y;
 return a;
}

int main() {
 koord a;
 a = olvas(cin);
 cout << a.x << "," << a.y << endl;
 return 0;
}

#include<iostream>
using namespace std;

struct koord {
 double x, y;
};

koord olvas(istream& be) {
 koord a;
 be >> a.x >> a.y;
 return a;
}

int main() {
 koord a;
 a = olvas(cin);
 cout << a.x << "," << a.y << endl;
 return 0;
}

Tagfüggvényként
#include<iostream>
using namespace std;

struct koord {
 double x, y;

 void olvas(istream& be) {
be >> x >> y;

 }

};

int main() {
 koord a;
 a.olvas(cin);
 cout << a.x << "," << a.y << endl;
 return 0;
}

#include<iostream>
using namespace std;

struct koord {
 double x, y;

 void olvas(istream& be) {
be >> x >> y;

 }

};

int main() {
 koord a;
 a.olvas(cin);
 cout << a.x << "," << a.y << endl;
 return 0;
}

Az igazán szép megoldások mindent amit lehet
tagfüggvényként adnak meg
Néhány dolgot nem érdemes tagfüggvényként

megadni, tipikusan az operator<<(T), amit
ugyan el lehet készíteni, de ilyenkor külön össze kell
hangolni a tagfüggvényt a rekorddal: friend
kulcsszó (Ez most nem képezi részét a törzsanyagnak)

Minden más esetben a tagfüggvény a jobb

Tagfüggvények

A kimaradt operátorok is megvalósíthatóak, de kizárólag tagfüggvényként
Tehát ha értékadást szeretnél a típusodhoz, tagfüggvényként kell leírnod

struct S {
 …
 void operator= (S masik){
 … mezo = masik.mezo; …
 }
 …
};

= operátor tagfüggvény

= operátor szintaxisa
#include<iostream>
using namespace std;

struct koord {
 double x, y;

 void operator= (koord masik){
x = masik.x;
y = masik.y;

 }
};

int main() {
 koord a, b;
 b = a;
 return 0;
}

#include<iostream>
using namespace std;

struct koord {
 double x, y;

 void operator= (koord masik){
x = masik.x;
y = masik.y;

 }
};

int main() {
 koord a, b;
 b = a;
 return 0;
}

= operátor használata
#include<iostream>
using namespace std;

struct koord {
 double x, y;

 void operator= (koord masik){
x = masik.x;
y = masik.y;

 }
};

int main() {
 koord a, b, c;
 c = b = a; // hiba
 return 0;
}

#include<iostream>
using namespace std;

struct koord {
 double x, y;

 void operator= (koord masik){
x = masik.x;
y = masik.y;

 }
};

int main() {
 koord a, b, c;
 c = b = a; // hiba
 return 0;
}

= operátor használata
#include<iostream>
using namespace std;

struct koord {
 double x, y;

 koord operator= (koord masik){
x = masik.x;
y = masik.y;
return *this;

 }
};

int main() {
 koord a, b, c;
 c = b = a;
 return 0;
}

#include<iostream>
using namespace std;

struct koord {
 double x, y;

 koord operator= (koord masik){
x = masik.x;
y = masik.y;
return *this;

 }
};

int main() {
 koord a, b, c;
 c = b = a;
 return 0;
}

A *this jelentése: az az
objektum, amelyen a

tagfüggvényt meghívtuk.

Az összes értékadó tagfüggvény
végén fontos

Három speciális tagfüggvényt nézünk, mindben közös, hogy a nevük
megegyezik a típus nevével

struct S {
 S(paraméterek): konstruktor, minden változó deklarációnál lefut

 így működik pl.: az ofstream f("a.txt");

 ~S(): destruktor, a változó élettartamának végén fut le
 S(const S& m): másolókonstruktor, inicializáláskor ez hívódik meg, és nem az

értékadás

}
Ezek nem kötelezőek a kettesért, de roppant hasznosak.
 Például kezdeti érték problémákat jól lehet kezelni

Speciális tagfüggvények

A struct-on belül lehetséges az egyes mezők vagy tagfüggvények
láthatóságának módosítása

Láthatósági módosítók:
 public: mindenki mindent lát

 ez az alapértelmezett struct esetén

 private: ezeket a dolgokat csak a tagfüggvények láthatják

A módosítók a rekord végéig vagy a következő módosítóig hatnak
Ezekkel megelőzhető, hogy a program kritikus részéről

inkonzisztens állapot jöjjön létre

Láthatósági szabályok

A private mezők csak tagfüggvényekből
érhetőek el
#include<iostream>
using namespace std;

struct koord {
private:
 double x, y;

public:
 void olvas(istream& be) {

be >> x >> y;
 }
};

int main() {
 koord a;
 a.olvas(cin); // OK
 cout << a.x << "," << a.y << endl; // hiba
 return 0;
}

#include<iostream>
using namespace std;

struct koord {
private:
 double x, y;

public:
 void olvas(istream& be) {

be >> x >> y;
 }
};

int main() {
 koord a;
 a.olvas(cin); // OK
 cout << a.x << "," << a.y << endl; // hiba
 return 0;
}

„Átlátszatlan típus” fogalma: a típus reprezentációja nem
ismert vagy nem használható közvetlenül, kizárólag a
tagfüggvényeken keresztül lehet a típust használni

Megvalósítás: minden mező private, (minden) tagfüggvény
public

Az absztrakciós határ beleírása ez a forráskódba, akinek nem
dolga, ne foglalkozzon a reprezentációval

Ennek a technikának az előnyeit főleg a csoportos
programozásnál élvezhetjük

Láthatóság szabályozása

A struct fogalma, a műveletek és a láthatóság
módosítása együtt messzire vezet
Az objektumorientált programozás előszobája

Adat absztrakció: a feladat megoldását absztrakt
fogalmakkal is fel lehet írni, ha megvan a kapocs az
absztrakt fogalmak és az implementáció között
Az absztrakt fogalmak a rekordok
A kapocs a megvalósított függvények

Kitekintés

A struct arra való, hogy adatokat összefogva új típust
hozzunk létre

A típusunkhoz műveleteket készítünk
 függvényekkel, amelyek paraméterként vagy visszatérési

típusként használják
operátorokkal
 tagfüggvényekkel

A láthatóság szabályozásával esetleg kikényszeríthetjük,
hogy a típust kizárólag a műveleteivel használják

Összefoglalás

	Slide 1
	Struct
	Struct
	Hiba: Ismeretlen művelet
	Operátor
	Slide 6
	Operátor példa
	Operátorok
	Operátorok
	Operátorok: visszatérési típus
	Operátorok készítése
	Tervezési kérdések
	Tervezési kérdések
	Rekord és függvényei
	Slide 15
	Slide 16
	Tervezési kérdések_clipboard0
	Tervezési kérdések
	Tervezési kérdések
	Tervezési kérdések: gyakorlatban
	Tagfüggvények
	Külső függvényként
	Tagfüggvényként
	Tagfüggvények
	= operátor tagfüggvény
	= operátor használata
	= operátor használata
	= operátor használata
	Speciális tagfüggvények
	Láthatósági szabályok
	A private mezők csak tagfüggvényekből érhetőek el
	Láthatóság szabályozása
	Kitekintés
	Összefoglalás

