o —

Bevezetés a programozasba

9. El6adas
Rekordok

/
Mmény visszaadasa VD

Egyszerlen tobb paramétert veszlnk at referencia szerint
® Ezek értékével egyaltalan nem foglalkozunk, csak fellilirjuk azokat

® [gy a paraméter jelentése az lesz, hogy ,ide meg ide kérem az
eredményt”

Lesz még masfajta megoldas is erre a problémara
J6vé-héten A mai 6ran megnézzik

/
/Tl'pusﬁru ki

Tipuskonstrukcid: meglévé tipusokbdl Uj tipus |étrehozasa

Eddigi példak:

®T v[10]: 10 darab T tipusu valtozo alkot egy primitiv vektort
(tombot)

® T m[10][10]: 10x10 méretd (primitiv) matrix, T tipusu elemekkel

® vector<T> v(10, e): 10 darab T tipusu valtozé alkot egy STL vektort
‘e’ kezdeti értékkel

® vector< vector<T> > m(10, vector<T>(10,e)): 10x10 méret
matrix, T tipusu elemekkel, ‘e’ kezdeti értékekkel

/

/Tl'pus/konstru kcid

Rekord: vegyes tipusokbdl allé 4j tipus
C++-ban: struct
Az elv: az Osszetartozd adatok oOsszetartozasa jelenjen meg,
mint nyelvi elem
Példa: kétdimenzids koordinatakat eddig két tombben taroltuk:
double x[100]; és
double y[100];

Mostantdl irhatjuk majd ugy, hogy:
koord k[100];

/
—2D-s koordinatak abrazolasa eddig

#include <iostream>
using namespace std;

int main()

{

double x, y;

X =1.0; y =1.0
cout << "[" << x <
return 0;

II'II << y << II]II << end'l.;

—struct e

#include <iostream>
using namespace std;

struct koord {
double x, y;

b
int main()
{
koord k;
k.x = 1.0; k.y = 1.0;
cout << "[" << k.x << "," << k.y << "]" << endl;

return 0;

—struct e

A struct kulcsszo jelentése: most egy Uj tipust fogok leirni

struct név {
Tl mezol, mezo2, ..;
T2 mezoX, ..;

&
A tipus neve barmi lehet, ami nem foglalt még

T1, T2, ... tipusoknak mar ismert tipusoknak kell lennitik
A mezonevek kilonbozoek legyenek

/
—Amezék

A rekord mez6ékbdl all (,tag”, angolul ,member”)

Minden mez6 egy mar ismert tipusba sorolhato, és valtozoként
hasznalhato: kaphat értéket, olvashato, referalhato, stb.

A mezOk hasznalatakor a struct tipusu valtozok utan
karakterrel elvalasztva kell a mezbnevet irni
® Azaz a ‘.’ egy operator, amely segitségével kivalaszthatjuk a rekord
egy mezojét
Tehat az el6z6 példaban a ‘k. X’ jelentése: a kK koord tipusu
valtozonak az X mezéje, amely egy double tipusu érték lesz

()
[J

ezO vs. valtozo

Valtozonak szokas nevezni mindent, amit kulon deklaraltunk a
programkddban

® Mez6t a rekord tobbi mezéje nélkil nem lehet deklaralni

Egy struct egy mez6jét azonban hasonldéan hasznaljuk, mint egy
valtozot: adunk neki értéket, kiolvassuk, stb.

A szbhasznalat tehat nem a képességeket, hanem a szerepet fedi:
onalléan hasznalandé (valtozo), vagy egy nagyobb adatcsoport része
(mezd)

| legyen mez0, és mi ne?

A rekord szerepét mindig toltse ki teljesen a mezok dsszessége, és
ne legyen benne felesleges mezd!

Reprezentacio: egy absztrakt fogalom abrazolasa meglévd
tipusokkal

® 2D koordinata két valos szammal

® racionalis szam két egész szammal, mint szamlaloé és nevezé
A ciklusvaltozé példaul nincs a mezék kozott: nem tartozik a
fogalmat leird, fontos adatokhoz
Az viszont nem baj, ha a teljes értékkészlet nincsen kihasznalva

® pl.: tanul6 jegye: int mezo. (EK: 1, 2, 3, 4, 5)

V 4 Y 4 /
—struct és a tipusok

Az adott struct leirdsa utdan a megadott név mar egy
kész tipus, hasznalhatd deklaracidkban, paraméterlistakban

® Akar egy kovetkezé struct mezéjénél is, vektorban,
primitiv tombben, stb.

A rekord mezdje is lehet vektor, vagy primitiv tomb

Fontos, hogy a forraskdd fentrdl lefelé olvasva ezt a
sorrendet betartsa!

® (Csak arra hivatkozhatunk a kddban, amit el6tte mar deklaraltunk,
kiilbnben a forditd nem fogja felismerni!)

/
—struct structban 1.

struct ember {
string nev;
string lakcim;
int szuletesi ev;

};

struct diak {
ember e;
vector<int> jegyek;

};

/

—struct structban II.

struct pixel {
char r, g, b;

};

struct kep {
int x, y;
vector< vector<pixel> > p;

}i

Y 4 oo V4 /
7iﬁTﬁé?Z§}uggvenyek

Az U] tipusaink hasznalhatoak fuiggvény paraméterekként is

Fontos megemliteni, hogy itt egyre jobban kezd szamitani a
hatékonysag, egy vector<double> mezbvel is rendelkezd
struct érték szerint atadva lemasolodik, ami lassu (és
feleslegesen nagy a memoriaigénye)

Visszatérési értékként is hasznalhato, vagyis igy lehet tobb
eredményt egyszerre visszaadni: tobb, 6sszetartozo és ezért
egy tipusba 6sszefoghat6 adatként

V4 X V4 V/ 4 /
—struct és 1 fluggvények: el6tte

struct pont{
double x, y;
string nev;

}i

void kiir(double x, double y, string nev){
Cout << II[II << x << II'II << y << II'II <<
nev << "]" << endl;

}

int main(){
pont p;

kiir(p.x, p.y, p.nev);
return 0;

V 4 X V4 Y 4 /
—struct és 1 fliggvények: utana

struct pont{
double x, y;
string nev;

}i

void kiir(pont p){
Cout << II[II << p.x << II’II << p.y << II'II <<
p.nev << "]" << endl;

}

int main(){
pont p;

kiir(p);
return 0;

° V4 Y 4 ° V4 1/
—struct visszatérési tipusként

struct koord{
double x, y;

};

koord olvas(istreamé& be){
koord a;
be >> a.x >> a.y;
return a;

int main(){
koord a;
a = olvas(cin);
cout << a.x << "," << a.y << endl;
return 0;

/ /

Intermezzo pesszimistaknak

Az elégséges jegyhez sziikséges anyag immar teljes
mértékben elhangzott™.

*a hirdetés nem mindsul ajanlatnak

/
/E\Wcié - forward declaration

struct pont{
double x, y;
string nev;

}i

void kiir(pont p); // fiiggvény forward deklaracio
int main(){

kiir(p);
return 0;

}

void kiir(pont p){ //fiiggvény implementacio
cout << II[II << p.x << II'II << p.y << II'II <<
p.nev << "]" << endl;

/
/E\Wcié - forward declaration

struct pont; // struct forward deklaracio
void kiir(pont p); // fiiggvény forward deklaracio

struct pont{
double x, y;
string nev;

}i

int main(){
kiir(p);
return 0;

}

void kiir(pont p){ //fiiggvény implementacio
cout << II[II << p.x << II'II << p.y << II'II <<
p.nev << "]" << endl;

/
/E\Wcié - forward declaration

struct pont; // struct forward deklaracio

void kiir(pont p){
cout << "[" << p.X << "," << p.y << "," << //[HE: a mezdket még
p.nev << "]" << endl; //nem ismerjiik
}
struct pont{
double x, y;
string nev;

}i

int main(){

kiir(p);
return 0;

nicializalas
Figyelem! Az értékadas és az inicializalas két kilonboz6 dolog, csak
mindketto6 jele a ,="

int a = 0; inicializdlas: deklaralassal egyiitt adunk kezdeti értéket
int a;

a = 0; értékadas: a deklaracioé utan, barmikor maskor adunk Uj
értéket

A struct esetében értéket adni mezénként lehet, vagy egy masik
struct-tal

Inicializalni viszont lehet egyben is:
koord k={0.0,0.0 }; // a mez6k sorrendjében!

::25554%/”///%44§§§§/,

struct inicializalas

struct pont{
double x, y;
string nev;

}i

void kiir(pont p){
Cout << II[II << p.x << II’II << p.y << II'II <<
p.nev << "]" << endl;

}

int main(){
pont p={ 1.0, 1.0, "a" };
kiir(p);
return 0;

struct a structban inicializalas

struct ember {
string nev;
string lakcim;
int szuletesi_ev;

}i
struct diak {
ember e;
vector<int> jegyek;
}i

int main(){
diak d = {{"Sanyi", " Bp", 1974 }, vector<int>(10,5) };
cout << d.e.nev << " " << d.e.lakcim;
return 0;

struct inicializalasa

Ez egy extra lehet6ség, érdemes a hasznalatat azonban
minimalisra csokkenteni

Hatranyok:
® Ha valtozik a struct oOsszetétele, mert bekeril egy Uj
mez06, akkor az 6sszes inicializalas sérul, ki kell javitani 6ket

® Ha valtozik a mezbk sorrendje, akar csendes hiba is
keletkezhet, pl. osszekeverheté a magassag a szuletési
évvel, mert mindketto int

Ugyanakkor egyszeri esetekben hatékony

@ Folytatas a jové héten

	Slide 1
	Több eredmény visszaadása
	Típuskonstrukció I.
	Típuskonstrukció II.
	2D-s koordináták ábrázolása eddig
	struct
	struct
	A mezők
	Mező vs. változó
	Mi legyen mező, és mi ne?
	struct és a típusok
	struct structban I.
	struct structban II.
	struct és függvények
	struct és függvények: előtte
	struct és függvények: utána
	struct visszatérési típusként
	Intermezzo pesszimistáknak
	Inicializálás
	Slide 20
	Slide 21
	Slide 22
	struct inicializálás
	struct a structban inicializálás
	struct inicializálása
	struct…

