
Bevezetés a programozásba

9. Előadás
Rekordok

https://wiki.itk.ppke.hu/twiki/bin/view/PPKE/BevezetesAProgramozasba201718

Egyszerűen több paramétert veszünk át referencia szerint
Ezek értékével egyáltalán nem foglalkozunk, csak felülírjuk azokat
Így a paraméter jelentése az lesz, hogy „ide meg ide kérem az

eredményt”

Lesz még másfajta megoldás is erre a problémára
Jövő héten A mai órán megnézzük

Több eredmény visszaadása

Típuskonstrukció: meglévő típusokból új típus létrehozása
Eddigi példák:

T v[10]: 10 darab T típusú változó alkot egy primitív vektort
(tömböt)

T m[10][10]: 10x10 méretű (primitív) mátrix, T típusú elemekkel
vector<T> v(10, e): 10 darab T típusú változó alkot egy STL vektort

‘e’ kezdeti értékkel
vector< vector<T> > m(10, vector<T>(10,e)): 10x10 méretű

mátrix, T típusú elemekkel, ‘e’ kezdeti értékekkel

Típuskonstrukció

Rekord: vegyes típusokból álló új típus
C++ -ban: struct
Az elv: az összetartozó adatok összetartozása jelenjen meg,

mint nyelvi elem
Példa: kétdimenziós koordinátákat eddig két tömbben tároltuk:

double x[100]; és
 double y[100];

Mostantól írhatjuk majd úgy, hogy:
koord k[100];

Típuskonstrukció

2D-s koordináták ábrázolása eddig
#include <iostream>
using namespace std;

int main()
{
 double x, y;
 x = 1.0; y = 1.0;
 cout << "[" << x << "," << y << "]" << endl;
 return 0;
}

#include <iostream>
using namespace std;

int main()
{
 double x, y;
 x = 1.0; y = 1.0;
 cout << "[" << x << "," << y << "]" << endl;
 return 0;
}

struct
#include <iostream>
using namespace std;

struct koord {
 double x, y;
};

int main()
{
 koord k;
 k.x = 1.0; k.y = 1.0;
 cout << "[" << k.x << "," << k.y << "]" << endl;
 return 0;
}

#include <iostream>
using namespace std;

struct koord {
 double x, y;
};

int main()
{
 koord k;
 k.x = 1.0; k.y = 1.0;
 cout << "[" << k.x << "," << k.y << "]" << endl;
 return 0;
}

A struct kulcsszó jelentése: most egy új típust fogok leírni

struct név {
T1 mező1, mező2, …;
T2 mezőX, …;
…

};

A típus neve bármi lehet, ami nem foglalt még
T1, T2, … típusoknak már ismert típusoknak kell lenniük
A mezőnevek különbözőek legyenek

struct

A rekord mezőkből áll („tag”, angolul „member”)
Minden mező egy már ismert típusba sorolható, és változóként

használható: kaphat értéket, olvasható, referálható, stb.
A mezők használatakor a struct típusú változók után ‘.’

karakterrel elválasztva kell a mezőnevet írni
Azaz a ‘.’ egy operátor, amely segítségével kiválaszthatjuk a rekord

egy mezőjét

Tehát az előző példában a ‘k.x’ jelentése: a k koord típusú
változónak az x mezője, amely egy double típusú érték lesz

A mezők

Változónak szokás nevezni mindent, amit külön deklaráltunk a
programkódban
Mezőt a rekord többi mezője nélkül nem lehet deklarálni

Egy struct egy mezőjét azonban hasonlóan használjuk, mint egy
változót: adunk neki értéket, kiolvassuk, stb.

A szóhasználat tehát nem a képességeket, hanem a szerepet fedi:
önállóan használandó (változó), vagy egy nagyobb adatcsoport része
(mező)

Mező vs. változó

A rekord szerepét mindig töltse ki teljesen a mezők összessége, és
ne legyen benne felesleges mező!

Reprezentáció: egy absztrakt fogalom ábrázolása meglévő
típusokkal
2D koordináta két valós számmal
 racionális szám két egész számmal, mint számláló és nevező

A ciklusváltozó például nincs a mezők között: nem tartozik a
fogalmat leíró, fontos adatokhoz

Az viszont nem baj, ha a teljes értékkészlet nincsen kihasználva
 pl.: tanuló jegye: int mező. (ÉK: 1, 2, 3, 4, 5)

Mi legyen mező, és mi ne?

Az adott struct leírása után a megadott név már egy
kész típus, használható deklarációkban, paraméterlistákban
Akár egy következő struct mezőjénél is, vektorban,

primitív tömbben, stb.
A rekord mezője is lehet vektor, vagy primitív tömb
Fontos, hogy a forráskód fentről lefelé olvasva ezt a

sorrendet betartsa!
(Csak arra hivatkozhatunk a kódban, amit előtte már deklaráltunk,

különben a fordító nem fogja felismerni!)

struct és a típusok

struct structban I.
struct ember {
 string nev;
 string lakcim;
 int szuletesi_ev;
};

struct diak {
 ember e;
 vector<int> jegyek;
};

struct ember {
 string nev;
 string lakcim;
 int szuletesi_ev;
};

struct diak {
 ember e;
 vector<int> jegyek;
};

struct structban II.
struct pixel {

char r, g, b;
};

struct kep {
 int x, y;
 vector< vector<pixel> > p;
};

struct pixel {
char r, g, b;

};

struct kep {
 int x, y;
 vector< vector<pixel> > p;
};

Az új típusaink használhatóak függvény paraméterekként is

Fontos megemlíteni, hogy itt egyre jobban kezd számítani a
hatékonyság, egy vector<double> mezővel is rendelkező
struct érték szerint átadva lemásolódik, ami lassú (és
feleslegesen nagy a memóriaigénye)
Visszatérési értékként is használható, vagyis így lehet több

eredményt egyszerre visszaadni: több, összetartozó és ezért
egy típusba összefogható adatként

struct és függvények

struct és függvények: előtte
struct pont{
 double x, y;
 string nev;
};

void kiir(double x, double y, string nev){
 cout << "[" << x << "," << y << "," <<
 nev << "]" << endl;
}

int main(){
 pont p;
 ...
 kiir(p.x, p.y, p.nev);
 return 0;
}

struct pont{
 double x, y;
 string nev;
};

void kiir(double x, double y, string nev){
 cout << "[" << x << "," << y << "," <<
 nev << "]" << endl;
}

int main(){
 pont p;
 ...
 kiir(p.x, p.y, p.nev);
 return 0;
}

struct és függvények: utána
struct pont{
 double x, y;
 string nev;
};

void kiir(pont p){
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

int main(){
 pont p;
 ...
 kiir(p);
 return 0;
}

struct pont{
 double x, y;
 string nev;
};

void kiir(pont p){
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

int main(){
 pont p;
 ...
 kiir(p);
 return 0;
}

struct visszatérési típusként
struct koord{
 double x, y;
};

koord olvas(istream& be){
 koord a;
 be >> a.x >> a.y;
 return a;
}

int main(){
 koord a;
 a = olvas(cin);
 cout << a.x << "," << a.y << endl;
 return 0;
}

struct koord{
 double x, y;
};

koord olvas(istream& be){
 koord a;
 be >> a.x >> a.y;
 return a;
}

int main(){
 koord a;
 a = olvas(cin);
 cout << a.x << "," << a.y << endl;
 return 0;
}

Az elégséges jegyhez szükséges anyag immár teljes
mértékben elhangzott*.

*a hirdetés nem minősül ajánlatnak

Intermezzo pesszimistáknak

Elődeklaráció – forward declaration
struct pont{
 double x, y;
 string nev;
};
void kiir(pont p); // függvény forward deklaráció

int main(){
 …
 kiir(p);
 return 0;
}
void kiir(pont p){ //függvény implementáció
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

struct pont{
 double x, y;
 string nev;
};
void kiir(pont p); // függvény forward deklaráció

int main(){
 …
 kiir(p);
 return 0;
}
void kiir(pont p){ //függvény implementáció
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

Elődeklaráció – forward declaration
struct pont; // struct forward deklaráció
void kiir(pont p); // függvény forward deklaráció

struct pont{
 double x, y;
 string nev;
};
int main(){
 …
 kiir(p);
 return 0;
}
void kiir(pont p){ //függvény implementáció
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

struct pont; // struct forward deklaráció
void kiir(pont p); // függvény forward deklaráció

struct pont{
 double x, y;
 string nev;
};
int main(){
 …
 kiir(p);
 return 0;
}
void kiir(pont p){ //függvény implementáció
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

Elődeklaráció – forward declaration
struct pont; // struct forward deklaráció

void kiir(pont p){
 cout << "[" << p.x << "," << p.y << "," << //hiba: a mezőket még
 p.nev << "]" << endl; //nem ismerjük
}
struct pont{
 double x, y;
 string nev;
};

int main(){
 …
 kiir(p);
 return 0;
}

struct pont; // struct forward deklaráció

void kiir(pont p){
 cout << "[" << p.x << "," << p.y << "," << //hiba: a mezőket még
 p.nev << "]" << endl; //nem ismerjük
}
struct pont{
 double x, y;
 string nev;
};

int main(){
 …
 kiir(p);
 return 0;
}

Figyelem! Az értékadás és az inicializálás két különböző dolog, csak
mindkettő jele a „=”

int a = 0; inicializálás: deklarálással együtt adunk kezdeti értéket
int a;
a = 0; értékadás: a deklaráció után, bármikor máskor adunk új
értéket

A struct esetében értéket adni mezőnként lehet, vagy egy másik
struct-tal

Inicializálni viszont lehet egyben is:
koord k = { 0.0, 0.0 }; // a mezők sorrendjében!

Inicializálás

struct inicializálás
struct pont{
 double x, y;
 string nev;
};

void kiir(pont p){
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

int main(){
 pont p = { 1.0, 1.0, "a" };
 kiir(p);
 return 0;
}

struct pont{
 double x, y;
 string nev;
};

void kiir(pont p){
 cout << "[" << p.x << "," << p.y << "," <<
 p.nev << "]" << endl;
}

int main(){
 pont p = { 1.0, 1.0, "a" };
 kiir(p);
 return 0;
}

struct a structban inicializálás
struct ember {
 string nev;
 string lakcim;
 int szuletesi_ev;
};

struct diak {
 ember e;
 vector<int> jegyek;
};

int main(){
 diak d = {{"Sanyi", " Bp", 1974 }, vector<int>(10,5) };
 cout << d.e.nev << " " << d.e.lakcim;
 return 0;
}

struct ember {
 string nev;
 string lakcim;
 int szuletesi_ev;
};

struct diak {
 ember e;
 vector<int> jegyek;
};

int main(){
 diak d = {{"Sanyi", " Bp", 1974 }, vector<int>(10,5) };
 cout << d.e.nev << " " << d.e.lakcim;
 return 0;
}

Ez egy extra lehetőség, érdemes a használatát azonban
minimálisra csökkenteni

Hátrányok:
Ha változik a struct összetétele, mert bekerül egy új

mező, akkor az összes inicializálás sérül, ki kell javítani őket
Ha változik a mezők sorrendje, akár csendes hiba is

keletkezhet, pl. összekeverhető a magasság a születési
évvel, mert mindkettő int

Ugyanakkor egyszerű esetekben hatékony

struct inicializálása

Folytatás a jövő héten

struct…

	Slide 1
	Több eredmény visszaadása
	Típuskonstrukció I.
	Típuskonstrukció II.
	2D-s koordináták ábrázolása eddig
	struct
	struct
	A mezők
	Mező vs. változó
	Mi legyen mező, és mi ne?
	struct és a típusok
	struct structban I.
	struct structban II.
	struct és függvények
	struct és függvények: előtte
	struct és függvények: utána
	struct visszatérési típusként
	Intermezzo pesszimistáknak
	Inicializálás
	Slide 20
	Slide 21
	Slide 22
	struct inicializálás
	struct a structban inicializálás
	struct inicializálása
	struct…

