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Bevezetés a programozasba

8. El6adas
Fliggvények-2



/

m érvényessége és lathatosaga

Szabad, és nem kotelez6 ugyanazokat a valtozoneveket hasznalni
aktualis és formalis paraméterként

A fuggvény paramétere lokalis valtozo, ami csak a fliggvényben él
Minden olyan valtozé, ami fliggvényben lett deklaralva, lokalis

valtoz6
A main() flggvény valtozéi sem hasznalhatéak a tobbi

flUggvényben
A fuggvények paraméterekkel kommunikalnak




m érvényessége és lathatdsaga

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)

{
double s = (a+b+c)/2.0;

return sqrt((s-a)*(s-b)*(s-c)*s);

int main() {
double ha, hb, hc;
cin >> ha >> hb >> hc;
double t = terulet(ha, hb, hc);
cout << "Terulet: " << t <<endl;
return 0;




m érvényessége és lathatdsaga

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)

{
double s = (a+b+c)/2.0;

return sqrt((s-a)*(s-b)*(s-c)*s);

int main() {
double a, b, c;
cin > a>> b > c;
double t = terulet(a, b, c¢);
cout << "Terulet: " << t <<endl;
return 0;




evvalasztas

Erdemes a formalis paraméter nevét a fiiggvénybeli
szerep szerint elnevezni

Az aktualis paraméter lehet akar kifejezés is

Néha el6fordul, hogy ugyanolyan nevi valtozok
vannak az aktualis paraméterben és a formalis
paraméterben

® Ez nem baj, amig tudjuk hogy ezek kiilon valtozok



Y 4 Y 4 Y 4 V 4 /
mthatosaga

Egy valtozd lathaté a programkdd azon soraiban, ahol a
nevének leirasaval hasznalhaté

® C++ nyelvben a lokalis valtozok nem lathatoak mas fliggvényekben

® A mindenhol lathaté valtozot fliggvényen kivil kell deklaralni:
globalis valtozé

® A globalis valtozdkat ahol lehet, keriljuk. Néhany értelmes hasznalata van,
ezekre altalaban kitérink majd, minden masnal a j6 stratégia az, hogy
paraméterben adjuk at a sztikséges adatokat

® Ha mégis hasznaljuk, azokban a fliggvényekben lesz lathatd, amelyek a
deklaracio utan vannak



altozo érvényessége

A valtozd érvényes a program futasanak azon
idéintervallumaban, amikor az értékét megtartja

C++-ban a lokalis valtozé a deklaralasatol szamitva
addig él, amig a deklaralasanak blokkja be nem
fejezbdik

A paraméterek a figgvény végéig élnek



Kitéro a lathatdsagrol
* Nem lehet egy blokkban két

#include <iostream>

egyforma nevu valtozot
deklaralni, de lehet mar
lathatd valtozo nevét
hasznalni

Shadowing: a frissen
deklaralt valtozo eltakarja a
tobbi ugyanolyan nevi
lathatosagat

using namespace std;

int a=1;
int main()

{

int a=2;
{

int a=3;

cout << a << endl;//3
}
cout << a <<endl; //2
cout << ::a << endl; //1

return 0;




magy hierarchikus) programozas

Programtervezési elv: a feladatot osszuk részfeladatokra és
mondjuk fliggvényekben csoportositsuk azokat

® dekompozicio”, ,redukcid”

int nagyonbonyolultfeladat(P1, P2, P3, P4, ... ){
egyikkicsitegyszer(ibbfeladat(P2, P4, ...);
masikkicsitegyszerlbbfeladat(P1, P2, ...);

}
Top-down vagy Bottom-up felépités
80-as évekig nagy szoftvereknél egyeduralkodd



Trikk -

Mi torténik, ha a fliggvényhivasok ,korbeérnek”?
® Excel: ,feloldhatatlan kérbehivatkozas”

® OpenOffice: ,522 korkoros hivatkozas; A képlet kdvetlentil vagy kozvetetten
onmagara hivatkozik, és az Eszkozok - Beallitasok - OpenOffice.org Calc -
Szamitas panel Iteracidk beallitasa nincs kijeldlve.,,

® A C++ program igy konnyen végtelen ciklusba keriilhet, de ezen lehet
segiteni
Rekurzid, rekurziv fuggvény
Eleinte nehéz lehet megérteni, hogy egy fliggvény tébb példanyban
Is varjon visszatérési értékre
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int faktor( int p )
{
if( p>1 ) {
return p*faktor( p-1 );
} else {
return 1;
}
}
int main()
{
cout << faktor( 5 ) << endl;
return 0;
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A nagyobb problémakat fliggvényekre bontjuk

Az ismétlodd kodrészleteket egyszer irjuk csak le és az
eredeti tébb helyrél meghivjuk

A valtozok a masik figgvényben nem lathatdak, ezért
paraméterekkel és visszatérési értékekkel kommunikalunk

Ervényesség, lathatdsag, lokalis valtozok
Fuggvények hivhatjak egymast
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mrdések

A sorok beolvasasat a getline(cin, s) fliiggvénnyel
hajtuk végre. Ez miért nem ugy néz ki, hogy s =
getline(cin)?

Hogyan tud a fuggvény tobb eredményt visszaadni?
Hogyan kell tombot paraméterben atadni?

Hogyan kell fajlt paraméterben atadni?
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—paraméteratadasok

Azt beszéltik meg, hogy a fliggvény paraméterei

® A paraméterlistaban vannak deklaralva

® Az értékiiket az aktudlis paraméterekbdl kapjak

® Ervényességiik és lathatdsaguk a fiiggvényre szoritkozik

® Tehat az aktudlis paraméter masolataroél van szo
Kovetkezésképp a getline(cin, s) nem valtoztathatnd meg

s értékét, tehat sort nem is olvashatnank be? Hogy
lehetséges ez még is?
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arameéteratadasok

A kilonbség a paraméter atadas modjaban van

A C++ -ban kétfajta paraméteratadasi mod létezik:

® Erték szerinti: az eddig megismert mod, ilyenkor az aktualis paraméterrél
egy masolat készll és ezzel dolgozik a fliggvény. Az eredeti érték ,védett”
nem modosul.

® Referencia szerinti: az aktudlis paraméterre egy Uj referencia kerdl
deklaralasra. Azaz az eredeti lefoglalt memoériateriletet cimkézzik fel Gjra.

® Ugyis fogalmazhatunk, hogy az eredeti valtozét adjuk at (nem csak a masolatat),
ezért a formalis paraméteren végrehajtott valtozasok az eredeti értéket
modositjak.



—Erték szerinti paraméteratadas

#include <iostream>
using namespace std;

void fv( double a ) {
a=20;

: Az eredmény: 1

int main() {
double d;
d =1;
fv( d);
cout << "eredmeny: " << d << endl;

return 0;




Referencia szerinti paraméteratadas

#include <iostream>
using namespace std;

void fv( double& a ) {
a=20;

} ,

Az eredmény: 0

int main() {
double d;
d =1;
fv( d);
cout << "eredmeny: " << d << endl;

return 0;
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—Referencia

Lehetdséglink van olyan valtozokat |étrehozni, amelyek egy masik valtozo értékét
hasznaljak fel, azaz pontosan ugyanazt az értéket taroljak, mint a masik valtozo.
Ezek az ugynevezett referenciak.

A referencia 6nall6é fogalom a C++ -ban

A referenciat mindig egy mar létez0, tetszOleges valtozora allitjuk ra, és ettdl
kezdve barmelyik értékének moédositasa a masik értékét is modositja, mivel ugyan
arra a memoriatertletre fognak hivatkozni.

A referencia tipusanak meg kell egyeznie az eredeti valtozo6 tipusaval, a neve pedig
tetszoleges lehet

A C++-ban a referenciavaltozdkat az & operatorral jeloljuk meg:

* <tipus> <vdltozo 1>;

*  <tipus> & <vdltozo 2> = <vdltozo 1>;



—Valtozok I.

== 1int 1;



altozok II.
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referencia, mutato

int 1; //deklaracié

1 =4; //értékadas
e 1Nt &F = 1;

int *m = &1;
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—Referencia

Referencia esetén nem mindig foglalodik le Uj memoria terulet,
néha egy meglévohoz rendellink hozza egy masik valtozonevet

A memoriateriilet mindkét névvel elérheté és valtoztathato.
®int i = 4; // 1=4;

®int & r = i; // 1=r=4;

®r = 10; // 1=r=10;



eferencia egy értelmezése

= int& r = 1i; 4

int
// Uj nevet rendeliink a
mar megléevo valtozohoz



eferencia

i 10

int

int& r
—r = 10;



eferencia szerinti paraméteratadas

Kovetkezmények:
- ha szeretnénk, hogy egy fliggvény valtoztassa a valtozonkat, akkor
lehetséges referencia szerint atvenni a paramétert
« csak valtozo lehet a paraméter, kifejezés eredménye vagy konstans
nem
- gyors, mert nem kell masolatot késziteni, ami nagyobb
memoriaigényld valtozoknal (pl. string egymillid6 karakterrel)
lassithatja a programot
- veszélyes lehet, a legtobb fliggvényhivasnal nem szamitunk arra,
hogy megvaltozhat a paraméteriil atadott valtozoé (pl. matematikai
figgvények)
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Konstans referencia szerinti paraméteratadas

gyors, mert nem készul masolat

int vektor_ fuggveny2( const vector<int>& vek ) {

1 2 4 sum += vek[0] //0K
blzton§agos,mert nem valtozhat vek0] —0: //hibe:
meg, figyel a forditoprogram

const Tipus& paraméter

}

int main() {
vector<int> v(3,0);

Iegelte”edtebb cout << vektor_fuggveny2( v ) << endl;

paraméteratadasi forma a ) return 0;

gyakorlatban, ha nem
alapipusokroél van sz6



Mmény visszaadasa

Egyszerlen tobb paramétert veszink at referencia szerint
® Ezek értékével egyaltalan nem foglalkozunk, csak feliilirjuk azokat

® [gy a paraméter jelentése az lesz, hogy ,ide meg ide kérem az
eredményt”

Lesz még masfajta megoldas is erre a problémara
Jovo héten megnézzik
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omb, mint paraméter

#include <iostream>
using namespace std;

int tomb_fuggvenyl( int tomb[], int meret) {
int osszeg = 0;
for( int i = 0; i<meret; ++i){
tomb[i] = (i+1)*3;
osszeg += tomb[i];
}

return osszeg;

}

int main() {
int t[3] = {0,0,0};
cout << tomb_fuggvenyl(t, 3) << endl;
for( int i = 0; 1<3; ++1i ) {
cout << t[i] << ", ";
}

return 0;

#include <iostream>
using namespace std;

int tomb_fuggveny2( int* tomb, int meret) {

}

int osszeg = 0;

for( int i = 0; i<meret; ++i){
tomb[i] = (i+1)*3;
osszeg += tomb[i];

}

return osszeg;

int main() {

int t[3] = {0,0,0};
cout << tomb_fuggveny2(t, 3) << endl;
for( int 1 = 0; 1i<3; ++1i ) {

cout << t[i] << ", ";

}

return 0;
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mmt paraméter

Az STL vector atadasa paraméterként:
® jelezzlik a fliggvény paraméterlistajaban, hogy milyen vektorra szamitson

® mivel ismeri a méretét, lekérdezheté ( .size() ), ezért itt mar nem kell
atadni ezt az értéket

® szintaktika:
°* int vektor_fuggvenyl( vector<int> vek ){ .. } //érték
illetve:
°* int vektor fuggveny2( vector<int>& vek ){ .. } //referencia



—Témb, mint paraméter

az eredmény mindkét esetben:

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.089s
Press any key to continue.
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ektor, mint paraméter

#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggvenyl( vector<int> vek ) {
int osszeg = 0;
for( size_t i = 0; i<vek.size(); ++i){
vek[1] = (i+1)*3;
osszegqg += vek[i];
}

return osszeg;

}

int main() {
vector<int> v(3,0);
cout << vektor_fuggvenyl( v ) << endl;
for( size t i = 0; i<v.size(); ++i ) {
cout << v[i] << ", ";
}

return 0;

#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggveny2( vector<int>& vek ) {

}

int osszeg = 0;

for( size t i = 0; i<vek.size(); ++i ){
vek[1] = (i+1)*3;
osszeg += vek[i];

}

return osszeg;

int main() {

vector<int> v(3,0);

cout << vektor_fuggveny2( v ) << endl;

for( size t i = 0; i<v.size(); ++i ) {
cout << v[i] << ", ";

}

return 0;




—Vektor, mint paraméter

int vektor fuggvenyl( vector<int> vek ) { .. }
esetén az eredmény:

Elemek osszege: 18
o, 0, 0,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.

int vektor_ fuggveny2( vector<int>& vek ) { .. }
esetén az eredmény:

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.




—T6mb / vektor, mint paraméter

Primitiv tomb esetén mind a szintaktikai kilonbség nem takar funkcionalis
kiilbnbséget: a fliggvények az eredeti tombbel fognak dolgozni, a valtozasok ezért
maradanddak, mivel a tomb pointerrel van megvaldsitva. (Vagyis tombot nem
tudunk Ugy paraméterben atadni, hogy masolat késziljon réla, a mutatd érték
szerint atadva ugyanoda mutat ahova az eredeti mutato).

Vektor esetén a valtozoknal megszokott érték illetve referencia szerinti

paraméteratadast tapasztaljuk.
® Els6é esetben a vektorunkrdl masolat késziil, a miveleteket ezen a masolaton hajtjuk
végre, az eredeti vektorunk valtozatlan marad.

® Masodik esetben az eredeti vektorra hivatkozunk egy Uj referenciaval, nem késziil
masolat a mulveletek az eredeti vektort modositjak, ez maradando.
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ajlok paraméterben

A fajlokat (ifstream, ofstream) illetve barmilyen csatornat (iostream) mindig
referencia szerint kell atvenni

Miért? - Mert nem készitheto réluk masolat, aminek azaz oka, hogy példaul
a ,hol tartunk a fajlban” benne van a fajl tipusban:
® képzeljuk el, hogy egy fuggvény lemasol (érték szerint atvesz) egy ifstream-et és
olvas bel6le

® visszatérés utan a kovetkezd olvasasnal a fajl el6z6 olvasasainak kellene Ujra
megtorténnie, hisz csak a masolatbdl olvastunk, az atadottbol nem, az tehat
nem is mehet arrébb

® ez viszont kdvethetetlen, illetve technikailag rémalom lenne a megvalositasa
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ajlok paraméterben

#include <iostream>
#include <fstream>
using namespace std;

void olvas( ifstream& f, double& a ) {
f >> a;
}

int main() {
double d;
ifstream befile( "a.txt");
olvas( befile, d );
cout << "eredmeny: " << d << endl;

return 0;
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Paramétert kétféleképpen is at lehet adni C++ -ban
® Erték szerint: masolat késziil egy lokalis valtozéra
® Referencia szerint: ugyan az a valtozd tobb néven

Paraméterként a fajlok és a tombaok specialisak

Mivel veszélyes (feliilirds!) mindent referenciaként atvenni,
ezért csak akkor tegyuk, ha

® 3 specifikacionk szerint eredményt adunk vissza benne

® — konstans referenciat hasznaljunk inkabb ha hatékonysagi
okokbdl szeretnénk csak referenciat
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