
Bevezetés a programozásba

8. Előadás
Függvények-2

Szabad, és nem kötelező ugyanazokat a változóneveket használni
aktuális és formális paraméterként

A függvény paramétere lokális változó, ami csak a függvényben él
Minden olyan változó, ami függvényben lett deklarálva, lokális

változó
A main() függvény változói sem használhatóak a többi

függvényben
A függvények paraméterekkel kommunikálnak

Paraméterek érvényessége és láthatósága

Paraméterek érvényessége és láthatósága
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Paraméterek érvényessége és láthatósága
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double a, b, c;
 cin >> a >> b >> c;
 double t = terulet(a, b, c);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double a, b, c;
 cin >> a >> b >> c;
 double t = terulet(a, b, c);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Érdemes a formális paraméter nevét a függvénybeli
szerep szerint elnevezni

Az aktuális paraméter lehet akár kifejezés is
Néha előfordul, hogy ugyanolyan nevű változók

vannak az aktuális paraméterben és a formális
paraméterben
Ez nem baj, amíg tudjuk hogy ezek külön változók

Névválasztás

Egy változó látható a programkód azon soraiban, ahol a
nevének leírásával használható
 C++ nyelvben a lokális változók nem láthatóak más függvényekben
 A mindenhol látható változót függvényen kívül kell deklarálni:

globális változó
 A globális változókat ahol lehet, kerüljük. Néhány értelmes használata van,

ezekre általában kitérünk majd, minden másnál a jó stratégia az, hogy
paraméterben adjuk át a szükséges adatokat

 Ha mégis használjuk, azokban a függvényekben lesz látható, amelyek a
deklaráció után vannak

Változó láthatósága

A változó érvényes a program futásának azon
időintervallumában, amikor az értékét megtartja

C++-ban a lokális változó a deklarálásától számítva
addig él, amíg a deklarálásának blokkja be nem
fejeződik

A paraméterek a függvény végéig élnek

Változó érvényessége

Kitérő a láthatóságról
#include <iostream>
using namespace std;

int a=1;
int main()
{
 int a=2;
 {
 int a=3;
 cout << a << endl;//3
 }
 cout << a <<endl; //2
 cout << ::a << endl; //1
 return 0;
}

#include <iostream>
using namespace std;

int a=1;
int main()
{
 int a=2;
 {
 int a=3;
 cout << a << endl;//3
 }
 cout << a <<endl; //2
 cout << ::a << endl; //1
 return 0;
}

● Nem lehet egy blokkban két
egyforma nevű változót
deklarálni, de lehet már
látható változó nevét
használni

● Shadowing: a frissen
deklarált változó eltakarja a
többi ugyanolyan nevű
láthatóságát

Programtervezési elv: a feladatot osszuk részfeladatokra és
mondjuk függvényekben csoportosítsuk azokat
„dekompozíció”, „redukció”

int nagyonbonyolultfeladat(P1, P2, P3, P4, …){
egyikkicsitegyszerűbbfeladat(P2, P4, …);
másikkicsitegyszerűbbfeladat(P1, P2, …);

}
Top-down vagy Bottom-up felépítés
80-as évekig nagy szoftvereknél egyeduralkodó

Procedurális (vagy hierarchikus) programozás

Mi történik, ha a függvényhívások „körbeérnek”?
 Excel: „feloldhatatlan körbehivatkozás”
OpenOffice: „522 körkörös hivatkozás; A képlet követlenül vagy közvetetten

önmagára hivatkozik, és az Eszközök - Beállítások - OpenOffice.org Calc -
Számítás panel Iterációk beállítása nincs kijelölve.„

A C++ program így könnyen végtelen ciklusba kerülhet, de ezen lehet
segíteni

Rekurzió, rekurzív függvény
Eleinte nehéz lehet megérteni, hogy egy függvény több példányban

is várjon visszatérési értékre

Trükk

Rekurzív függvény

int faktor(int p)
{

if(p>1) {
return p*faktor(p-1);

} else {
return 1;

}
}

int main()
{

cout << faktor(5) << endl;
return 0;

}

int faktor(int p)
{

if(p>1) {
return p*faktor(p-1);

} else {
return 1;

}
}

int main()
{

cout << faktor(5) << endl;
return 0;

}

A nagyobb problémákat függvényekre bontjuk
Az ismétlődő kódrészleteket egyszer írjuk csak le és az

eredeti több helyről meghívjuk
A változók a másik függvényben nem láthatóak, ezért

paraméterekkel és visszatérési értékekkel kommunikálunk
Érvényesség, láthatóság, lokális változók
Függvények hívhatják egymást

Összefoglalás I.

A sorok beolvasását a getline(cin, s) függvénnyel
hajtuk végre. Ez miért nem úgy néz ki, hogy s =
getline(cin)?

Hogyan tud a függvény több eredményt visszaadni?
Hogyan kell tömböt paraméterben átadni?
Hogyan kell fájlt paraméterben átadni?

Nyitott kérdések

Azt beszéltük meg, hogy a függvény paraméterei
A paraméterlistában vannak deklarálva
Az értéküket az aktuális paraméterekből kapják
Érvényességük és láthatóságuk a függvényre szorítkozik
Tehát az aktuális paraméter másolatáról van szó

Következésképp a getline(cin, s) nem változtathatná meg
s értékét, tehát sort nem is olvashatnánk be? Hogy
lehetséges ez még is?

Paraméterátadások

A különbség a paraméter átadás módjában van
A C++ -ban kétfajta paraméterátadási mód létezik:
 Érték szerinti: az eddig megismert mód, ilyenkor az aktuális paraméterről

egy másolat készül és ezzel dolgozik a függvény. Az eredeti érték „védett”
nem módosul.

 Referencia szerinti: az aktuális paraméterre egy új referencia kerül
deklarálásra. Azaz az eredeti lefoglalt memóriaterületet címkézzük fel újra.

 Úgyis fogalmazhatunk, hogy az eredeti változót adjuk át (nem csak a másolatát),
ezért a formális paraméteren végrehajtott változások az eredeti értéket
módosítják.

Paraméterátadások

Érték szerinti paraméterátadás
#include <iostream>
using namespace std;

void fv(double a) {
 a = 0;
}

int main() {
 double d;
 d = 1;
 fv(d);
 cout << "eredmeny: " << d << endl;

 return 0;
}

#include <iostream>
using namespace std;

void fv(double a) {
 a = 0;
}

int main() {
 double d;
 d = 1;
 fv(d);
 cout << "eredmeny: " << d << endl;

 return 0;
}

Az eredmény: 1

Referencia szerinti paraméterátadás
#include <iostream>
using namespace std;

void fv(double& a) {
 a = 0;
}

int main() {
 double d;
 d = 1;
 fv(d);
 cout << "eredmeny: " << d << endl;

 return 0;
}

#include <iostream>
using namespace std;

void fv(double& a) {
 a = 0;
}

int main() {
 double d;
 d = 1;
 fv(d);
 cout << "eredmeny: " << d << endl;

 return 0;
}

Az eredmény: 0

• Lehetőségünk van olyan változókat létrehozni, amelyek egy másik változó értékét
használják fel, azaz pontosan ugyanazt az értéket tárolják, mint a másik változó.
Ezek az úgynevezett referenciák.

• A referencia önálló fogalom a C++ -ban

• A referenciát mindig egy már létező, tetszőleges változóra állítjuk rá, és ettől
kezdve bármelyik értékének módosítása a másik értékét is módosítja, mivel ugyan
arra a memóriaterületre fognak hivatkozni.

• A referencia típusának meg kell egyeznie az eredeti változó típusával, a neve pedig
tetszőleges lehet

• A C++-ban a referenciaváltozókat az & operátorral jelöljük meg:
• <típus> <változó 1>;

• <típus> & <változó 2> = <változó 1>;

Referencia

Változók I.

i
int i; //deklaráció

Változók II.

i:4int i; //deklaráció
i = 4; //értékadás

referencia, mutató

i:4int i; //deklaráció
i = 4; //értékadás
int &r = i;
int *m = &i; r:i

m:i

Referencia esetén nem mindig foglalódik le új memória terület,
néha egy meglévőhöz rendelünk hozzá egy másik változónevet

A memóriaterület mindkét névvel elérhető és változtatható.
int i = 4; // i=4;
int & r = i; // i=r=4;
r = 10; // i=r=10;

Referencia

Referencia egy értelmezése

4
i, r

int

int& r = i;

// Új nevet rendelünk a
már meglévő változóhoz

Referencia

10
i, r

int

int& r = i;
r = 10;

• Következmények:
• ha szeretnénk, hogy egy függvény változtassa a változónkat, akkor

lehetséges referencia szerint átvenni a paramétert
• csak változó lehet a paraméter, kifejezés eredménye vagy konstans

nem
• gyors, mert nem kell másolatot készíteni, ami nagyobb

memóriaigényű változóknál (pl. string egymillió karakterrel)
lassíthatja a programot

• veszélyes lehet, a legtöbb függvényhívásnál nem számítunk arra,
hogy megváltozhat a paraméterül átadott változó (pl. matematikai
függvények)

Referencia szerinti paraméterátadás

• gyors, mert nem készül másolat

• biztonságos,mert nem változhat
meg, figyel a fordítóprogram

• const Típus& paraméter
• legelterjedtebb

paraméterátadási forma a
gyakorlatban, ha nem
alapípusokról van szó

Konstans referencia szerinti paraméterátadás

int vektor_fuggveny2(const vector<int>& vek) {
sum += vek[0] //OK
vek[0] = 0; //hiba!

}

int main() {
 vector<int> v(3,0);
 cout << vektor_fuggveny2(v) << endl;
 return 0;
}

int vektor_fuggveny2(const vector<int>& vek) {
sum += vek[0] //OK
vek[0] = 0; //hiba!

}

int main() {
 vector<int> v(3,0);
 cout << vektor_fuggveny2(v) << endl;
 return 0;
}

Egyszerűen több paramétert veszünk át referencia szerint
Ezek értékével egyáltalán nem foglalkozunk, csak felülírjuk azokat
Így a paraméter jelentése az lesz, hogy „ide meg ide kérem az

eredményt”

Lesz még másfajta megoldás is erre a problémára
Jövő héten megnézzük

Több eredmény visszaadása

Tömb, mint paraméter
#include <iostream>
using namespace std;

int tomb_fuggveny1(int tomb[], int meret) {
 int osszeg = 0;
 for(int i = 0; i<meret; ++i){
 tomb[i] = (i+1)*3;
 osszeg += tomb[i];
 }
 return osszeg;
}

int main() {
 int t[3] = {0,0,0};
 cout << tomb_fuggveny1(t, 3) << endl;
 for(int i = 0; i<3; ++i) {
 cout << t[i] << ", ";
 }

 return 0;
}

#include <iostream>
using namespace std;

int tomb_fuggveny1(int tomb[], int meret) {
 int osszeg = 0;
 for(int i = 0; i<meret; ++i){
 tomb[i] = (i+1)*3;
 osszeg += tomb[i];
 }
 return osszeg;
}

int main() {
 int t[3] = {0,0,0};
 cout << tomb_fuggveny1(t, 3) << endl;
 for(int i = 0; i<3; ++i) {
 cout << t[i] << ", ";
 }

 return 0;
}

#include <iostream>
using namespace std;

int tomb_fuggveny2(int* tomb, int meret) {
 int osszeg = 0;
 for(int i = 0; i<meret; ++i){
 tomb[i] = (i+1)*3;
 osszeg += tomb[i];
 }
 return osszeg;
}

int main() {
 int t[3] = {0,0,0};
 cout << tomb_fuggveny2(t, 3) << endl;
 for(int i = 0; i<3; ++i) {
 cout << t[i] << ", ";
 }

 return 0;
}

#include <iostream>
using namespace std;

int tomb_fuggveny2(int* tomb, int meret) {
 int osszeg = 0;
 for(int i = 0; i<meret; ++i){
 tomb[i] = (i+1)*3;
 osszeg += tomb[i];
 }
 return osszeg;
}

int main() {
 int t[3] = {0,0,0};
 cout << tomb_fuggveny2(t, 3) << endl;
 for(int i = 0; i<3; ++i) {
 cout << t[i] << ", ";
 }

 return 0;
}

Az STL vector átadása paraméterként:
jelezzük a függvény paraméterlistájában, hogy milyen vektorra számítson
mivel ismeri a méretét, lekérdezhető (.size()), ezért itt már nem kell

átadni ezt az értéket
szintaktika:

 int vektor_fuggveny1(vector<int> vek){ … } //érték
illetve:
 int vektor_fuggveny2(vector<int>& vek){ … } //referencia

Vektor, mint paraméter

az eredmény mindkét esetben:

Tömb, mint paraméter

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.089s
Press any key to continue.

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.089s
Press any key to continue.

Vektor, mint paraméter
#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggveny1(vector<int> vek) {
 int osszeg = 0;
 for(size_t i = 0; i<vek.size(); ++i){
 vek[i] = (i+1)*3;
 osszeg += vek[i];
 }
 return osszeg;
}

int main() {
 vector<int> v(3,0);
 cout << vektor_fuggveny1(v) << endl;
 for(size_t i = 0; i<v.size(); ++i) {
 cout << v[i] << ", ";
 }
 return 0;
}

#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggveny1(vector<int> vek) {
 int osszeg = 0;
 for(size_t i = 0; i<vek.size(); ++i){
 vek[i] = (i+1)*3;
 osszeg += vek[i];
 }
 return osszeg;
}

int main() {
 vector<int> v(3,0);
 cout << vektor_fuggveny1(v) << endl;
 for(size_t i = 0; i<v.size(); ++i) {
 cout << v[i] << ", ";
 }
 return 0;
}

#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggveny2(vector<int>& vek) {
 int osszeg = 0;
 for(size_t i = 0; i<vek.size(); ++i){
 vek[i] = (i+1)*3;
 osszeg += vek[i];
 }
 return osszeg;
}

int main() {
 vector<int> v(3,0);
 cout << vektor_fuggveny2(v) << endl;
 for(size_t i = 0; i<v.size(); ++i) {
 cout << v[i] << ", ";
 }
 return 0;
}

#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggveny2(vector<int>& vek) {
 int osszeg = 0;
 for(size_t i = 0; i<vek.size(); ++i){
 vek[i] = (i+1)*3;
 osszeg += vek[i];
 }
 return osszeg;
}

int main() {
 vector<int> v(3,0);
 cout << vektor_fuggveny2(v) << endl;
 for(size_t i = 0; i<v.size(); ++i) {
 cout << v[i] << ", ";
 }
 return 0;
}

int vektor_fuggveny1(vector<int> vek) { … }

esetén az eredmény:

int vektor_fuggveny2(vector<int>& vek) { … }

esetén az eredmény:

Vektor, mint paraméter

Elemek osszege: 18
0, 0, 0,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.

Elemek osszege: 18
0, 0, 0,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.

Primitív tömb esetén mind a szintaktikai különbség nem takar funkcionális
különbséget: a függvények az eredeti tömbbel fognak dolgozni, a változások ezért
maradandóak, mivel a tömb pointerrel van megvalósítva. (Vagyis tömböt nem
tudunk úgy paraméterben átadni, hogy másolat készüljön róla, a mutató érték
szerint átadva ugyanoda mutat ahová az eredeti mutató).

Vektor esetén a változóknál megszokott érték illetve referencia szerinti
paraméterátadást tapasztaljuk.
 Első esetben a vektorunkról másolat készül, a műveleteket ezen a másolaton hajtjuk

végre, az eredeti vektorunk változatlan marad.
 Második esetben az eredeti vektorra hivatkozunk egy új referenciával, nem készül

másolat a műveletek az eredeti vektort módosítják, ez maradandó.

Tömb / vektor, mint paraméter

A fájlokat (ifstream, ofstream) illetve bármilyen csatornát (iostream) mindig
referencia szerint kell átvenni

Miért? – Mert nem készíthető róluk másolat, aminek azaz oka, hogy például
a „hol tartunk a fájlban” benne van a fájl típusban:
képzeljük el, hogy egy függvény lemásol (érték szerint átvesz) egy ifstream-et és

olvas belőle
visszatérés után a következő olvasásnál a fájl előző olvasásainak kellene újra

megtörténnie, hisz csak a másolatból olvastunk, az átadottból nem, az tehát
nem is mehet arrébb

ez viszont követhetetlen, illetve technikailag rémálom lenne a megvalósítása

Fájlok paraméterben

Fájlok paraméterben
#include <iostream>
#include <fstream>
using namespace std;

void olvas(ifstream& f, double& a) {
 f >> a;
}

int main() {
 double d;
 ifstream befile("a.txt");
 olvas(befile, d);
 cout << "eredmeny: " << d << endl;

 return 0;
}

#include <iostream>
#include <fstream>
using namespace std;

void olvas(ifstream& f, double& a) {
 f >> a;
}

int main() {
 double d;
 ifstream befile("a.txt");
 olvas(befile, d);
 cout << "eredmeny: " << d << endl;

 return 0;
}

Paramétert kétféleképpen is át lehet adni C++ -ban
Érték szerint: másolat készül egy lokális változóra
Referencia szerint: ugyan az a változó több néven

Paraméterként a fájlok és a tömbök speciálisak
Mivel veszélyes (felülírás!) mindent referenciaként átvenni,

ezért csak akkor tegyük, ha

a specifikációnk szerint eredményt adunk vissza benne

→ konstans referenciát használjunk inkább ha hatékonysági
okokból szeretnénk csak referenciát

Összefoglalás

	Slide 1
	Paraméterek érvényessége és láthatósága
	Paraméterek érvényessége és láthatósága
	Paraméterek érvényessége és láthatósága
	Névválasztás
	Változó láthatósága
	Változó érvényessége
	Paraméterek érvényessége és láthatósága
	Procedurális (vagy hierarchikus) programozás
	Trükk
	Rekurzív függvény
	Összefoglalás I.
	Nyitott kérdések
	Paraméterátadások
	Paraméterátadások
	Érték szerinti paraméterátadás
	Referencia szerinti paraméterátadás
	Referencia
	Változók I.
	Változók II.
	Slide 21
	Referencia
	Referencia I.
	Referencia II.
	Referencia szerinti paraméterátadás
	Slide 26
	Több eredmény visszaadása
	Tömb, mint paraméter
	Vektor, mint paraméter
	Tömb, mint paraméter
	Vektor, mint paraméter
	Vektor, mint paraméter
	Tömb / vektor, mint paraméter
	Fájlok paraméterben
	Fájlok paraméterben
	Összefoglalás II:

