—

Bevezetés a programozasba

8. El6adas
Fliggvények-2

/

m érvényessége és lathatosaga

Szabad, és nem kotelez6 ugyanazokat a valtozoneveket hasznalni
aktualis és formalis paraméterként

A fuggvény paramétere lokalis valtozo, ami csak a fliggvényben él
Minden olyan valtozé, ami fliggvényben lett deklaralva, lokalis

valtoz6
A main() flggvény valtozéi sem hasznalhatéak a tobbi

flUggvényben
A fuggvények paraméterekkel kommunikalnak

m érvényessége és lathatdsaga

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)

{
double s = (a+b+c)/2.0;

return sqrt((s-a)*(s-b)*(s-c)*s);

int main() {
double ha, hb, hc;
cin >> ha >> hb >> hc;
double t = terulet(ha, hb, hc);
cout << "Terulet: " << t <<endl;
return 0;

m érvényessége és lathatdsaga

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)

{
double s = (a+b+c)/2.0;

return sqrt((s-a)*(s-b)*(s-c)*s);

int main() {
double a, b, c;
cin > a>> b > c;
double t = terulet(a, b, c¢);
cout << "Terulet: " << t <<endl;
return 0;

evvalasztas

Erdemes a formalis paraméter nevét a fiiggvénybeli
szerep szerint elnevezni

Az aktualis paraméter lehet akar kifejezés is

Néha el6fordul, hogy ugyanolyan nevi valtozok
vannak az aktualis paraméterben és a formalis
paraméterben

® Ez nem baj, amig tudjuk hogy ezek kiilon valtozok

Y 4 Y 4 Y 4 V 4 /
mthatosaga

Egy valtozd lathaté a programkdd azon soraiban, ahol a
nevének leirasaval hasznalhaté

® C++ nyelvben a lokalis valtozok nem lathatoak mas fliggvényekben

® A mindenhol lathaté valtozot fliggvényen kivil kell deklaralni:
globalis valtozé

® A globalis valtozdkat ahol lehet, keriljuk. Néhany értelmes hasznalata van,
ezekre altalaban kitérink majd, minden masnal a j6 stratégia az, hogy
paraméterben adjuk at a sztikséges adatokat

® Ha mégis hasznaljuk, azokban a fliggvényekben lesz lathatd, amelyek a
deklaracio utan vannak

altozo érvényessége

A valtozd érvényes a program futasanak azon
idéintervallumaban, amikor az értékét megtartja

C++-ban a lokalis valtozé a deklaralasatol szamitva
addig él, amig a deklaralasanak blokkja be nem
fejezbdik

A paraméterek a figgvény végéig élnek

Kitéro a lathatdsagrol
* Nem lehet egy blokkban két

#include <iostream>

egyforma nevu valtozot
deklaralni, de lehet mar
lathatd valtozo nevét
hasznalni

Shadowing: a frissen
deklaralt valtozo eltakarja a
tobbi ugyanolyan nevi
lathatosagat

using namespace std;

int a=1;
int main()

{

int a=2;
{

int a=3;

cout << a << endl;//3
}
cout << a <<endl; //2
cout << ::a << endl; //1

return 0;

magy hierarchikus) programozas

Programtervezési elv: a feladatot osszuk részfeladatokra és
mondjuk fliggvényekben csoportositsuk azokat

® dekompozicio”, ,redukcid”

int nagyonbonyolultfeladat(P1, P2, P3, P4, ...){
egyikkicsitegyszer(ibbfeladat(P2, P4, ...);
masikkicsitegyszerlbbfeladat(P1, P2, ...);

}
Top-down vagy Bottom-up felépités
80-as évekig nagy szoftvereknél egyeduralkodd

Trikk -

Mi torténik, ha a fliggvényhivasok ,korbeérnek”?
® Excel: ,feloldhatatlan kérbehivatkozas”

® OpenOffice: ,522 korkoros hivatkozas; A képlet kdvetlentil vagy kozvetetten
onmagara hivatkozik, és az Eszkozok - Beallitasok - OpenOffice.org Calc -
Szamitas panel Iteracidk beallitasa nincs kijeldlve.,,

® A C++ program igy konnyen végtelen ciklusba keriilhet, de ezen lehet
segiteni
Rekurzid, rekurziv fuggvény
Eleinte nehéz lehet megérteni, hogy egy fliggvény tébb példanyban
Is varjon visszatérési értékre

7/R§?GE§C}Uggvény

int faktor(int p)
{
if(p>1) {
return p*faktor(p-1);
} else {
return 1;
}
}
int main()
{
cout << faktor(5) << endl;
return 0;

oo , /
/O(foglalas .

A nagyobb problémakat fliggvényekre bontjuk

Az ismétlodd kodrészleteket egyszer irjuk csak le és az
eredeti tébb helyrél meghivjuk

A valtozok a masik figgvényben nem lathatdak, ezért
paraméterekkel és visszatérési értékekkel kommunikalunk

Ervényesség, lathatdsag, lokalis valtozok
Fuggvények hivhatjak egymast

/
mrdések

A sorok beolvasasat a getline(cin, s) fliiggvénnyel
hajtuk végre. Ez miért nem ugy néz ki, hogy s =
getline(cin)?

Hogyan tud a fuggvény tobb eredményt visszaadni?
Hogyan kell tombot paraméterben atadni?

Hogyan kell fajlt paraméterben atadni?

Y 4 Y 4 Y 4 /
—paraméteratadasok

Azt beszéltik meg, hogy a fliggvény paraméterei

® A paraméterlistaban vannak deklaralva

® Az értékiiket az aktudlis paraméterekbdl kapjak

® Ervényességiik és lathatdsaguk a fiiggvényre szoritkozik

® Tehat az aktudlis paraméter masolataroél van szo
Kovetkezésképp a getline(cin, s) nem valtoztathatnd meg

s értékét, tehat sort nem is olvashatnank be? Hogy
lehetséges ez még is?

/

arameéteratadasok

A kilonbség a paraméter atadas modjaban van

A C++ -ban kétfajta paraméteratadasi mod létezik:

® Erték szerinti: az eddig megismert mod, ilyenkor az aktualis paraméterrél
egy masolat készll és ezzel dolgozik a fliggvény. Az eredeti érték ,védett”
nem modosul.

® Referencia szerinti: az aktudlis paraméterre egy Uj referencia kerdl
deklaralasra. Azaz az eredeti lefoglalt memoériateriletet cimkézzik fel Gjra.

® Ugyis fogalmazhatunk, hogy az eredeti valtozét adjuk at (nem csak a masolatat),
ezért a formalis paraméteren végrehajtott valtozasok az eredeti értéket
modositjak.

—Erték szerinti paraméteratadas

#include <iostream>
using namespace std;

void fv(double a) {
a=20;

: Az eredmény: 1

int main() {
double d;
d =1;
fv(d);
cout << "eredmeny: " << d << endl;

return 0;

Referencia szerinti paraméteratadas

#include <iostream>
using namespace std;

void fv(double& a) {
a=20;

} ,

Az eredmény: 0

int main() {
double d;
d =1;
fv(d);
cout << "eredmeny: " << d << endl;

return 0;

/
—Referencia

Lehetdséglink van olyan valtozokat |étrehozni, amelyek egy masik valtozo értékét
hasznaljak fel, azaz pontosan ugyanazt az értéket taroljak, mint a masik valtozo.
Ezek az ugynevezett referenciak.

A referencia 6nall6é fogalom a C++ -ban

A referenciat mindig egy mar létez0, tetszOleges valtozora allitjuk ra, és ettdl
kezdve barmelyik értékének moédositasa a masik értékét is modositja, mivel ugyan
arra a memoriatertletre fognak hivatkozni.

A referencia tipusanak meg kell egyeznie az eredeti valtozo6 tipusaval, a neve pedig
tetszoleges lehet

A C++-ban a referenciavaltozdkat az & operatorral jeloljuk meg:

* <tipus> <vdltozo 1>;

* <tipus> & <vdltozo 2> = <vdltozo 1>;

—Valtozok I.

== 1int 1;

altozok II.

. y
referencia, mutato

int 1; //deklaracié

1 =4; //értékadas
e 1Nt &F = 1;

int *m = &1;

/
—Referencia

Referencia esetén nem mindig foglalodik le Uj memoria terulet,
néha egy meglévohoz rendellink hozza egy masik valtozonevet

A memoriateriilet mindkét névvel elérheté és valtoztathato.
®int i = 4; // 1=4;

®int & r = i; // 1=r=4;

®r = 10; // 1=r=10;

eferencia egy értelmezése

= int& r = 1i; 4

int
// Uj nevet rendeliink a
mar megléevo valtozohoz

eferencia

i 10

int

int& r
—r = 10;

eferencia szerinti paraméteratadas

Kovetkezmények:
- ha szeretnénk, hogy egy fliggvény valtoztassa a valtozonkat, akkor
lehetséges referencia szerint atvenni a paramétert
« csak valtozo lehet a paraméter, kifejezés eredménye vagy konstans
nem
- gyors, mert nem kell masolatot késziteni, ami nagyobb
memoriaigényld valtozoknal (pl. string egymillid6 karakterrel)
lassithatja a programot
- veszélyes lehet, a legtobb fliggvényhivasnal nem szamitunk arra,
hogy megvaltozhat a paraméteriil atadott valtozoé (pl. matematikai
figgvények)

/

Konstans referencia szerinti paraméteratadas

gyors, mert nem készul masolat

int vektor_ fuggveny2(const vector<int>& vek) {

1 2 4 sum += vek[0] //0K
blzton§agos,mert nem valtozhat vek0] —0: //hibe:
meg, figyel a forditoprogram

const Tipus& paraméter

}

int main() {
vector<int> v(3,0);

Iegelte”edtebb cout << vektor_fuggveny2(v) << endl;

paraméteratadasi forma a) return 0;

gyakorlatban, ha nem
alapipusokroél van sz6

Mmény visszaadasa

Egyszerlen tobb paramétert veszink at referencia szerint
® Ezek értékével egyaltalan nem foglalkozunk, csak feliilirjuk azokat

® [gy a paraméter jelentése az lesz, hogy ,ide meg ide kérem az
eredményt”

Lesz még masfajta megoldas is erre a problémara
Jovo héten megnézzik

/

omb, mint paraméter

#include <iostream>
using namespace std;

int tomb_fuggvenyl(int tomb[], int meret) {
int osszeg = 0;
for(int i = 0; i<meret; ++i){
tomb[i] = (i+1)*3;
osszeg += tomb[i];
}

return osszeg;

}

int main() {
int t[3] = {0,0,0};
cout << tomb_fuggvenyl(t, 3) << endl;
for(int i = 0; 1<3; ++1i) {
cout << t[i] << ", ";
}

return 0;

#include <iostream>
using namespace std;

int tomb_fuggveny2(int* tomb, int meret) {

}

int osszeg = 0;

for(int i = 0; i<meret; ++i){
tomb[i] = (i+1)*3;
osszeg += tomb[i];

}

return osszeg;

int main() {

int t[3] = {0,0,0};
cout << tomb_fuggveny2(t, 3) << endl;
for(int 1 = 0; 1i<3; ++1i) {

cout << t[i] << ", ";

}

return 0;

::::;§¢,¢///’//4;§§§;/»

mmt paraméter

Az STL vector atadasa paraméterként:
® jelezzlik a fliggvény paraméterlistajaban, hogy milyen vektorra szamitson

® mivel ismeri a méretét, lekérdezheté (.size()), ezért itt mar nem kell
atadni ezt az értéket

® szintaktika:
°* int vektor_fuggvenyl(vector<int> vek){ .. } //érték
illetve:
°* int vektor fuggveny2(vector<int>& vek){ .. } //referencia

—Témb, mint paraméter

az eredmény mindkét esetben:

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.089s
Press any key to continue.

/

ektor, mint paraméter

#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggvenyl(vector<int> vek) {
int osszeg = 0;
for(size_t i = 0; i<vek.size(); ++i){
vek[1] = (i+1)*3;
osszegqg += vek[i];
}

return osszeg;

}

int main() {
vector<int> v(3,0);
cout << vektor_fuggvenyl(v) << endl;
for(size t i = 0; i<v.size(); ++i) {
cout << v[i] << ", ";
}

return 0;

#include <iostream>
#include <vector>
using namespace std;

int vektor_fuggveny2(vector<int>& vek) {

}

int osszeg = 0;

for(size t i = 0; i<vek.size(); ++i){
vek[1] = (i+1)*3;
osszeg += vek[i];

}

return osszeg;

int main() {

vector<int> v(3,0);

cout << vektor_fuggveny2(v) << endl;

for(size t i = 0; i<v.size(); ++i) {
cout << v[i] << ", ";

}

return 0;

—Vektor, mint paraméter

int vektor fuggvenyl(vector<int> vek) { .. }
esetén az eredmény:

Elemek osszege: 18
o, 0, 0,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.

int vektor_ fuggveny2(vector<int>& vek) { .. }
esetén az eredmény:

Elemek osszege: 18
3, 6, 9,

Process returned 0 (0x0) execution time : 0.079s
Press any key to continue.

—T6mb / vektor, mint paraméter

Primitiv tomb esetén mind a szintaktikai kilonbség nem takar funkcionalis
kiilbnbséget: a fliggvények az eredeti tombbel fognak dolgozni, a valtozasok ezért
maradanddak, mivel a tomb pointerrel van megvaldsitva. (Vagyis tombot nem
tudunk Ugy paraméterben atadni, hogy masolat késziljon réla, a mutatd érték
szerint atadva ugyanoda mutat ahova az eredeti mutato).

Vektor esetén a valtozoknal megszokott érték illetve referencia szerinti

paraméteratadast tapasztaljuk.
® Els6é esetben a vektorunkrdl masolat késziil, a miveleteket ezen a masolaton hajtjuk
végre, az eredeti vektorunk valtozatlan marad.

® Masodik esetben az eredeti vektorra hivatkozunk egy Uj referenciaval, nem késziil
masolat a mulveletek az eredeti vektort modositjak, ez maradando.

o V4 /
ajlok paraméterben

A fajlokat (ifstream, ofstream) illetve barmilyen csatornat (iostream) mindig
referencia szerint kell atvenni

Miért? - Mert nem készitheto réluk masolat, aminek azaz oka, hogy példaul
a ,hol tartunk a fajlban” benne van a fajl tipusban:
® képzeljuk el, hogy egy fuggvény lemasol (érték szerint atvesz) egy ifstream-et és
olvas bel6le

® visszatérés utan a kovetkezd olvasasnal a fajl el6z6 olvasasainak kellene Ujra
megtorténnie, hisz csak a masolatbdl olvastunk, az atadottbol nem, az tehat
nem is mehet arrébb

® ez viszont kdvethetetlen, illetve technikailag rémalom lenne a megvalositasa

° ’ :::2255557”///,/44§§§§§;/,
ajlok paraméterben

#include <iostream>
#include <fstream>
using namespace std;

void olvas(ifstream& f, double& a) {
f >> a;
}

int main() {
double d;
ifstream befile("a.txt");
olvas(befile, d);
cout << "eredmeny: " << d << endl;

return 0;

oo , /
/O(foglalas

Paramétert kétféleképpen is at lehet adni C++ -ban
® Erték szerint: masolat késziil egy lokalis valtozéra
® Referencia szerint: ugyan az a valtozd tobb néven

Paraméterként a fajlok és a tombaok specialisak

Mivel veszélyes (feliilirds!) mindent referenciaként atvenni,
ezért csak akkor tegyuk, ha

® 3 specifikacionk szerint eredményt adunk vissza benne

® — konstans referenciat hasznaljunk inkabb ha hatékonysagi
okokbdl szeretnénk csak referenciat

	Slide 1
	Paraméterek érvényessége és láthatósága
	Paraméterek érvényessége és láthatósága
	Paraméterek érvényessége és láthatósága
	Névválasztás
	Változó láthatósága
	Változó érvényessége
	Paraméterek érvényessége és láthatósága
	Procedurális (vagy hierarchikus) programozás
	Trükk
	Rekurzív függvény
	Összefoglalás I.
	Nyitott kérdések
	Paraméterátadások
	Paraméterátadások
	Érték szerinti paraméterátadás
	Referencia szerinti paraméterátadás
	Referencia
	Változók I.
	Változók II.
	Slide 21
	Referencia
	Referencia I.
	Referencia II.
	Referencia szerinti paraméterátadás
	Slide 26
	Több eredmény visszaadása
	Tömb, mint paraméter
	Vektor, mint paraméter
	Tömb, mint paraméter
	Vektor, mint paraméter
	Vektor, mint paraméter
	Tömb / vektor, mint paraméter
	Fájlok paraméterben
	Fájlok paraméterben
	Összefoglalás II:

