
Bevezetés a programozásba

7. Előadás
C++ függvény

C++ „Hello world!”

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

C++ „Hello world!”

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

C++ példa program: osztóösszeg
#include <iostream>
using namespace std;

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

 int ooa=0;
 for(int i=1; i<=a; i++) {
 if(a%i==0) ooa+=i;
 }
 int oob=0;
 for(int j=1; j<=b; j++) {
 if(b%j==0) oob+=j;
 }
 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

#include <iostream>
using namespace std;

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

 int ooa=0;
 for(int i=1; i<=a; i++) {
 if(a%i==0) ooa+=i;
 }
 int oob=0;
 for(int j=1; j<=b; j++) {
 if(b%j==0) oob+=j;
 }
 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

Ismétlődő kódrészlet!
#include <iostream>
using namespace std;

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

 int ooa=0;
 for(int i=1; i<=a; i++) {
 if(a%i==0) ooa+=i;
 }
 int oob=0;
 for(int j=1; j<=b; j++) {
 if(b%j==0) oob+=j;
 }
 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

#include <iostream>
using namespace std;

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

 int ooa=0;
 for(int i=1; i<=a; i++) {
 if(a%i==0) ooa+=i;
 }
 int oob=0;
 for(int j=1; j<=b; j++) {
 if(b%j==0) oob+=j;
 }
 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

Alprogram bevezetése
alprogram{
 int ooX=0;
 for(int i=1; i<=X; i++) {
 if(X%i==0) ooX+=i;
 }

}

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

alprogram X <- a
alprogram X <- b

 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

alprogram{
 int ooX=0;
 for(int i=1; i<=X; i++) {
 if(X%i==0) ooX+=i;
 }

}

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

alprogram X <- a
alprogram X <- b

 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

Visszatérési érték bevezetése
int alprogram{
 int eredmeny = 0;
 for(int i=1; i<=X; i++) {
 if(X%i==0) eredmeny += i;
 }

return eredmeny;
}

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

int ooa = alprogram X <- a
int oob = alprogram X <- b

 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

int alprogram{
 int eredmeny = 0;
 for(int i=1; i<=X; i++) {
 if(X%i==0) eredmeny += i;
 }

return eredmeny;
}

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

int ooa = alprogram X <- a
int oob = alprogram X <- b

 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

Paraméter átadás bevezetése
int alprogram(int X) {
 int eredmeny = 0;
 for(int i=1; i<=X; i++) {
 if(X%i==0) eredmeny += i;
 }

return eredmeny;
}

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

int ooa = alprogram(a);
int oob = alprogram(b);

 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

int alprogram(int X) {
 int eredmeny = 0;
 for(int i=1; i<=X; i++) {
 if(X%i==0) eredmeny += i;
 }

return eredmeny;
}

int main() {
 int a, b;
 cout << "Add meg a két számot: ";
 cin >> a >> b;

int ooa = alprogram(a);
int oob = alprogram(b);

 cout << "Az osztóösszegek: " << ooa <<", " << oob <<endl;
 return 0;
}

Alprogramok kommunikációja
Az alprogramok egymásnak átadhatnak értékeket a következő

eszközökkel:
 globális változók/konstansok: olyan változók, amelyek a teljes

programkódban érvényben vannak, nem csak egy adott programrészen belül
 visszatérési érték: az alprogram által visszaszolgáltatott érték, amely

visszakerül a hívás helyére, egy alprogramnak csak egy visszatérési értéke
lehet

 paraméterek: olyan változók, amelyek az alprogram meghívásakor kapnak
értéket, és a teljes alprogramban érvényesek, paraméterből bármennyit
adhatunk egy alprogramnak, de a meghíváskor mindegyiknek értéket kell
adnunk

Visszatérési értékek
Minden függvényben, amely nem visszatérési érték nélküli, kell szerepelnie egy

érték visszaadásnak
 erre a célra a return utasítás szolgál, amelyet bárhol elhelyezhetünk a függvény

kódjában, de gondoskodnunk kell arról, hogy a függvény minden lefutása
hozzávezessen

 a return utáni utasítások nem kerülnek végrehajtásra, ezért általában a függvény
utolsó sorában szerepel (de elágazások használatával előbbre is tehető, illetve több
is elhelyezhető egy függvényben)

 a return után szerepelhet érték, változó, kifejezés, de a típusának meg kell egyeznie
a függvény deklarációjában megadott típussal

 a programkód lefutásakor mindig pontosan egy return hajtódik végre, tehát mindig
egy érték adódik vissza

Függvények írásmódja
Ha egy C++ kódban a következőt látjuk:

típusnév függvénynév(tetszőleges deklarációk)
{

…

return valami;

}

akkor az egy függvény

Függvények írásmódja
Ha egy C++ kódban a következőt látjuk:

típusnév függvénynév(tetszőleges deklarációk)
{

…

return valami;

}

akkor az egy függvény

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!”;
 return 0;
}

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!”;
 return 0;
}

Függvények szerkezete C++ -ban

A függvény szignatúrája
típusa: ami a visszatérési érték típusa (típusnév)
név: a függvény neve (függvénynév)

paraméter lista: változók deklarációját jelenti (ugyanúgy, mint bárhol
máshol a kódban), melyek a függvényhez tartoznak (tetszőleges
deklarációk)

függvény törzse: a végrehajtandó utasítássorozat

double terulet(double a, double b, double c) { … }

A void típus
Ez a „semmilyen” típus
Ilyen típusú változót nem lehet készíteni
Használata: Ezzel jelezzük, ha egy függvénynek

nincs visszatérési értéke
tehát a visszatérési típus „semmilyen”

„Eljárások” C++ -ban
A visszatérési érték nélküli függvények típusa void, és ekkor a return után

nem szerepel érték
 Pl: egy skip nevű függvény, amely nem csinál semmit, és nem ad vissza értéket:

void skip(){
return;
}

ezekben a függvényekben nem is kötelező kiírni a return utasítást, ezért csak
akkor írjuk ki őket, ha a függvény működését előbb meg akarjuk szakítani,
minthogy a teljes függvénytörzs kódja lefusson

tehát az előző függvény így is írható:

void skip(){}

Függvények a C++-ban
A függvény belsejében egy program van
Minden C/C++ programban van egy fő függvény, ennek a

neve „main”
Amikor a teljes program elindul, akkor a main függvény

indul el, és ha ez a függvény befejeződik, akkor a teljes
program is befejeződik

A lényeg: Függvények más függvényeket hívnak meg.
Ez lényegében egy új programkonstrukció

Függvényhívás
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Függvényhívás
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

A főprogram végrehajtása
megáll, a vezérlést átadja a

meghívott függvénynek.
A függvény törzs

végrehajtásával folytatódik a
program.

Paraméterátadás
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Paraméterátadás
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

A függvény törzsben az átvett
paraméterekkel dolgozik a

program.

Visszatérésiérték
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc;
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

A függvény visszaadja a
megadott típusú értéket a

hívási pontba.

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(ha, hb, hc);
 cout << "Terulet: " << t <<endl;
 return 0;
}

A változók értéket kapnak.

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (a+b+c)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Az aktuális paraméterekkel
meghívjuk a függvényt.

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (3+4+5)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = (3+4+5)/2.0;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

A formális paraméterek
átveszik az aktuális

paraméterek értékét.

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt((s-a)*(s-b)*(s-c)*s);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt((6-3)*(6-4)*(6-5)*6);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt((6-3)*(6-4)*(6-5)*6);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt(3*2*1*6);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt(3*2*1*6);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt(36);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return sqrt(36);
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return 6;
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return 6;
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = terulet(3, 4, 5);
 cout << "Terulet: " << t <<endl;
 return 0;
}

Függvényhívás példa
#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return 6;
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = 6;
 cout << "Terulet: " << t <<endl;
 return 0;
}

#include <iostream>
#include <cmath>
using namespace std;

double terulet(double a, double b, double c)
{
 double s = 6;
 return 6;
}

int main() {
 double ha, hb, hc;
 cin >> ha >> hb >> hc; // ha=3, hb=4, hc=5
 double t = 6;
 cout << "Terulet: " << t <<endl;
 return 0;
}

Egyebek
Mi a teendő, ha nem egy változót szeretnék visszaadni, hanem többet?
 Türelmesen várj a következő előadásig

Lehet-e függvényhíváskor a paraméter egy másik függvény visszatérési
értéke?
 Természetesen, a visszatérési értékkel rendelkező függvény tetszőleges

kifejezés része lehet

Mi történik, ha kifejezésben/értékadásban void típusú függvényt hívok?
 Nem használható kifejezésben, vagy értékadásban a függvényhívás, mert

nem ad vissza értéket („semmilyen a típusa”)

Folytatás következik
C++ függvények második rész a következő előadáson

	Slide 1
	C++ „Hello world!”
	C++ „Hello world!”
	C++ példa program: osztóösszeg
	Ismétlődő kódrészlet!
	Alprogram bevezetése
	Visszatérési érték bevezetése
	Paraméter átadás bevezetése
	Alprogramok kommunikációja
	Visszatérési értékek
	Függvények írásmódja
	Függvények írásmódja
	Függvények szerkezete C++ -ban
	A void típus
	„Eljárások” C++ -ban
	Függvények a C++-ban
	Függvényhívás
	Függvényhívás
	Paraméterátadás
	Paraméterátadás
	Visszatérésiérték
	Függvényhívás példa
	Függvényhívás példa
	Függvényhívás példa
	Függvényhívás példa
	Függvényhívás példa
	Függvényhívás példa
	Függvényhívás példa
	Függvényhívás példa
	Függvényhívás példa
	Egyebek
	Folytatás következik

