
Bevezetés a programozásba

6. Előadás
C++ bevezető

Programozási nyelvek
A PLanG interpretált nyelv

A programszöveget a keretrendszer értelmezi
 Ennek eredménye a keretrendszer belső állapotának változása, a

futtatáshoz szükséges adatok előkészítése, pl. mely sorokat kell
megismételni a ciklus futtatásakor

 A program futását a keretrendszer intézi
 Az elkészített programból nem keletkezik .exe vagy más önállóan

futtatható állomány

Programozási nyelvek
Interpretált nyelvek (Interpreted)

 PLanG
 BASIC (egyes dialektusok), Eiffel
 JavaScript, Mathematica, Matlab
 Perl, Php, Python

Lefordított nyelvek (Compiled)
 C/C++, C#
 Ada, BASIC (más dialektusok), COBOL
 Pascal (a legtöbb implementáció), Java, Smalltalk
 Python (compiled verziója is létezik)

A GPU programozás tovább bonyolítja a képet

A C++ nyelv
A C++ általános célú multiparadigmális programozási nyelv
Első változata 1979-ben készült (Bjarne Stroustroup) a C

programozási nyelvből.

Eredeti célja: objektumorientált programozási lehetőségekkel való
kiegészítése a nyelvnek

Tanuláshoz azért jó mert szinte minden van benne ami programozási
nyelvekben elő szokott fordulni

PLanG illetve C++ „Hello world!”
PROGRAM hello

KI: "Hello world!", SV
PROGRAM_VÉGE

PROGRAM hello
KI: "Hello world!", SV

PROGRAM_VÉGE #include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

Fejlécek
Angolul header
A C++-ban használhatunk dolgokat, amit mások már elkészítettek
#include <fejlécnév>
A félév során szükséges fejlécek

 <iostream>: kimenet, bemenet (cout, cin)
 <fstream>: fájl (ifstream, ofstream)
 <string>: szöveg típus (string)
 <cmath>: matematikai függvények (sin(x), cos(x))
 <cstdlib>: véletlen szám, egyebek (rand(), abs(x), conv.)

Ezek sokszor egymásra épülnek

Névterek
namespace
Arra való, hogy ugyanazt a nevet használhassuk más-más

kontextusban, más-más értelemben
Az std névteret fogjuk használni

Pl.: cout azonosító az std névtérben található, ezért kell így
hívni: std::cout

A using namespace std; azt jelenti, hogy ezeket az „std::”
előtagokat nem kell kiírni

Vezérlési szerkezetek - szekvencia
Szekvencia:

 utasítások egymás után
 az utasítások végére ; -t kell tenni
 egy sorban lehet több utasítást is írni, illetve egy utasítást lehet több

sorban is írni

Programblokk:
 utasítások csoportosításai, amelyek egy függvényen belül találhatóak
 egy programblokk: { <utasítások> }
 programblokkok tartalmazhatnak további blokkokat, így egymásba

ágyazott szerkezetet készíthetünk

Kommentek
Megjegyzést, avagy kommentet bárhol elhelyezhetünk a kódban

 elhelyezhetjük a sor végén, akkor az utána a sorba írt utasításokat nem veszi figyelembe:

<utasítás>; // megjegyzés
elhelyezhetjük a sor közben, illetve bármely utasítás közben (ügyelve arra, hogy nem

szó közben írjuk), ekkor a komment után lévő utasításokat figyelembe veszi

<utasítás>; /*megjegyzés*/ <utasítás>;
/*
megjegyzés
…
*/

ezzel a jelöléssel több soros megjegyzést is készíthetünk

Típusok

VÁLTOZÓK:
 i: EGÉSZ,
 v: VALÓS,
 c: KARAKTER,
 l: LOGIKAI,
 s: SZÖVEG,
 bf: BEFÁJL,
 kf: KIFÁJL,
 tomb: Típus[méret]

VÁLTOZÓK:
 i: EGÉSZ,
 v: VALÓS,
 c: KARAKTER,
 l: LOGIKAI,
 s: SZÖVEG,
 bf: BEFÁJL,
 kf: KIFÁJL,
 tomb: Típus[méret]

int i = 0;
double v = 0;
char c = ' ';
bool l;
string s = "szoveg";
ifstream bf;
ofstream kf;
Típus tomb[méret];

int i = 0;
double v = 0;
char c = ' ';
bool l;
string s = "szoveg";
ifstream bf;
ofstream kf;
Típus tomb[méret];

Értékadás, I/O műveletek

BE: Val1, Val2
BE bf: Val1, Val2
BE: SzovValt
BE bf: SzovValt
KI: Kif1, Kif2
KI: SV
KI kf: Kif1, Kif2

BE: Val1, Val2
BE bf: Val1, Val2
BE: SzovValt
BE bf: SzovValt
KI: Kif1, Kif2
KI: SV
KI kf: Kif1, Kif2

cin >> Val1 >> Val2;
bf >> Val1 >> Val2;
getline(cin, SzovValt);
getline(bf, SzovValt);
cout << Kif1 << Kif2;
cout << endl;
kf << Kif1 << Kif2;

cin >> Val1 >> Val2;
bf >> Val1 >> Val2;
getline(cin, SzovValt);
getline(bf, SzovValt);
cout << Kif1 << Kif2;
cout << endl;
kf << Kif1 << Kif2;

a := kifa := kif a = kif ;a = kif ;

Értékadás, I/O műveletek
Az értékadás jele a C++ -ban: =

Az egyenlőség vizsgálat jele más lesz: ==
Könnyű összekeverni
Össze is fogod keverni…

A cin bemenet maga a konzol, ahová gépelni lehet
A PLanG-gal ellentétben a cin >> x; beolvasás a C++ -ban blokkolja

a program futását, tehát vár, amíg begépelünk valamit.
Igazi interakcióra lesz lehetőség!

Értékadás, I/O műveletek
A „bementicsatorna >> változó” típusos olvasás, tehát a változó

típusától függően működik, pontosan mint a PLanG „BE: változó”
Viszont a PLanG-gal ellentétben a

 „bementicsatorna >> szövegesváltozó” csak egy szót olvas be.
Szónak számít az, ami szóközzel, tab-bal, vagy sorvégével (WHITE
SPACE karakterrel) van elválasztva.

A „getline(bemeneticsatorna, szövegesváltozó)” típus nélküli
olvasás, kizárólag szöveges változóba lehet így olvasni, ENTER-ig
olvas

Elágazás

HA FeltKif AKKOR

 igaz-ág: utasítások

KÜLÖNBEN

 hamis-ág: utasítások
HA_VÉGE

HA FeltKif AKKOR

 igaz-ág: utasítások

KÜLÖNBEN

 hamis-ág: utasítások
HA_VÉGE

if(FeltKif)
{
 igaz-ág: utasítások
}
else
{
 hamis-ág: utasítások
}

if(FeltKif)
{
 igaz-ág: utasítások
}
else
{
 hamis-ág: utasítások
}

HA FeltKif AKKOR

 igaz-ág: utasítások
HA_VÉGE

HA FeltKif AKKOR

 igaz-ág: utasítások
HA_VÉGE

if(FeltKif)
{
 igaz-ág: utasítások
}

if(FeltKif)
{
 igaz-ág: utasítások
}

Ciklus

CIKLUS

 Utasítások
AMÍG FeltKif

CIKLUS

 Utasítások
AMÍG FeltKif

do
{
 utasítások
} while(FeltKif);

do
{
 utasítások
} while(FeltKif);

CIKLUS AMÍG FeltKif

 utasítások
CIKLUS_VÉGE

CIKLUS AMÍG FeltKif

 utasítások
CIKLUS_VÉGE

while(FeltKif)
{
 utasítások
}

while(FeltKif)
{
 utasítások
}

Számláló ciklus
i := 0
CIKLUS AMÍG i<10

 ciklusmag
 i := i+1
CIKLUS_VÉGE

i := 0
CIKLUS AMÍG i<10

 ciklusmag
 i := i+1
CIKLUS_VÉGE

for(int i=0; i<10; i++)
{
 ciklusmag

}

for(int i=0; i<10; i++)
{
 ciklusmag

}

Számláló ciklus C++
A számláló szerkezete itt teljesen elkülönül:

for(<számláló kezdőérték>; <számláló feltétele>; <számláló inkrementálás>)
{
 utasítások
}

De természetesen előtesztelő ciklussal is meg lehet fogalmazni a számlálót, az
eredmény ugyanaz lesz:

<számláló kezdőérték>;
while(<számláló feltétele>)
{
 utasítások
 <számláló inkrementálás>;
}

Blokkok II.
Észrevehető, hogy a PLanG-féle XY_VÉGE jelek C++ nyelvben egyformák: ‘}’
A blokkos szerkezet alapvető, blokkot bármikor nyithatunk, ez jelenti azt,

hogy egy utasításként gondolunk egy programrészletre

 =

 !=

while(FeltKif) {
 <utasítás1>;
}

while(FeltKif) {
 <utasítás1>;
}

while(FeltKif)
 <utasítás1>;
while(FeltKif)
 <utasítás1>;

while(FeltKif) {
 <utasítás1>;
 <utasítás2>;
}

while(FeltKif) {
 <utasítás1>;
 <utasítás2>;
}

while(FeltKif)
 <utasítás1>;
<utasítás2>;

while(FeltKif)
 <utasítás1>;
<utasítás2>;

PROGRAM összeg
 VÁLTOZÓK:
 a, sum: EGÉSZ

 sum := 0
 BE: a
 CIKLUS AMÍG a >= 0
 sum := sum + a
 BE: a
 CIKLUS_VÉGE
 KI: "Összeg: ", sum, SV

PROGRAM_VÉGE

PROGRAM összeg
 VÁLTOZÓK:
 a, sum: EGÉSZ

 sum := 0
 BE: a
 CIKLUS AMÍG a >= 0
 sum := sum + a
 BE: a
 CIKLUS_VÉGE
 KI: "Összeg: ", sum, SV

PROGRAM_VÉGE

Példa: összegzés PLanG / C++-ban,
 végjeles sorozatra

#include <iostream>
using namespace std;

int main()
{
 int a;
 int sum = 0;
 cin >> a;
 while(a >= 0) {

sum += a;
cin >> a;

 }
 cout << "Összeg: " << sum << endl;
 return 0;
}

#include <iostream>
using namespace std;

int main()
{
 int a;
 int sum = 0;
 cin >> a;
 while(a >= 0) {

sum += a;
cin >> a;

 }
 cout << "Összeg: " << sum << endl;
 return 0;
}

Logikai eredményű műveletek
PLanG
 – a = b
 – a /= b
 – a < b
 – a >= b
 – A ÉS B
 – A VAGY B
 – NEM A

PLanG
 – a = b
 – a /= b
 – a < b
 – a >= b
 – A ÉS B
 – A VAGY B
 – NEM A

C++
 – a == b
 – a != b
 – a < b
 – a >= b
 – A && B vagy A and B
 – A || B vagy A or B
 – ! A

C++
 – a == b
 – a != b
 – a < b
 – a >= b
 – A && B vagy A and B
 – A || B vagy A or B
 – ! A

Egész eredményű műveletek
PLanG
 – -a
 – |a|
 – a + b
 – a - b
 – a * b
 – a DIV b
 – a MOD b
 – RND a

PLanG
 – -a
 – |a|
 – a + b
 – a - b
 – a * b
 – a DIV b
 – a MOD b
 – RND a

C++
 – -a
 – abs(a)
 – a + b
 – a - b
 – a * b
 – a / b
 – a % b
 – rand() % a

C++
 – -a
 – abs(a)
 – a + b
 – a - b
 – a * b
 – a / b
 – a % b
 – rand() % a

Az osztásról
Van két osztás művelet

egész / egész (PLanG „DIV”)
valós / valós (PLanG „/”)

Ezek egyformán néznek ki, de másképp működnek
1 / 2 == 0
double(1) / double (2) == 0.5
1.0 / 2.0 == 0.5

Valós osztáshoz elég ha az egyik operandus nem egész

Szöveg eredményű műveletek
PLanG
 – "a"
 – |s|
 – s[i]
 – s[k : v]
 – s1 @ s2
 – s @ kar
 – s1 + s2

PLanG
 – "a"
 – |s|
 – s[i]
 – s[k : v]
 – s1 @ s2
 – s @ kar
 – s1 + s2

C++
 – "a"
 – s.length()
 – s[i]
 – s.substr(k, v-k)
 – s1.find(s2)
 – s.find(kar)
 – s1 + s2

C++
 – "a"
 – s.length()
 – s[i]
 – s.substr(k, v-k)
 – s1.find(s2)
 – s.find(kar)
 – s1 + s2

A karakterekről
char a;
A char típus egyszerre jelent számot (8 bites előjeles, -128

.. 127) és karaktert
ASCII táblázat (‘A’:65, ‘1’:49, ‘a’:97, …)
a cout << a; egy karaktert fog kiírni a konzolra
a cout << int(a); pedig az ASCII kódját, mert az

átalakítással (explicit típuskonverzió) számként kezelést
kértünk

Függvények
Láthattunk több olyan C++ elemet, amely azonosító + zárójelpár,

amelyen belül paraméterek vannak
Ezek a függvényhívások
Önálló programrészleteket tartalmaznak,

amelyeknek a bemenete a paraméterlista
kimenete pedig egy visszatérési érték

Pl. v1 = sin(v2);
jelentése: indítsd el a sin nevű függvényt v2 bemenettel és az
eredményt írd a v1-be

Függvények
PLanG programban is használtunk függvényhívásokat, pl. RND x,

NAGY c …
C++ -ban könnyen felismerhető a függvény: mindig kell mögé

zárójelet tenni, akkor is, ha nem kell neki paraméter (pl. rand())
Néhány függvényhívás olyan, hogy egy kiemelt paramétert nem a

zárójelbe kell írni, hanem elé és ponttal kell elválasztani, pl. a string
műveletei közül több is, s.length()
Ezt egyelőre így fogadjátok el, ez az objektumorientált szintaxis, lesz

még róla szó

Markáns különbségek
C++ -ban ott deklarálunk új változót, ahol jólesik, nem kell

kigyűjteni a program elejére
Viszont bejön a változó élettartama
Ha egy blokkon belül van egy deklaráció, akkor az a változó

csak arra a (legszűkebb) blokkra érvényes, annak végével
megszűnik
újrafelhasználhatóak a nevek, pl. minden ciklusnak lehet saját i

változója (amíg nem egymásba ágyazottak)
mégsem keverhetőek össze véletlenül

Markáns különbségek
C++ -ban ott deklarálunk új változót, ahol jólesik, nem kell

kigyűjteni a program elejére
Viszont bejön a változó élettartama
Ha egy blokkon belül van egy deklaráció, akkor az a változó

csak arra a (legszűkebb) blokkra érvényes, annak végével
megszűnik
újrafelhasználhatóak a nevek, pl. minden ciklusnak lehet saját i

változója (amíg nem egymásba ágyazottak)
mégsem keverhetőek össze véletlenül

{

 int szam;
 {

 string szoveg;
 szam = 12;

 }
 cout << szam << endl;
 szoveg = ”Ez egy mondat!”;

}

{

 int szam;
 {

 string szoveg;
 szam = 12;

 }
 cout << szam << endl;
 szoveg = ”Ez egy mondat!”;

}

Markáns különbségek
A PLanG véges abban az értelemben, hogy nem bővíthetőek a

műveletek
C++-ban lehetőség van új függvények létrehozására, ezek

megosztására
A legtöbb gyakorlati probléma megoldható úgy, hogy az ember

megkeresi a megfelelő könyvtárat, #include
<fejlécnév> és a dokumentáció szerint használja
fájlformátumok, grafika, adatbázis, hálózat, stb.

Második félévben …

Markáns különbségek
C++-ban nincs „nem kapott kezdeti értéket” hibaüzenet
Memóriaszemét: kapunk valahol egy kis memóriát, ki tudja mi

maradt ott az előző programok után
Hibaüzenet helyett fura működés
Esetleg kaphatunk figyelmeztetést (warning)

Ha nem értesz egy figyelmeztetést, az intő jel

C++ -ban mindent szabad, amit nem tilos
Érdemes lesz beállítani, hogy a fordító minden gyanús dologért

szóljon!

Markáns különbségek
C++-ban akkor sincs „nem kapott kezdeti értéket”

hibaüzenet, ha fájl vége után olvasunk tovább
Figyelmeztetés sincs
Általában végtelen sokáig ugyanazt az értéket

ismétli, de bármi más viselkedés előfordulhat

C++ fejlesztői eszközök
Fordítóprogram (forráskód → gépi kód)

– GCC (windows-on MINGW)

– Microsoft Visual C++

– CLang
IDE (programozáshoz való szövegszerkesztő extrákkal)

CodeBlocks, CLion, QtCreator, Visual Studio

Dokumentáció, pl. cppreference.com

	Slide 1
	Programozási nyelvek
	Programozási nyelvek
	A C++ nyelv
	PLanG illetve C++ „Hello world!”
	Fejrész: Fejlécek
	Fejrész: Névterek
	Vezérlési szerkezetek - szekvencia
	Megjegyzések
	Típusok
	Értékadás, I/O műveletek
	Értékadás, I/O műveletek
	Értékadás, I/O műveletek
	Elágazás
	Ciklus
	Számláló ciklus
	Számláló ciklus C++
	Blokkok II.
	Példa: összegzés PLanG / C++-ban, végjeles sorozatra
	Logikai eredményű műveletek
	Egész eredményű műveletek
	Az osztásról
	Szöveg eredményű műveletek
	A karakterekről
	Függvények
	Függvények
	Markáns különbségek
	Markáns különbségek
	Markáns különbségek
	Markáns különbségek
	Markáns különbségek
	C++ fejlesztői környezetek

