—

Bevezetés a programozasba

6. Eloadas
C++ bevezeto

/

rogramozasi nyelvek

A PLanG interpretalt nyelv

® A programszoveget a keretrendszer értelmezi

® Ennek eredménye a keretrendszer belsé allapotanak valtozasa, a
futtatashoz szikséges adatok el6készitése, pl. mely sorokat kell
megismételni a ciklus futtatasakor

® A program futasat a keretrendszer intézi

® Az elkészitett programbol nem keletkezik .exe vagy mas onalléan
futtathato allomany

/

rogramozasi nyelvek

Interpretalt nyelvek (Interpreted)

® PLanG

® BASIC (egyes dialektusok), Eiffel

® JavaScript, Mathematica, Matlab

® Perl, Php, Python

Leforditott nyelvek (Compiled)

® C/C++, CH#

® Ada, BASIC (mas dialektusok), COBOL

® Pascal (a legtobb implementaciod), Java, Smalltalk
® Python (compiled verzidja is létezik)

A GPU programozas tovabb bonyolitja a képet

/
mw

A C++ altalanos célu multiparadigmalis programozasi nyelv
Els6 valtozata 1979-ben késziilt (Bjarne Stroustroup) a C
programozasi nyelvbél.

Eredeti célja: objektumorientalt programozasi lehet6ségekkel vald
kiegészitése a nyelvnek

Tanulashoz azért j6 mert szinte minden van benne ami programozasi
nyelvekben el6 szokott fordulni

o /
—PLanG illetve C++ Hello world!”

PROGRAM hello
KI: "He}lo world!", SV
PROGRAM_VEGE #include <iostream>

using namespace std;

int main()

{
cout << "Hello world!" << endl;
return 0;

¥

/

—Fejlécek

Angolul header
A C++-ban hasznalhatunk dolgokat, amit masok mar elkészitettek

#include <fejlécnév>

A félév soran sziikséges fejlécek

® <ijiostream>: kimenet, bemenet (cout, cin)

<fstream>: fijl (ifstream, ofstream)

<string>: szdveg tipus (string)

<cmath>: matematikai fiiggvények (sin(x), cos(x))
<cstdlib>: véletlen szdm, egyebek (rand(), abs(x), conv.)

Ezek sokszor egymasra épuilnek

/

—Névterek

namespace
Arra vald, hogy ugyanazt a nevet hasznalhassuk mas-mas
kontextusban, mas-mas értelemben

Az std névteret fogjuk hasznalni

® Pl.: cout azonosité az std névtérben taldlhato, ezért kell igy
hivni: std: : cout

A using namespace std; azt jelenti, hogy ezeket az ,std::”

elotagokat nem kell kiirni

ezérlési szerkezetek - szekvencia

Szekvencia:
® utasitasok egymas utan

® 5z utasitasok végére ; -t kell tenni

® egy sorban lehet tobb utasitast is irni, illetve egy utasitast lehet tobb
sorban is irni

Programblokk:
® utasitasok csoportositasai, amelyek egy fliggvényen beliil talalhatoak
® egy programblokk: { <utasitdsok> }

® programblokkok tartalmazhatnak tovabbi blokkokat, igy egymasba
agyazott szerkezetet készithetiink

/
—Kommentek

Megjegyzést, avagy kommentet barhol elhelyezhetiink a kdbdban
® clhelyezhetjilik a sor végén, akkor az utana a sorba irt utasitdsokat nem veszi figyelembe:

<utasitas>; // megjegyzés
elhelyezhetjiik a sor kézben, illetve barmely utasitas kozben (ligyelve arra, hogy nem
sz6 kozben irjuk), ekkor a komment utan 1évé utasitasokat figyelembe veszi

<utasitds>; /*megjegyzés*/ <utasitas>;
/*

megjegyzés

*/

ezzel a jeloléssel tobb soros megjegyzést is készithetlink

~—Tipusok

VALTOZOK:
i: EGESZ,
v: VALOS,
Cc: KARAKTER,
1: LOGIKAI,
s: SZOVEG,
bf: BEFAJL,
kf: KIFAJL,
tomb: Tipus[méret]

int 1 = 0;

double v = 0;

char ¢ = ' ';

bool 1;

string s = "szoveg";

1fstream bf;
ofstream kf;
Tipus tomb[méret];

y 4 /
m, /O muveletek

a := kif |a=kif; I
BE: Vall, Val2 cin >> Vall >> Val2;

BE bf: Vall, Val2 bf >> Vall >> Val2;

BE: SzovValt getline(cin, SzovValt);
BE bf: SzovValt getline(bf, SzovValt);
KI: Kifl, Kif2 cout << Kifl << Kif2;

KI: SV cout << endl;

KI kf: Kifl, Kif2 kf << Kifl << Kif2;

y 4 /
m, /O muveletek

Az értékadas jele a C++ -ban: =

Az egyenlOség vizsgalat jele mas lesz: ==
® Konnyl 6sszekeverni
® Ossze is fogod keverni...

A cin bemenet maga a konzol, ahova gépelni lehet

® A PLanG-gal ellentétben a cin >> x; beolvasas a C++ -ban blokkolja
a program futasat, tehat var, amig begépeliink valamit.

® |gazi interakcidra lesz lehet6ség!

y 4 /
m, /O muveletek

A ,bementicsatorna >> valtozé” tipusos olvasas, tehat a valtozé
tipusatél fliggéen mikodik, pontosan mint a PLanG ,,BE: valtozo’

)

Viszont a PLanG-gal ellentétben a

,bementicsatorna >> szovegesvaltozd” csak egy sz6t olvas be.
Szonak szamit az, ami sz6kozzel, tab-bal, vagy sorvégével (WHITE
SPACE karakterrel) van elvalasztva.

A , getline(bemeneticsatorna, szovegesvaltozo)” tipus nélkili
olvasas, kizardlag szoveges valtozéba lehet igy olvasni, ENTER-ig
olvas

agazas

HA FeltKif AKKOR

1gaz-ag: utasitasok
HA_VEGE

if(FeltKif)
{

igaz-ag: utasitasok

}

HA FeltKif AKKOR
igaz-ag: utasitasok

KULONBEN

hamis-ag: utasitasok
HA_VEGE

if(FeltKif)
{

}

else

{

igaz-ag: utasitasok

hamis-ag: utasitasok

}

—Ciklus

CIKLUS AMIG FeltKif while(FeltKif)
{
utasitésok utasitasok
CIKLUS_ VEGE }
CIKLUS do
{
Utasitasok utasitasok

AMIG FeltKif } while(FeltKif):

zamlalo ciklus

1 :=0
CIKLUS AMIG i<10 for(int i=0; i<10; i++)
{
ciklusmagqg ciklusmag
1 := :i.+1
CIKLUS VEGE }

/

zamlalo ciklus C++

A szamlald szerkezete itt teljesen elktlondl:
for(<szamlalo kezdbérték>; <szamlalé feltétele>; <szamlalo inkrementalas>)

{

utasitdsok

}

De természetesen el6teszteld ciklussal is meg lehet fogalmazni a szamlalét, az

eredmény ugyanaz lesz:
<szamlalé kezdbérték>;
while(<szamlalo feltétele>)

{

utasitasok
<szamlaloé inkrementalas>;

—Blokkok II. -

® Eszrevehetd, hogy a PLanG-féle XY_VEGE jelek C++ nyelvben egyformak: ‘¥

@ A blokkos szerkezet alapvetd, blokkot barmikor nyithatunk, ez jelenti azt,
hogy egy utasitasként gondolunk egy programrészletre

while(FeltKif) { while(FeltKif)
<utasitasl>;

<utasitdsl>:

}

while(FeltKif) { while(FeltKif)
<utasitasl>; <utasitasl>;
<utasitas2>: I= <utasitas2>:

::::5554%%’/////%”§;§;//

Példa: 0sszegzés PLanG / C++-ban,
végjeles sorozatra

#include <iostream>
using namespace std;
PROGRAM Osszeg
VALTOZOK: . .
a, sum: EGESZ ?nt main()
sum := 0 int a;
BE - é_ int sum = 0;
- . cin >> a;
IKLUS AMIG >= 0 . !
‘ sugs-= suma+ a while(a >= 0) {
BE : é sum += a;
CIKLUS_VEGE y oo
KI: "Osszeg: ", sum, SV cout << "Osszeg: " << sum << endl;
) return 0O;
PROGRAM_VEGE }

Uveletek

V /4

V 4

ényd m

ogikal eredm

PLanG

vagy A and B
vagy A or B

1 I VN <
__/<>,Evm

M © © C<C<C =
I

letek

uve

V /4

U m

Y/ 4

V 4

ény

dm

gesz ere

PLanG

.laaaaaR
I

Z osztasrol

Van két osztas muvelet

® egész / egész (PLanG ,DIV”)

® valos / valés (PLanG /")

Ezek egyforman néznek ki, de masképp mukodnek
®1/2==

® double(1)/ double (2)==0.5

©1.0/2.0==0.5

Valds osztashoz elég ha az egyik operandus nem egész

zoveg eredményu muveletek

PLanG C++

— "a" . ||a||

— |s]| — s.length()

— s[1] — s[1]

— s[k : v] — s.substr(k, v-k)
— sl @ s2 — sl.find(s2)

— s @ kar — s.find(kar)

— sl + s2 — s8]l + s2

/

—Akarakterekré|

char a;

A char tipus egyszerre jelent szamot (8 bites el6jeles, -128
.. 127) és karaktert

ASCII tablazat (‘A’:65, ‘1':49, ‘a’.97, ...)

a cout << a; egykaraktert fog kiirni a konzolra
acout << 1int(a); pedig az ASCII kodjat, mert az
atalakitassal (explicit tipuskonverzio) szamként kezelést
kértlink

/
/Fllgg\//ények

Lathattunk tobb olyan C++ elemet, amely azonositd + zardjelpar,
amelyen belll paraméterek vannak

Ezek a fuggvényhivasok
Onallé programrészleteket tartalmaznak,
® amelyeknek a bemenete a paraméterlista
®kimenete pedig egy visszatérési érték
Pl.vl = sin(v2);
jelentése: inditsd el a sin nevu fliggvényt v2 bemenettel és az
eredményt ird a vl-be

/
/Fl]ggv/ények

PLanG programban is hasznaltunk figgvényhivasokat, pl. RND x,
NAGY c...

C++ -ban konnyen felismerhet6 a fuggvény: mindig kell mogé
zarojelet tenni, akkor is, ha nem kell neki paraméter (pl. rand ())
Néhany fliggvényhivas olyan, hogy egy kiemelt paramétert nem a
zarojelbe kell irni, hanem elé és ponttal kell elvalasztani, pl. a string
mUveletei kdzil tobb is, s.length()

®Ezt egyelbre igy fogadjatok el, ez az objektumorientalt szintaxis, lesz
még rola sz6

/
mkménbségek

C++ -ban ott deklaralunk 0j valtozot, ahol joélesik, nem kell
kigyUjteni a program elejére
Viszont bejon a valtozo élettartama

Ha egy blokkon belil van egy deklaracio, akkor az a valtozé
csak arra a (legsziikebb) blokkra érvényes, annak végével
megszUunik
® Ujrafelhasznalhatdak a nevek, pl. minden ciklusnak lehet sajat i
valtozoja (amig nem egymasba agyazottak)
® mégsem keverhet6éek 6ssze véletlendl

/
mkﬂlénbségek

C++ -ban ott deklaralunk Ui valtozoét. ahol idlesik. nem kell
kigyUjteni a pro t

Viszont bejon ¢ int szam;

{
Ha egy blokko string szoveg;
csak arra a (leg szam = 12;
megszUnik }

. , cout << szam << endl;
® Gjrafelhasznal Dl oy j

valtozoja (amig

® mégsem kever

/
mkménbségek

A PLanG véges abban az értelemben, hogy nem bévithetéek a
muveletek

C++-ban lehet6ség van Uj fliggvények |étrehozasara, ezek
megosztasara
A legtobb gyakorlati probléma megoldhat6 ugy, hogy az ember

megkeresi a megfelel$ konyvtarat, #1nclude

<fejlécnév> és a dokumentici6 szerint hasznalja
® fajlformatumok, grafika, adatbazis, halozat, stb.

Masodik félévben ...

/
mkménbségek

C++-ban nincs ,nem kapott kezdeti értéket” hibalizenet

Memodriaszemét: kapunk valahol egy kis memoriat, ki tudja mi
maradt ott az el6z6 programok utan

Hibalzenet helyett fura mikodés

Esetleg kaphatunk figyelmeztetést (warning)
®Ha nem értesz egy figyelmeztetést, az int6 jel
C++ -ban mindent szabad, amit nem tilos

®Erdemes lesz beallitani, hogy a fordité minden gyanus dologért
sz6ljon!

/
mkménbségek

C++-ban akkor sincs ,nem kapott kezdeti értéket”
hibalizenet, ha fajl vége utan olvasunk tovabb

Figyelmeztetés sincs

Altalaban végtelen sokaig ugyanazt az értéket
ismétli, de barmi mas viselkedés eloéfordulhat

/

—C++ fejlesztdi eszkdzok

Forditoprogram (forraskod — gépi kod)
— GCC (windows-on MINGW)
— Microsoft Visual C++

— ClLang
IDE (programozashoz val6 szévegszerkeszt6 extrakkal)

® CodeBlocks, CLion, QtCreator, Visual Studio

Dokumentacio, pl. cppreference.com

	Slide 1
	Programozási nyelvek
	Programozási nyelvek
	A C++ nyelv
	PLanG illetve C++ „Hello world!”
	Fejrész: Fejlécek
	Fejrész: Névterek
	Vezérlési szerkezetek - szekvencia
	Megjegyzések
	Típusok
	Értékadás, I/O műveletek
	Értékadás, I/O műveletek
	Értékadás, I/O műveletek
	Elágazás
	Ciklus
	Számláló ciklus
	Számláló ciklus C++
	Blokkok II.
	Példa: összegzés PLanG / C++-ban, végjeles sorozatra
	Logikai eredményű műveletek
	Egész eredményű műveletek
	Az osztásról
	Szöveg eredményű műveletek
	A karakterekről
	Függvények
	Függvények
	Markáns különbségek
	Markáns különbségek
	Markáns különbségek
	Markáns különbségek
	Markáns különbségek
	C++ fejlesztői környezetek

