
Bevezetés a programozásba

5. Előadás
Tömbök, számábrázolás

Elemenkénti feldolgozás
Tetszőleges hosszú sorozat feldolgozása
Kevés (max 5-6) változó elég
Kizárólag elemenként feldolgozható feladatok

Minden elemet pontosan egyszer kezelünk
 Később már nem tudjuk elérni őket, hogy esetleg újra felhasználjuk egy

művelethez

A sorrend kötött: csak abban a sorrendben tudunk olvasni,
ahogy a sorozatban egymást követik az elemek

A tömb
Jó lenne, ha egy változóban tudnánk tárolni egymás után az összes azonos

típusú adatot. A ciklusban hivatkozni tudnánk az ebben a változóban tárolt
értékekre, műveletet végezhetnénk velük, esetleg később módosíthatnánk
őket.

A programozási nyelvek adnak eszközt ilyen változó használatára: ez lesz a
tömb.
 A tömb elemek sorozata, amelyek ugyanahhoz a változóhoz tartoznak
 hivatkozni tudunk az egyes elemeire, szabadon címezhető, tetszőleges

sorrendben bejárható
 futás közben átírható, kezdeti értéket nem tartalmazó változósorozat,

ellentétben a bemeneten kapott sorozatokkal

Tömbök
Tömb típusú változóknál PlanGban előre, fordítási időben

tudni kell a méretét és hogy milyen típusú elemeket

szeretnénk eltárolni benne, ugyanis a tömböt előzetesen létre

kell hoznia a programnak, mielőtt feltöltené elemekkel.
A hallgatók hajlamosak abba a hibába esni, hogy mindent

tömbökkel akarnak megoldani. Egy tipikus hibás hozzáállás, hogy

„ismeretlen hosszú” sorozatot akarnak beolvasni mondjuk egy 1000

méretű tömbbe…

A tömb
A tömb egy típuskonstrukció: egy egyszerű típust megsokszorozunk.

Adott hosszú sorozatát, mint „önálló” típust kezelünk.

<változónév>: <típus>[<elemszám>]
 a: EGÉSZ[10]

A tömb típusú változót közvetlenül ritkán, inkább a hordozott
sorozat egy-egy tagját kezeljük

PL.: a[2] := 3 (vagy a2 = 3)
Lényegében (nullától) indexelt, egyforma típusú változok egységes

kezeléséről van szó

A tömb címzése
A tömb elemei indexelve vannak, azaz egy-egy sorszám van hozzájuk társítva.

Ezek azt jelzik, hogy egy adott elem hányadik a tömbben, és ezzel az értékkel
tudunk hivatkozni rá.
 tömbelem elérése: <változónév>[<index>]
pl.: a[1] := 3

 KI: a[4] illetve BE: a[3],
 a[5] := a[i] + a[j] ** i,j:EGÉSZ

Az indexelést mindig 0-tól kezdjük, azaz
 A t tömb első eleme t[0]
 Ha t mérete n, akkor t utolsó eleme t[n-1]

Ha rossz indexet adunk meg, a fordító azt is elfogadja, de futásidejű hibát
kapunk, ha például a t[n]-t akarjuk lekérdezni!

A tömb tulajdonságai
Azonos típusú elemek
Összefüggő memóriaterület (egymás után)
Indexelhető (0-tól kezdve!)
A méretnek fordítási időben ismertnek kell lennie.
Bob: EGÉSZ[5]

Példa tömbre PLanG-ban
PROGRAM tömb

VÁLTOZÓK:
 a : EGÉSZ[10],
 i : EGÉSZ

i := 0
CIKLUS AMÍG i < 10

a[i] := RND 5 + 1
i := i + 1

CIKLUS_VÉGE

PROGRAM_VÉGE

PROGRAM tömb
VÁLTOZÓK:
 a : EGÉSZ[10],
 i : EGÉSZ

i := 0
CIKLUS AMÍG i < 10

a[i] := RND 5 + 1
i := i + 1

CIKLUS_VÉGE

PROGRAM_VÉGE

előfeltétel: (nincs)

utófeltétel: jöjjön létre a 10
elemű a tömb amikben
egyenletes eloszlású véletlen
számok vannak 1..5
tartományban

SpecifikációSpecifikáció

Tömb, mint ismert hosszú sorozat
A tételek tömbökön is alkalmazhatóak, mivel ismert hosszú

sorozatokról van szó, ahol az adott elem a sorszámával
hivatkozható

…
sum := 0
i := 0
CIKLUS AMÍG i < |a|

sum := sum + a[i]
i := i + 1

CIKLUS_VÉGE
…

…
sum := 0
i := 0
CIKLUS AMÍG i < |a|

sum := sum + a[i]
i := i + 1

CIKLUS_VÉGE
…

előfeltétel: létezzen az a nevű
egészekből álló tömb

utófeltétel: a sum változóban
legyen az a tömb elemeinek
összege

SpecifikációSpecifikáció

Tömb mint típuskonstrukció
A tömb szintaxisa szerint T[méret] a tömb, ahol T tetszőleges

típus
 A tömb is típus
 → Tehát T[méret1][méret2] is helyes, és tömbök tömbjét jelenti

Ez kétdimenziós tömb, két független indexet lehet használni, mint
koordinátákat

Természetesen tetszőlegesen fokozható a dimenziószám –
elméletben. Gyakorlatban kifogyunk a memóriából.

Példa kétdimenziós tömbre
PROGRAM mátrix

VÁLTOZÓK:
 a : EGÉSZ[8][10],
 i, j: EGÉSZ

i := 0
CIKLUS AMÍG i < 8
 j := 0
 CIKLUS AMÍG j < 10

a[i][j] := RND 5 + 1
j := j + 1

 CIKLUS_VÉGE
 i := i + 1
CIKLUS_VÉGE

PROGRAM_VÉGE

PROGRAM mátrix
VÁLTOZÓK:
 a : EGÉSZ[8][10],
 i, j: EGÉSZ

i := 0
CIKLUS AMÍG i < 8
 j := 0
 CIKLUS AMÍG j < 10

a[i][j] := RND 5 + 1
j := j + 1

 CIKLUS_VÉGE
 i := i + 1
CIKLUS_VÉGE

PROGRAM_VÉGE

előfeltétel: (nincs)

utófeltétel: jöjjön létre az a 8x10
méretű mátrix, benne 1..5
egyenletes eloszlású véletlen
számokkal

SpecifikációSpecifikáció

Tömbök jelentősége
Olyan feladatoknál, ahol

több adatra van szükség, mintsem külön változókban
kényelmesen kezelni lehessen, de fix számú, és még
beleférünk a memóriába

többször kell kiértékelni ugyanazt az értéket
tetszőleges sorrendben kell hozzáférni az elemekhez
Az adatokat módosítani is kell, nem csak olvasni

… szükségessé válik a tömb használata.

Néhány példa
Táblázatos adatok
A szöveg típus néhány művelettől eltekintve felfogható

karakter-vektornak
Hagyományos mátrixműveletek, Gauss elimináció,

bázistranszformáció
Képkezelő szoftverek a képet mátrixként tárolják

A pixelek színértékét mátrixba rendezett számhármasokkal
írják le

Tömbök és a PLanG
A tömbelemek kezdeti érték nélkül jönnek létre

(mint minden egyéb változó…)

A tömb típusú változók kényelmi okokból
kiírhatóak, de nem beolvashatóak, csak elemenként

A változók értékeit mutató táblázatban az egész
tömb nyomon követhető

Összefoglaló
Tömbök: fix hosszú homogén változósorozat
Szintaxis: Típus[méret]
Akkor használandó, ha ismert hosszú, többszöri

írást vagy olvasást, vagy tetszőleges sorrendben
feldolgozást igényel a feladat

Lehet többdimenziós is

Rövid kitérő a számábrázoláshoz
 Az „EGÉSZ” illetve „VALÓS” típusok nevei azt a látszatot

keltik, hogy a típusértékhalmaz a teljes egész illetve
valós szám tartományt fedi

Ez természetesen lehetetlen, véges hosszú
memóriaszeletek állnak rendelkezésre a számok
ábrázolásához

A fenti típusok tehát nem mindenben viselkednek a
várakozásnak megfelelően

Rövid kitérő a számábrázoláshoz
Például az EGÉSZ típus 32 biten ábrázolt szám, tehát legfeljebb

232 féle értéket vehet fel. Ezt praktikusan a -231 .. +231-1
tartományra tolták: -2147483648 .. 2147483647

Ennek az a következménye, hogy:
 2147483647 + 1 = -2147483648

Ezt a jelenséget túlcsordulásnak nevezik

Rövid kitérő a számábrázoláshoz
A kicsit könnyebb érthetőség miatt használjunk 32 bites

„ELŐJELMENTES EGÉSZ” típust. Továbbra is 232 féle számot fogunk
tudni ábrázolni, de most csak kizárólag pozitív számokkal
foglalkozunk.

Azaz a tartomány 0 .. 232-1 lesz:
0 .. 4294967295

A következmény ekvivalens :
 4294967295 + 1 = 0

Kettes komplemens
Praktikus ha a csupa nulla memóriatartalom a nulla értéket jelenti.

00000000 = 11111111 + 1 (bináris, 8 bites)

→ az 11111111 minta jó választás a -1 értéknek, hisz -1+1 = 0

Így már csak azt kell eldönteni, hogy melyik érték legyen tekintve
pozitívnak

Vegyük az első bitet előjelbitnek, ha 1, akkor negatív a szám

→ 01111111 (127) a legnagyobb pozitív, és 1000000 (-128) a
legkisebb negatív érték

Rövid kitérő a számábrázoláshoz
A valós számok számítógéppel történő megadása a véges

ábrázolás miatt pontatlan
Számológépről ismerős lehet:

20/3 = 6.66666667
vagy 20/3 = 6.6667
vagy 20/3 = 6.67

Ebből kifolyólag nem vizsgáljuk programban egy valós
típusú művelet eredményének egyenlőségét semmivel!

Rövid kitérő a számábrázoláshoz
A valós számokat X * 2Y alakban tárolják, visszavezetve az egész

számokra
Ezt a számábrázolást lebegőpontos-nak hívják, mert a

tizedesvessző az ábrázolandó értékes számjegyeken belül (vagy
kívül) bárhova kerülhet:
Pl.: 1,23 vagy 12,3 vagy 123 (mindegyik ugyanazt a 3 értékes

számjegyet tartalmaz)
Lásd 1.23 * 104 forma, 123 a hasznos tizedesjegyek, és 4

pozícióval kell eltolni a tizedespontot

Rövid kitérő a számábrázoláshoz
Ennek következménye, hogy nem mindenhol egyformán sűrű
az ábrázolás, ha 23 kettedesjegynél nagyobb a nagyságrendi
különbség, akkor előfordulhat, hogy A /= 0, de A+B = B

pl. 1e20 + 1e-20 = 1e20 ha nincs legalább 40 hasznos
tizedesjegyre kapacitás

Sok szám összegénél a kicsikkel érdemes kezdeni tehát, ami
azt jelenti, hogy az összeadás nem asszociatív a
lebegőpontos számoknál

Lebegőpontos bináris számok
Mantissza: a hasznos kettedesjegyek
Exponens: kettedespont eltolása
32 bites esetben 23 bit mantissza, 8 bit exponens,

plusz 1 bit az előjelre

– 223 = 8388608 → kb 6 tizedesjegy pontosság
Speciális értékek: inf, -inf, nan

– 1/0 = inf, 1+inf = inf, -inf+inf=nan, 0/0=nan

Itt a vége a PLanG képességeinek,
legközelebb a C++ alapoktól

folytatjuk

	Slide 1
	Mi a közös az eddigiekben?
	A tömb
	Tömbök
	A tömb
	A tömb címzése
	A tömb tulajdonságai
	Példa tömbre PLanG-ban
	Tömb, mint ismert hosszú sorozat
	Többdimenziós tömbök
	Példa kétdimenziós tömbre
	Tömbök jelentősége
	Néhány példa
	Tömbök és a PLanG
	Összefoglaló
	Rövid kitérő a számábrázoláshoz
	Rövid kitérő a számábrázoláshoz
	Rövid kitérő a számábrázoláshoz
	Slide 19
	Rövid kitérő a számábrázoláshoz
	Rövid kitérő a számábrázoláshoz
	Slide 22
	Slide 23
	Slide 24

