
Bevezetés a programozásba

4. Előadás
Sorozatok, fájlok



Ismétlés
PROGRAM sorozatösszeadó

VÁLTOZÓK:
n, a, összeg, i: EGÉSZ

BE: n
i := 0
összeg := 0
CIKLUS AMÍG i < n

BE: a
összeg := összeg + a
i := i + 1

CIKLUS_VÉGE
KI: összeg

PROGRAM_VÉGE

PROGRAM sorozatösszeadó
VÁLTOZÓK:

n, a, összeg, i: EGÉSZ

BE: n
i := 0
összeg := 0
CIKLUS AMÍG i < n

BE: a
összeg := összeg + a
i := i + 1

CIKLUS_VÉGE
KI: összeg

PROGRAM_VÉGE



Sorozatok
Sorozatok: több (hasonló) adat érkezik a program számára
A jellemző műveletek:

Inicializálás 
Kezdeti értékek beállítása
Olvasás lehetővé tétele

( Pl.: A sorozat hosszának beolvasása (n) )

Következő elem olvasása
Sorozat végének felismerése/lekérdezése



Sorozatok fajtái
Ismert hosszú sorozat

Programba „beégetett”
Felhasználó által megadott
Érkező adatokból meghatározható

Végjeles sorozat
Speciális érték/karakter jelöli a sorozat végét 



Ismert hosszú sorozat
A sorozat hossza ismert, vagy beolvasható
Számoljuk az olvasások számát, és ha elérjük a sorozat hosszát, 

abbahagyjuk

Változók: i, n : EGÉSZ, X : T

n := A sorozat hossza                    **(pl: BE: n)
i := 0
CIKLUS AMÍG i < n

BE: X
X feldolgozása
i := i+1

CIKLUS_VÉGE

Változók: i, n : EGÉSZ, X : T

n := A sorozat hossza                    **(pl: BE: n)
i := 0
CIKLUS AMÍG i < n

BE: X
X feldolgozása
i := i+1

CIKLUS_VÉGE



Ismert hosszú sorozatra példa
Egész számok egy adott intervalluma [-5 .. 10]
Egy meghatározott számú sor (n db elem)
Táblázatoknál szokás először jelezni a méreteket

Kép, videó és hang formátumok sokszor ilyenek 
(.wav, .bmp, stb.)



Végjeles sorozat
A sorozat értékkészletét megszorítva lehetővé válik, hogy 

speciális jelentésű értékeket használjunk. Pl.:
Csupa nem negatív elem van a sorozatban és az első negatív jelzi a 

sorozat végét
A sorozat elemeit summázzuk addig, amíg 0 nem érkezik
A mondatvégi írásjelig olvassuk a karaktereket.

Előnye: könnyen bővíthető a sorozat
Hátránya: nem használhatjuk az adott típus teljes értékkészletét



Végjeles sorozat feldolgozása
Jellegzetesség: a beolvasás után még el kell dönteni, hogy 

sorozatelemről van-e szó, vagy a végjelről, ami nem része a 
sorozatnak!

Tehát a beolvasás és a feldolgozás között kell lennie az 
ellenőrzésnek

Az ellenőrzésnek a ciklusfeltételben kell lennie
Következésképpen:

A beolvasásnak a ciklus utolsó lépésének kell lennie
A ciklus előtt is kell olvasni



Végjeles sorozat
Változók: X : T

BE: X
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X

CIKLUS_VÉGE

Változók: X : T

BE: X
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X

CIKLUS_VÉGE



Végjeles sorozat
Változók: X : T

BE: X      **olvasás ciklus előtt
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X     **az olvasás az utolsó lépés

CIKLUS_VÉGE

Változók: X : T

BE: X      **olvasás ciklus előtt
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X     **az olvasás az utolsó lépés

CIKLUS_VÉGE

 „Előreolvasás”



Előreolvasás
Általános technika: a ciklusfeltételhez szükséges 

adatokat a ciklus előtt elő kell állítani, különben 
„még nem kapott kezdeti értéket” hiba van
Ez akár az első néhány elem előreolvasását is jelentheti, 

ha a végjel úgy van megfogalmazva
Pl.: Addig olvassunk be számokat, amíg növekvő sorrendben 

érkeznek

Hátránya,  hogy a beolvasás többször szerepel a kódban



Végjeles sorozatra példa
Bizonyos kódolásokban létezik „üzenet vége” karakter 

Kiterjesztett Morse kódban is van befejezést jelző kód

Kisebb programoknál, saját formátumoknál kedvelt forma 
az egyszerűség miatt

Ősi DOS-ban a szöveges állományok végét is így jelezték
Szöveges állományokban, részsorozatoknál bevett 

módszer üres sorral jelezni, hogy vége  a sorozatnak, 
pl.: .srt mozifelirat formátumban



Fájlok
A fájl névvel azonosított adattároló
A programok meghatározó része használ fájlokat az 

adatok kezelésére, hiszen nem mindig közvetlenül 
adjuk meg az adatokat, illetve megeshet, hogy több 
adatforrást is kell használnunk egyszerre.

De: a fájlok kezelése rendszertől, nyelvtől, 
kontextustól függ!



Fájlkezelés
A fájloknál hasonló a működés, mint a szokásos bemenet és 

kimenet esetében:
Több típusú adat is előfordulhat, tetszőleges sorrendben, csak 

figyelnünk kell arra, hogy a megfelelőt olvassuk ki.
Ha az adatokat sorban olvassuk be, akkor szekvenciális fájlról 

beszélünk, BevProgból csak ilyen fájlokkal foglalkozunk.
Általában nem tudjuk, pontosan mennyi adatunk van a fájlban, 

de azt tudjuk, mikor van vagy volt vége az állománynak, ez 
lekérdezhető.



Fájlkezelési esetek
Valamikor a bemenő adatokat olvassuk be a fájlból, valamikor a 

kimenő adatokat írjuk ki, ennek megfelelően megkülönböztetünk:
bemeneti fájlt: csak beolvasásra szolgál, a tartalma nem változik meg 

használat közben, léteznie kell 
kimeneti fájlt: csak adatkiírásra szolgál
be- és kimeneti fájl: felváltva írhatunk bele és olvashatunk belőle, 

ugrálhatunk benne, tipikusan bináris adatra (PLanG-ban nincs ilyen!)

A fájlok ugyanúgy változók a programban, amelyek típussal 
rendelkeznek



Logikai és fizikai fájl
Amikor deklarálunk egy fájl típusú változót, akkor létrehozunk egy 

logikai fájl objektumot, ami a változónk, amellyel a fájlra a 
programban hivatkozhatunk.

A fájl változónk neve független attól hogy, melyik az a tényleges fájl, 
amit kezelni szeretnénk, ezért a változóhoz egy fizikai fájlnevet 
rendelünk. Ez a tényleges fájl neve, ami a lemezünkön van. (Pl.: 
/home/gelan/adatok.txt)

A logikai fájlnevet a program során összekapcsoljuk a fizikaival, ez 
tipikusan a megnyitás művelet. Csak ettől a ponttól érhetjük a fizikai 
fájlt.



Logikai és fizikai fájl
A logikai és fizikai fájlok szabadon kapcsolhatóak össze

– Egy logikai fájlnévhez több fizikai név is tartozhat a program futása során, de 
egyszerre csak egy!

– Egy fizikai név többször is előfordulhat a program során, más típusú vagy más nevű 
logikai fájlként.

– Egyszerre több fájlból olvashatunk, ezek egymástól függetlenül lépnek előre
A „kifájl” és „befájl” típusú változók szerepe számon tartani, hogy hol tartunk a 

hozzájuk tartozó fájlban
– Ezért nem elég csak a fizikai fájl nevét írni olvasáskor
– Ipari nyelveknél fájl írásakor a lezárás elmulasztása veszteséget okozhat: mindig 

minden fájlt zárjunk le, még ha nem is fordítási vagy futási hiba ennek elhagyása



Fájlok és a PLanG
PLanG-ban a fájlok nem jelennek meg az operációs rendszer 

fájlrendszerében, virtuális fájlokról van szó
De ettől eltekintve a használatuk ugyan olyan, mint az igazi fájloknak
Használat előtt meg kell nyitni a fájlt, megadva a nevét, utána pedig 

illik lezárni (hogy más is hozzá férjen)
Ha a PLanG kódban megjelenik egy megnyitás, a bemenet és 

kimenet fülek bővülnek
A „sima” BE: és KI: mintájára használható a fájl olvasás és írás, 

ugyanolyan működésűek



Fájlok és a PLanG
 PLanG-ban két fájltípust különböztetünk meg: BEFÁJL, KIFÁJL

 f : BEFÁJL **logikai fájl név
 Egy fájlban bármilyen típusú adatot tárolhatunk, egyben többfélét is, bármilyen sorrendben, 

csak mindig a megfelelő típusra kell hivatkoznunk (ahogy megszokhattuk).

 A fizikai fájlnevet a MEGNYIT paranccsal kapcsoljuk a logikai névhez .

 A fizikai fájlnak most nem kell megadnunk az elérését, hiszen nem tényleges fájlt fog 
hozzárendelni a környezet.

 MEGNYIT f : "adatok.txt" 
 A megnyitott fizikai fájlokat be is kell zárni, mert addig más program nem férhet hozzá (az 

operációs rendszer nem engedélyezi a párhuzamos hozzáférést), a LEZÁR paranccsal zárjuk 
be.

  LEZÁR f



Fájlok és a PLanG
PROGRAM fájlos
VÁLTOZÓK: 

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fájlos
VÁLTOZÓK: 

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE



Fájlok és a PLanG
PROGRAM fájlos
VÁLTOZÓK: 

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fájlos
VÁLTOZÓK: 

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE

előfeltétel: egy “olvasnivalo” 
nevű fájl elején legalább egy 
egész szám van

utófeltétel: a fájlban szereplő 
első számot írja ki

SpecifikációSpecifikáció



Fájlok és a PLanG
Lehetséges műveletek az olvasás és kiírás (a típustól függően csak egyik 

alkalmazható)
Beolvasást változóba végezhetjük

BE f : a 
ekkor a fájl aktuális következő eleme az  a  változóba kerül, a változó 

deklarációjától függő módon (pl. 123 egész, „123” szöveg, `1` karakter)
Kiírásnál változót, értéket, vagy tetszőleges kifejezést is megadhatunk

KI f : a, ” : ”, b
bármit kiírhatunk, amit a kimeneti ablakra szoktunk
Minden szöveges tartalommá alakul kiírásnál



Fájlok és a PLanG
A fájlok kezelése sokban hasonlít a végjeles sorozathoz a fájl 

végének kezelésében
Addig olvasunk egy fájlból, amíg nem értük el a fájl végét jelző 

lezáró jelet, azaz sikertelen volt az érvényes adat beolvasás
Nyilvánvalóan ez esetben a sikertelen olvasás mellékhatásaként a 

beolvasott változó tartalma nem a sorozat része, általában invalid 
tartalom, tehát nem szabad feldolgozni, ahogy a végjelet sem szabad!

 →  Itt is az előreolvasás technikát alkalmazzuk.



Fájlok és a PLanG

PROGRAM fájlos-sorozatos
VÁLTOZÓK: 

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
CIKLUS AMÍG NEM VÉGE fb

KI: n, SV
BE fb: n

CIKLUS_VÉGE
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fájlos-sorozatos
VÁLTOZÓK: 

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
CIKLUS AMÍG NEM VÉGE fb

KI: n, SV
BE fb: n

CIKLUS_VÉGE
LEZÁR fb

PROGRAM_VÉGE

előfeltétel: egy “olvasnivalo” 
nevű fájlban csak egész számok 
vannak

utófeltétel: minden a fájlban 
szereplő összes számot külön 
sorba ír ki

SpecifikációSpecifikáció



Fájlok, műveletek összefoglalás
KIFÁJL, BEFÁJL

Típusok fájlok kezeléséhez, ezeken keresztül mozgatjuk az adatokat

Megnyit f: ”fájlnév”
Fájlnév rendelése a KIFÁJL/BEFÁJL változóhoz

KI f: X / BE f: X
Írás/olvasás a megadott fájlba/fájlból

VÉGE f
Logikai kifejezés, mely jelzi, hogy vége van-e a fájlnak

LEZÁR f



Homogén fájl kezelése általában PLanG-ban

VÁLTOZÓK: 
fb: BEFÁJL,
a: T

MEGNYIT fb: "fájlnév"
BE fb: a
CIKLUS AMÍG NEM VÉGE fb

a feldolgozása
BE fb: a

CIKLUS_VÉGE
LEZÁR fb

VÁLTOZÓK: 
fb: BEFÁJL,
a: T

MEGNYIT fb: "fájlnév"
BE fb: a
CIKLUS AMÍG NEM VÉGE fb

a feldolgozása
BE fb: a

CIKLUS_VÉGE
LEZÁR fb



Példa: Maximumkeresés fájlra
PROGRAM fajlosmaxker
VÁLTOZÓK:  fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a
max := a

     hol := 0
BE fb: a
i := 1
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1 
BE fb: a

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fajlosmaxker
VÁLTOZÓK:  fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a
max := a

     hol := 0
BE fb: a
i := 1
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1 
BE fb: a

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

előfeltétel: egy “olvasnivalo” 
nevű fájlban csak egész számok 
vannak, legalább egy darab

utófeltétel: a fájlban levő 
számok közül kiírja a 
legnagyobbat és az indexét, 0-tól 
indexelve, “index .: érték” 
formátumban

SpecifikációSpecifikáció



Példa: Maximumkeresés fájlra
PROGRAM fajlosmaxker
VÁLTOZÓK:  fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a      ** első elem
max := a

     hol := 0     
BE fb: a      ** felkészülés a “következő
i := 1        ** elem”-re a ciklusban
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1 
BE fb: a    ** a “következő elem” 

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fajlosmaxker
VÁLTOZÓK:  fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a      ** első elem
max := a

     hol := 0     
BE fb: a      ** felkészülés a “következő
i := 1        ** elem”-re a ciklusban
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1 
BE fb: a    ** a “következő elem” 

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

Változók:
 i, hol: EGÉSZ,

a, max : T

i := 1
a := első elem
max := f(a)
hol := 1

CIKLUS AMÍG nincs vége a sorozatnak
a := következő elem
i := i + 1
HA max < f(a) AKKOR

max := f(a)
hol := i

HA_VÉGE
CIKLUS_VÉGE

Változók:
 i, hol: EGÉSZ,

a, max : T

i := 1
a := első elem
max := f(a)
hol := 1

CIKLUS AMÍG nincs vége a sorozatnak
a := következő elem
i := i + 1
HA max < f(a) AKKOR

max := f(a)
hol := i

HA_VÉGE
CIKLUS_VÉGE



Formátumok
Beolvasás legyen egyértelmű, meg kell adni mi után mi 

jön
Technikai megkötések

 A PLanG szám beolvasásakor nem tud különbséget tenni szóközzel 
elválasztás és sorvégével elválasztás között, tehát az a forma, hogy az 
összetartozó számok egy sorban vannak, és a következő sor már 
megkülönböztetendő, nem jó formátum a PLanG-ban

A szöveg beolvasása soronként történik, tehát két megkülönböztetendő 
szöveget ne írjunk egy sorba ha PlanG-ban akarjuk feldolgozni



Példa formátumra
A feladat kezelni egy középiskolai osztályt egyik tanár szemszögéből: 
van sok diák, mindegyiknek valahány jegye
A fájlban két sor ír le egy diákot

 az első sor a neve

Mivel ha egy sorban lennének a jegyek is, a név beolvasásakor az is 
belekerülne a szövegbe, és az lenne a név, hogy „Gipsz Jakab 5 3 4 5 ...”
a következő sorban vannak a jegyek, és a végén -1

Ez megtehető, mert a jegy eleve szűk értékkészletű, így az általánosság 
megszorítása nélkül vehetünk fel végjelet az egész számok közül

Az is jó lenne, ha a jegyek számával kezdődne a sor



Példa formátumra
A feladat kezelni egy középiskolai osztályt egyik tanár szemszögéből: 
van sok diák, mindegyiknek valahány jegye
A fájlban két sor ír le egy diákot

 az első sor a neve

Mivel ha egy sorban lennének a jegyek is, a név beolvasásakor az is 
belekerülne a szövegbe, és az lenne a név, hogy „Gipsz Jakab 5 3 4 5 ...”
a következő sorban vannak a jegyek, és a végén -1

Ez megtehető, mert a jegy eleve szűk értékkészletű, így az általánosság 
megszorítása nélkül vehetünk fel végjelet az egész számok közül

Az is jó lenne, ha a jegyek számával kezdődne a sor

Gipsz Jakab
3 2 4 -1
Minta Panna
5 5 4 5 5 5 -1
Gémer Géza
1 1 2 1 -1

Gipsz Jakab
3 2 4 -1
Minta Panna
5 5 4 5 5 5 -1
Gémer Géza
1 1 2 1 -1

Gipsz Jakab
3 3 2 4 
Minta Panna
6 5 5 4 5 5 5 
Gémer Géza
4 1 1 2 1

Gipsz Jakab
3 3 2 4 
Minta Panna
6 5 5 4 5 5 5 
Gémer Géza
4 1 1 2 1



Néhány elterjedt egyszerű formátum
.sub mozifelirat:

{start-frame}{stop-frame}Text {0}{25}Hello!

.srt mozifelirat: 
#subtitle 1
start-time --> end-time 00:02:45,561 --> 00:04:31,937
Text Egyszer volt, hol nem volt…

.ini konfigurációs fájl: 

[fejléc] [section]

name = value a = 220

 .csv: táblázatformátum, melyben vesszővel elválasztva vannak a mezők, a 
szöveges mezők „” jelek között szerepelnek



Összehasonlítás
Ismert hosszú Végjeles Fájl

Teljes 
értékkészlet  
Beszúrással 
bővíthető  
Előre olvasást 
igényel  
Nyelvtől 
független  
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