
Bevezetés a programozásba

4. Előadás
Sorozatok, fájlok

Ismétlés
PROGRAM sorozatösszeadó

VÁLTOZÓK:
n, a, összeg, i: EGÉSZ

BE: n
i := 0
összeg := 0
CIKLUS AMÍG i < n

BE: a
összeg := összeg + a
i := i + 1

CIKLUS_VÉGE
KI: összeg

PROGRAM_VÉGE

PROGRAM sorozatösszeadó
VÁLTOZÓK:

n, a, összeg, i: EGÉSZ

BE: n
i := 0
összeg := 0
CIKLUS AMÍG i < n

BE: a
összeg := összeg + a
i := i + 1

CIKLUS_VÉGE
KI: összeg

PROGRAM_VÉGE

Sorozatok
Sorozatok: több (hasonló) adat érkezik a program számára
A jellemző műveletek:

Inicializálás
Kezdeti értékek beállítása
Olvasás lehetővé tétele

(Pl.: A sorozat hosszának beolvasása (n))

Következő elem olvasása
Sorozat végének felismerése/lekérdezése

Sorozatok fajtái
Ismert hosszú sorozat

Programba „beégetett”
Felhasználó által megadott
Érkező adatokból meghatározható

Végjeles sorozat
Speciális érték/karakter jelöli a sorozat végét

Ismert hosszú sorozat
A sorozat hossza ismert, vagy beolvasható
Számoljuk az olvasások számát, és ha elérjük a sorozat hosszát,

abbahagyjuk

Változók: i, n : EGÉSZ, X : T

n := A sorozat hossza **(pl: BE: n)
i := 0
CIKLUS AMÍG i < n

BE: X
X feldolgozása
i := i+1

CIKLUS_VÉGE

Változók: i, n : EGÉSZ, X : T

n := A sorozat hossza **(pl: BE: n)
i := 0
CIKLUS AMÍG i < n

BE: X
X feldolgozása
i := i+1

CIKLUS_VÉGE

Ismert hosszú sorozatra példa
Egész számok egy adott intervalluma [-5 .. 10]
Egy meghatározott számú sor (n db elem)
Táblázatoknál szokás először jelezni a méreteket

Kép, videó és hang formátumok sokszor ilyenek
(.wav, .bmp, stb.)

Végjeles sorozat
A sorozat értékkészletét megszorítva lehetővé válik, hogy

speciális jelentésű értékeket használjunk. Pl.:
Csupa nem negatív elem van a sorozatban és az első negatív jelzi a

sorozat végét
A sorozat elemeit summázzuk addig, amíg 0 nem érkezik
A mondatvégi írásjelig olvassuk a karaktereket.

Előnye: könnyen bővíthető a sorozat
Hátránya: nem használhatjuk az adott típus teljes értékkészletét

Végjeles sorozat feldolgozása
Jellegzetesség: a beolvasás után még el kell dönteni, hogy

sorozatelemről van-e szó, vagy a végjelről, ami nem része a
sorozatnak!

Tehát a beolvasás és a feldolgozás között kell lennie az
ellenőrzésnek

Az ellenőrzésnek a ciklusfeltételben kell lennie
Következésképpen:

A beolvasásnak a ciklus utolsó lépésének kell lennie
A ciklus előtt is kell olvasni

Végjeles sorozat
Változók: X : T

BE: X
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X

CIKLUS_VÉGE

Változók: X : T

BE: X
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X

CIKLUS_VÉGE

Végjeles sorozat
Változók: X : T

BE: X **olvasás ciklus előtt
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X **az olvasás az utolsó lépés

CIKLUS_VÉGE

Változók: X : T

BE: X **olvasás ciklus előtt
CIKLUS AMÍG X nem végjel

X feldolgozása
BE: X **az olvasás az utolsó lépés

CIKLUS_VÉGE

 „Előreolvasás”

Előreolvasás
Általános technika: a ciklusfeltételhez szükséges

adatokat a ciklus előtt elő kell állítani, különben
„még nem kapott kezdeti értéket” hiba van
Ez akár az első néhány elem előreolvasását is jelentheti,

ha a végjel úgy van megfogalmazva
Pl.: Addig olvassunk be számokat, amíg növekvő sorrendben

érkeznek

Hátránya, hogy a beolvasás többször szerepel a kódban

Végjeles sorozatra példa
Bizonyos kódolásokban létezik „üzenet vége” karakter

Kiterjesztett Morse kódban is van befejezést jelző kód

Kisebb programoknál, saját formátumoknál kedvelt forma
az egyszerűség miatt

Ősi DOS-ban a szöveges állományok végét is így jelezték
Szöveges állományokban, részsorozatoknál bevett

módszer üres sorral jelezni, hogy vége a sorozatnak,
pl.: .srt mozifelirat formátumban

Fájlok
A fájl névvel azonosított adattároló
A programok meghatározó része használ fájlokat az

adatok kezelésére, hiszen nem mindig közvetlenül
adjuk meg az adatokat, illetve megeshet, hogy több
adatforrást is kell használnunk egyszerre.

De: a fájlok kezelése rendszertől, nyelvtől,
kontextustól függ!

Fájlkezelés
A fájloknál hasonló a működés, mint a szokásos bemenet és

kimenet esetében:
Több típusú adat is előfordulhat, tetszőleges sorrendben, csak

figyelnünk kell arra, hogy a megfelelőt olvassuk ki.
Ha az adatokat sorban olvassuk be, akkor szekvenciális fájlról

beszélünk, BevProgból csak ilyen fájlokkal foglalkozunk.
Általában nem tudjuk, pontosan mennyi adatunk van a fájlban,

de azt tudjuk, mikor van vagy volt vége az állománynak, ez
lekérdezhető.

Fájlkezelési esetek
Valamikor a bemenő adatokat olvassuk be a fájlból, valamikor a

kimenő adatokat írjuk ki, ennek megfelelően megkülönböztetünk:
bemeneti fájlt: csak beolvasásra szolgál, a tartalma nem változik meg

használat közben, léteznie kell
kimeneti fájlt: csak adatkiírásra szolgál
be- és kimeneti fájl: felváltva írhatunk bele és olvashatunk belőle,

ugrálhatunk benne, tipikusan bináris adatra (PLanG-ban nincs ilyen!)

A fájlok ugyanúgy változók a programban, amelyek típussal
rendelkeznek

Logikai és fizikai fájl
Amikor deklarálunk egy fájl típusú változót, akkor létrehozunk egy

logikai fájl objektumot, ami a változónk, amellyel a fájlra a
programban hivatkozhatunk.

A fájl változónk neve független attól hogy, melyik az a tényleges fájl,
amit kezelni szeretnénk, ezért a változóhoz egy fizikai fájlnevet
rendelünk. Ez a tényleges fájl neve, ami a lemezünkön van. (Pl.:
/home/gelan/adatok.txt)

A logikai fájlnevet a program során összekapcsoljuk a fizikaival, ez
tipikusan a megnyitás művelet. Csak ettől a ponttól érhetjük a fizikai
fájlt.

Logikai és fizikai fájl
A logikai és fizikai fájlok szabadon kapcsolhatóak össze

– Egy logikai fájlnévhez több fizikai név is tartozhat a program futása során, de
egyszerre csak egy!

– Egy fizikai név többször is előfordulhat a program során, más típusú vagy más nevű
logikai fájlként.

– Egyszerre több fájlból olvashatunk, ezek egymástól függetlenül lépnek előre
A „kifájl” és „befájl” típusú változók szerepe számon tartani, hogy hol tartunk a

hozzájuk tartozó fájlban
– Ezért nem elég csak a fizikai fájl nevét írni olvasáskor
– Ipari nyelveknél fájl írásakor a lezárás elmulasztása veszteséget okozhat: mindig

minden fájlt zárjunk le, még ha nem is fordítási vagy futási hiba ennek elhagyása

Fájlok és a PLanG
PLanG-ban a fájlok nem jelennek meg az operációs rendszer

fájlrendszerében, virtuális fájlokról van szó
De ettől eltekintve a használatuk ugyan olyan, mint az igazi fájloknak
Használat előtt meg kell nyitni a fájlt, megadva a nevét, utána pedig

illik lezárni (hogy más is hozzá férjen)
Ha a PLanG kódban megjelenik egy megnyitás, a bemenet és

kimenet fülek bővülnek
A „sima” BE: és KI: mintájára használható a fájl olvasás és írás,

ugyanolyan működésűek

Fájlok és a PLanG
 PLanG-ban két fájltípust különböztetünk meg: BEFÁJL, KIFÁJL

 f : BEFÁJL **logikai fájl név
 Egy fájlban bármilyen típusú adatot tárolhatunk, egyben többfélét is, bármilyen sorrendben,

csak mindig a megfelelő típusra kell hivatkoznunk (ahogy megszokhattuk).

 A fizikai fájlnevet a MEGNYIT paranccsal kapcsoljuk a logikai névhez .

 A fizikai fájlnak most nem kell megadnunk az elérését, hiszen nem tényleges fájlt fog
hozzárendelni a környezet.

 MEGNYIT f : "adatok.txt"
 A megnyitott fizikai fájlokat be is kell zárni, mert addig más program nem férhet hozzá (az

operációs rendszer nem engedélyezi a párhuzamos hozzáférést), a LEZÁR paranccsal zárjuk
be.

 LEZÁR f

Fájlok és a PLanG
PROGRAM fájlos
VÁLTOZÓK:

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fájlos
VÁLTOZÓK:

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE

Fájlok és a PLanG
PROGRAM fájlos
VÁLTOZÓK:

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fájlos
VÁLTOZÓK:

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
KI: n
LEZÁR fb

PROGRAM_VÉGE

előfeltétel: egy “olvasnivalo”
nevű fájl elején legalább egy
egész szám van

utófeltétel: a fájlban szereplő
első számot írja ki

SpecifikációSpecifikáció

Fájlok és a PLanG
Lehetséges műveletek az olvasás és kiírás (a típustól függően csak egyik

alkalmazható)
Beolvasást változóba végezhetjük

BE f : a
ekkor a fájl aktuális következő eleme az a változóba kerül, a változó

deklarációjától függő módon (pl. 123 egész, „123” szöveg, `1` karakter)
Kiírásnál változót, értéket, vagy tetszőleges kifejezést is megadhatunk

KI f : a, ” : ”, b
bármit kiírhatunk, amit a kimeneti ablakra szoktunk
Minden szöveges tartalommá alakul kiírásnál

Fájlok és a PLanG
A fájlok kezelése sokban hasonlít a végjeles sorozathoz a fájl

végének kezelésében
Addig olvasunk egy fájlból, amíg nem értük el a fájl végét jelző

lezáró jelet, azaz sikertelen volt az érvényes adat beolvasás
Nyilvánvalóan ez esetben a sikertelen olvasás mellékhatásaként a

beolvasott változó tartalma nem a sorozat része, általában invalid
tartalom, tehát nem szabad feldolgozni, ahogy a végjelet sem szabad!

 → Itt is az előreolvasás technikát alkalmazzuk.

Fájlok és a PLanG

PROGRAM fájlos-sorozatos
VÁLTOZÓK:

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
CIKLUS AMÍG NEM VÉGE fb

KI: n, SV
BE fb: n

CIKLUS_VÉGE
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fájlos-sorozatos
VÁLTOZÓK:

fb: BEFÁJL,
n: EGÉSZ

MEGNYIT fb: "olvasnivalo"
BE fb: n
CIKLUS AMÍG NEM VÉGE fb

KI: n, SV
BE fb: n

CIKLUS_VÉGE
LEZÁR fb

PROGRAM_VÉGE

előfeltétel: egy “olvasnivalo”
nevű fájlban csak egész számok
vannak

utófeltétel: minden a fájlban
szereplő összes számot külön
sorba ír ki

SpecifikációSpecifikáció

Fájlok, műveletek összefoglalás
KIFÁJL, BEFÁJL

Típusok fájlok kezeléséhez, ezeken keresztül mozgatjuk az adatokat

Megnyit f: ”fájlnév”
Fájlnév rendelése a KIFÁJL/BEFÁJL változóhoz

KI f: X / BE f: X
Írás/olvasás a megadott fájlba/fájlból

VÉGE f
Logikai kifejezés, mely jelzi, hogy vége van-e a fájlnak

LEZÁR f

Homogén fájl kezelése általában PLanG-ban

VÁLTOZÓK:
fb: BEFÁJL,
a: T

MEGNYIT fb: "fájlnév"
BE fb: a
CIKLUS AMÍG NEM VÉGE fb

a feldolgozása
BE fb: a

CIKLUS_VÉGE
LEZÁR fb

VÁLTOZÓK:
fb: BEFÁJL,
a: T

MEGNYIT fb: "fájlnév"
BE fb: a
CIKLUS AMÍG NEM VÉGE fb

a feldolgozása
BE fb: a

CIKLUS_VÉGE
LEZÁR fb

Példa: Maximumkeresés fájlra
PROGRAM fajlosmaxker
VÁLTOZÓK: fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a
max := a

 hol := 0
BE fb: a
i := 1
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1
BE fb: a

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fajlosmaxker
VÁLTOZÓK: fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a
max := a

 hol := 0
BE fb: a
i := 1
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1
BE fb: a

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

előfeltétel: egy “olvasnivalo”
nevű fájlban csak egész számok
vannak, legalább egy darab

utófeltétel: a fájlban levő
számok közül kiírja a
legnagyobbat és az indexét, 0-tól
indexelve, “index .: érték”
formátumban

SpecifikációSpecifikáció

Példa: Maximumkeresés fájlra
PROGRAM fajlosmaxker
VÁLTOZÓK: fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a ** első elem
max := a

 hol := 0
BE fb: a ** felkészülés a “következő
i := 1 ** elem”-re a ciklusban
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1
BE fb: a ** a “következő elem”

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

PROGRAM fajlosmaxker
VÁLTOZÓK: fb: BEFÁJL,

 i, hol: EGÉSZ,
 a, max : VALÓS

MEGNYIT fb: "olvasnivalo"
BE fb: a ** első elem
max := a

 hol := 0
BE fb: a ** felkészülés a “következő
i := 1 ** elem”-re a ciklusban
CIKLUS AMÍG NEM VÉGE fb

HA max < a AKKOR
max := a
hol := i

HA_VÉGE
i := i + 1
BE fb: a ** a “következő elem”

CIKLUS_VÉGE
KI: hol, ”.: ” , max
LEZÁR fb

PROGRAM_VÉGE

Változók:
 i, hol: EGÉSZ,

a, max : T

i := 1
a := első elem
max := f(a)
hol := 1

CIKLUS AMÍG nincs vége a sorozatnak
a := következő elem
i := i + 1
HA max < f(a) AKKOR

max := f(a)
hol := i

HA_VÉGE
CIKLUS_VÉGE

Változók:
 i, hol: EGÉSZ,

a, max : T

i := 1
a := első elem
max := f(a)
hol := 1

CIKLUS AMÍG nincs vége a sorozatnak
a := következő elem
i := i + 1
HA max < f(a) AKKOR

max := f(a)
hol := i

HA_VÉGE
CIKLUS_VÉGE

Formátumok
Beolvasás legyen egyértelmű, meg kell adni mi után mi

jön
Technikai megkötések

 A PLanG szám beolvasásakor nem tud különbséget tenni szóközzel
elválasztás és sorvégével elválasztás között, tehát az a forma, hogy az
összetartozó számok egy sorban vannak, és a következő sor már
megkülönböztetendő, nem jó formátum a PLanG-ban

A szöveg beolvasása soronként történik, tehát két megkülönböztetendő
szöveget ne írjunk egy sorba ha PlanG-ban akarjuk feldolgozni

Példa formátumra
A feladat kezelni egy középiskolai osztályt egyik tanár szemszögéből:
van sok diák, mindegyiknek valahány jegye
A fájlban két sor ír le egy diákot

 az első sor a neve

Mivel ha egy sorban lennének a jegyek is, a név beolvasásakor az is
belekerülne a szövegbe, és az lenne a név, hogy „Gipsz Jakab 5 3 4 5 ...”
a következő sorban vannak a jegyek, és a végén -1

Ez megtehető, mert a jegy eleve szűk értékkészletű, így az általánosság
megszorítása nélkül vehetünk fel végjelet az egész számok közül

Az is jó lenne, ha a jegyek számával kezdődne a sor

Példa formátumra
A feladat kezelni egy középiskolai osztályt egyik tanár szemszögéből:
van sok diák, mindegyiknek valahány jegye
A fájlban két sor ír le egy diákot

 az első sor a neve

Mivel ha egy sorban lennének a jegyek is, a név beolvasásakor az is
belekerülne a szövegbe, és az lenne a név, hogy „Gipsz Jakab 5 3 4 5 ...”
a következő sorban vannak a jegyek, és a végén -1

Ez megtehető, mert a jegy eleve szűk értékkészletű, így az általánosság
megszorítása nélkül vehetünk fel végjelet az egész számok közül

Az is jó lenne, ha a jegyek számával kezdődne a sor

Gipsz Jakab
3 2 4 -1
Minta Panna
5 5 4 5 5 5 -1
Gémer Géza
1 1 2 1 -1

Gipsz Jakab
3 2 4 -1
Minta Panna
5 5 4 5 5 5 -1
Gémer Géza
1 1 2 1 -1

Gipsz Jakab
3 3 2 4
Minta Panna
6 5 5 4 5 5 5
Gémer Géza
4 1 1 2 1

Gipsz Jakab
3 3 2 4
Minta Panna
6 5 5 4 5 5 5
Gémer Géza
4 1 1 2 1

Néhány elterjedt egyszerű formátum
.sub mozifelirat:

{start-frame}{stop-frame}Text {0}{25}Hello!

.srt mozifelirat:
#subtitle 1
start-time --> end-time 00:02:45,561 --> 00:04:31,937
Text Egyszer volt, hol nem volt…

.ini konfigurációs fájl:

[fejléc] [section]

name = value a = 220

 .csv: táblázatformátum, melyben vesszővel elválasztva vannak a mezők, a
szöveges mezők „” jelek között szerepelnek

Összehasonlítás
Ismert hosszú Végjeles Fájl

Teljes
értékkészlet  
Beszúrással
bővíthető  
Előre olvasást
igényel  
Nyelvtől
független  

	Slide 1
	Ciklus
	Sorozatok
	Sorozatok fajtái
	Ismert hosszú sorozat
	Ismert hosszú sorozatra példa
	Végjeles sorozat
	Végjeles sorozat feldolgozása
	Végjeles sorozat
	Slide 10
	Előreolvasás
	Végjeles sorozatra példa
	Fájlok
	Fájlkezelés
	Fájlkezelési esetek
	Logikai és fizikai fájl
	Fájlok száma
	Fájlok és a PLanG
	Fájlok és a PLanG
	Fájlok és a PLanG
	Slide 21
	Fájlok és a PLanG
	Fájlok és a PLanG
	Fájlok és a PLanG
	Fájlok, műveletek összefoglalás
	Fájl kezelése általában PLanG-ban
	Példa: Maximumkeresés fájlra
	Példa: Maximumkeresés fájlra
	Formátumok
	Példa formátumra
	Slide 31
	Néhány elterjedt egyszerű formátum
	Összehasonlítás

