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1. fejezet

Valos szamok



1.1. Valos szamok

1.1.1. Teljes indukcio

Igazoljuk a teljes indukcioval a kovetkezd allitasok helyességét:

- 1)(2n +1
1.1 ZkQZ"("+ )6("+ ).
k=1

1.2 14427+ --4+n-Bn+1)=n(n+1)>%

14 1-1142-214---+n-nl=n+1) -1

15 1:2.342:3-d4 4 n(n+1)nt2) — D003

4
: 2n+1
cos(z) - cos(2x) - cos2%x ... cos2"x = ;Hi(l—(x))
nrisin(x
1172 4 122"+ oszthaté 133-mal.
1.8 4"+ 15n — 1 oszthatd 9-cel.
1.9 1+3+45+--+(2n—1)=n%
1.1.2. Egyenlotlenségek
Oldjuk meg a kovetkezo egyenlétlenségeket:
1.10 37_2$+9§ 3$_8‘ 1.11 8x — 42? < 3.
3 4
1.12 2?45z —14 > 0. 1.13 2?2 -3z —-4<0.
114 (@ - 1) —1) 20 115 L2
T+ 3



3z —1 1.17 22 -3 <2

1.16 > 1.
xr—1
1 2
1.18 <1. 119 2 t2 > 1.
r+1 |z — 1|
. — . i 3
1.20 Blgzr -1 <2 1.21] sin|22 — 4] < V3,

2

1.1.3. Kozepek

Igazoljuk a szamtani és mértani kozép kozti egyenlotlenség felhasznalasaval a kovetkezd
allitdsokat:

1 n 1 n+1
1.22 a) (1+ﬁ) <(1+n+1> (n € N)

b) (1+%)n<4 (n €N)

1.23 (iai)-(zn:l)znZ (neN, a > 0)

i=1 i=1 Q4

n+1
2

1.24 n!<< ) (neN, n>2)

1.25 a) (a+b)-(b+c¢)-(c+a)> 8abc (a,b,c>0)

(
b) <a+b)-<b+c).<c+a>g;.(a+b+c)3 (a,b,¢ > 0)

Oldjuk meg a szamtani és mértani kozép kozti egyenlotlenség felhasznédlasaval az
alabbi szélséérték-feladatokat.

Adott k > 0 keriileti téglalapok koziil melyiknek a teriilete a legnagyobb?

Egy foly6 partjan adott [ > 0 hosszisagu keritéssel egy téglalap alakt tel-
ket szeretnénk elkeriteni tgy, hogy a telek egyik hatara a folyépart (ott nem kell
kerités). Hogyan valasszuk meg a téglalap oldalait, hogy a telek teriilete a lehetd
legnagyobb legyen?

1.28 Hogyan vélasszuk meg egy feliilrol nyitott, henger alakd edény méreteit, hogy
elkészitéséhez a leheto legkevesebb anyagra legyen sziikség?



Tovabbi kozepekkel kapcsolatos feladatok:

1.29 Igazolja a mértani és a harmonikus koézép kozti egyenlotlenségrol szold tételt:

n
i T < Var- ... an (neN,n>2 a >0),
— . —
3] Qp,

ahol egyenl6ség akkor és csak akkor van, ha ay = ... = a,.

Megjegyzés: a bal oldalon dallo mennyiséget az aq, ... ,a, szamok harmonikus kdzepé-

nek nevezzik.

1.30 Igazolja a szamtani és a négyzetes kozép kozti egyenldtlenségrél szolo tételt:

2 2
al+...+azn§\/a1+"'+an <n€N7n227a”LZO)7

n n
és egyenloség akkor és csak akkor van, ha ay = ... = a,.
1.31 Legyenn € N, n > 2, és jelolje m az aq, ... ,a, pozitiv szamok koziil a legkiseb-

bet, M pedig a legnagyobbat. Jelolje tovabba H,, ugyanezen szamok harmonikus
kozepét, G, a mértani kozepét, A, a szamtani kozepét, (), pedig a négyzetes
kozepét. Igazolja, hogy mind a négy koézép m és M kozé esik, azaz, hogy

tovabba ha az aq, ... ,a, szdmok nem mind egyenlok, akkor

m < H, < M, m< G, <M, m< A, <M, m<Q, <M.

1.1.4. Szamhalmazok

Vizsgaljuk meg az alabbi halmazokat korlatossag, also és fels6 hatar, legkisebb és legna-
gyobb elem szempontjabol:

dn —2
1.32 H:{” \neN}

2n+3
on + 3
1.33 H= N
{3714—4|nE }
3
134 H=J2"2 | ,enN
2n+1

1.35 H:{3”+5 |n€N,n24}
n—3



1.2. Megoldas. Valés szamok

1.2.1. Teljes indukcio

1.3 a) n =1 esetén az 4llitas igaz, mivel mindkét oldal értéke 2.

Az indukciés 1épés:

(8- () (15).

k=1

Az indukciés feltevés miatt az elsd tényezében allé produktum helyére n + 1
irhato, ezért a folytatas:

1
1)-(1 = 2
(n+1) < +n—|—1) n+2,

ami az allitds n + 1-re valé bizonyitasat jelenti.
b) Az a) részhez hasonléan igazolhaté, de vigydzzunk, az indukcié n = 2-rél
indul.

1
n = 2 esetén az allitas igaz, mivel mindkét oldal értéke 3
Az indukciés 1épés:

fH(-2) - (10-) (-5)

k=2

1
Az indukcios feltevés miatt az elsé tényezdben allé produktum helyére — ir-

n
hato, ezért a folytatas:

Lo(y_ L )_1lnti-1_ 1
n n+1) n n+1  n+1

ami az allitds n + 1-re valé bizonyitasat jelenti.
1.6 n = 0-ra az egyenl6ség egy ismert trigonometrikus azonossag atrendezése.
Az indukcids 1épés:

sin 2"t 1x cos 21 g

cos x cos 2x cos 2%x . .. cos 2" cos 2"y = T =
2n+lgin ¢

_ sin2"2g

~2nt2ging’
Az els6 egyenléség az indukcids feltételbol, a masodik a 2 cosysiny = sin 2y azo-
nossaghdl (y = 2"z helyettesitéssel) adodik.

8



1.7
11712 41227 = 121 - 11" + 12 - 144" = (121 + 12) - 11" = 0 (mod133)

Az els kongruencia 144 = 11 (mod 133) miatt adédik.

1.2.2. Egyenlotlenségek

1.10. = > 56 111, p< £ 223
2’ 2

1.12. 2 < -7, z>2 1.13. -1 <z<4

1.14. —c0o <z < 0 1.15. z>5, =<3

1.16. Az egyenlGtlenség azokra az = valds szamokra van értelmezve, melyekre

r—1#0 és

Ezen a tartoméanyon az egyenlttlenség ekvivalens az alabbival:

3r—1

> 1.
r—1

O-ra redukalds és rendezés utan kapjuk, hogy

2x

> 0.
r—1

Ennek elso esete az, ha 2z > 0 és x — 1 > 0, masodik esete pedig ha 2z < 0 és
x—1 < 0. Az els6 eset megoldasa x > 1, a méasodik eseté pedig x < 0. Mivel

> 1, ezért ezek az x-ek mind benne vannak

ezekre az x-ekre teljesiil, hogy

az egyenlotlenség értelmezési tartomanyaban. Tehat a feladat megoldasa:

x <0 vagy x> 1.

1
1.17. §<9c<5

1.18. x > 0 vagy x < —2 1.19. z > —%

1.20. 1073 < 2 < 10



1.21. A z egyenl6tlenség minden valds szamra értelmezett. El6szor a trigonometrikus
részt oldjuk meg, azaz y = |2x — 4| helyettesités utan (1j ismeretlen bevezetése)
megoldjuk a

smy < 5
egyenlotlenséget. A kozépiskolaban megismert mddszerek valamelyikét alkalmazva
(egységkor vagy fliggvény dbrazolds) ennek megolddsa:

2
§+2k7r<y<27r+g+2k7r (keZ).

Ezek utan egy paraméteres abszolit-értékes egyenlotlenség-rendszert kell megolda-
nunk, ahol £ a paraméter:

2
§+2k7r<|2x—4|<27r+g+2k:7r (k € Z).

Keressiik elOszor a 2o —4 > 0, azaz az © > 2 feltételt kielégité megoldasokat. Ekkor
az abszolut érték elhagyhato, és a

2
§+2kw<2x—4<2w+g+2kw (k € Z).
linedris egyenlotlenségekhez jutunk. Ezek rendezéssel konnyen megoldhatok:

2 7
2+§+kw<x<2+%+lm (ke Z).

Ezek a nyilt intervallumok & > 0 esetén teljes egészében a [2, +00) intervallumba
esnek, k < —1 esetben nincs kozos pontjuk a [2, +00) intervallummal, £ = —1

esetben pedig a kozos rész: 2 < x < 2+ %

Ennek alapjan az x > 2 feltételt kielégité megoldasok:

2 7
2<x<2+% vagy 2+%+kﬂ'<l‘<2+g+kﬂ (keZ,k>0).

Masodik esetként keressiik a 2x — 4 < 0 feltételt kielégité megoldasokat. Ekkor az
abszolut érték ugy hagyhatd el, hogy a benne szereplo kifejezés ellentettjét vessziik:

2
§+2kw<—2x+4<2w+g+2m (k € Z).

Ezek a linearis egyenlotlenség-rendszerek rendezéssel konnyen megoldhatok:

2
2—%—k37‘(‘<1’<2—%—]{3ﬂ' (keZ).

10



Ezek a nyilt intervallumok & > 0 esetén teljes egészében a [—oo, 2) intervallumba
esnek, k < —1 esetben nincs kozos pontjuk a [—oo, 2) intervallummal, & = —1

esetben pedig a kozos rész: 2 — % <z <2
Ennek alapjan az z < 2 feltételt kielégité megoldéasok:

7 2
2—%<x<2 vagy 2—%—]{27T<.’E<2—§—]€7T (keZ,k>0).

A két esetben kapott megoldasok halmazanak egyesitése utan kapjuk a feladat
megoldasat:

7 2
2—%<:c<2+% vagy 2—%—k7r<x<2—%—k7r

vagy

2 7
2+%+k7r<x<2+§—l—k7r,

ahol k£ > 0 egész szam.

1.2.3. Kozepek

1.22  a) Alkalmazzuk a szdmtani és mértani kozép kozti egyenlStlenséget az alabbi
n + 1 db szamra: . .
1+ = . 14— 1
n n

(& J/

n db

b) Alkalmazzuk a szadmtani és mértani kozép kozti egyenlStlenséget az aldbbi
n + 2 db szamra:

1+ ! 1+ L1l
n? AR TL/’ 27 2
n‘:ib
1.23 Alkalmazzuk a szamtani és mértani kozép kozti egyenlétlenséget az aq, ... ,a,
1 1
szamokra, tovabba az —, ... , — szamokra.
a1 Qp
1.24 Alkalmazzuk a szamtani és mértani kozép kozti egyenlGtlenséget az 1, ... ,n sza-

mokra, majd haszndljuk fel az els6 n természetes szam Gsszegére tanult képletet.

1.25 a) Alkalmazzuk a két szdm szamtani és mértani kozepe kozti egyenl6tlenséget az
aldbbi szamparokra:
a, b b, c c, a

11



1.26

1.27

1.28

b) Alkalmazzuk a hdrom szdm szamtani és mértani kozepe kozti egyenlétlenséget
az a + b, b+ ¢, ¢ + a szamokra.

Ha a téglalap oldalait x és y jeloli, akkor az ry maximumat keressiik az
x>0, y>0, 20x+2y==k

feltételek mellett. Alkalmazzuk a szamtani és mértani kozép kozti egyenlotlenséget

az xr és y szamokra:
2 2 2
< (TEUY Z (R2) _E
2 2 16

2
Azonban a jobb oldalon all6 — mennyiség allandd, ezért a bal oldalon &allé xy

szorzat akkor és csak akkor veszi fel a legnagyobb értékét, ha a szamtani és mértani
kozép kozti egyenlotlenségben egyenlOség van, azaz, ha x = y. Az optimalis téglalap

k
tehat a 1 oldali négyzet.

Jelolje a téglalapnak a folyéval parhuzamos oldalét x, a folyora merdleges oldalat
pedig y. Keressiik az xy kifejezés maximumat az

x>0, y>0, x+2y=I

feltételek mellett. Alakitsuk at az xy kifejezést, majd alkalmazzuk a szamtani és
mértani kozép kozti egyenlotlenséget az x és a 2y szamokra:

1 1 (z4+2y\> 1 [1\> P2
— < = ——.(2) ==
WEg A= ( 2 ) 2 (2) g

2
Azonban a jobb oldalon all6 — mennyiség allando, ezért a bal oldalon allé xy szorzat

akkor és csak akkor veszi fel a legnagyobb értékét, ha a szamtani és mértani kdzép
kozti egyenlOtlenségben egyenl6ség van, azaz, ha © = 2y. Az optimalis téglalap
l
oldalai tehat x = - és y = —.
2 YT
Jelolje a henger sugarat r, magassdgat m. Keressiik az A = 7?71 + 2rwm kifejezés
minimumat az

r>0, m>0, r’mm=V

feltételek mellett. Alakitsuk at az A kifejezést, majd alkalmazzuk a szamtani és
mértani kozép kozti egyenlétlenséget az r2w, rem, ram szémokra:

r’m 4+ rom 4+ rom
3

A=r’r+2rmm=3- 23-\3/7"27?-7"7rm-r7rm.

12



A jobb oldalt atalakitjuk:
3-Vr2m-rom-rom =3 - Vrimdm?2 = 3. {/(r2rm)2r = 3 - V'V,

Lathaté, hogy a jobb oldalon allé 3 - vV 21 mennyiség allandé, ezért a minimalizé-
land6 A kifejezés akkor és csak akkor veszi fel a legkisebb értékét, ha a szamtani
és mértani kozép kozti egyenlotlenségben egyenléség van, azaz, ha

r’m =rmm =rmm, azaz, ha r=m.

Az optimalis edény méretei tehat r = m = / —.
T

1.29 Alkalmazzuk a szamtani és mértani kozép kozti egyenlotlenséget az
1 1 1

_’ _7 e e ey —
a1 Az an

szamokra, majd rendezziik at a kapott eredményt.
1.30 A bizonyitandé egyenlotlenséget ekvivalens atalakitdsokkal az aldbbi alakra hozzuk:
(a1 + ... +a,)* <n-(al+ ... +a)

Végezziik el a bal oldalon a négyzetre emelést, majd rendezziik az egyenlGtlenséget:

n—1 n
a%+...+ai+z Z 2a,a; <n-(al+ ... +a2)

i=1 j=it+1
n n—1 n
Og(n—l)-Za?—Z Z 2a;a;
i=1 i=1 j=i+1

A jobb oldalon szerepld kiilonbség elsé tagja atrendezhetd az alabbi formara:

n—1 n
D> (af +af),
i=1 j=i+1
ugyanis
n—1 n n—1 n n—1 n n—1 n n j—1
RIS 3P 3L T0 30 ST 353X ED 3) 3
i=1 j=i+1 i=1 j=i+1 i=1 j=i+1 i=1 j=i+1 7j=2 =1
n—1 n n—1
=Y m—i)-a?+> G-D-a?=n—-1)-ai+» (n—i+i—1)-a>+
=1 Jj=2 1=2
n
+(n—1) an:(n—l)-Zaf
i=1

13



Ennek felhasznélasdval a bizonyitand6 egyenlttlenség igy irhato:

n—1 n n—1 n
ED 3D SICESEED 9p 3L
i=1 j=i+1 =1 j=i+1

n—1 n
0 S Z Z (CLZ2 +a§ — 2&1'(1]')
=1 j=i+1
n—1 n
03" Y 0wy
i=1 j=i+1

Ez pedig nyilvanvaléan igaz (négyzetosszeg > 0), és az egyenldségre vonatkozo
allitas igazolasa is konnyen kiolvashato beldle.

Megjegyzés: A bizonyitas teljesen elemi volt, de mégis kissé bonyolult az Gsszeg
atrendezése miatt. A szamtani és a négyzetes kozép kozti egyenlotlenség 1ényegesen
egyszeriibben igazolhaté a linearis algebraban késobb sorra keriilé Cauchy-egyen-
16tlenség alkalmazéasaval.

1.31 Hasznaljuk fel, hogy i = 1, ..., n esetén m < a; < M, tovabba, ha az a4, ... ,a,
szamok nem mind egyenldk, akkor ezek kozott az egyenlotlenségek kozott vannak
olyanok, amelyek szigori forméaban teljesiilnek.

1.2.4. Szamhalmazok

4n — 2
1.32 Mivel P=2 9 8 at
2n+3 2n+3

dn — 2 8
H = NY=do_ .
{2n+3|”e } { 2n+3|”EN}

Ebbol lathato, hogy n novelésével a halmaz elemei egyre nagyobbak. Ezért a
legkisebb elemet n = 1-re kapjuk:

8 2
mnH=2— ——=—.
2-1+3 5
Mivel van minimum, ez egyben a halmaz legnagyobb alsé korlatja is: inf H = g.A

halmaz alulrdl korlatos.

Most bebizonyitjuk, hogy a halmaz legkisebb felso korlatja 2, azaz, hogy sup H = 2.
Ez két 1épésben torténik: elészor belatjuk, hogy a 2 felsoé korlat, majd pedig azt,

14



1.33

1.34

hogy barmely, 2-nél kisebb szam mar nem felsé korlat. Az elsé 1épés igazolasa

egyszeri: mivel 3 > 0, ezért

n -+

= <2 e N).

2n + 3 (n )
A masodik 1épés igazolasdhoz vegyiink egy tetszdleges € > 0 szamot, és mutassuk
meg, hogy a 2 — ¢ szam nem fels6 korlatja H-nak. Ehhez elegendo egyetlen olyan
H-beli elem 1étezését bizonyitani, amely nagyobb, mint 2 — &:

2 — > 2 —
2n+ 3 c

Ezt az egyenlotlenséget atrendezve kapjuk, hogy

1 /8
. (2-3).
"> ( )

Ilyen n € N szam pedig létezik az arkhimédeszi axiéma miatt.
Mivel talaltunk fels6 korlatot, a halmaz feliilrol korlatos.

Mivel a halmaz minden eleme kisebb, mint 2, ezért sup H ¢ H, amibdl kovetkezik,
hogy a halmaznak nincs maximuma: Amax H.

A halmaz alulrél korlatos, inf H = min H = g, tovabba a halmaz feliilrol korlatos,
sup H = 3 maximuma nincs.

n+3 1 )
Mivel ==+ — ort
ve 1 2+4n+2,ezer

n+3 1 5)
H= ~ ] .
{2n+1’”EN} {2+4n+2‘”€N}

Ebbdl lathato, hogy n novelésével a halmaz elemei egyre kisebbek. Ezért a legna-
gyobb elemet n = 1-re kapjuk:

1 5 4
Hezgp 2 2
max 511412 3

A

L W~

Mivel van maximum, ez egyben a halmaz legkisebb fels¢ korlatja is: sup H =

halmaz feliilrél korlatos.

1
Most bebizonyitjuk, hogy a halmaz legnagyobb alsé korlatja 37 azaz, hogy inf H =

1 1
3 Ez két 1épésben torténik: elészor belatjuk, hogy az 5 alsé korlat, majd pedig

15



1.35

1
azt, hogy barmely, §—né1 nagyobb szam mar nem alsé korlat. Az elso 1épés igazolasa

egyszeri: mivel > 0, ezért
n+2
1 5 1
= = N).
2tz EN

A masodik 1épés igazolasahoz vegyiink egy tetszdleges € > 0 szamot, és mutassuk

meg, hogy az 5 + € szam nem alsé korlatja H-nak. Ehhez elegend6 egyetlen olyan

1
H-beli elem 1étezését bizonyitani, amely kisebb, mint 3 +e:

[ T O
2 " dnt2 2 7"°¢

Ezt az egyenlGtlenséget atrendezve kapjuk, hogy

1 /5
>—- | -=2]).
()
[lyen n € N szam pedig létezik az arkhimédeszi axiéma miatt.

Mivel talaltunk alsé korlatot, a halmaz alulrél korlatos.

1
Mivel a halmaz minden eleme nagyobb, mint 5 ezért inf H ¢ H, amib6l kovetkezik,

hogy a halmaznak nincs minimuma: #min H.

Vigyazzunk, az n nem 1-t6l, hanem 4-t4l indul.

A halmaz feliilrol korlatos, sup H = max H = 17, tovabba a halmaz alulrél korlatos,
inf H = 3, minimuma nincs.

16



2. fejezet

Szamsorozatok, szamsorok
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2.1. Szamsorozatok és szamsorok

2.1.1. Szamsorozat megadasa, hatarértéke

frjuk fel képlettel az alabbi sorozatok n-dik elemét! Vizsgdljuk meg, hogy a sorozat
monoton, korlatos, illetve konvergens-e!

2.1. 2.2.
1, 4,9, 16, ...
1 2 3 4
4’9" 16" 25
2.3. 2.4.
11 1
—-1, 2 1, ——, =, ——
Y Y 57 87 ) 27 37 47
2.5. 2.6.
-1, 1, -1, 1, -1, ... 0,9; 0,99; 0,999; 0,9999; ...
2.7. 2.8.
32 T L2, 3 4
2 3 4 ) 37 ) 4’ ) 57

frjuk fel az alabbi, képlettel megadott sorozatok els6 néhany elemét! Vizsgaljuk meg,
hogy a sorozat monoton-e, korlatos-e, konvergens-e!

2.9. a,=3n 2.10. a,=(—-1)"
2.11. a,=2+4n 2.12 4. = _i
2. n >
_ an 1
2.13. a,=3 2.14. a. —
"o4n -1

Hatarozzuk meg az alabbi sorozatok hatarértékét:
8 _
2.15 2.16] a =" )

an =2n? —Tn+4

18



_3n—4

2.17| a, =
R P 2.18
o —Tn+4
219 q,— -T2 2.20
I = 3 F o —8
Mm? — 4
921 aq = —Tmtd 2.22
3n2 +5n—8
.3 2
2.93 0 = n® + 10n° + 25
™ — b

2n? —Tn+4
ay = —————
3n3 +5n — 8
3n® +4n — 2
a, = —————
™® + 3n3
n®—1
a, =
n—+5

Hatarozzuk meg az alabbi sorozatok hatarértékét:

2.24 a,=vVn+1-—n 2.25
2.26 a,=+vVn2+1—+vn2+n 2.27
2.28 a, =nvnt+n?—n? 2.29
230 a,=vVn?P+n+1—vn2—n+1
13_ _13
931 q -t (-1
(n+1)?+(n—1)
2)! 1!
232 q -t 04D 2.33
(n+3)!
1424+ ...
934] g, — - tn 2.35
n
9 27 3+l
2.36 W= — e 2.37
a 4+16+ +22n
1 e+ (2n—1
238 q = f3t - H0n-l) 2.39
2444 +2n
2.40 Ly L1
. an:_ [ -
1.2 2.3 n(n+1)
2.41
1 1 1
ap = + +

19

a,=vn+1—+vn-1
an = +/n(vn+1—+/n)
an = /1 +4y/n —/n—10y/n

a, =n(vn?—1-—n)

Syl
=9y on
142+ +n
Ap =
(n+1)(n+2)
. 14449+ 402

n3

1
2n—-1)2n+1)




3/n3 2 1 32
942 o, =Yt 243 q, = Y17
n-+1 n-+1

2.44 a, = V2" + 5" 2.45 a, = Vnb+2n

n3 + 2n? 23n+l 4 pd
2.46 n = {‘/— 2.47 L=
“ 32n 4+ T, a 8" 4 2

Vizsgaljuk meg, hogy konvergensek-e az alabbi sorozatok. Ha igen, akkor adjunk meg
olyan N = N(e) kiiszobindexet, melynél nagyobb indexii elemek (a szdmsorozatban) az
eloirt e-nal kisebb hibaval kozelitik meg a hatarértéket.

2.48 2.49
4 3
&”:5n+1 e=10"" o =Ty
n= " on 1
2.50 2.51
4 1
an = e=10" G, = —2 .10
7 —5n n (n + 1)2
2.52 2.53
a, = /2 e=10""1 a, = ! e=10"°
" - "o3n4 ]
2.54 2.55
3n? +1 4
_ — 10— 4
mw=Tg2 =10 an = 1] 25 e=10"
n
2.56
ond — 7
an n e=10"3

:3n5+n4—2n3—1

Vizsgaljuk meg, hogy alabbi, +oo-be tartd, sorozatokban milyen N = N(K) kiiszob-
indextol kezdve lesznek a sorozat elemei az adott K szamnal nagyobbak.

2.57 2.58

2 106 L=
ay =N K =10 @ NCES

20



2.59 2.60

5n
= K =10% 3"
3n+2 an = on+1

Qn

Hatarozzuk meg az alabbi sorozatok hatarértékét.

2.61 2.62

2.63 2.64

2.65 2.66

2.67 2.68

K

= 10%

2n+3
an—(l—l—l) @ = n+2 an
n " n+3

2.69 2.70
3n—2
an:<2n+1> 30— 4
_ ap =
2n — 3 30+ 5
2.71 2.72
n + 1 3n+1
Un = (2 1> an = | 1+ !
n= " on 1
2.73 2.74
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2.75 2.76

n- 2"
1 9 nt
‘ l+<2>] a”:( n2 )

2.77 2.78
nn+1
L — : 2. e 1
a CEEE anzl 2+ 3+3 +n(n+1)
n
Hatarozzuk meg az alabbi rekurziv sorozatok hatarértékét.
2.79 L@ 0 2.80 2 0
. Ap — — a, 1, ap = . p = ——, —
4 n—1 0 1 _|_ an_]_ 0
2
_ — 4
2.81 pi1 =2+ an, a9 =2 2.82 Apy1 = an: ; ap=1

2.1.2. Szamsorok Gsszege

Szamitsuk ki a kovetkezd sorok Osszegét.

> /2\" /K" )
2.83 Z(g) 2.84 Z(k2+1), k € R rogz.

n=0 n=0
2.85 f: 1 2.86 i 0
— n? + 3n — n? —hn
> 1 > 1
2.87 2.88 _
;%4712—1 n:1n3+3n2+2n
2. 4" 4 5 > 1
2.89 2.90 _—
nzg 32n ; n(n+1)

2.91 Irjuk fel kozonséges tort alakban az aldbbi tizedes torteket:

s =1.7972972 972 ... t=0.78 123 123 ...

Konvergensek-e az aldbbi végtelen sorok?
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2.92

2.96

2.100

2.102

2.104

St
10n + 2

n=1

2.97

2.101

2.103

2.105

2.107

23
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2.108

2.110

2.112

2.114

2.116

2.117

2.118

2.119

2.109
>
nzln-Z”
>
n:1n~4”
2.113
§:1
:2n1n2n
2.115
1+n\?
1+ n?
i n+1—+n
vn

= (=D"(n+1)
; (n+2)(2n+1)

n=1

123 33 43 5

et St Sttt

3 32 33 3 3
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2.120 2.121

(2
> sin &r i i

]{,‘ n=1 n
k=0 4
2.122
L ha k paratl
- T2 a k paratlan
Z ag ahol ap =
- 1
h=1 — ha k paros
k
2.123
— (=2)"(n? —n—+1)
2.124 2.125
i 1 i( D '
— n(n + 3) 2 ol
2.126
i (V2)"
“—~ (2n+1)!

2.1.3. Abszolut- ill. feltételes konvergencia

Vizsgaljuk meg, hogy az aldbbi végtelen sorok melyik tipusba tartoznak: abszolut kon-
vergens, feltételesen konvergens vagy divergens?

2.127 2.128
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2.129

2.132

2.134

2.1.4.

2.136 | Képezziink sokszoget egy szabdlyos a oldali, T teriiletli hdromszogbdl a kovet-

2.130

n=0
1 1 +1 1 n
2 V2 3 3
2.133
> 1
1)
Z( >1nn
n=2
2.135

nm

Z 81117522 )

n=1

kezo rekurziv eljarassal:

Ismételjiik ezeket a lépéseket. Az igy kapott sokszog az tugynevezett Koch-gorbe.
Mennyi a Koch gorbe keriilete és teriilete?

N AT A
e

2.1. abra. A Koch gorbe konstrukciéjanak 2. 3. és 4. lépése.

1. Osszunk minden oldalt 3 egyenl6 részre.

26

Alkalmazas: Geometriai feladatok

2. Minden kozépso oldal szakaszra illessziink szabdlyos haromszoget.

AT Ta ::: :n.ﬂh

L ¢

;

V1,0 ::: :\'u?



Egységnyi teriiletii szabalyos haromszogbe beirjuk a kozépvonalai altal alkotott
haromszoget. Ezutdn vessziik az eredetivel egyallasu részeket es azokba is beirjuk
a kozépvonalai altal alkotott haromszogeket. Ezt rekurzivan ismételjiik. A kapott
alakzat a SIERPINSKI haromszog.

A kozépvonalak altal alkotott haromszogek osszteriilete hanyadik iterdacié utan ha-
ladja meg a 175/256 értéket?

Mennyi a kozépvonalak &dltal alkotott haromszogek teriileteinek Osszege?

2.2. dbra. A Sierpienski haromszog konstrukcidjanak 1. 2. és 3. 1épése.
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2.2. Megoldas. Szamsorozatok

2.2.1. Szamsorozat megadasa, hatarértéke

2.1 A sorozat monoton névé (s6t: szigortian monoton néve). Alulrdl korlatos, felilrdl

nem korldtos, tehat nem korldtos. Tovabbd divergens, +oo-be tart. a, = n?.

2.2 A sorozat monoton fogyd, (s6t: szigorian monoton fogyd). Alulrdl is és feliilrdl is
n

korlatos, tehat korlatos. Tovabba konvergens, hatarértéke: 0. a,, = W :
n

2.3 A sorozat monoton névo (sét: szigordan monoton nové). Alulrdl korldtos, feliilrél
nem korlatos, tehat nem korlatos. Tovabba divergens, +oo-be tart. a, = —4+3n.

2.4 A sorozat nem monoton. Alulrdl is és feliilrdl is korlatos, tehat korlatos. Tovabba
1
konvergens, hatarértéke: 0. a, = (—1)"T!. =,
n
2.5 A sorozat nem monoton. Alulrdl is és feliilrdl is korlatos, tehat korlatos. Tovabba
divergens, hatarértéke nincs. a, = (—1)".

2.6 A sorozat monoton névo, (s6t: szigorian monoton néve). Alulrdl is és felilrdl is
korlatos, tehét korlatos. Tovabba konvergens, hatéarértéke: 1. a, = 1 — 10~(+1)

2.7 A sorozat nem monoton. Alulrdl is és feliilrdl is korlatos, tehat korlatos. Tovabba
2n —1
divergens, hatérértéke nincs. a, = (—=1)"* . ——.

2.8 A sorozat nem monoton. Alulrdl is és feliilrol is korlatos, tehat korlatos. Tovabba
konvergens, hatarértéke: 1.

1
Megjegyzés. A 2.8 feladatban szerepl$ (a,) sorozat a (b, = 1) és a (cn _nt )

n+ 2
sorozatok "Osszefésiilésével” keletkezett. Mivel paratlan n-ekre a, = 1, paros n-ekre
pedig

s+1 n42
Qa = =
242 n+4]

ezért olyan tortet kell késziteniink, melynek nevezdje n + 4, szamlaldja pedig paratlan
n-re n + 4, paros n-re pedig n + 2. Kénnyen kaphatunk ilyen szamlalét: n + 3 + (—1)".

2.15 oo.
2.16
9
n®—9 1__8
lim ——— = lim ——"% _ —9.
n—oo 9 2 n—oo 12 5
n?d +12n*+5 nt 4
n n
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2.17

2.18

2.20

2.22

2.24

2.25

2.26

2.28

2.30

2.32

2.33

2.34

3 4
3 _ _—
1m n—4 = n e

0. 2.19 oo.
3 2
- 2.21 —.
7 3
0. 2.23 —00
0.

lim (Vn+1—+vn—1)= lim(\/n_|_1_\/n_1)_\/n+1+\/n—1_

m+1)—(Mn-1) 2
1m = lim —
”_“X’\/n—i-lﬂL\/n—l n—>oo\/n+1+\/n_1
1 1
T 2.27 —.
2 2
1. 2.29 7.
4
L. 2.31 3.
N ) L G DL G O L () K VI
. n+3
= lim —— =
n—co n? + 5n + 6
1
5
(1+n)n
lim = lim = lim =00.
n—00 n N 00 n oo 9
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2.35 2. 2.36 9.

937 L 2.38 1.
2

239

: 5

2.40 Teljes indukcioval belathato, hogy

1 N 1 P 1 o
1-2 2.3 nn+1) n+1
Ezért
lim a,, = lim =1.
941 1 2.42 1.
2
2.43 0. 2.44 5.
1
2.45 2. 2.46 -.
9
2.47 1.

Megjegyzés. A 2.48 - 2.60 feladatok végeredményében szereplé N természetesen egy
lehetséges kiiszobindexet jelol.

2.48 Konvergens, N = 760.

-1
2.49  lim ——— — = tovdbb4
n—oo 2n + 1 2
1 n—1 1 2n—2-—-2n-—1 -3 3
an__: — = = == = .
2 2n+1 2 dn + 2 dn + 2 4n + 2

Tehat olyan kiiszobot kell taldlni, hogy a nala nagyobb n-ekre

<107°

4n + 2

3-10°
teljesiiljon. Ezt az egyenldtlenséget megoldva kapjuk, hogy n > — tehat

N = 74999 egy jo kiiszobindex.
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2.50

2.52

2.53

2.55

2.57

2.58

2.59

2.61

2.63

2.64

2.66

2.68

2.71

2.73

2.75

2.77

1
hogy — < log, 1.1, amibdl n >
n

n—oo n—oo

Konvergens, N = 13201. 2.51 Konvergens, N = 140.

Ismert tétel alapjan lim /2 = 1.

Tovébba |2 — 1] = /2 — 1 < 107", azaz /2 < 1.1. Mindkét oldal 2-es alapi
logaritmusat véve kapjuk, - a logaritmusfiiggvény szigorti monotonitdsa miatt -

~ 7.272. Ezért N =T egy jo kiiszobindex.

log, 1,1
Konvergens, N = 12. 2.54 Konvergens, N = 700.
Konvergens, N = 200. 2.56 Konvergens, N = 222.

Mivel n? > 10 <= n > 103, ezért N = 10? jé lesz kiiszobindexnek.

n1 _ (Ya-1)-(yat1)

A tortet bovitve = /n — 1, igy a vizsgalandé

NE Vvn+1
egyenlStlenség: /n — 1 > 6500. Ebbdl dtrendezéssel kapjuk, hogy N = 65012.
N = 139. 2.60 N =115.
e3. 2.62 e 2
2 n n 2
lim (n—l— ) = lim ((1—1—%)2) = e
n—oo n n—oo 2
1
e 2.65 -
e
e 2.67 ¢?
- 2.69 2.
o3
2.70 e 5.
0. 2.72 €8
0. 2.74 1.
€. 2.76 0.

n—oo

n n+1 1 n+1 1
limanzlim(n—|—1).< > zlim(n+1)-(1— ) =00-— =00.
e

n+1 n—+1
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2.78 A szamlédlét az ismert Osszegképletek segitségével tudjuk zart alakban felirni:

n "L, o nn+1)2n+1 n(n+1 n(n+1)(n +2
;k(k:Jrl):;k +;k: ( 23( ) (2 ) _n( ;( +2)

Ennek alapjan

> k(k + 1
, L k;l ( )_ . n(n+1)(n—|—2)_1
lim a, = lim = lim =

n—oo n—oo n3 n—oo 37’1,3 3

2.79  Teljes indukcioval belathatd, hogy a sorozat monoton névo, és feliilrol korlatos.
Ebbdl kovetkezik, hogy konvergens, vagyis létezik a
lim a, = lim a,,1 = A

véges hatarérték. A sorozatot megadd rekurziv képlet mindkét oldalanak hatarér-

tékét véve kapjuk, hogy
1

A=-4 A%
1 +
) 1 o 1
Ennek az egyenletnek egyetlen megoldasa A = 3 Tehat lim a, = 3
2.80 1. 2.81 2.
2.82 2.

2.2.2. Szamsorok Osszege
2.83 3.
k2

. 1+ k2
ismert képlet segitségével torténik:

E:(W+&> TR =k

n=0 - -
k2+1

2.84  Mértani sorrdl van szo, ¢ = € (—1, 1), tehdt konvergens. Osszegzése az
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2.85 A sor n-edik részletsszege:

3

1 - 1
k2 +3k  “—~k(k+3)

k=1 k=1

S, =

Az Gsszeg k-adik tagjat parcialis tortekre bontjuk:

1 1 1 1
k(k+3) 3 \k k+3/)°
Ezt behelyettesitjiik, majd az 6sszeget atrendezziik:
1 (1 1 1 (1 «— 1
=S (- )= (Y- ]
>3 (i) -5 (ST

k=1

1
Ezutan a mésodik szumma indexét eltoljuk gy, hogy a tagok i3 helyett z

alakuak legyenek:
1 (&1 K1
Sp= =" - — —1.
(i)
k=1 k=4
Végiil - mindkét szummabdl levalasztva a megfeleld tagokat - a kozos indextar-
tomanyon vett Osszegek kiejtik egymast, s igy kialakul S, zart alakja:

1 (1 1 1 1 "1 1 1 1
S,==-[-4+=-4= - - — _ —
3 <1+2+3+;k k:4k: n+1 n+2 n+3>

11,11 1 1 >4
"3 \17273 %1 n+2 n+3 ==

Innen n — oo hataratmenettel kapjuk a sor Gsszegét:

f’: Lo (1 1 1 1\ 11
“n2+3n n-e3 \6 n+l n+2 n+3) 18

n—=

1
2.86 —37.
60
1
287 —.
2

2.88 A sor n-edik részlettsszege:

- 1 - 1
S, = S —— .
;k3+3k2+2k ;k(k+1)(k+2)
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Az Osszeg k-adik tagjat parcialis tortekre bontjuk:

1 1 /1 2 1
k(k+1)(k+2) 2 \k k+1 k+2/)°

Ezt behelyettesitjiik, majd az Osszeget a 2.85 feladatban latott mdédon atalakitjuk
(atrendezés, index eltolds, levalasztés, kiejtés):

1 /1 1 1 1
Sn: — . _— — =
Z;Z(k kot 1 k+1+k+2>
1 ji:]’ "1 ji: 1 "1
2 (kzzlk k—1k+1 lkj_‘_1 =lk+2)
1 n 1 n—i—l1 n 1 n+1 1
_§'<ZE_ZE_ it ) T
k=1 k=2 = =
1 (1 &1 1 1 1 - 1 "1 1
=3 <I+k2E_kZ;E_n—+l_§_;k—+l+Zk—+l+n+2> -
2 \2 n+1 n+2 4

1
A sor Osszege tehat i

81 290 1
2.80 —. - :
20
9
A L 5203

222 "7 6660
2.92  Divergens.

[e.9]

2.93  Konvergens. Pozitiv tagi sor, melyet a » on konvergens geometriai sor majoral.
n=1

1\" 1
2.94 Mivel lim (1 — —) = — # 0, tehét a konvergencia sziikséges feltétele nem tel-
e

n—00 n

jesiil, ezért a sor divergens.

2.95 A sor divergens, ugyanis

o0 o0 o0

10-n+2 2-n+2 1
_—> _—— 2 . ,
g; n? +1 E:WAJV §:1n+1

n=1

a sort tehat a harmonikus sor minoralja, amely divergens.
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2.96 Divergens. 2.97 Konvergens.

2.98 Divergens, mert

) 3" . 1 1
Ji%o3n+2_27:$i%032_§_z:§#0’

s igy a konvergencia sziikséges feltétele nem teljesiil.

2.99 Konvergens. Pozitiv tagi sor, melyet majoral a i (2) ' konvergens geometriai
n=0
sor.
2.100 Divergens. 2.101  Divergens.
2.102 Divergens. 2.103  Divergens.
2.104 Konvergens. 2.105 Divergens.

2.106  Alkalmazzuk a gyok-kritériumot:

2
lim n —tim () = lim ——— = = <1,
n—>00 n+1 n—oo \ m + 1 n—00 (1 + %) e

ezért a vizsgalt sor konvergens.

2.107  Divergens. 2.108 Divergens.

2.109 Divergens. 2.110 Konvergens.

2
n n—2’
3

i(g>/<z) ) niz: ) %

n=3

2.111  Divergens. Ugyanis

s igy

Ez a harmonikus sor viszont divergens.
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2.112  Konvergens. 2.113 Konvergens.

2.114  Konvergens. 2.115 Konvergens.
2.116  Divergens. 2.117 Konvergens.
2.118 Konvergens. 2.119 Konvergens.
2.120 Konvergens. 2.121 Konvergens.

2.122 A sor tagjai:

1
a9 = — (l{?EN)

1 1
agk—1 = —
2%k—1 ( ok

2%k —1)+2  2k+1’
Jelolje a sor n-edik részletosszegét S,,. A paros indexti részletosszegek:

Son = a1 +as+az+as+ ...+ Q1 + a2y =
:(a1+a2)+(a3+a4)—|—...+(a2n_1+a2n):

n

- 1 1 " /1 1
_Z(GQk—1+a2k) —Z (_2/€+1 +ﬁ> = £ (ﬁ_ 2k+1)

1 k=1

amibdl latszik, hogy (Sa,) egy konvergens Leibniz-tipusi sor részletosszegeinek
sorozataval egyenlé. Fzért konvergens, jeloljitk a hatarértékét S-sel. A paratlan
indext részletosszegek is S-hez tartanak, ugyanis

]_ n—oo
Szn—l = Szn — Qop = S2n - = (

) _
o S—-0=5.

Ezért (S,,) konvergens, vagyis a vizsgalt sor konvergens.

Megjegyzés. A fenti feladatban szerepl6 sor példa olyan esetre, amikor a sor csupan
a monotonitas hianya miatt nem Leibniz-tipusi. Ennek ellenére konvergens.

2.2.3. Abszolut- ill. feltételes konvergencia

2.123 Konvergens. 2.124  Konvergens.
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2.125  Divergens. 2.127  Feltételesen konvergens.

2.126  Konvergens. 2.128  Abszolut konvergens.

2.129  Abszolut konvergens. 2.130 Feltételesen konvergens.

2.131  Vizsgaljuk az (.5,) részletosszeg-sorozat paros indexi tagjait:

1

g L 1.1 1 +1_1_z”:(1_1>_
TTIOVIT2 Ve Vi kR
fe—=

— | =

“1-Vk

i
[\

Itt alkalmazhatjuk a minordns kritériumot, ugyanis k > 4 esetén vk — 1 >

-1 VE 1

>t =

k 2 Wk’

sor divergens. Ezért az (S5,) részletosszeg-rész-

, S

Vk
2

ezt felhaszndlva

=

1
2Vk
sorozat divergens, amibél kovetkezik, hogy (S,,) is divergens. A vizsgélt sor tehét
divergens.

tovabba tudjuk, hogy a >

Megjegyzés. A feladatban szereplé sor példa olyan esetre, amikor a sor csupan a
monotonitas hidnya miatt nem Leibniz-tipusi, és nem is konvergens.

2.2.4. Alkalmazas: Geometriai feladatok
2.132  Feltételesen konvergens. 2.133  Feltételesen konvergens.

2.134  Abszolut konvergens. 2.135  Feltételesen konvergens.

2.136 A feladat megoldasa a jegyzet 1. kotet 52. oldalan talalhaté.

2v3a> 8T
5 5

KKoch = o0, TKoch =

1
2.137 Mivel a kozépvonalak altal meghatarozott haromszog o Szeres kicsinyitése a ha-

1 .
romszognek, ezért teriilete 7 Szerese annak a haromszogének, amelybe beleirjuk.
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Ennek alapjan a kozépvonalak altal meghatédrozott hdromszogek (beszinezett haroms-
z0gek) szama és Osszteriilete az alabbi médon adhaté meg:

1
Az els6 abran 1 db 1 teriilet haromszog.

1 11 1
A miésodik dbran 1 db 7 tovabba még 3 db 11z teriiletli haromszog.
11 1
A harmadik 4brdn ugyanaz, mint a masodik dbran, tovdbb4 még 3% db 1T 2B

teriiletlt haromszog.

Es igy tovabb, teljes indukcidoval megmutathatd, hogy az n-edik abran beszinezett
haromszogek Gsszteriilete:

n—1 k

1 1 1 1 1 3

f— 0.— 10— 2-— nil.—_—: _—
T,=3- 543 5438 o+ 43 o= M(4>

A mértani sorozat elsé n tagjara vonatkozd képlettel kapjuk, hogy az n-edik abran
beszinezett haromszogek Osszteriilete:

g ey

k=0 -—1

A kapott képlet alapjan valaszolhatunk a feladat kérdéseire:

175
a) Megoldandé6 a T,, > 256 egyenlGtlenség, azaz:

3\" _ 175 3\" 175 81 3\*
1—(=) >—= -l <l—-—=—=(-] .
4 256 4 256 256 4
Ebbol adodik, hogy n > 4. S6t az is lathatd, hogy n = 4 esetén egyenloség van.

Tehat a kozépvonalak altal meghatarozott hdromszogek (beszinezett haromszogek)

175 oy
Osszteriilete a negyedik abran éppen 256’ s ezt az értéket eloszor az 6todik abran

haladja meg.

b) A kozépvonalak &dltal meghatérozott haromszogek (beszinezett haromszogek)

osszteriilete:
3 n
lim 7, = lim(1 — (Z) ) =1,

ami megegyezik az eredeti haromszog teriiletével.
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Megjegyzés. A feladatot egyszeriibben is meg tudjuk oldani, ha nem a beszinezett, hanem
a fehéren maradt haromszogek osszteriiletét szamoljuk. Ez a teriilet mindegyik abran
— mint az konnyen ldthaté — 3/4-szerese az el6zé dbran 16v6 fehér teriiletnek. Tehét az
n-edik dbrdn 1év6 fehér teriilet: (3/4)". Ebbdl kovetkezik, hogy a beszinezett teriilet az

n-edik dbrén 1 — (z) .
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3. fejezet

Valés fiiggvények
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3.1.

3.1.1.

Mivel egyenl6?

Valos fiiggvények

Bevezeto feladatok

3.1 sin (arcsin(m))

w

= (o] |
[t

sin (2arccos(s)

sh(2)

ch(2x),

1 :
5 cos (5 arcsm(m))

ha sh(z) = 1.

arch(5)

3.2 sin (arccos(w))

341y ((arecos(o) )

sin (arc tg (2, 4))

3.8  ch(3)
3.10| arsh(4)
arth(—0, 6)

Hatarozzuk meg a kovetkezo fiiggvények értelmezési tartomanyat:

3.13

3.15

3.17

3.19

3.21

y=V1i+z+v1l—=x

2r — 3
T+ 2

y = In(2? — 37 + 2)

. 3—2x
y = arcsin
| 22 —2x —15
=1In
Y= e T 0s + 16

3.14
y=v3—-2x
3.16
s 1
v= r2 — 3w
3.18
| Sr — 2
=4/In
4 4
3.20
y = 2arccos V9 — z?
3.22

y =1In(Inx)
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Rajzoljuk meg a kovetkezo fiiggvények gorbéit.

3.23
oz
v= x—1
3.25
2t —2r+1
YT T +1
3.27
1
YT
3.29
oz
A
3.31
— 2
y=e
3.33
_a
y = e z2
3.35
y = arccos(cos(x))
3.37
)
y = arctan | —
x

3.24

3.26

3.28

3.30

3.32

3.34

3.36

y = arcsin(sin(x))

y = arctan(tg (z))

Hatarozzuk meg a kovetkez6 fiiggvények inverz fiiggvényét.

3.38

y=1-2x

3.39
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3.40 3.41

y=2"+1 (z>0) yzlix
3.42 3.43
y=va2+1 (z>0) y=vVz?2—-16 (z>0)
3.44 3.45
y=vi-u y:2;i13
3.46 3.47
y=§+ %2—1 (z>2) yo Lo Vit
1++1+4x

3.1.2. Hatarérték

Hatarozzuk meg a kovetkezo fliggvények hatarértékét az adott pontban.

3.48 3.49
. 32 1
}:Lr%(x v ortl) lir% — (k€ N rogzitett)
z—0 r
3.50 3.51
3 a9.2
lim —— ?;x +4 Pt 3a? 4
o _ _ im —mM8—
2 202 +x — 2 T ar 14
3.52 3.53
3 9.2
lim f—gm lim 22+ 3z —10
3.54 3.55
xt + 32

x? —6x+8

im——— :
250 15 1 23 2 lim ———
022+ x° + 22 e—4 12 — br 4+ 4
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3.56

3.58

3.60

3.64

3.67

3.57

y 8x% —1 .
im —— 2
el 627 — bz + 1 fim & =T — e+l
r—1 Qj‘?’ 4+ x — 2
3.59
Coat—1 N 1 3
lim (n € Z rogzitett) ; _
a1 x — 1 };13 l—2 1—2a3
3.61
li L 4 val 1
im — / —
a—0\x—1 a3—-1 lim e
x—0 X
3.63
14+ Jx
| o/ _
Ig{ll 1+ 9z | 1+x—1
x—0 x
3.65
lim Y25 IR kel B
TVt = 2w r—oo N/oT 41963 — /z
’ Vi+z+a?2-1
im
x—0 xX

V34422 —V9—20+ 22
lim

z—2 2 —3x+2
3.69
2 _
hrq—‘” \/f hm\/1+x—\/1+:c2
VET 0 JI+az—1
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3.70 3.71
lim (Va2 +1—x) lim (Va2 + 1 — Va2 —1)

L—00 T—00

3.72 3.73

limx(x/xQ—{—l—a:) lim 24+ 1—1

r—00

3.74
oo Vrr+1-1
lim ———
z—0 .TJZ
3.75
L oVr2+1—-V1-22
lim
z—0 T+ x2
3.76
I 5x
im
a—=1\/14+x2—+1—x
3.77
o Vr—1-2
lim ————
z—5 xr —5
3.78
i Y2+ 2—+v—x
im
e——1x+2— /-1
3.79 3.80
. -1 .
lim Y2 —
21 7 — 1 lim S202)
z—0 xX
3.81
. sin(mz) L
lim ., n,m € N rogzitett.
z—0 nr
3.82
sin(ax)

2 Sin(br)’ a,b € R, b# 0 rogzitett.
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3.89

3.91

3.92

3.84

sin(2x)
im
20 tg (z) liH(l)$ - ctg ()
3.86
1 _ R
lim — —CZS“) lim *— ) (;os(a;)
. x =0  sin®(z)
3.88
1 1
lim (—— — — s
G (sin(x) tg:c) hn(l) w
T— i
3.90
iy L 500) = o) i L Vo)
z=0 1 — sin(x) — cos(z) im0 1 — cos(z)
‘ 7r
lim (tg (20)) - tg (5 — =)
i 205 ) i) =L
a—Z 28in”(x) — 3sin(z) + 1
3.94
- s%n(Qx) y (1 — cos(x))?
2—0 x + sin(3z) 250 tg 3z — sin®(z)
3.96
_ T
~ sin (:v - 6)
. 2sin(z) — sin(2x) lim
=% /3
alcl—>0 x3 6 % — cos(z)
3.98
coS T sin z lim \/1 T te (@) \/1 i 16)
lim — 2 2 2—0 sin(x)

=% cos(x)
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3.1.3. Fiiggvény derivalas

Hatarozzuk meg a kovetkezo fiiggvények derivaltjat.

3.99 f(r)=42®—22+7 3.100 f(z) = (23 — 3)sin(x)
3.101 f(z) = % +3 f(x) = sin®(x)
(22 + 2 + 1) cos(x)
3.103 f(z) = sin(z?) 3.104 f(x) = sin(z* — bz + 8)
4 o1 _ cos(z?)
3107 f(z) = tg*(c") 3.108 f(x) = sin?’(lt;;)
3.109 f(z) = 105" 3.110 f(z)=e*
3.111 f(z) = m*n@ f(z) = /2 Javz
3.113 f(z) = \/sin(z?) o) = 21 :
2 —
3.115 f(z) = 1 +tg3x 3.116 f(z) = /Ig(1 + sin*(22))
2 —1
3.117 f(z) = sh[z® —In(z + 7)] _ [1+tha
8.118 [(x) = /7
3.119 f(z) = 2°arcsine 3.120 f(x) = arcsiny/1 — 22
f(x) =archvzx+1 flx) = e the?

3.123 f(z)= V2 — ¥z

Hatérozzuk meg az alabbi implicit mddon megadott (y = f(x)) figgvények derivalt-
at.

2?4y’ =1
sin(z) i sin(y) _1 2%+ 93 — 3azy =0

cos(y)  cos(x)
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3.127 (x — 1) cos(y) + cos(2y) =0 y® = 1Y
3.129 f(z) =z + arctg f(z) 3.130| f(z) = (1 +z)0—)

3.1.4. Taylor polinom

frjuk fel az alabbi fiiggvényeknek a megadott xg helyhez tartozé, megadott rendti Taylor
polinomjéat.

flx)=Inzx, zqg=-e, Ty(x)="
3.132
flz)=¢€" xy=2, Ty(x)="
3.133
flz) =tg(x), x= %, T3(x) =7
f(z) =sin(z), xz¢= %, T3(x) =7
3.135
flz) = %Sin(?)x), ro =1, Ty(x)="
f(x)=2% - 62+ 11z -5, x0=2, Ts(x)=?
3.137
flx) =242 =32+ 725 29=1, Ty(x)=?
3.138

fla)=a—a* =22 + 322 + 4z + 10, xo=1, Ts(x)="
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frjuk fel az alabbi fiiggvények xy = 0 helyhez tartozo, megadott rend Taylor poli-
nomjat.

3.139

f(z) =e**, Ty(z)=?

flz) = %sin(?;a:), To(x) =7

3.141
f(z) = cos(2z), Ts(z)="
f(x) =arctgx, Ts3(x)="
3.143
flx)=In(1+2x), T,(z)="
3.144
fl@) =1 +2)% T(r) ="
Mekkora hibat kovetiink el, ha az y = sin(x) fiiggvény értékét a [0, 1] interval-

lumon a

Taylor polinommal kozelitjiik?
3.146 | Hatarozzuk meg az e szam értékét két tizedesjegy pontossaggal Taylor polinom

segitségével!

3.1.5. Hatarérték meghatarozasa L’Hospital szaballyal

i S

g

3.148 lim tg (x) — 1+ cos 3z

z—0 et — e~
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t —1
3.149 lim ) 1
z—I sindx

4
et —2x

lim &

e—0 x — sin(z)

_ x — sin(z)
3.153 lim By
e=0e? —1—x — %

sin(z) — zecs®)

3.155 i
P01 — sin(x) — cos(x)

Inz

T—00 \/_

3.159 lim <ea _ 1)

Tr—00

3.157

1
3.161 lim (ctgw — —)
x—0 €x

3.163 lim (arcsin z)* ")

x—0
1 tg ()
3.165 lim (—)
x—0 \
3.167
lim ( v >
z—oo \ T + 1
3.169
. 2 —1\"
2\
3.171

et —1
3.150 lim —
z—0 sin(x)

t —
3.152 lim & (1‘)
z—0  — sin(x)

121 _‘2
3.154 lim U F ) —sin"z

x—0 — e 7?

lim 2T

z—0 In sin(x)

3.158] lim o -sin © (a € R rogzitett)
T

r—00

1 1
—o\x?2  sinlz

3.162] lim (sin(z))"®™

T—7

3.164 lim (tg(z))* "

=7

3.166

) (x—i—l)w

lim

T—00 Qj—l
3.168

) (295—1—1)96

lim

z—oo \ T — 1
3.170

1 xX
lim (1 + —2)
T—00 €T

hII(l) (1 + tg (z))&”
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3.1.6. Sikbeli gorbe érintoje

3.172| Hatdrozzuk meg az y = 3z — 2% parabola 7y = 1 abszcissz4ji pontjahoz hizott
érintéjének egyenletét!

3.173 | Hol metszi az y = Inz gorbe x = e abszcisszaji pontjahoz huzott érintdje az x
tengelyt?

3.174| Hatédrozzuk meg az y = tg (z) gorbének azt a pontjat, melyhez tartozé érinté
parhuzamos az y = 2o — 5 egyenessel!

3.175 Hatdrozzuk meg az y = 2% — 62 + 1526 gdrbének azokat a pontjait, melyekben az
érinté parhuzamos az y = 6(x — 7) egyenessel!

3.176 Bizonyitsuk be, hogy az xy = a? gorbe (ahol a > 0 adott) barmely pontjidhoz
huizott érintoje és a koordinata tengelyek altal alkotott haromszog teriilete fiiggetlen
az érintési ponttol!

3.177] Irjuk fel az y = tg (z) gorbe z = % abszcisszaju pontjdhoz tartozé normaélisdnak

egyenletét. (A fiiggvény gorbe P pontjahoz tartozé normélisa az az egyenes, amely
a ponthoz hizott érintére meréleges.)

3.178 | Hatdrozzuk meg az y> — 322 — 4zy + 3 = 0 implicit alakban adott fiiggvény
gorbéjének x = 1 abszcisszaju pontjaiban az érinté és normalis egyenletet.

1
3.179 | Keressiik meg az y = §x3 — 22 + 1 gérbe azon pontjait, ahol

a.) az érint6 parhuzamos az = tengellyel
b.) az érinté az = tengely pozitiv irdnydval +45°-0s szoget zar be.

3.1.7. Szélsoérték szamitas

3.180 | Hatdrozzuk meg az y = 23 — 12z fiiggvény lokalis szélséértékeit!
3.181| Hatdrozzuk meg az y = a*e* fiiggvény lokalis szélséértékeit!
3.182 | Keressiik meg az f(z) = 2* — 92 + 152 — 3 fiiggvény

a) lokalis széls6értékeit,

b) abszolit szélséértékeit a [0; 2] és a (0; 2) intervallumokon.

1
3.183 Keressiik meg az f(z) = x + — fiiggvény
T
a.) lokalis széls6értékeit

1
b.) abszolit szélsbértékeit az [5, 2] intervallumon.
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3.184 Keressiik meg az f(r) = 2° Inx fiiggvény
a.) lokélis szélséértékeit
b.) abszolut szélséértékeit az (0; 1] intervallumon.

Hatarozzuk meg az R sugaru korbe irt legnagyobb teriiletii téglalapot.
3.186 Hatarozzuk meg az R sugart gombbe irt legnagyobb térfogatii hengert.
Hatarozzuk meg az R sugaru gdémbbe irt legnagyobb térfogatu kupot.
3.188 Hatdrozzuk meg az egy literes, feliil nyitott legkisebb felszinii hengert.

3.189 Egyenld szélességii harom deszkabdl csatornat készitiink. Az oldalfalak milyen
hajlasszoge mellett lesz a csatorna keresztmetszete maximalis?

3.190 Hatarozzuk meg a h alkotéju kupot koziil azt, melynek a térfogata legnagyobb.

3.191 Egy a szélességli csatornabdl derékszogben kinyilik egy b szélességli csatorna.
A csatorndk falai egyenes vonaliak. Hatdrozzuk meg azon gerenda legnagyobb
hosszat, amely az egyik csatornabdl atcsusztathatéd a masikba.

3.192 Keressiik meg az y*> = 8x paraboldnak azt a pontjat, amely a (6,0) ponttdl a
legkisebb tavolsagra van.

3.193 | Feltssziik, hogy a gbézhajé energiafogyasztdasa a sebesség harmadik hatvanyaval
egyenesen aranyos. Keressiik meg a leggazdasagosabb érankénti sebességet abban
az esetben, ha a haj6 ¢ km/6ra sebességli viz-sodrassal szemben halad.

3.194 Az A és B pontok a ill. b tavolsdgra vannak a faltél. Melyik a legrévidebb tt
A-bol B-be a falat érintve?

(S
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3.195 200 m hosszu drétkeritéssel szeretnénk maximalis teriiletet kdzrezarni, mikozben
csatlakozunk egy mar meglevé 100 m hésszia kofalhoz. Mekkordk lesznek a kert
oldalai?

AL

3.2. 4bra.

3.196 | Keressiik meg a 412 + 9y* = 36 ellipszisnek azt a pontjat, ami a P(1,0) ponthoz
legkozelebb illetve legtavolabb van.

3.197 Egy derékszogii haromszog alaku telek egymasra merdleges oldalai
100 m és 200 m. Az abra szerint raépitett téglalap alapi haz alapteriilete mikor
lesz maximalis?

HAZ

3.3. dbra. 3.197. feladat.

3.198 Egy r sugaru félkorbe irhato téglalapok koziil melyik teriilete maximéalis? Melyik
teriilete minimalis?

Egy fapados repiilégépen 300 iilchely van. Csak akkor inditjak a jaratot, ha
legalabb 200 iilchely foglalt. Ha 200 utas van, akkor egy jegy ara 30e F't, és minden
egyes plusz utas esetén a jegyarak egységesen csokkennek 100 Ft-tal. Hany utas
esetén lesz a légitarsasag bevétele maximalis illetve minimalis?

3.200 Adott T teriiletti téglalapok kiiziil melyik keriilete a minimalis?

3.201 Egy x hosszu drétbdl levagunk egy darabot, négyzetet csindlunk beléle. A mara-
dékot kor alakura hajlitjuk. Mikor lesz a két alakzat Ossz-teriilete maximalis?
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3.1.8. Fiiggvényvizsgalat
3.202 | Vizsgaljuk és abrazoljuk az f(z) = 22 - Inx fiiggvényt!

Vizsgaljuk az alabbi fiiggvényeket.

3.203 f(z) = 22° — 927 — 24z — 12 3.204] f(z) = —~

1422
fla) =+ f(2) = e
3.207 f(z) = v’ F(z) = € cos(z)

z+1
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3.2. Megoldasok. Valés fiiggvények

3.2.1. Bevezeto feladatok

3.1 =z
3.2 V1—2a?
3.3  sin(2arccosz) = 2sin(arccos z) - cos(arccos z) = 21 — 2
N
34 YT
x
14+ V1 — a2
3.5 —_—
2
t 12
3.6 sin(x) = ﬂ, sin(arctg2.4) = —
V1+tg2x 13
2 _ -2
3.7 sh(2)=S" % —3627

3.8 ch(3) = 10.068

3.9 ch(2z) =ch’z +sh’z =14 2sh’z =3, hasha = 1.

3.10 arshz = In(z + V22 + 1), ezért ar sh4 = In(4 + v/17) = 2.094
3.11  ar chz = In(z + V2211), ezért

ar ch5 =In(5+v24) = In9.8999 = 2.292
= In0.101 = —2.292
1. 1+ 1. 04

3.12 arthz = 5 In - z, ezért ar th (—0.6) = 3 In 1_6 = —0.693.

3.13 A 1+ 2++/1— x kifejezés azokra az x értékekre van értelmezve, melyek esetén
a négyzetgyokjel alatti kifejezések nem negativak, azaz, ha 1+x >0és1—xz > 0.
Ezt az egyenlétlenség rendszert megoldva kapjuk, hogy az értelmezési tartomany:
-1 <z <1,

314 =< 3.15 xR\ {2}

DO | o

3.16 zcR\{0,3}
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3.17

3.18

3.19

3.21

3.22
3.23

3.38

3.39
3.40

3.41

3.42
3.43
3.44

3.45

3.46

3.47

A logaritmusfiiggvény értelmezési tartomanya a pozitiv szamok halmaza. Ezért

. . /. ’ 7z . /7 5
A logaritmus mogott pozitiv szamnak kell allnia, ezért

5
gyokjel alatti szamnak nem- negativnak kell lennie, ezért In (

feltétel egyiittese pontosan akkor teljesiil, ha

-1 <z <A4.

—0o < T < —3,

1 <z < o0.

- 3.37

Raciondlis tortfiiggvényeknél az dbrazolas el6tt hatarozzuk meg, hogy hol lesznek
a gorbének a koordinata tengelyekkel parhuzamos aszimptotai.

-z
Y= 5
y=x—1.
y=+vx—1

r—1
y:
x

y=23—a2?
3—x
L
y:x—l—l.
x

YT e

fiiggvényiink pontosan az x2 — 3x + 2 > 0 feltételnek eleget tevd valds szamokra
van értelmezve. Az egyenlOtlenséget megoldva azt nyerjiik, hogy az értelmezési
tartomany: = € R\ [1, 2]

2
T S 0. Tovabbi a

x — 22

)20. E két

2
T S Egért: 1<z < 4

3.20 —-3<z< -8, V8<x<3.

2<xr <) 8<zx<o0.

Ahol egy tortfiiggvénynek a nevezdje zérus, ott polusa van. Itt fliggbleges aszimp-
totaja van. A vizszintes aszimptota helyét a fiiggvény végtelenben vett hatarértéke
hatarozza meg.
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3.2.2. Hatarérték

3.48 3. 3.49 400 ha k paros,
balrél —oo, jobbrél 400 ha k paratlan.

3.50 0. 3.51 3.
3.52 oo.
3.53 Az (x — 2) gyoktényez6t a szamlalébdl és a nevez6bél is kiemeljitk, majd egys-
zertsitiink:
. 22 +3x—-10 . (r—2)(x+5) . x+5 2+5 7
lim —— = lim = lim = —=-.
5 e—2 32— —2 wﬂ2($—2)(a:+%) e—2x+1 241 3
3.54 —. 3.5 -—.
2 3
3.56 6. 3.57 0.
3.58 n. 3.59 —1.
3.60 oo.
3.61 Helyettesitsiik v/1 + z-et u-val. Ekkor v/1+ 2z =u és v = u® — 1.
Ha x — 0, akkor u — 1, tehat
o V1i+zrz—-1 . u-—1 . u—1 , 1 1
lim — = lim —— = lim =lim —— = —.
x—0 x u—>1u3—1 u—1 (u—l)(u2+u+1) u—1 u2+u+1 3
3.62 1 = u'® helyettesités alkalmazésaval
1+ 1447wt —dd 4wt —u+l 5
lim ——— = lim = lim = —.
1 e——11+Jr uw—-114ud  u--1 w2 —u—+1 3
363 L 3.64 1.
n

3.65 Mivel © — o0, ezért a nevez6 dominans tagjaval, azaz z75-nel egyszerusitjik a
tortet:
(2 — 6)3 .
1 1 —_—
Vat -6+ Yz (2?2 —6)s+a5 v

Va7 41963 — /T 210 + 1963 — 3 I

9 10 10
2 — 6\ 30 N 1 1 1 30 N T
- X 30 _—— — xXr 30
21 01 g2l (z—00)

141963 -2 1 —2 F 1419632710 — 2

Wl
Sl

=

0

[

o7



3.66 A szamlélot és a nevezdt egyarant szorozva (\/ l+x+a22+ 1)—61, a kifejezés értéke
nem valtozik. Viszont a szamlalébodl eltlinik a négyzetgyok jel, és ezt kovetden a
kifejezés egyszertisithetd z-el. gy az ismert (a + b)(a — b) = a2 — b* Ssszefiiggést
hasznaltuk ki.

Négyzetgyokos kifejezések esetén hasonldéan szoktunk eljarni maskor is.

, Vi+r+a2 -1 Vi+r+a22—-1 Vi+zxz+224+1
11m =

= lim

=0 x =0 x Vitaota2+1l

. l+z+22—-1 1+2x 1
= lim —

lim = -
=0 (Vi+tao+a2+1) =014z +a2+1 2

1
3.67 —.
2

3.68

2 _ 2 4
i & \/E:Iimx \/E-\/E—i_l:lim(x r)(vr+1)
o=l o —1 2=l o -1 o+l o=1(z—1)(22+ o)

. a2+ x4+ 1) (VT +1)
= lim
r—1 Qj‘2 + \/E

Ebben a példdban ugyanaz a kifejezés volt a négyzetgyokjel alatt mind a két helyen,
tehat az eldzéekben emlitett példa moédjara ugy is eljarhattunk volna, hogy = =
u? helyettesitéssel oldjuk meg a feladatot. Az itt bemutatott mdédszer azonban
altalanosabb esetben is alkalmazhaté.

= 3.

3.69
. Vli+tzrz—vV1i4+22 | (l+z—-1-2%) - (V1+z+1)
lim = lim =
a=0 T+ z—1 =0 (V1+z+V1+22) - (1+x—1)
o) (VItetl) 1.2
= 11m - = L.
=0 T+z+V1+2a? 2
3.70 0 3.71 0.
amg 1 3.73 4.
2

3.74  Alkalmazzuk az u = Va2 + 1 — 1 helyettesitést. Ekkor 22 = u?® — 1, s ezzel

CoVa2+1-1 0 u-—1 , u—1 , 1 1
lim ————— = lim = lim =lim—"—-—=—.
2—0 x? u—lud —1  w—1(u—1)- (v®4+u+1) w=tu2+u+1 3
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3.75

3.77

3.79

3.81

3.82

3.83

3.84

3.85

3.86

3.87

1 >
—. 3.76 —.
2 V3
1 3
—. 3.78 —.
4 2
5 3.80 5.
3
sin mx ) sinmx\ mx m - m
lim Zlm( )~—:1'—:—.
z—0 nx z—0 max nx n n
, sin ax lim % snaz g 1 Sner g 1 g
im =lim —% = —. 2L — .=
z—0 sinbr  =—0 by - SIE;“ b a0 sinbz b 1 b
x bx
in(2 in(2 in(2 2
S0y S0 ) 0002
a—0 tg(x) o e z— sin(z)
1.
lim 1 — cos(x) _ lim (1 —cos(x)) - (14 cos(x)) o 1 — cos?(z) _
2—0 x2 2—0 22+ (1 + cos(x)) 2—0 22 - (1 4 cos(x))
, sin?(x) _ sin(z)\ 2 1 1
= lim = lim . = _.
=0 22 - (1 4+ cos(x)) =0 x 1+cos(x) 2
1
5.

sin(z)  tg(z) sin(z)  sin(z) z—0  sin(x)
. ) B S N
z—0 x? sin(z) 2
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3.88 L
. 5
3.89 —1.
3.90
. 1—/cos(z?) 1 — cos(z?)
lim —————= = lim =
20 1 — cos() @—0 (1 — cos(z)) - (1 + /cos(z?))
1 — cos(z?)
. (27)? " 1 > .. L
=lm—""—— 2" —————=2.0--=0.
z—0 1 — COS(ZL’) 1+ 4 /COS<£L'3) % 2
22
3.91 1 3.92 -3
3.93
r —sin(2z) . x—%&x
im——- = S B
z—0 x 4+ sin 3z z—0 :1:—}—%-3:1:
sin(2z)
=2 112 1
by sin3z . 1+1-3 4
Uy -3
3z
3.94 o0
3.95
lim 2sin(x) — sin(2z) — lim 2sin(x) — 2sin(z) cos(z) _
z—0 1‘3 x—0 [L’3
lim 2. S0 1_628(33) _91. i
z—0 xT T 2
3.96 2
3.97
z . Z z X
cos 5 —sin o cos 5 —sin g
lim —=——*= = lim =
e—%  cos(z) =% cos? g — sin® g
. 1 1
;LH% x+,x: 7r+,7r:1'
2Co8— +sin—  cos— +sin—
2 2 2 2
3.98 1

60



3.2.3.

3.99

3.100

3.101

3.102

3.103

3.104

3.105

3.106

3.107

3.108

3.109
3.110

3.111

3.112

3.113

3.114

3.115

Fiiggvény derivalas
f(x) = 122% — 2z.
f'(z) = 3% - sin(x) + (2* — 3) - cos(x).

o) = 3x%(x? + 2 + 1) cos(z) — (23 + 3)[(2x + 1) cos(z) — (2> + x + 1) sin(x)]'

(2% +x + 1)2 cos?(x)
f(z) = sin(x) - sin(z) tehat

f'(x) = cos(x) - sin(z) + sin(z) - cos(z) = 2sin(x) cos(x) = sin(2x).

f'(z) = cos(x?) - 2.
f'(z) = (2x — 5) cos(x® — 5z + 8).

fl(z) = 6(:64 — 6x + 1)5 . (4:63 _ 6)tg£ B (z* — 62 + 1)6.

22 cos? %
f/(ac) _ — 423 sin(;p‘l) 2+ sin3 z) — 3COS(JI4) Sin2<x) - cos(x)
(2 + sin®(z))2 :
2tg (=) drtg (z?)
!
= . 2 =T/
f() ot (@) 2= o (a?)
1+ a2 1+a2 2atg2e — L2
f/(x)::)’SinQ( e )'COS( e ) (l"g 1’2 cos22z)
tg 2z tg 2z tg 227

f'(x) = 105 . In 10 - cos(2?) - 322 = 3(In 10)z2 - 10" . cos(z3).

(o :ICOS(JIQ).
@) /sin(z?)
f(x)=— 1 . 1 .9 -
R R RN N =S i

Loy a?2—1 A (0® - 1) — 20(1 4 tg 3x)
flz) =5 : -
2V 1+tg3z (2 —1)2
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3.116

4sin(2 2
) = sin( .x)zcos( x) (1 4 sin? 22) =
24/lg(1 + sin” 22) - In(10)
in4
_ ST - (1 4 sin®22).
V1g(1 + sin” 2z) - In(10)
1
BT f(x) = chla® ~In(x + 7)) (32— — ).
3.118 f'(z) = ;
) ~ chx —sha’
5. 253rcsinx .1n?2
3.119  f'(z) = :
Fe) ==
1
3.120 f'(z) = — :
fo ===
1 1 1

3.122  Mivel ar th (z) =

N —

1
ln< —|—x), ezért
11—z

1422 2
oA th z2 _ e%lnif—z _ eln V12?2 _ I+
1— a2

e :i; _1 ;
3.123  f'(z) 11(W)10< 3) (Vz)*

3.124  Derivaljuk mindkét oldalt: 2z + 2yy’ = 0, innen: ' = -z

3.125  Derivaljuk mindkét oldalt:

cos(x) cos(y) + ¢ sin(z) sin(y) = 3 cos(z) cos(y) + sin(z) sin(y)

\/(\/x+1)2—1'2\/x+1 EYCEn

Y

cos?(x)

cos(xz)  sin(z)sin(y)

cos?(x)

cos(z) cos(y)

o (y)
Innen:
) cos(y)
Y7 T sin(2) sin(y)
o ?(y)

62
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3.126  Derivaljuk mindkét oldalt:
32% 4 3y%y' — (3ay + 3axy’) = 0.
‘ ’ / a-y— z°
Innen atrendezéssel: y' = ——.
y? —ax

cos Yy

3.127 "=
Y 2sin2y + (x — 1) siny

3.128 Vegyiik mindkét oldal logaritmusét: zIn f(x) = f(z)Inz.

fa) = fa) e+ 12

T

Derivaljuk mindkét oldalt: In f(x) +
()

Innen azt kapjuk, hogy
f(2)? — xf(z)In f(z)

22 —zf(x)lnz

fa) =

1
3129 fla)=1+——.
=1 Ty
3.130 Mindkét oldalnak a logaritmusét vesszitk: In f(z) = (1 — x)In(1 + z). Aztédn —
mint implicit fiiggvényt — derivaljuk:

Lo 1—2
Innen atrendezéssel azt kapjuk, hogy
/ _ 1-z l—x .
fl(x)=(1+2) (1—|—x In(1 + z)).

3.2.4. Taylor polinomok

3.131 A Taylor polinom képlete szerint:

/ " " (4)
Ti() = f(e) + 1 1@ (o —e)+ 12 2@ (—ep+ 29 3(,6) (w—epp+ 1) 4,(6) (z — o).

A fenti képletbeli szamitdsok: f(e) =Ine = 1. A derivalt



2 2
" "
f (fc)—ﬁ7 f (6)—57
2.3 6
4 _ 10, —
f()(af)——?; f()(e)——ej-
fgy a keresett polinom:
1 1 9 1 3 1 4
Tu(z) =1+ -z —¢) = 55w —¢) +@(~’U— ) =@ —e)
3.132
1 1
Tyw) = @[+ 70 =)+ (o= 2 4 o= 2 + (o —2)
3.133

Ty(e) = 1+ 2= D)+ o= D74 2@~ 7
3.134 f(z) = sin(z), f(%) - %
f'(z) = cos(x), f'(%) = %
I . T 1
fi(@) = —sinz),  f1(3)= BV
P = —cost@). 1"(5)= =
Tehat a keresett polinom:
Ty(x) = i? 1+%(£—%)—%(w—%)2—%(1~_%)3
3.135
2. Ty(x) = sin(3) + 3“15!(3)( 3 S;I;(?’)( 1)
33 cos(3) 31 sin(3) A
o PTG
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3.136  f(x) =2® — 62* + 11z — 5, f(2)=1.
f'(z) = 32* — 122 + 11, f(2)=-1
f"(x) = 6x — 12, f"(2)=0
fr(x) =6,  ["(2)=6.

Tehat a keresett polinom:

Ts(z) = f(2) + fll(!2> (z—2)+ fl/2<!2)(a: —2)%+ @(w —2)% =
:1—1(1:—2)+§(x—2)3:(g;—2)3—(g:—2)+1.

1! 3!

Megjegyzés: Mivel az n-ed foku polinom megegyezik barmely helyen felirt n-edfoku
Taylor polinomjaval, ezért

2} =62t +1le —5=(xr—2)°— (2 —2)+1.
Természetesen ez az azonossag elemi iton is ellenérizheto.
3.137
T(x) = 7T+29(x—1)+76(x—1)>+110(z — 1)*> + 90(z — 1)* +
+ 39(z —1)° + 7(x — 1)°.

3138 Ti(z)=6+5(x—1)+ (z—1)2+4(x — 1) +4(x — 1)* + (x — 1)5.

4 2
3.139  Ty(x) =142z 422 + gx?’ + §x4.

3.140 f(x) = %sin?)x, f(0)=0.
f(z) = gcos 3z, 1(0) = g

2

f(z) = —% sin 3z, f'(0)=0

33 33
" (x) = — 5 cos 3z, f"(0) = )
34
fO(z) = 5 sin 3z, f@0)=0
3° 3°
fOx) = 5 cosBz,  fO0) =

36
fO(z) = —5 sin 3z, f©(0) = 0.



Tehat a keresett polinom:

1) f0) 5 f70) 5 fRO) 4 fO0) 5 FO0) 4
Ts(x) = f(0) + 1lx+ 2!x+ 3!ZE+ 4!x+ 5!x+ q v =
3 33 35
0 0 0
=0+ 2o+ 2+ 228+ a2t + 220+ —af =
1! 2! 3! 4! 5' 6!
1 9 81
= —[3r— = —
LT
2
3.141  Ty(x) =Ty(x) =1 — 22 + 5:1:4.
3.142 f(x) = arctguz, f(0)=0
1
/ . ! —
f@) =i FO
2z
f(z) = TSI f7(0)=0
() = S 2(1+a%)? - 8a(1 + 2% _ 622 — 2 7(0) = —2
(14 22)4 (14 22)%
Tehat a keresett polinom:
2 4 3
T3($):$—§I =r—
3.143
2?2 3 a2t "
T(o)=z—=+2 - —1)mH
() == 5 + 5 1 +- 4 (=1) -
3.144
ala—1) ala—1)(a—2)
T, () = 1+F:U+Ta:2+ e z® +
N .“_i_oz(oz—l)...'(oz—n—i-l)xn:
n!

(3 (D (D))

3.145 A felirt polinom hatod fokunak is tekinthetd, ezért az elkovetett hiba

f1€) 7| _ [—cos(@al] 1 1 3
R = |——= = < < <5-10
Bs@)l = | = 5040 5040 ~ 5000 ’
mert | — cos(§)| < 1 barmilyen & esetén, és a 0 < o < 1 feltevés miatt |z| < 1.

Ha tehéat a 0-tél 1 radidnig (= 57,3°) terjedd szogek sinusat az el6bbi 6todfoku
polinommal szamitjuk ki, akkor a hiba 2 tizezrednél kisebb.
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3.146 Az e szam két tizedes jegy pontossaggal valé megkozelitése azt jelenti, hogy meg-
keressiik a két tizedes jeggyel felirt tizedes tortek halmazabdl azt az elemet, amely
az e szamhoz legkozelebb esik. Ez a halmaz: {k-0.01 | k € Z}. Mivel két ilyen
szomszédos tizedes tort tavolsdga 0,01, ezért célszertinek tiinik, hogy az e szamot

1
elészor — - 0.01 = 5 - 1073 pontossdggal kozelitsitk meg raciondlis szdmmal, majd

ebbol probaljuk meg kikovetkeztetni, hogy az emlitett "szazados” skdlan melyik
elem esik hozza legkozelebb.

Az e szamot az f(x) = e* (x € R) fiiggvény = = 1 helyen vett helyettesitési értéke
adja. Ezért a feladat most olyan n € N keresése, melyre

le = Tu(D)] = [f(1) = Tu(1)] <5-107%.
A Taylor-formulat x = 1 esetén alkalmazva kapjuk, hogy van olyan 0 < & < 1

szam, melyre

" (n+1) e
F - = ) -3 2 =L S

“— nl  (n+1)! (n+1)!
A € < 1, e < 3 becsléseket alkalmazva kapjuk, hogy
es el 3

0</O =T = <~ mr D “mr Dl (3:1)

ezért elég megoldani a

-3
R I

egyenlotlenséget. Ez az egyenlotlenség egyenértékii azzal, hogy
(n+1)! > 600,

amibdl kiolvashaté, hogy n > 5. Nézziik tehat pl. az n = 5 esetet:

1 1 1 1 1 815
Ts()=1+—=+—-+—-+—+—-=—"——-=27T1
W=ttty tg e T g — AT
Rendezziik at az (3.1) becslést:
3

(n+1)!"

T.(1) < f(1) < T,.(1) +
majd alkalmazzuk n = 5-re:

3
2,716666 --- < e < 2,716666 - - - + 6= 2,72083333. ..

Ebbdl mar lathato, hogy a "szazados” skdlan az e szamhoz a 2,72 tizedes tort esik
legkozelebb, tehat az e szam két tizedes jeggyel felirt kozelito értéke: 2, 72.
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3.2.5.

3.147

3.148

3.150
3.151

3.152

3.154
3.156

3.157
3.158

3.159

3.161
3.162

Hatarérték meghatarozasa L’Hospital szaballyal

. sin3dx .. 3 cosdr .. 3 9
lim = lim ———— = lim — cos3x cos”5r = —
z—0 tg 5%% z—0 2 z—0 5
1 cos? bx 1
—. 3.149 ——.
2 2
1.
et —e =2z T t+e =2 . et —e " . ef+e "
lm———=lm——— =lim— = lim —— = 2.
=0 x — sin(x) z—0 1 —cos(z)  2—0 sin(x) =0 cos(x)
2. 3.153 1.
0. 3.155 e —1.
1 1
im l = lim —%— = lim M = lim cos(z) - =1.
»—0 Insin(z)  2—0 % =0z cos(x) a—0cos(xr) — xsin(x)
0.
sin 2 —Z) .-cos?
limx-singzlim L = lim ( z2)1 =
) a
= lima-cos— =a-cos0=a
T—00 €
1 1
. 3.160 ——.
3
0.

lim (sin(z))® @ = lim e(t8 @) (nsin(@) — 0 _ 7

us

l’*}z

jus
24?2

Itt felhasznaltuk, hogy

Insin(z)

8=
Il

lim (tg () - (Insin(z)) = lim =2

= lim (—sin(z) cos(x)) = 0.

jus
IZHQ
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3.163 1. 3.164 1.

3.165 1.
1
3.166 62. 3.167 _.
e
3.168 oo. 3.169 oo.
3.170 1. 3.171 e

3.2.6. Sikgorbe érintdje
3.172 Az érinté egyenlete y — y(xo) = ¢/ (xo)(x — w0).

Példankban zo =1, y(1) =2, ¢/(1) = 1.
Az érint6 egyenlete y = (z — 1) + 2 azaz y = x + 1.

1
3.173 Az érint6 egyenlete y = —x Az x tengelyt ott metszi, ahol y = 0. Ebbol z = 0.
e

Az érint6 az origon megy keresztiil.

3.174 Az érinté irdnytangense y' megegyezik az egyenes meredekségével. ' = —L— =

cos?x

2.

I (z) = £ +Z 4k

nnen cos(xr) =+—, r=+— + k.

V2 4

Tehat a keresett pontok: Pk(% + km; 1), Qk(—g +km; —1) (ke Z).

3.175  P(—2,1530) ; P»(2,1522). 3.176 Th = 2a.
- , 1 o T 1 e
3.177 A normalis meredeksége m = —— = —cos® — = ——. Innen az érinté egyen-
y’(z) 4 2
lete:

Ler14 7l
=——z =
Y= 8

3.178 Keressiik meg el0szor a jelzett pontokat. Az x = 1 értéket beirjuk a fiiggvénybe:
y?—3—4y+3=0. Innen y(y*—4)=0.

Harom értéket taldlunk: y; =0, yo = 2, y3 = —2, ezért a megfelel6 pontok

Pi(1,0), Py(1,2), Py(1,-2).
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A derivalt

—6x —4y  6x + 4y 3 7 1
/ — — / P - _ / P — / P ——
Erint4 egyenesek:
3 7 1
y:—i(q:—l), y—2:Z(aj—1), y+2:—1(x—1).
Normalis egyenesek:
2 4
y=3@—1, y-2=—c(z-1), y+2=4d(-1)
3.179 ¢ = 22 — 2z, ezt felhaszndlva:
1

a) x2—2z =0, amibél z = 0 vagy x = 2. A keresett pontok: P;(0, 1), P»(2, _5)

b)  +45%o0s bezart szog esetén az érinté meredeksége 1,
ezért megoldandé az z2 — 2z = 1 egyenlet. Ennek gyokei 71 = 14+v/2, 2o = 1 —/2.

g)a Q2(1 - \/57 é + é)

1
Tehét a keresett pontok: Q;(1 + v/2, 3 3

3.2.7. Szélsoérték szamitas

3.180 A fiiggvénynek lokalis szélsOértéke ott lehet, ahol az elsé derivalt zérus. Ha ezen
a helyen az els6 el nem tiind derivalt paros rendii, akkor van lokélis szélsoérték.
Ha ez a derivalt az adott pontban pozitiv, akkor lokalis minimum van, ha negativ,
akkor lokalis maximum van.
y = a3 — 12z, ezért iy = 32% — 12 és ' = 6.
y' =0 ha 22 = 4, azaz x = £2
y"(2) = 12 > 0, lokélis minimum van y(2) = —16.
y"(—2) = =12 < 0, lokélis maximum van y(—2) = 16.

3.181 o = (42° — 22%)e ™ = 23(4 — 22%)e ™
Mivel e~ mindeniitt pozitiv, y' = 0 akkor lehet, ha z; = 0ill. 25 = V2, 23 = —V/2
y" = (1222 — 18z* + 425%)e™*"
y"(0) = 0, tehat ezt a helyet tovdbb kell vizsgalni.

16
y'(V2) = y'(—V2) = —— < 0, tehdt ezeken a helyeken a fiiggvénynek lokalis
e

maximuma valn.
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Vizsgéljuk az x = 0 helyet.

y" = (24x — 962° + 602° — 8z7)e*"; 3 (0) = 0

y ™) = (24 — 33622 + 4922* — 17625 + 162%)e

y™)(0) = 24 > 0, tehét a fiiggvénynek az & = 0 helyen van lokalis szélséértéke:
lokélis minimuma van.

x1 = 0-nal y,,;, =0
4

Ty = V2 és r3 = —V2-1él Yppar = —-
e

Megjegyzés: természetesen kereshetjiik a lokalis szélsoérték helyeket a fliggvény
monotonitasanak vizsgalataval is.

3.182 a) f monotonitasat vizsgaljuk, s ebbdl kovetkeztetiink a keresett széls6érték he-
lyekre. A derivalt f'(z) = 3z? — 18z + 15, melynek zérushelyei: z; = 1, x5 = 5.
Ennek alapjan a fliggvény monotonitasa:

— a (—o0, 1] intervallumon: szigorian né,

— a [1, 5] intervallumon szigorian csokken,

— a [b, +o0] intervallumon. szigorian né.
Emiatt az = 1 helyen lokalis maximuma van, melynek értéke: 4, és az x = 5
helyen lokalis minimuma van, melynek értéke: —28.

b) A [0, 2] intervallumon vegyiik figyelembe, hogy f a [0, 1] intervallumon szigortian
nd, az [1,2] intervallumon pedig szigorian csokken. Emiatt abszolit maximuma
az © = 1 helyen felvett f(1) = 4, abszolit minimuma pedig min{f(0); f(2)} =
f(0) = -=3.
A (0, 2) nyilt intervallumon - a monotonitas alapjan - az # = 1 helyen van abszolut
maximum, abszolit minimum pedig nincs.

3.183 Lokalis szélséértékek: f(2)maz = —2, ha = —1 és f(2)min = 2, ha z = 1.

1
Abszolit széls6értékek [=; 2]-n: abszolit minimum x = 1-nél 2, abszolit maximum

= —-nél és x = 2-nél —.
T 2ne és ne2

1 1
3.184 Lokalis szélséérték: min = ——, ha x = —.
okalis szélséérték: f(x) 5 ha T 7
1
Abszolit széls6érték (0; 1]-en: abszolit minimum z = —=-nél —— abszolit ma-

Ve 2e

ximum z = 1-nél 0.
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3.4. dbra. 3.185 feladat

3.185 Jeloljiikk a négyszog alapjat z-el, magassagat m-el, akkor a teriilet 7' = x - m.
Ekkor 2* + m? = 4R?, ahonnan m = V4R? — 22.Igy T = x - V4AR? — 22.
A kapott fiiggvény maximumat kell keresniink. Egyszerisitést jelenthet, ha a
teriilet-fiiggvény helyett annak négyzetét tekintjiik. 72-nek ugyanott van maxi-

muma, ahol T-nek:
T? = 7*(4R* — 27).

A maximalis teriiletli négyszog négyzet, és © = m = V2R. T = 2R2.

3.186 Legyen a henger sugara r, magassaga m.

V =r’mm

A
Viaw = \/_R?’ﬁh _R\[m—

3.187 Legyen a kup alapkorének a sugara r, magassdga m. Vezessiik be az dbran jelzett
z-et.

Ezzel a kip sugara és magasséaga is kifejezheto.
V= r’mm
= - 3

V= §(R2 —2*)(R+ )
32 2V2

- h = _ 4ve
Viax = 81R7r am 3R r 5 R.

P =R*— 2> m=R+z.

1

3.18 r=m =

S
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3.5. dbra. 3.186. feladat

3.6. dbra. 3.187. feladat

2a + 2x
2

3.189 A feladat megoldasaban segit az abra: T =
© = 60°.

m = (a+x)m

2 2
3.190 A feladat megoldasaban segit az dbra: V., = ﬁﬂh?), ha r = \/jh, m = i
27 3 V3

3

3.191 A feladat megoldasaban segit az abra: [,,q, = (a% + b%) 5, ha tga = ¢ %.
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3.7. 4bra. 3.189. feladat

3.8. dbra. 3.190. feladat

3.192 P(2,44).

3.193 Egy ora alatt a hajo v — ¢ km-nyi utat tesz meg felfelé. Ez alatt a fogyasztasa
E = av® (a konstans aranyossagi tényezd). A D koltséget az egy km megtételéhez
felhasznalt energiaval mérhetjiik. A hajozas akkor a leggazdasiagosabb, ha egy km
ut felfelé valé megtételéhez a legkevesebb energia sziikséges.

3
koltségfiiggvény minimuma adja. A leggaz-

A koltség minimumat a K = a
v—c
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R
—
e
===
%

X b

3.9. dbra. 3.191. feladat

3
dasagosabb sebesség: v = 3¢ km/h.

3.194 Minimalis tavolsag esetén a; = ap.

3.195 Maximalis teriilet 5000 m?, ekkor a = 100 m, b = 50 m.

A minimalis teriilet 0 (egyenes vonal).
3.196 Jeldlje (z,y) az ellipszis egy pontjat. Ekkor P és (z,y) tavolsiga:
d= - 12Ty —OF.

Ennek minimumat és maximumat keressiik a 422 + 9y? = 36 feltétel mellett.

Nyilvanvald, hogy d és d? széls6érték-helyei ugyanott vannak, ezért d? szélséérték-
helyeit fogjuk keresni. A feltételi egyenletbdl kifejezziik y2-et, majd behelyettesitjiik
d? képletébe:
36 — 42 5
d2:($—1)2+y2:($—1)2+Tx:§x2—2x+5
5

Keressiik tehat az f(z) = §x2 — 2z + 5 fiiggvény abszolut szélséértékeit a [—3, 3|
intervallumon. A [—3, 3| intervallumhoz gy jutunk el, hogy a feltételi egyenlet
atrendezésével 9y% = 36 — 422, amibdl 36 — 422 > 0, azaz —3 < z < 3 adddik.
Weierstrass tétele alapjan tudjuk, hogy a keresett szélsoértékek léteznek.

10
Keressiik meg a derivalt zérushelyét: f'(z) = 9" 2 = 0, ennek egyetlen me-

9 ,
goldésa x = v Ez benne van a [—3, 3| intervallumban. Igy:

min f = min{f (g) » J(=3), f(3)} = min{%= 4 2} - % =/ @)
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max f = max {f (g) . f(=3), f(S)} - max{%, 4, 2} = 4= f(-3)

9 8 9 8
Ennek alapjan a P-hez legkozelebbi pontok (2 ilyen van): Al(g’ 3) és Ag(g, —5),
a legtavolabbi pont pedig B(—3,0).
3.197 A héz oldalainak hossza 100 m és 50 m.
r 2r
3.198 A maximalis teriiletli téglalap oldalai — és —. A minima&lis teriiletli téglala
g p \/5 \/§ g p

a degeneralt eset: egyetlen vonal.

3.199 Legyen f(z) a bevétel, ha x utas van. A 200 folottiek szama x — 200, ezért a

jegyek dra ennyivel csokken, tehét darabonként 30.000 — 100 - (z — 200). Ezért az
Osszes jegy ara:

flz) = x(30.000 —100(z — 200)> = 50.0002 — 1002?
Az f'(z) = 0 egyenlet megolddsa x = 250, igy a potencidlis szélséérték helyek:
x =200, x = 250, x = 350. A megfelel6 fiiggvényértékek:
£(200) = 600.000, f£(250) = 625.000, £(350) = 525.000

Maximélis a bevétel 250 utas esetén, és minimédlis 350 utas esetén. (A feladat
csupan elméleti...)

3.200 Négyzet.

3.201 Az egész drotbdl kort hajlitunk.

3.2.8. Fiiggvényvizsgalat

A fiiggvényvizsgalat soran a f6 kérdések az alabbiak:

1.
2.
3.
4.

értelmezési tartomany
zérushelyek
a fliggvény viselkedése az értelmezési tartomany hatarain (hatarértékek)

novekvo és csokkend szakaszok, szélséérték

. konvex és konkav szakaszok, inflexiés pontok

. grafikon felvazolasa, értékkészlet
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3.202 Ertelmezési tartomdny: x € R, x > 0.
A zérushelyeket az 22 Inx = 0 egyenlet megolddsdval kapjuk: z = 1.

Hatdrértékek: liH(l] 2z?Inz = 0 (L’Hospital-lal), lir_{l 2?lnz = +o0.
r— T—T00
1
Monotonitds, szélséérték: f'(x) =2xInx+2*-— =xz-(2Inz +1). Ennek egyetlen
T
S L
Ve

A derivaltfiiggvény elGjelének vizsgalataval az alabbi kovetkeztetésre jutunk:

f a {07

zérushelye van: © = e

1 1
] intervallumon csokken, az {— +oo) intervallumon né. Az r = —

Ve Ve’

1 1
helyen abszoltit minimuma van. A minimum értéke: f (—) =

i)
2
Konvezitdas, inflexios pontok: f"(z) =1-(2lnx+ 1)+ x-— = 2Inz + 3. Ennek

x
1
egyetlen zérushelye van: z = e 3/2 = —

eve

1" eléjelének vizsgalatdaval az aldbbi kovetkeztetésre jutunk:

oo

=

1
] intervallumon konkav, az {— —i—oo) intervallumon konvex. Az

eVe eve'

x = ——= helyen inflexiés pontja van.
eve

A fliggvény grafikonja:

&0
50 F
40
a0
a0

1o

3.10. dbra. 3.202 feladat

Z 1
Ertékkészlet: Ry = [—2—,+oo).
e
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3
3.203 f(=1) : maximum, f(4) : minimum, f <§> : inflexid.

3.204 Ertelmezési tartomdny: Dy = R, a fiiggvény pératlan.

A zérushelyeket az 1 f > = 0 egyenlet megolddsaval kapjuk: = = 0.
x
Hatdrértékek: lim = lim S
z——o00 1 + 22  z—+oo 1+ 22

1-(142%) —z-2z 1 — 22

Monotonitds, szélséérték: f'(x) = L = TR Ennek zérus-
T x

helyei: z; = —1, x5 = 1.
A derivaltfiiggvény elGjelének vizsgdlataval az alabbi kovetkeztetésre jutunk:

f a (—oo, —1] intervallumon csokken, a [—1, 1] intervallumon né, az [1, +00) in-
tervallumon csokken. Az x = —1 helyen lokalis minimuma, az x = 1 helyen lokalis

maximuma van. A lokalis minimum értéke —5 8 lokalis maximum értéke 3

_ 2z (2% = 3)

. Ennek ha Srushel :
1+ 22 nnek harom zérushelye van

Konvexitds, inflexios pontok: f"(z)

T = — 3,932:O,$3:\/§.

1" eléjelének vizsgdlatdaval az aldbbi kovetkeztetésre jutunk:

fa (—oo, —\/ﬂ és a [O, \/§] intervallumokon konkav, a [—\/3, 0} és a [\/g, +oo)
intervallumokon konvex. Az z; = —v/3, 2o = 0, z3 = v/3 helyeken inflexiés pontja
van.

Aszimptota az x-tengely. A fliggvény grafikonja:

0.4 f'/\
|
f

3.11. 4bra. 3.204 feladat

, 11
Ertékkészlet: Ry = [—5, 5] Az x1 = —1 helyen abszolit minimuma, az x, = 1
helyen abszolit maximuma van.
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3.205

3.206

Ertelmezési tartomdny: D 7 =R\ {0}, a fiiggvény paratlan.

1
A zérushelyeket az x + — = 0 egyenlet megoldasaval kapjuk. Ennek az egyen-
x

letnek azonban nincs valos gyoke, tehat a fiiggvénynek nincs zérushelye.

Hatdrértékek: lim f(z) = —oo, lir}rq f(x) = +oo, liI[I)l f(z) = —oo,
li = .
x? —
Monotonitds, szélséérték: f'(x) = —5—. Ennek zérushelyei: z; = —1,25 =
x

1.

A derivaltfiiggvény el6jelének vizsgalataval az aldabbi kovetkeztetésre jutunk:
f a (—oo, —1] intervallumon né, a [—1, 0) intervallumon csokken, a (0, 1]
intervallumon csokken, az [1, +00) intervallumon né. Az z = —1 helyen

lokalis maximuma, az x = 1 helyen lokalis minimuma van. A lokalis maximum
értéke —2, a lokalis minimum értéke 2.

2
Konvezitds, inflexids pontok: f"(x) = —. Ennek nincs zérushelye.
T

1" el6jelének vizsgalatdaval az aldbbi kovetkeztetésre jutunk:
f a(—o0, 0) intervallumon konkév, a (0, +00) intervallumon konvex. Inflexids
pontja nincs.

Aszimptota az y = x egyenes. A fiiggvény grafikonja:

15
10

5

1 1 L 1 L
-6 -4 =2 2 4 G

IR

|
—ml-

—15F

1
3.12. dbra. f(z) =1+ —
x

Ertékkészlet: Ry = (—oo, —2] U [2, 4-00). Abszolit széls6értékei nincsenek.

Ertelmezési tartomdny: Dy = R, a fliggvény paros.
Zérushely nincs, mivel barmely x € R esetén e > 0.

Hatdrértékek: lim e = lim e~ = 0.

T——00 T—+00
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Monotonitds, szélséérték: f'(x) = e *" - (—2x). Ennek egyetlen zérushelye
van: = = 0.

A derivéltfiiggvény el6jelének vizsgalataval az alabbi kovetkeztetésre jutunk:
f a (—o0, 0] intervallumon né, a [0, +00) intervallumon cstkken. Az x = 0
helyen abszolit maximuma van. A maximum értéke: f(0) = 1.

Konvegitds, inflexids pontok: f"(x) = 2e~*" - (222 — 1). Ennek két zérushelye

V2T

f" el6jelének vizsgalatdval az aldbbi kovetkeztetésre jutunk:

1 1 1 1
fa (—oo, ——} és az {—, +oo) intervallumokon konvex, a { }

van: x4 = —

V2 V2 V2 V2

intervallumon konkav. Az xy = — helyeken inflexiés pontja van.

1 1
—, To = ——
V2 V2

[\

/7

A fiiggvény grafikonja:

3.13. dbra. f(z) ="

Ertékkészlete a (0, 1] intervallum.

3.207 Dy : {z € R/{-1}}; f(0) = 0 : minimum, f(—2) = 4 : maximum, inflexié
nincs, aszimptotdja az y = r — 1 egyenes.

A (—o0, —2) és (0, +00) szakaszokon novekvd, (=2, —1) és (—1, 0) szakaszokon
csokkend.

Ry :{0< f(z) < —4, f(z) >0}

3.208 Ertelmezési tartomdny: Dy = R.
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Zérushelyek: az e* - cos(x) = 0 egyenlet megoldasaval kapjuk, hogy

x:zk:g—l—k‘ﬂ (keZ).

Kapcsolat az exponencidlis fiiggvénnyel: az e® - cos(x) = e* egyenlet me-
goldasaval kapjuk, hogy cos(x) = 1, azaz * = x, = 2kn  (k € Z). Konnyi
kiszamolni, hogy az x; pontokban f és e® derivaltja azonos. E két Osszefiig-
gés azt jelenti, hogy az z;, pontokban f grafikonja érinti az x — e” fiiggvény
grafikonjat.
Hasonléan, az e* - cos(x) = —e® egyenlet megolddsaval kapjuk, hogy az y;, =
(2k + 1)m  (k € Z) pontokban f grafikonja érinti az x +— —e® fiiggvény
grafikonjat.
Szemléletesen: f "be van szoritva” e* és —e® kozé.
Hatarértékek: Mivel —e® < f(z) < €”, ezért lim f(z) = 0. A 4oo-ben
viszont f-nek nincs hatarértéke, mivel
li =1lim 0=0, é 1 = lim e®*" = +o0.

k:—l>r—{loof(2k) e r k—l>r—i¥loof(xk) foo oo
Monotonitds, szélséérték: f'(x) = e*(cos(x) — sin(z)). Ennek zérushelyei:
v="tkr (ke

4
A derivaltfiiggvény el6jelének vizsgalataval az aldbbi kovetkeztetésre jutunk:
5 5 9
fa [% + 2km, Zﬁ + 2]€7T:| intervallumokon csokken, a Zﬁ + 2km, Zﬁ + 2km

intervallumokon né (k € Z).

Azz =" + 2k helyeken lokélis maximuma, az x = % + 2k helyeken lokalis
minimuma van (k € Z).

Konvexitds, inflexids pontok: f"(x) = —2e”sin(x). Ennek zérushelyei: = =
kr (k€ Z).

f" eléjelének vizsgalatdval az aldbbi kovetkeztetésre jutunk:

f a [2km, (2k 4+ 1)x] intervallumokon konkav), a [(2k + 1)m, (2k + 2)7] inter-
vallumokon konvex, az x = k7 helyeken inflexiés pontja van (k € Z).

Vegyiik észre, hogy az inflexios pontok éppen azok a helyek, ahol az f "hozzaér”
az exponencialis fliggvényhez.

Ertékkészlete: Ry = R.
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4. fejezet

Integralszamitas
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4.1. Integralszamitas
4.1.1. Hatarozatlan integral
Elemi fiiggvények
4.1./ L dx
z+1
2
X
4.3.
3 /$2+1dx
o
. . ﬁ

/xZ(xQ—l)dx
/\/E—I—fgﬂfldm
4IL] [(/o+ - Vo4 1) de

24
4.13./$—x+7
Tr— 2

dx

6
4.15. d
/ S
4.17. /tgzx dz

4.19. /3:U5dx

Helyettesités

4.21.

/ e " dx

/mdx

4.23.

dx

/x

x+1

4.4. /sin(x) cos(x) dx
Az

ua

7

/(a:Q—l)de
2

4.10. /Mdm

/T
3 2 _ 4
4.12. /M dr
NZ
14 222
[ o
x2(1 + 2?)
L
— V2 + 222
/ COS(QJ:) dx
— cos(z) — sin(x)

2 _
4.20. /ﬂdx

2

/cos(4:1: —5) dx

4.24.
/Sin (g — 3$> dx
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4.27.

4.29.

4.31.

4.35.

4.37.

4.41.

4.26.
/10“/’ e’ dx / dx
5+ 2?2
4.28.
/L dr / dx
V3?2 —2 (22 — 3)°
/5(8_3x)6dx /SC\/l—:Cde
4.32.
/xzm dx / z de
Var+1
cos(x) e o
V/sin(x) /xsm(x +2) dx
3
VA"
[y [
cos?(x 1522
/ dz Vinz
rinx dx
x
/ X + 2 du $4
20 — 1 1 dx
—x
4.42.
/ L / cos(x) e
zt+1 1+ sin®(z)
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4.43. 4.44.

7
z
-1
/ $8_1d:6 /333 dx

249
4.45. 4.46.
/sin (8x)dz / 1 du
3r—5
4.47. 4.48.
S5x+7
/e dr /Sin3 (x) cos(z)dx
4.49. 4.50.
22
—dx
/ 3 — 13 /tg xdx
4.51.

1
———dx
/ VI (Vr+1)
Parcialis integralas

4.52. 4.53.

/(xQ—l)sin(?)x) da /<x€+2>2 n

4.54. 4.55.

201
/a: 27 dx /xge_xz d

4.56.

/sin VvV dz

/ 2 - sin(z) - cos(x) dx

85



4.58.

/x2 ccos’ x dx

4.60.

/ arc tg\/z dx
4.62.

/(arc sin(z))? dx
4.64.

/ e3¢ sin(x) dr

Racionalis tortfiiggvények

4.65.
r—2
— d
/ 2 —Tr+ 12 o
4.67.
5 4
/m +x 8 dx
3 — Az
4.69.
222 — 5
—d
/ xt — 522 +6 v
4.71.

/x3—6x2+11x—5
(z —2)

dz

4.59.

4.61.

4.63.

4.66

4.68.

4.70

4.72.

86

/:v- arc tg x dx

/ln3 z dx

/63’” cos(2x) dx

/ 3x—2
2 +4x +8

/

/

xt — 322+ 2

dx

dx

/4x+3
— " da
(z —2)°

3 — 222 +4

3 (x —2)?



4.73. 4.74.

/d—I dx
vt —a? 20 + ot

4.75
/xBx_ 1 dr /1f2x4 dx
4.77.
/ dx 1
(x+1)%(22+1) /1+$4 dx
4.79. 4.80.
z(1 — 2?
[ [t
4.81. 4.82.
=t [
4.83. 4.84.
/xQ —x6—m:127dx /#;:_de
4.85.

/43:2—1—1310—9
———dx
3+ 222 — 3z

Trigonometrikus fiiggvények

4.87.

5
cos’ z dx .
/ / sin® z dx
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4.88. 4.89.

] 3 .4
/sm (x) cos®(x) dx /81112:5 i
cos? x
4.90.
.3
/ 51114(:6) i / o
o) sin(x) 4 cos(x)
4.92.
/ dx / 0
cos() 5 — 3cos(z)
/tg% dx / dx
sin*() - cost(x)
4.96 4.97
/ 1.—|— tg i / "
sin(2x) ¥ sn(E)
4.98. 4.99.
cos*(x) + sin*(z
/ COSQEx; - sinQExi d /sin(33:) - COS (5:5 — Z) dx
2
/ 1 +sin(x) dx
Hiperbolikus és exponencialis kifejezések
4.101. 4.102.
/sth -ch®z da / shx s
Vch z
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4.103. ] 4.104.|

/d—I dx
sh z-chx /

sh z
4.105. ] [4.106. |
/chx-cth'ch?):cd:c / e do
e?+1
4.107.] [4.108.

6 d
ez 3 W /ex-sh3xdx
/e”shxdw

Gyokos kifejezések

4.109.

4.110.] 4.111.]
=4
/\/m v /(x2—3x+2)-\/2x—1dx
4.112.] 4.113.]
/ dx 3/ 2
4.114.] 4.115. ]
dx
&t 1—z d
|7 [y
4.116. ] 4.117.]
/$—32d$ / dx
Vit 2 V1% — 6z + 2
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/ dx do
V12z — 9% —2 /\/1295—9952—4
4.120. 4.121.
/\/1+2x—a72dx / /327 37+ 1 da
4.122. 4.123.
/Vx2—|—6x+10dx /Mdm
4.124. 4.125.
/ dx do
T /
z* — 4z +40 V322 + 122 + 30
4.126. 4.127.
/\/2x2+8x+5d9& 22 4+x+1 "
Va4 — 22
4.1.2. Hatarozott integralok. Vegyes feladatok
4.128. 4.129.
; V3
/2x2+x—|—1d1: / 1 d
0 1+ 22
1
4.130. 4.131
3 1 1
d *

/(23:—1—1)2 v /62 dx

2 0
4.132.
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4.133.

T

/ sin® (z)dz

0

4.134. 4.135.
o %
/0032(93) Sin3(a:) dx / 1 .
Sin(;c)
ﬂ s
4.136.
/sin(4x) cos(3z) dw
0
4.137.
/0054(95) Sin2(x) I
4.138.
/ sin (42) cos (5z) dx
0
4.139. 4.140.
| e?
/l’-e_dex /COs(lnx)
- ar
0 1 !
4.141. 4.142.
| V3/2 ,
/de / x—dx
0 Vi
1/2
4.143.
4
[
0
Vhr — 4
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4.144. 4.145.

2 V3
/aze dr /2x -arctg xdr
0 0
4.146. 4.147.
1 . )
/ (x* — 1) sin(32) dx / (x + 2) d
-1 T x
0 e
4.148.
1
/ z2a® dz, a>0
0
4.1.3. Improprius integralok
Szamitsuk ki az aldbbi improprius integralok értékét!
4.149. 4.150.
<1
il <1
/; 132 dz / — dx
.
4.151. 4.152.
<1 —o0
dx )
d
/0 1+$2 /J;OO £E2—21‘+2 r
4.153. 4.154.
3 10
/_ ve® dr / xe’ dx
> —0o0
4.155. 4.156.
o0 1 0
/ 1 dz / 1 do
4 rlnz . (14 22)3
4.157. 4.158.

dx o
/_OO 3r+1 / e dr
1
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4.159.

4.167.

4.169.

4.171.

4.173.

4.160.

4.164.

4.166.

4.168.

4.170.

4.172.

4.174.
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4.175. 4.176.
/xe‘”d:c
0
4.177. 4.178.
11
/—28111 —dx
x x
2/m
4.179. 4.180.
/xedex
0
4.1.4. Az integralszamitas alkalmazasai
Teriiletszamitas

/cos (x)e “dx

o0

/sin(am)e_b”daﬁ

0

o0

/:U"e“xda:

0

Hatarozzuk meg a fliggvények grafjai alatti teriiletet, és abrazoljuk a fiiggvényeket.

5
4.181.y=7, —-2<z<2 4-182-y=@+x; 1<z<3
4.183. y=+/r; 0<z<l1 4.184. y=(1-2)% —-2<z<1
4.185. y=23-3; 3<x<4 4.186. y=a*—2% 1<x<2
4.187. y=¢*; —05<x<1 4.188.| y =sin(3z); 0<x<0.3
4.189. y =cos(3z); —05<z<05 4.190. y— cos(%) 0<z<nm
4.191. y=ch(2z); 0<xz<3 4.192. y =sh(z); 0<x<2
2 1
4.193. y=—; —2<zr<-1 4.194. y = 1< <3
T 14+
4.195 ! 3<x <4 4.196 ! 5<z<10
195, y = x .196. x
- (- =
1
4.197. Hatarozzuk meg z értékét ugy, hogy az y = T2 gorbe alatti teriilet 0-t6l x-ig
x

- 1n s ™ y
terjedo része Z—gyel legyen egyenld!
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4.198. Hatarozzuk meg x értékét tigy, hogy az y = e~ 2*

terjed6 része 3-mal legyen egyenld!

gorbe alatti teriilet x-t6l 1-ig
4.199. Hatdrozzuk meg x € [0, 7] értékét gy, hogy az y = sin(z) alatti teriilet 0-tdl
z-ig terjedo része Z—del legyen egyenlo!

Hatarozzuk meg a kovetkezd gorbék kozotti teriiletet és abrazoljuk is a gorbéket.
4.200. y=2%2 é y=22 4201. y=\z ¢ y=
ysz és y=1—22 4.203. y=12> és y=1-—32?
4.204. y=12> és y=3z 4.205.y:% és y—2+2
4.206.y:1 és y=25—2x 4.207. x%+y%:1 és y=1-—ux

x
4.208. x4+ y=1 é x+y=1
Végezziik el az alabbi teriiletszamitasokat.

4.209. Hatarozzuk meg az y = x(1 — x) parabola és ennek az x = 0,z = 2 abszcisszaji
pontjaihoz hizott érint6i kozotti teriiletet!

1
4.210. Hatarozzuk meg az y = 4.5 — —(x — 4)? parabola, és ennek az z = 3 és v = 6

pontjaban huzott érintéi kozotti teriiletet!

1
4.211. Hatarozzuk meg az y = — hiperbola, és a P(2,2) pontra illeszked6, y = = egye-
x

nesre merdleges egyenes altal hatarolt sikidom teriiletét.

1
4.212. Hatarozzuk meg az y = — hiperbola, az y = = és az y = % (ahol a > 0 adott)
x a

egyenes altal hatdrolt sikidom teriiletét! Abrdzoljuk is a szektort!

Gorbe ivhossza

Hatarozzuk meg az fiiggvények gérbéjének ivhosszat a megadott hatarok kozott.

4.213. y=2% 1<z<4 4.214. y=chz; 0<2x<3
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4.215. y=Inz; 2<z<6 4.216. y = In(sin(z));

e

T
<< —
- = 2
4.217. 22 +9y2 =25, 0<x<5 4.218. x =5cost; y=>5sint; 0<t<

4.219. z = CL(t — smt), y = (1(1 — CO&&,‘ZO T = 5cos’ t, y= 5sin® t; 0<t¢ E
0<t<2n 3

4.221. v =2t; y=3t% 2<t<5
Forgastestek térfogata
Forgassuk meg a kovetkezo gorbéket az x tengely koriil, és hatarozzuk meg a keletkezo

forgasfeliiletek és a megadott intervallumok végpontjaiban az x tengelyre allitott merd-
leges sikok hatarolta térrész térfogatat.

4.222.|y=¢*; 0<z<2 4223, y— —: 1<z<4
xr
3 1
4.224.y:§; 1<x <2 4.225.y:x—;; 1<x<3
4.226. y=1—2% —-1<z<1 4.227. ¥  —22=1; 0<x<3
4.228. Jx+,y=1; 0<z<1 4.229.| y=cos’z; 0<z <7
1 2 2
4230, y= VP o3 4231. 4% 1. u<i<a
VT a?  b?
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4.2. Integralszamitas. Megoldasok

4.2.1. Hatarozatlan integral

Elemi fiiggvények
4.1. Injz + 1|+ C.
4.2.

/ L dm:/Ll_ldx:/ 1—
r+1 z+1

4.3. v —arctgx + C.

1
4.4. -1 cos(2z) + C.

1
z+1

)dx:x—ln\x—i—l\—i—C.

/;l /Qda:——+0——l+c

4.5.

4.6.
7=/

4.7.
/x2(x2—1) dx—/(ac4

4.8.

4.9.

2 4
4.10. g\/FJr g\/F+ 21+ C.

l\')

T 3dm-3—+C— W+C’.

97



4.11.

4.12.

4.13

/(\/5+1)(-T—\/5+1) dx:/(a:g—l—l) dx:§@+gg+0_

4
gW—§W+C.

2

G —20+3llz—2+C.

4.14.

/ 1+ 222
22(1 + x2)

3

4.15.

6

dp — / 1+ 22 N 2 .
= l’2<1+$2) $2(1+x2) =

1
1+ 22

1
) dr = —— +arc tg x + C.
T

6 dx 6
5+5x2d5€:g 1+x2:garctgx+0.

4.16.

4.17.

In2

In2
——dr = — —
V24 2? ’ V2 V1i+az V2

tg (z) —z + C.

4.18.

4.19.

4.20.

[ w5 o

-+ C.

x—7ln|:z:|—§+0,

dz

In2 d
= ’ -arc sh x + C.

/ cos?x — sin’z
- dzx
cos(x) — sin(x)

= /(cos(x) + sin(z)) dx = sin(z) — cos(z) + C.
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Helyettesités
4.21. Végezziik el az u = —x helyettesitést, ezzel dr = —du:

/ez dx:—/e“ du=—e"+C=—e"+C.
4.22. Végezziik el az u = 4z — 5 helyettesitést. Ekkor du = 4 dx, és igy
1 1 1
/COS(4$ —5)dr = 2 /cosu du = Zsinu—i— C= Z—lsin(4x —-5)+C.

Megjegyzés: Az ilyen integralokat célszerti annak az Osszefiiggésnek a felhasz-
nalasaval kiszamitani, hogy ha

/f(x)dx =F(z)+C,

akkor )
/f(Aac +0b) dx = ZF(Aac +0)+C.
Példaul:
/cos(x) dr = sin(z) + C,
tehat

/cos(4:c —5) dx = isin(élx -5)+C.

A tovabbiakban ezt az eljarast alkalmazzuk valahanyszor a belso fiiggvény x-nek
linearis fliggvénye.

4.23.
1 2 3 1
4.24.
/'(” 3)d 1[ (” 3)%0 ! (W 3)+c
sin(=—3x) de = —= |—cos (= — 3x = —cos (= — 3z .
3 3 3 3 3
4.25.
/10$6$ dr = /ezlnlo et dr = /ea:(l—Hnlo) dr
z(1+1n 10) 10%e®
e e
[Ti0  © Itmio
Megoldés kozben azt az osszefiiggést hasznaltuk fel, hogy a = e™@, ill. 10 = ™10,
Ezért

10¢ = (elnl(])th — emlnlo'
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4.26.

4.27.

4.28. —

4.29. —

4.30.

4.31.

4.32.

4.33.

/ dx _1/ dx _1/ dx B
5+l’2—5 1_'_x_2_5 T 2
5 1+(75>

1 T \/3 T
= = Vbharctg — + C = ~arcteg — + C.
5 v 5 &5

[ ] il T
a Ve
\/_\/>arch<\/7>+C——\/§arch(\/§x>+a

1

sr—3)i "¢
O B3 4 C.
33

1 1 1
/x\/l—xzda::—5/(—23:)~\/1—a:2d93:—5/\/ﬂdu:—§ug—i-C:

1

Az integralban u = 1 — 2?2 helyettesitést végeztiik el, ekkor du = —2z dz.

v (23 +8)1 +C

/\/%jdx \/_ =Va2+14C.

A hasznélt helyettesités: u = 2% + 1, ekkor du = 2z dx.

cos(z du
— = 24/si 4 C.
\/SIT NG V/sin(x)

A hasznalt helyettesités: u = sin(x), ekkor du = cos(z) dzx.
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4.34.

1 1
§/sinu du = _§COS (m2+2) + C.

/xsin(x2 +2) de =
A hasznalt helyettesités: u = 2? + 2, ekkor du = 2z dx.

3
4.35. 7 gl +C.

4.36.

T 1 2x 1
de = = dr = =In(4+ 2%) + C.
/4+1_2 T 2/4+$2 T 2n( —l—m)—l—

Azt latjuk, hogy 2-vel vald szorzas utan a szamlalé a nevezo derivaltja, tehat a
kifejezés integralja a nevezo e alapu logaritmusaval egyenlo. Ezt a szabalyt jol
tanuljuk meg és az ilyen esetekben mellézziik a helyettesitést, bar ez az el6zdek egy
specidlis esete. (Most is alkalmazhattuk volna az u = x? + 4 helyettesitést.)

4.37.
dz 1
= T dy=Inlhz+C
zlnz Inz

NG 2
/ ;x dx:/\/adu=§-\/1n3x+c.

4.38.

1
A hasznélt helyettesités u = In z, ekkor du = — dx.
x

x+2 1 2 z 5 1
dw = - 2 dr ==+ --=In(2z — 1)+ C.
/293—1 v /(2+2x—1> r=gty @D+

4 1
/1x_xdx = /(—xg—xQ—x—1—$_1) dx
T

Felhasznéltuk, hogy

4.39.

4.40.

1
SRR :—(ac3+x2+x+1+—>.
r—1



4.41.

x 1 du 1 1 9
/x4+1dxzﬁ/qﬂ_i_l:iarctgu—i-C':garctgm +C.

A hasznélt helyettesités v = 22, ekkor du = 2x dx.
4.42.
cos(z) dp = / du
V1+sin®z V1t u?

A hasznalt helyettesités: u = sin(x), ekkor du = cos(z)dz.

1
4.43. 1 vad —1+C.

4.44. llyen esetekben az integralandé fliggvényt két fiiggvény oOsszegére bontjuk. Az
egyik fliggvénynél a szamlald a nevezd derivaltjanak konstansszorosa legyen, a ma-
sik fiiggvénynél pedig a szamlalé mar csak egy konstans, melyet az integrél jel elé
is kivihetiink. Teh&t

3r—1 3z 1
dl’: —_— d{L‘:
249 2+9 2249

3 2x 1 dx 3 1 T
== de — = | ——— =-=1 249)— = tg — + C.
2/x2—|—9 T 9/1+(§)2 2n(9c—|—) 3arc g3+

= arsh u + C = arsh(sin(z)) + C.

4.45. / sin(8z)dz = — 282 | o

8

dx
4.46. =1 — )
/ 5, _p =0 |3z — 5|+ C

1
4.47. /e5$+7dx = 565”7 +C.

4.48. /sin3(x) cos(x)dx = +C.

1
4.49. —o(1 - 22)¥3 4 C.

4.50. —1In|cos(z)| + C.

4.51. 2In(v/z + 1)+ C.
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Parcialis integralas

(z* —1)cos3z  2zsin3z  2cos3z

4.52. — C.
3 9 * 27 +
4.53.
/ £+2 2d:c—/(x2+4x+4)e_2xdx—— x_2+§$+E e 40
er N N 2 2 4 '
22:1: 2:1:—4—1 2m+1
4.54. © * +C

m2  (m2)?  (m2p
4.55.

1 1 1
/1'36‘762 dr = 3 /1‘26x22x dr = 3 /ue“du = —5(1'2 +1) e ™ 4 C,

ahol u = 22 helyettesitéssel du = 2zdx.

4.56. t = /7 helyettesitéssel, majd parciélis integraldssal: —2/x cos/z+2sin/x + C.
4.57.

/a:sin(x) cos(x) dr = %/xsin(?x) dr = ésin(2x) - %cos(Zx) +C.

1 2
4.58. A cos*(z) = —{—C%(x) linearizalé formulat alkalmazzuk, majd kétszer parcidli-

san integralunk.
Az eredmény: %3 N x? siz(Zx) N xcoz(Qx) B siné?x) LC

4.59.

/ x arctgx dr = *,
N~ N —

/
u v

ahol a parcidlis integralaskor u = %, és v' = ﬁ Igy

o= T arct 1/ P = Farct v ctgr a0
= —arc Xr — — r = —arcC Xr — — —arc X .
g M Ty [ 12 g ACIET ™ o T HAICts

2
/ v dx:/ 1— ! dz.
14 22 14 22
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4.60.
/arctg\/E dx:2/uarctgu du = rarctg/x — /r + arctg x + C

A hasznalt helyettesités: x = u?, ekkor dz = 2u du.

4.61. Két parcidlis integralast kell elvézgezni:

/ 1 -InPz dx:xln?’x—/ 3 In’z dx =
~ ~~ N~

:xln3x—3mln2x+6/lnx dr == zIn®z — 3zIn’x + 6xlnz — 62 + C.

4.62. v/ = 1, v = (arcsin x)? vélsztéassal egy parciélis integraldst végziink, ekkor

, 2arcsinz
U=z V= ——,
V1 —2?

és ezért

arcsin z)? dr = x(arcsin )% — 2/L
/( ) (anesine) Va2

arcsin(z)dr = *
Ujabb parcialis integralast végziink
U = arcsin z, v =
valasztassal, ekkor
« = z(arcsinz)? 4+ 2v/1 — 22 - arcsinz — 2 / drx =

= z(arcsinz)? + 2v1 — 22 - arcsinz — 22 + C.

4.63. Ktféleképpen végezzink parcidlis integraldst:

1 3
/é”f/cos(%c) dx = 56‘% sin(2x) — 5/631 sin(2z) dx (4.1)
ahol
u' = 3e*” v=3 sin(2z).
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4.64.

Masrészt

1 2
/ 33/’“" cos(2z) dr = 563:’3 cos(2x) + 3 /639” sin(2z) dx (4.2)
ahol .
u= ge?’x v = —2sin(2z).

Szorozzuk meg (4.1)-et néggyel, (4.2)-t pedig kilenccel és vonjuk 6ssze az igy ad6dé
kifejezések jobb- illetve bal oldalat.

4 / e cos(27) dr = 2¢* sin 2z — 6 / e*” sin(27) dw

9 / e cos 2z dr = 3€** cos 2z + 6 / e sin(2x) dx
13 / % cos(2x) dr = 2¢3 sin 2z + 3¢*” cos(2x) + C.
Végiil 13-al val6 osztas utan nyerjiik, hogy:

1
/63’” cos 2z dr = Ee?’”(Z sin(2x) 4 3 cos(2z)) + C.

/ eMENT dy = / e cosu du,

ahol arcsin x = u, azaz x = sin u helyettesitéssel dx = cosu du fgy olyan alakra ju-
tottunk, melyet parcidlisan lehet integréalni, éppen az el6z6 példaban is bemutatott
modszerrel. A parcidlis integralast elvégezve addédik, hogy

1
/e“ cos udu = §eu(sinu + cosu) + C,

tehat

. 1 .
/earcsmxdx — 5 earcsmx<x + /1 _ $2 + C’)
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Racionalis tortfiiggvények integralja

4.65. Ha a mésodfoku nevez6jl tortfiiggvény nevezdje tényezok szorzataként irhato fel,
akkor a tort linearis nevez6jl tortek osszegére bonthaté.

Annak érdekében, hogy ezt a felbontast elvégezhessiik a nevezot egyenlové tessziik
0-val és megoldjuk az igy nyert egyenletet, mert ennek az egyenletnek a gyokténye-
z6i lesznek a szorzat alakban felirt nevezd tényezéi. Az 22 — 72 4+ 12 = 0 egyenlet
gyokei: x; = 3, 19 =4, azaz

2 —Tr+12=(r—3) (v —4)

Most mar ismerjiik a keresett linedris tort-fliggvények nevezoit, hatarozzuk még
a szamlalokat, melyek linedris nevezd esetén konstansok. Jeloljiik ezeket A-val és
B-vel, akkor

x—2 A B Alx —4)+ B(z - 3)

I2—7$+12:$—3+1‘—4E (x —3)(z —4)

Azonossagot irtunk, mert olyan A és B értéket keresiink, melyek mellett az egyen-
16ség minden z-re fennall. Mivel a nevezOok azonosan egyenlék az azonossagnak a
szamlalokra is fenn kell allni, azaz

r—2=A(x—4)+ Bz —3).

Az azonossag nyilvan fennall, ha az z-es tagok egyiitthatdja mind a két oldalon
egyenld ugyanugy, mint a konstansok. Ez azonban két egyenletet szolgaltat, me-
lyekbdl A és B kiszamithato.

B=2  A=-1

A kapott értékeket behelyettesitve

r—2 1 2
2—Tr+12 -3 x—4

Ezért az integral

/x——de:/<_ 1 2 )d:v:—ln(:v—3)+21n(:v—4)—l—C:

2 —Tr+12 r—3 x—4

=Ilnc———>, (C' = In ¢ bevezetésével)
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4.66. Az 2% + 4z + 8 = 0 egyenletnek nincsenek valds gyokei, tehdt 22 + 4z + 8 nem
bonthatoé tényezok szorzatara.

Bontsuk fel a tortet két tort 6sszegére, melynek nevezéje kozos (a régi nevezd), az
egyik szamlaldja a nevezo derivaltjanak valami konstans-szorosa, a masiké pedig
konstans. A nevez6 derivaltja 2z + 4, tehat a szamldlokat a kovetkezd alakban
keressiik

a2z +4) és .

a és [ értékét a kovetkezo feltételekbol hatarozhatjuk meg:
a2 +4) 4+ =3r—2.

Most is két egyenletet irhatunk fel, melyekbol o és 3 meghatarozhaté.
200 = 3, 4o+ 3 = -2,

ezekbdl

== — 8.
a=3 B

fgy az integralt két integral osszegére bontottuk:

3 —2 3 2 +4 dx
—dr == | ———dr -8 | ——.
x?2+4x +8 2 ) 22+42x+8 x?+4x +8
Az els6 integral eredménye ismert, hiszen a szamldlé a nevezé derivéltja. A méso-
dikat pedig teljes négyzetté valo atalakitassal vezetjiik vissza ismert feladatra.

1 1 1
2 +4r+8 ([L’—{—2)2—|—4_4|:(x+2)2+1]
1
ezt d 1 d 1 +2
x x x
—— = [ ————— = “2arctg—— + C.
/132—1-4&3—0—8 4/(%2)2+1 1 arctg B +

Tehat a megoldas:

3xr — 2 3 ) o9
/mdx—§ln(x +4x+8)—4arcth+C‘

5 4
r’+zt =8
4.67. l_—4 szamlaléja magasabb fokl mint a nevezgje, ezért felbonthatd egy po-
x3 — A4z

linom és egy valodi tort Gsszegére.
(a:5+w4—8) : ($3—4:13) =2+ +4
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—(2° — 423)

rt+ 423 — 8
— (2 — 42?)
43 + 42° — 8
— (423 — 162)
422 + 162 — 8 A polinom osztds eredménye:
2° + 2t -8 2 +4+4x2+16x—8
_— = x -
3 — 4z x—dr
tehat S0y a? + 16— 8
r’+x - 9 z° + lox —

Az els6 integral kiszamitasa nem okoz gondot. A masodik meghatarozasahoz a
tortet részlet-tortek osszegére kell bontanunk.

A nevez6t most minden kiilonosebb szamités nélkiil fel tudjuk irni szorzat alakjaban

2} —dr = x(2* —4) = 2(z + 2)(z — 2),

tehat
4$2+16£L‘—8_A B c
?—4dr oz x+2+x—2_
A(z? — 4) + B(2? — 2x) + C (2% + 2x)
N 3 — 4 '

Ennek alapjan felirhatjuk az egyenletrendszert, melyb6l A, B és C' kiszamithato:
A+B+C=4 —-2B+2C =16 —4A=-8,

és innen

A=2 ~ B=-3  C=5.

Megjegyezziik, hogy ilyen esetekben, amikor a gyokdk mind kiilonbozoek, altalaban
gyorsabban kapjuk az ismeretlen A, B, C' értékeket, ha a szamlalok egyenloségét
kifejez6 egyenletben x helyére a gyokoket helyettesitjiik.

Példankban az
42° 4+ 162 — 8 = A(z® — 4) + B(2? — 22) + O(2* + 21)

kifejezésben x helyébe zérust irva azonnal nyerjiik, hogy —8 = —4A azaz A = 2.
x = 2-nél 40 = 8C, innen C' = 5. Végill x = —2-nél —24 = 8B, azaz B = —3,

tehat
/4m2+16x—8d _/ 2 3 n 5 do —
3 — Az v r x+2 -2 v
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=2lnz—-3In(z+2)+5n(x —2)+ C.
A keresett megoldas:

dr = —+ —+4x+1n +C.

/x5+a:4—8 3 2P r?(x —2)°
3 —4x 3 2 (x+2)3

4.68. Konnyen meggy6zodhetiink réla, hogy a nevezd négy kiilonbozé tényezd szorzatara
bonthato. Ezutan a feladat az el6z6hoz hasonléan oldhaté meg. De munkat ta-
karithatunk meg az u = 22 helyettesitéssel. Ekkor ugyanis du = 2xdz és

T 1 du 1. u—2
/:c4—3x2—|—2x 2/u2—3u+2 sy 1T

1. 22-2
_ 4 C.
nx2—1+
460, L[t V3L le-v2
23 |z +V3] 2v2 |z 42
4.70.
4z + 3 dr—8+11 4 1
el R Y e dr —
/@—2)3 ‘ / @w—2p /[@_2)2*@_2)3 g
4 11
S C
T—2 2@—27 "
4.71.

2’ — 62 + 11z — 5
kifejezést x — 2 polinomjaként felirva (pld. eléallitjuk az
To = 2
helyhez tartoz6 Taylor polinomjat, lasd, 401. példat).
2? =622 +1lr —5=(r—2)°—(z—-2)+1
adddik, azaz

3 _ 6,2 _ _ 93 _ (g —
/x 6z + 11z 5d:v:/(x 2)° — (z 2)+1dzx:
(z —2)t




::/(xiQ_(xjm®+@j2¥)dx:

1 1
2(r—2)2 3(x-—2)3
(Természetesen gy is eljarhattunk volna, hogy a részlet-tortekre bontast a tobbs-
z0ros gyokoknek megfeleléen végeztiik volna el

*—62*+1le—5 A N B N C N D
(x —2)* S r—2 (222 (z-2)3 (x—2)1

+C

In(x —2) +

alapjan).

4.72. Tobbszoros gyokok esetén a gyoktényezo a multiplicitasnak megfelel6 szamossag-
gal szerepel a nevezében az egytol a multiplicitasnak megfelel6 hatvanyig. Elsofoku

gyoktényezo esetén a szamlald konstans.

¥ —22°+4 A B C d e
==+ + =+ +

B —-2)2 x 22 23 -2 (v-—2)%

Ugyanis ebben a példaban a 0 haromszoros, 2 pedig kétszeres gyok.
=2t 44 =

= A(z* — 42° + 42°) + B(2® — 42* + 42) + C(2° — 4o + 4) + d(2* — 22°) + ex?®

A+d=0
—4A+B—-2d+e=1
4A —4B+C = -2 —

4B —4C =0
4C =4
Egyenletrendszerbdl
1 1 1
47 ) O ) 47 € 2
2 — 222 +4 1 1 1 1 1
dx = — + — — dr =
3 (x — 2)? de 2?2 23 4z —2) 2(x—2)?
1 T 1 1 1
= 1] - - - - _ C
1T =2 7 22 2w—2)
4.73.




4.74.

o 1 A B C D  FErx+F
26+t (a2 +1) oz a2 3t 2?41
Masodfoku gyoktényez6 esetén a szamlald elséfoku!

1=A@@®+ 2% + B(z* + 2% + C(@® +2) + D(z* + 1) + Bz’ + Fa*

azonossaghdl irhato fel az egyenletrendszer, melybdl A, B, C', D, E és F meghata-

rozhato.
A+e=0
B+F=0
A+C=0
B+d=0
C=0 A=0 E=0
D=1 B=-1 F=1
Tehat

dx 0 1+0+1+ 1 d 1 1 n ; L
— = - 4= 4= = — — +4arc )
20 + x4 xr 2 3 ot 241 v r 33 rete

T T A Bx+C

4.75.

x3—1:(x—1)(1:2+x+1) r—1 224241

Al@*+ 2+ 1)+ B2? —2)+ C(x —1)
x3—1

A+B=0 A:%A—B+C:1 B:—%A—C’:O C=

/ :E d:zc—/l 1 + —=+1 de =
»—-1" ) 3\z—-1 22+4+zx2+1 N

1 1 r+ 1 3
:_/ o 2 + 2 de:
3 r—1 x224x+1 22+z2+1

1 1 1 2
:gln(x—1)—gln(x2+x+1)~|——arctgx—+0

V3

Wl =
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4.76.

1 1
1 nli—i%—ﬁarctgmjtc.

4.77.

1 A n B +Cx—i—d
(z+1)2(22+1) z+1 (z+1)2 a2+1

alapjan végezziik a részlet-tortekre bontast és nyerjiik:

/(x+1)gfx2+1) :/<2(x1+1) * 2(x—1|—1)2 - 2(x2x+ 1))dx:

1 1 1,

4.78. A nevezo tényezOkre bontasat a kivetkezoképpen végezhetjiik el:
I+at =142 42 — 222 =(1+2Y)? -2 = (14222 - (V2 2)? =

=(1+2°+V22)(1+ 2% - V2 )
A rész tortekre valé bontds vazlata

1 Arx + B Cr+d

= +
IT+2* 22420 +1 22—V22x+1

Az eredmény:

arct C
+ r gl—x2+

/ dx 1 ) 2 4+V2zx+1 1 V2 x
= n
L+2t 42 2242241 2V2

4.79. A feladat els6 pillanatra azonos jellegti az el6zével. Meg is oldhaté annak alapjan,
de gondosabb vizsgalat utan kideriil, hogy specialis tulajdonsagai figyelembe vételé-
vel sokkal egyszeriibben is megoldhaté.

e(l—a?) T 23
/—1+$4 d$—/1+$4dx—/1+x4dx
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Az els6 integralt

U:IQ

helyettesitéssel hozhatjuk még egyszeriibb alakra (lasd a 4.39. feladatot), a masodik
pedig maris integralhatd, mert a szamlalé a nevezo derivaltjanak a negyede.

T z3 1 , 1 A
/1+x4dx—/1+x4dx:§arctg:v —Zln(l—kx)—l—C’

4.80. To6bbszoros komplex gyok esetén javasolhato a tgt helyettesités.

/ dx B L dx B L dx
(x2+9)3 729 (2 + 1>3 729 ) [(2)2 + 1]3

1 3 1 cos®t
= — 3 dt = — 5 fy (*)
729 (tht —+ 1) cos2t 243 cos“t
3

x
S=tgt: dz= dt
3~ B T ot
1 A 1 1+ cos?t\? 1 1+ 2cos 2t + cos? 2t
= tdt = — | | —— ) dt=— dt =
() 243/COS 23/( 2 ) 243 4
1 14 cos4t 1 t sindt
=— [(1+2cos2t+——"")dt = — (t+sin2t+ - C =
972/(+ cos 2t + 5 ) 972(+Sm tot—g )+
1 (3 N 6z Jr395(9—:162) Lo
= — | —arctg — =
072 \ 2™ 3 T 219 T 200+ 22)?
tg = + - +——— __4C
— arc —
648 8 3T 216(22 1 9) ' 36(22 1 9)?
4.81 L
. . ————————— C.
3(x—3)3
4.82. 2Injz — 5| + ¢
1
4.83. §ln(x2—6x+27)+c.
1 2V/2 r—3
4.84. —In(2? — 62 +27) + ——arctg —— + c.
370 1\2
.85 m =1
x4+ 3
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Trigonometrikus fiiggvények

4.86. Paratlan kitevo esetén helyettesitéssel oldhatjuk meg a feladatot.

/0085 xdx = /Cos4 x - cos(z)dr = /(0082 x)? cos(r)dr =

_ a2 2 _ N2 Doz oy, o 2ut v’
= [ (1—sin“z)*cos(x)dx = | (1—u”)*du= [ (1—2u"4u")du =u 3 +5—|—C_
: 2 3 L. 5
:sm(x)—gsm x—i-gsm z+C
u = sin(z) du = cos(x)dx

4.87. Péros kitevd esetén a linearizal6 formula alkalmazasat javasoljuk.

/sin6 rdr = /(sin2 r)*dr = / (1_%8(2@)3% =

1
-3 / (1 — 3cos(2z) + 3 cos” 2z — cos® 2z) dx =

1 1 4 1
:g/(l—Scos(Qx)—i-?)-#) dx—§/00332xdx

Az els6 integralban 1jbdl alkalmaztuk a linearizal6 formulat, igy keriilt
cos? 2

helyébe
1+ cosdzx

2
A masodik integralban pedig mar paratlan kitevén szerepel trigonometrikus fiigg-
vény, tehat az az el6zd példa mintdjara megoldhato.

Az eredmény:

175 3 3 1 1
/sin6 rdr = 3 (§x ~3 sin(2z) + 3 sin4x — 5 sin(2z) + 6 sin® 2a:> +C

4.88.
/Sin6x-c083x dr = /Sin6$-COSQZE-COS(ZL‘) dx = /sinGx- (1—sin®z)-cos(z)dr =
u = sin(z) du = cos(z)dx
= /u6(1 —u?)du = 1sin7;1c - %singx—l—C

7
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4.89.

/Sin4xdx_/(1—cos2x)2dx_/1—20082x+cos4xdx_

cos? x cos? cos? x
1 2
S~ —2+cos"w | dr =
cos? x
3 sin(2x)
=t - = C
g (z) Sttty
4.90.
/51n33: dx_/(l—coszx) Sin(x)dx:—/l_U2du:/ 1 1 dy —
cos* x cost x u? u?  ut
u = cos(r) du = —sin(z)dx
1 1 1 1
— 4 - 41 (C= — C
u * 3u? 3cosdx  cos(x) *

4.91. Alkalmazzuk a t = tg 5 helyettesitést, akkor

dx e 2
, = sdt = [ ————dt =
sin(z) + cos(z) 2t 4 1=t 2t + 1 — 2

1422 1+¢2

1 tgs +v2—-1
_mijC
V2 tgf-—v2-1

4.92. Itt is valogathatunk a megoldasi modszerek kozott. Alkalmazhatjuk a

xr

helyettesitést, akkor

d 2 1+tge
/ ’ _/ 2dt-2'arth+C’—ln1+g2+C—lntg(g+g)+C

cos(x) 1—t —tg3

De ugyantgy hasznalhatjuk fel a paratlan kitevoji jellegét is.

1+ s
/ de / Cos(aj)dx :/ COS@ s :/ du In —l—s%n(x) L
cos(x) cos? 1 —sin”x 1—w? 1 — sin(x)

Megfelel6 atalakitasok utan az eredmény ugyanolyan alakra bonthato:

dx T X
— =1 -+ = )
/cos(x) ntg(4—|—2)+0
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4.93.

4.94.

4.95.

4.96.

4.97.

dz 1 x
— = —arctg(2-tg = .
/5—3cos(x) 24 8l g2)+C

Ha sin(z)-nek és cos(z)-nek csak paros kitevéjli hatvényai és tg (x) fordulnak eld,
akkor (bar a t = tg § helyettesités akkor is alkalmazhatd) elénydsebb a t = tg (z)
helyettesités alkalmazasa.

5 £ 5 t o 1,
tg’r dr = dt = [ (7 —t+ Jdt = —— —+-In(t*+1)+C = (%)

1+¢2 1+ ¢2 4 2 2
dt
L=t = tgt dr =
g(x) z=arctg T=1p
Ly L
(*):Z~tgm—§~tgx—ln-cos(x)+0.
_ 1 1+ tgla
= x; = .
cos?x & sin x tg2x
Tehat
t =tg(z)

helyettesités esetén

/ dx :/(1+t2)2-(1+t2)2 dt :/Mdt:

sin x - cost x t4 12 4

14 3t2 + 3t* + 8 1 3
:/ i Jt; i dt:/(t—4+t—2+3+t2)dt:

13 3 I 1,
Z—@—g—FSt—l—g—i-C:—g-ctg x—3-ctg(x)+3-tg($)+§~tg:z:—i—C'.

1+tgx 1 1
ST =t S ntgr+C
/sin(Zx) r=g5 o)ty nters

dx 1
- = . t 2t C.
/1—|—sin2x 7 arc tg (V2 tg z) +
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4.98.

cos ¥ + sin’ x 1 1+tg(z) 1
- 5 . 9 d = _1 N7 I . C’
/ cos? x —sin? z o 4 . 1 —tg(x) * 2 sin(x) - cos(z) +

(A linearizalé formula segitségével cos(2z) fiiggvényeként irhatjuk fel az integra-
lando6 fiiggvényt. Ezéaltal a feladat nagymértékben egyszertisodik.)
4.99.

. ™ 1 . T . T
/sm 3x - cos <5x - 5) dx = 5/ [sm(&l: - 5) + sm(§ —2z)| dx =

1 7 1 7r
4cos( x 2) 5 cos(8x 2) +C

4.100. Nem tipus feladat, de

sin(x) =sin2 - —926 = 2-sin —g © COS —;‘
é x T
.2 2
-+ —=1
sin” o + cos” 5

Osszefiiggések felhasznaldasaval egyszeri megoldast nyeriink.

/\/1+sin(x)dx:/\/sin2§+2sing-cosg—i-cos? gdx:

Z/(Sing—i-cosg)dx:lsing—2-(:055—1—0.

Hiperbolikus és exponencialis kifejezéseinek integralja

4.101. A hiperbolikus fiiggvények integralasat sok esetben, - mint pl. most is - a tri-
gonometrikus integrdlhoz hasonléan végezziik el. (Megemlitjiik azonban, hogy a
hiperbolikus fiiggvények raciondlis fiiggvényeinek az integraldsa mindig visszave-
zethetd e® raciondlis fiiggvényének az integralasdra. A célszertiség donti el, hogy
mikor melyik utat valasztjuk.)

/Sh2$-Ch3$ dx = /Sh2:1:~(1+sh2:17)-ch xrdr = /u2(1+u2)du = /(u2+u4)du = (%)

u = sh x; du = ch xdx
3 5 1 1
(*):%+%+C’:§Sh3x+gsh5m+0.
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4.102.

hoz — 2vch 2 + C

sh’z (ch’z — 1)sh z J /
=
Veh o Veh o \/_ "5

uw=chx du = sh xzdx.

4.103. A ch®z — sh?z = 1 aznonosséag felhasznaldsdvalazt kapjuk, hogy

dz ch?z — sh’x chz shez
/Shﬂi'Chﬂ? / shz-chz /(th cha:) r = Insh z—Inch 2+

sh z

=In +C=1In thx+C.

ch x

4.104. Az el6z6 példa alapjan nagyon egyszerien kapjuk az eredményt a kovetkezo

atalakitas utan: p p
i i xXr
/shx_/Qshgchg_ln tha ¢

xT —T

Alternativ megoldas, ha sh z helyébe % kifejezést irunk, vagy ha sh z-el valo

szorzas és osztas utan 1z integralasara alkalmazzuk az u = ch x helyettesitést.

ch? —
4.105.
ch a-chf = % [ch(av + 3) + ch(a — 3)]

Osszefiiggés alapjan
/chx-ch 2x - ch 3zdx =

1 1 1 1
:Z/(ch6x+ch4x+ch2x+1)d 21 sh6x+1—63h4x+§sh2x+4x+0.

4.106.

e2r u?  du U 1
= —_— = = 1— = —1 1 =
/€z+1d:€ /u+1 u /u+1du /( u—l—l)du u=In(ut1)+C = (+)

1
u=¢e¢* x=Inhu dr=—du
U

() =e®* —1In(e® + 1) + C.
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4.107.

6 6 2 2 e’ —3
/673—3 * /(u—S)u “ /( u u—S) “ e +C

1
e =u T =1Inu dr = —du
U

4.108. A parcialis integralas alkalmazhatod, de a megoldas ilyen médon sokkal hosszabb,

mintha sh 3x-et e”-el fejezziik ki, ezért ezt a megoldast ajanljuk hasonlé esetekben
is.

3z _ ,—3z dr _ 2z 1 1
/e"”- Sh?)]?dl’:/61~1d;§:/id$:_e4w+_e2m+C.
2 8 4
62:5 N
— — X C.
2

Gyokos kifejezések integralja

4.109.

DN —

4.110.
x 2 2 9 2 (u?
4 _ = _ _ (% s C =
T 3udu 9/(u 5)du 9(3 u)—i— (%)
2.5 2
=v3r+5; 3z +5=1u*; x:u?) ; da::§udu
\/ (3x +5)3 ——\/3:70—1— +C’—27\/3x+5-(3m—10)+0.
4.111.
ut +2u? +1 u? +1
/(x2—3zn—|—2)-\/2:x—1dxz/(f—& 5 +2)u-udu:(*)
2
1
=+v2r—1; u?=2x—1; x:u;— : dr = udu
1 1 T4
(*):Z/(u6—4u4+3u2)du:z(%—%+u)+0=

VT | S CTa VR E Y TV R
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4.112. A feladatot kisebb 1épésekben kétszeri helyettesitéssel is megoldhatjuk. Elébb
e’ = t, majd pedig u = v/t + 1 helyettesitést alkalmazva racionalis tortfiiggvény
integralasara vezetjiik vissza.

/ dx / dt / 2u p 2/ du
—_— B —— —’u,* _—
Ver +1 tVE+1 (u2 —1)u w2 —1

14+u

—u

1
t=¢e"; x=Int; d:)s:¥dt; u=vVt+1; t=u>—1: dt=2udu
1—+ver+1

U o—m—YC T ¢
1+u 14+ ver+1

Természetesen rovidebb lesz a megoldés (és azért altaldban igy is jarunk el), ha a
két helyettesitést Gsszevonva egy megfelelc'i helyettesitést alkalmazunk.

/\/r / d“:2/u2dﬁ1

ver+1=u e’ =u?—1 r=In(u®—1) dx =

=-2arthu+C=—-In +C =

=In

(A folytatds azonos.)

2u

e 1du.

4.113.

/ W udu —
1+\/_ w0

r=ub dz = 6u’du u = .
A gyokkitevok legkisebb kozos tobbszorose lesz a helyettesitendo kifejezés gyok-

kitevoje.
6/ v, 6/ L L Vg
u= u —u — u=
ud + 1 ud + 1

2\6/?— %W—l—fﬁ{i/_—ﬂn(%—i— 1)+

29r —1
—i—ln(\%ﬁ—%—i—l)—%@arctg%—kc:

6 3 In /22 — Jr+1
\/_ \/_+6\/_+ In Va2 + 29z +1

29x —1
—2V/3arctg ~——— 4+ C.
V3
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4.114.

Y A U (-
Vit

2u? —4u+4In(u+ 1)+ C =
r=u dr = 4du

=2z —4yr +4In(yr +1) +C

11—z dx 42 1+ u? u?
L = . du = —4 du =
4z = (14+u?)? 1—u? (14 u?)(1 —u?)

/ 1 1 JrO-u—l—2 4 ()
— — U = (*
u—1 wu-+1 u2 + 1

1—x l—z 1—u? P —4u P
=u; =u"; r=-—-; r = ——=5au
14z 14z 1+ u? (14 u?)?

4.115.

() =In(u—1) —In(u+ 1) + 2arctgu + C = lnul
u

Vi 1 /1 LV Vitar 1
= lnH—x—i—Z arc tg —$+C’ ° —|—2arctg —x+C
/;_i‘Fl 1+ \/1—x+\/1 1+

4.116. z? = t helyettesitéssel a gyokjel alatt mar linedris kifejezés lesz, tehat igy si-
keriilt a feladatot az elézokben targyalt tipusra visszavezetni. Az eljaras azért
alkalmazhaté a jelen esetben, mert a szdmlaléban z3dx 4ll, ami igy frhaté 22 - xdw.

1
Itt 22 helyébe t, xdx helyébe pedig §dt frhato.

1
1 + 2arctgu + C' =

Gyakorlasként oldjuk meg a feladatot ilyen bontasban is. Tekintettel azonban arra,
hogy az igy nyert integralt egy tijabb helyettesitéssel racionalizaljuk, joggal meriil

fel az az igény, hogy lehetéleg egyetlen helyettesitéssel oldjuk meg a feladatot. Ez
lehetséges

/\/1+2a:2 / =5 /u—\;ﬂldu:%/<ﬂ_%>du:

u—1
2

(x/_ 2\/_)+C_ V14222 (22 = 1)+ C.

1+222=u du = 4zdx 2% =

Oolr—l
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4.117.

1
= —arsh 3z —1)+C.

/ dx _/ dx
VIOrZ—6z+2 J J/Br—-12+1 3

4.118.
/ dx _/ dx _/ dx B
V122 — 922 — 2 V=922 — 122 + 2) V-1Br—2)2—4+2]
/ dx B i/ dx B
VZ-Br-27 V2 sw2)?
1- (23
1 V2 3 — 2 1 3x — 2
N s i + C = - arcsin + C.
\/§ 3 arc sin \/§ 3 I 1 \/§
4.119.

| =i | e

2
A gyokjel alatti kifejezés az x = = hely kivételével (amikor is 0) mindeniitt negativ,
ezért beldle négyzetgyok nem vonhato. Az integralandé fiiggvény tehat sehol nincs

értelmezve (még az & = 3 helyen sem, mert ott a nevez6 0).

4.120.

/\/mdx:/\/mdx:/\/l—[(x—l)2—1]dx:

:/mdx:ﬁ-/\/l— (I\;;)stw
\/§/Mﬁcosudu:?/cosu-cosudu:

r—1

=sinu ; x:\@sinu—l—l; dz = V2 cos udu

V2
1 2 1
:2‘/cos2udu:2-/ydu:u—l—gsinmﬁ—(}
A visszahelyettesitéshez egyrészt
rz—1 .
=sinu
V2

122



kifejezésbdl felirjuk, hogy
r—1

Ve

masrészt sin 2u-t kifejezziik sin u-val, mert sinu helyébe

u = arcsin

—_~ irhaté
V2

1

ésin2u:sinu~cosu:sinu-\/1—sin2u:
x—1 . (x—1)2_x—1 ) 2 —2x+1
v Vi) v 2

x—1+
V2

tehat

1422 — 22

/\/1 + 22 — 22 dx = arcsin

4.121.

/mdx—\/_/\/ —r 4= dx—\/_/\/x—— —dx—
-/ (333_?):%@:%/\/(2@@—ﬂ)2+1dx=<*>

sht++3 1
23x—V3=sht; r=———=" dr = ——=-ch tdt
2v/3 2v/3

1 i1 1 1 / ) 1 /ch2t—|—1
= — sht+1-——= - -chtdt = —— | ch®tdt = dt =
2/ 2v/3 43 43 2
h 2t 1
(S —{—t)+C:—<Sht-\/1+sh2t+t>—|—C:
8v/3

2

(0.e)
S»—t
w

‘ -

= [\/§(2x—1)\/1+3(2x—1)2+arsh \/g-(Q:U—l)}%—C:

5

1
(20 — 1)V1222 — 120+ 4+ ——= arsh V3. (22 — 1) + C =

8v/3

20 — 1 1
= \/33:2—3x+1+—arsh\/§~2x—1 + C.

OOIH

4.122.

3 1
/v:v2+6x+10d:v:%v:v2+6:v+10+§arsh (x+3)+C.
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4.123.

4.124.

4.125.

4.126.

4.127.

4.2.2.

4.128.

4.130.

4.132.

4.134.

4.136.

2 2
/\/2x2+8x+5dx = %\/2%24-8%‘4—5— 5 arch [\/%(9%#2)

1
/\/3—3:2 dngv?)—aﬂ—l—é arcsin%—i—o

\/_
d _
/ * :arshx—Q—i—C.
Va2 —4x 4+ 40 6
dx 1 T+ 2

= h

= — ars +C
V32 + 120 +30 /3 V6

2v/2

| 31 20 —1 2z +7
—————dxr = — arcsin — Vi+z—a224+C.
Va4 +x— 22 8 V17 4

Hatarozott integralok. Vegyes feladatok

=138 o5

W

—_
ot

~J| co

m
4.129. —.
12

4.131.

4.133. -.

4.135. 1ntg(8) —Intg (

4.137.
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4.138. —-.
9
1 1
4.139. - (1 _ _)_ 4.140. 1.
2 e
4.141. =, 4.142. =,
4 12
66
4.143. .
25
1144. & +1. 4.145. 25 3.
3
4.146. 0. pigr 2,13
4e2 + 4
4.148.

2
(Ina)?

(na)? [(Ina)®> —2Ina+2] —

4.2.3. Improprius integralok

/ ﬁdx:hm Ezlim {—;} = lim [é—i——

~1 “1
/ — dr = lim — dr = lim (lnw—1In1).
1

xr w—oo f1 T Ww—00

Mivel lim,,_. Inw = 00, ezért a fenti integral divergens.

4.151. g 4.152. 57.
4.153. _i. 4.154. 9¢'.
3
4.155. Divergens. 4.156. i
36
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4.157. Divergens. 4.158. i
2e

4.159. /2. 4.160. 1.

! 1 . ! 1 . 1—e
dx = lim dr =lim [—In(1 —2)]," =
)1 1

— X e—0 c — X e—0

=lim(—Ine+1In1)

e—0

tehat divergens.

L AU R S N TN P AY bl
/omx‘e%/amx‘éfé[‘ TP T
= 111%(—2\/E+ 2) = 2.

E—>

1

/1 ! d lim 1 1 d lim ! In(2 1)
1 2z —1 e=0 )1, 2x—1 e—0 |2 1.,
2 2 2

1 1
=lim(zIlne — - In1),

e—0"2 2
tehat az integral divergens.
1
4.164. 1. 1
4.165. — dz.
/_1 V1—a?
s
Z 211
4.166. 5" 4.167. 2V
3
1.168. —= 1
-168. ——. 4.169. ﬂ(107r—3\/§).
4.170. 1. 4.171. Nem konvergens.
4.172. 7. 4.173. 2/3.
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1 1
4.174. =, 4.175. —
a a
4176, 1 4.177. 1.
2
a
4.178. m 4_179. _
|
4.180. .
aﬂ

4.2.4. Az integralszamitas alkalmazasai

Teriiletszamitas
4.181. 4.182.
. 46
9
4.183 4.184.
: 81
4
4.185. 4.186.
s 19
20
4.187.
3_1
‘ — ~3.5106
4.188.

0,3 3 0.3 ]
T:/Sin?)x dz = [—COS m} = 5 (1= c0s0,9) ~ 01261
0

3 0
4.189. 4.190.
2
g -sin 1.5 ~ 0.665 2
4.191. 4.192.
1
3 sh6 ~ 100.86 ch2 —1~2.762
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4.193

4.195.

4.197.

4.198.

4.200.

4.202

4.203.

4.204.

4.206.

4.208.

2In2 ~ 1.386

4.194.

4.196.
1
—In3
2
r=1
4.199.
1
r=-3 In(6 + e 2) ~ —0.9070
4.201.
4
3
. S 1 1
A metszéspontok abszcisszai: 57
1
V2
T= (1—x2)—x2dx:{
_
2
2
3
4.205.
J
2
4.207.
0.49
4.209
1
3
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In2

—1n3

T = arccos% ~ 0.7227

Wl i

125
18

0.45
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4.210. 4.211.

1.12 4.29
4.212.
Ina
Gorbe ivhossza
4.213. 4.214.
1
1 (8\/65—2\/3+ar sh8 — ar sh2> sh3 ~ 10.02
4.215. 4.216.
1 1
\/37—\/5—arsh6+arsh§z4.49 1.32
4.217. 4.218.
5_7T 5%
2 2
4.219. 4.220.
15v/3
8a 1
4.221.
63.3

Forgastestek térfogata

4.222.

4.223 4.224.

7m-In4 63
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4.225.

4.227.

4.229.

V:ﬂ'/
0

m _ .
=7 [ + sin 2z +

4.230.

4.231.

127

T
8
o

—ab’7

o

sin4x
4

4.226.

4.228.

130

1 2x)
cos4xdx:7r/( + cos( x) dx:%
0

h:

/

167
15

1 4+ 2cos(2x) +

1 4
+ cos4dx d

2

xTr =



5. fejezet

Differencialegyenletek
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5.1. Differencialegyenletek

5.1.1. Szeparabilis differencialegyenletek
5.1. juk meg az alabbi differencidlegyenleteket, és abrazoljunk néhany megoldast.
Oldjuk 1abbi diff Al leteket, és abrazoljunk néhd 1d4

a) Yy =

b) Y =y.

c) y = xy.
Hatarozzuk meg a

sin(z) cos®(z) + (cos(z) + 1) sin(y)y’ =0

™
differencialegyenletnek a P (27?, Z) ponton atmeno partikularis megoldasat.

Oldjuk meg az alabbi szétvalaszthato véltozoju differencidlegyenleteket.

5.3. yi—1= 2y +xy)y.

5.4. xy +y = y>

5.5. 2@y +x—y—1)= (2 —2x)y.
5.6. zy +v1—a2y =0.

5.7. (x +zy?)y —3=0.

5.8. V1-9y2=V1+22y.

5.9. VI—yr=(01-2%y.
5.10. sin(y) = e*y'.

5.11. (1422 y = /1 —y2
5.12. r(1+y*) + (1 +2?)y =0.
5.13. zyy — (1 —19y%) =0.

5.14. y(4+92%) = .

5.15. sin(x)y’ = sin(y).
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5.16. 2z + 1)y +y* = 0.
5.17. (1+2y)z+(1+22)y =0.
5.18. y' sin(z) sin(y) + 5 cos(x) cos®(y) = 0.

Hatarozzuk meg az alabbi differencidlegyenleteknek azt a partikuldris megoldasat,
mely az adott kezdeti feltételeket kielégiti.

5.19.
w o
l+z 14y’
a) y(1) =1 b) y(0) =1
5.20. y'sin(x) = yln(y), y(0)=1.
5.21. yy' =15, y(1) =1
5.22. 2v/1—22+y/1—y2/ =0, y0)=1.
5.23. 2y =19, y(0)=1.
5.24. yln(y) +2y =0, y(1)=1.

Hatarozzuk annak a gorbeseregnek az egyenletét, melyben mindegyik goérbéjére
fenndlla k|’ovetkez6 tulajdonsag: barmely (x,y) koordinatdju P pontjdhoz tartozoé
normalisanak az x tengelyig terjed6 darabja ugyanakkora, mint a P pontnak az
origbtél mért tavolsiga.

Mi az egyenlete annak a gorbének, melyben a gorbe alatti teriilet az a és x
abszcisszaji pontok kozott aranyos a pontok kozotti gorbék hosszaval?

5.27. Hatarozzuk meg azokat a gérbéket, amelyeknél a szubtangens hosszisaga egy rog-
zitett a allanddval egyenlo.

5.28. Hatarozzuk meg azokat a gorbéket, amelyeknél a szubnormalis allandé.
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5.1.2. Linearis differencialegyenletek
Oldjuk meg az
’ —z?
y = —2xy + 2xe
inhomogén linearis differencialegyenlet.
Hatarozzuk meg az
, 1 1 — cos(x)

v = sin(x)y+ sin(x)

differencialegyenlet altalanos megoldasat. Adja meg a P (g, 7T) ponton athaladé

partikularis megoldast.

Irjuk fel az
1
Yy =-y+1
x

differencidlegyenletnek a P(0,7) ponton dtmend megoldasat.

Oldjuk meg az alabbi differencidlegyenleteket:

5.32. y' = xy + 2.
5.33. y' cos(z) + ysin(x) = 1.
5.34. Yy — gy = 22",
x
5.35. (22 = 1)y = xy + 2%
5.36. Y +ytg (x) = sin(2z).
5.37. y'y +tha = 6.
5.38. y' cos(z) — 3y sin(x) = ctg (z).
5.39. xy + 2y = 2.
5.40. Yy +y = sin(2x).
5.41. yrin(z) —y = 2?(2In(z) — 1).
5.42. y'sin(z) — y cos(x) = e® sin®(z).
5.43. vy +y=xln|z|

134



Szamitsuk ki az alabbi differencidlegyenleteknek az adott kezdeti feltételeket kielégito
megoldasat:

5.44. xy' + 2y = 3z, y(l) =1.
5.45. (1 -2y +ay =1, y(0) = 1.
1
5.46. Y + 2zy = 3ze ", Y (\/ln 2) = 5(1 +1n2).
1.
5.47. Y +ycos(z) = 3 sin(2x), y(0) = 1.
5.48. Y + 22y = 22, y(2) = 1.
5.49. xy +y+xe® =0, y(1) =0.
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5.2. Differencidlegyenletek. Megoldasok

5.2.1. Szeparabilis differencialegyenletek
2
5.1. a) A differencidlegyenlet altaldnos megoldasa az y = % + C gorbesereg.
A megoldasfiiggvények grafikonja (az Gn. integralgérbék) olyan paraboldk,
melyek tengelye az y tengellyel esik egybe.

5.1. abra. 5.1. feladat a) és b) rész

22
¢) Az altaldnos megoldas: y = Ce’z .
Néhany integral gorbe grafikonja:

5.2. A valtozdkat szétvalasztva:

/ sin(y) dy :/ — sin(x) do 4 c
cos3(y) cos(z) + 1
Az egyenl6ség jobboldaldn allé integralban a szamlalé a nevez6 derivéltja, ezért:

— sin(z) B
/mdx +InC =1InC(cos(x) +1).
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5.2. dbra. 5.1 feladat

A baloldalon u = cos(y) helyettesitéssel szamolunk. Ekkor du = — sin(y)dy, s igy:

sin(y) 3 u? 1
dy = — du = — = :
= K=ty

Innen a szamolas lépései:

1

m = InC(cos(z) + 1)

) B 1
2cos7(y) = InC(cos(z) + 1)

1+ cos(2y) 1
+ Yy InC(cos(z) + 1)

1 —InC(cos(z) + 1)
cos(2y) In C(cos(x) + 1)
! 1 —InC(cos(x) + 1)
y = 3 - arccos ( In C(COS(fB) + 1) )

Ez a differencidlegyenlet altalanos megoldasa. Valasszuk ki ezek koziil a keresett
partikularis megoldast!

Mivel P (27r, g) ponton athalad6é megoldast keresiik, y(27) = % kell legyen.

1—-—In2C
In2C

us
— = arccos-
2
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Azaz:

T 1—-—In2C
5 = arccos a0 )

Az egyenl6ség mindkét oldalanak cosinuséat véve:

innen:

e
azaz C' = 3 és igy

T 1—-In2C _0
9T T 7
1—-In2C = 0
1 = In2C
e = 2C

1 (1 — Ln(cos(z) + 1))

YT g areeos 1 In(cos(z) + 1)

5.3. > —1=C(x+2)%, y==1
5.4. y:#, y=0, y=1.

1-Cx
55. Cly+1)=z(x—2), y=-1.
5.6. y= C’em, y = 0.
5.7. 3y+y* =9InCuz.
5.8. y =sin(sh™'z +C), y==+l

5.9. y = sin(th 'z 4 C),
5.10. z=—In(—InC-tg¥),

5.11. y = sin(arctanz + C),

y==x1, x==1.
y=km k=0,%£1,%£2 ...

y = =+1.

C
5.12. y = tg <ln —> .
1+ 22

1
5.13. y= — - V(%22 — 1.

Cx

3
5.14. 3y? = arctan ; +C.
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5.15

5.16.

5.17.

5.18.

5.19.

5.20.

5.21

5.22.

5.23.

5.24

5.25

. yz?arctan(0+tgg>, , k=0,£1,£2,...

1
Y hmovar i1 Y

__ ¢ 1
YT oM+ 2

1
cos?y

= —101Insin(z) + C

l.a)y==zx
2. b.) 2(@®—y*)+3@?—y?)+5=0

T

y=e®3,
P —1=2In(e"+1) —2In(e + 1).
(122" + (1—y?)¥2 =1

y=e

Ly=1

. A feladatnak megfeleld abrabol leovlashatd, de az adott feltételekbdl is kovetkezik,
hogy:

OP = PN és PN1PT.
Tehat

4l

T-——as 3

5.3. dbra. 5.25 feladat
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dy

—— =tgp = cot V.
dr g
Mésrészt:
x
cotv) = —.
Y
Ezek felhasznaldsaval a gorbesereg differencidlegyenlete:
dy «x
de vy
A valtozokat szétvélasztva:
Yt — 2% =C.

Az integralgorbék olyan hiperboldk, melyeknek valds tengelye az y tengely.

5.26. Legyen I/DC\Q a gorbe ive az a és = abszcisszak kozott. A gorbe alatti teriilet

yi

5.4. dbra. 5.26 feladat

| v,
/a 1+ Pt

Ha a gorbe alatti teriilet aramyos az ivhosszal, akkor fennall:

/; y(t)dt = k /;\/1 + [y (1)) dt.
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Az egyenl6ség mindkét oldalat x szerint differencialva, az

1
y(x) =ky/1+ [y’(t)]2 il. v = iE y? — k2

differencidlegyenlethez jutunk.

A valtozokat szétvalasztva és integralva:

/d_y _ il/dx
/yQ—k:2 k
+C
A
COS l{? k

Megoldva y-ra:

y:k:coshm—zc.

Ez a differencidlegyenlet altaldnos megoldéasa, ezenkiviil partikularis megoldas az
Vy? — k? = 0 egyenletbdl adédéd y = +k is.

5.27. y=_Cea
5.28. y?> =2p(x + O)

5.2.2. Linearis differencialegyenletek

5.29. Az y = —2zy+ 2ze* differencidlegyenlethez tartozé homogén differencislegyen-
let:
Y' = —2zY.

Ezt a valtozok szétvalasztasaval oldjuk meg:

dY
nY = —22+InC

Y _ 2
azazlnc— xe.

A homogén differencidlegyenlet altalanos megoldéasa:
Y =Ce ™.

Az inhomogén differencidlegyenlet egy partikuldris megoldasat az allandé varialas
modszerével allitjuk elo:

yo=C(x)-e® yy = [C'(z) — 22 - C(x)] e v
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Behelyettesitiik az inhomogén differencidlegyenletbe:
[C'(z) — 2z - C(z)] e ™ = [=22-C(z)] e + 2ze ™

Innen:
2

C'(zx)e™ =2 - e,
ezutdn szorzunk az e* kifejezéssel: C' (x) = 2x. Az egyenléség mindkét oldalat

integralva C' = 22, igy: ,
—x

yo(x) = 22 -e

A keresett altalanos megoldas a homogén egyenlet altaldnos megoldasanak és az
inhomogén egyenlet egy partikularis megoldasanak az Gsszege:

y(a) = (2> + C) e,

, 1 — cos(x)
5.30. ¢y = — Y+ —
sin(z) sin(z)
1
A homogén egyenlet megoldasa: Y’ = — Y
sin(z)
ay 1
— = ——dx
Y sin(x)
dy 1 T
= = - dr = 2 3 g
Y 251n§c;)s 5 tg%

2
InY = In (C-tgg) .
A homogén egyenlet altalanos megoldasa tehat
Y(z)=C-tg g

Az inhomogén egyenlet megoldasa allandok varialasaval:

wolr) = Clz)-tg

Vo ety ® . C@)
) = Oy gy

Behelyettesitve a differencidlegyenletbe:

x C 1 x 1 —cos(x)
C'te = = O T S . S
&9 * 2cos? 5 sin(z) &9 * sin(x)
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5.31.

Mivel
r 11— cos(z) 2sin® £

x
sin(z)  2sinZcos 2

2

tehat
C'(z) = 1, azaz C(x) = x.

x
yo(z) = z-tg 5

A differencidlegyenlet altaldanos megoldéasa:

y(x) = (C + x)tg g

P (z, 7r) ponton athalad6 megoldést tigy kaphatunk, ha az altaldnos megoldésban

a C allandét megfelel6 modon hatéarozzuk meg:
s s s s
v(3)=m=(c+3)ui-c+3
Innen: C' = 7.
Tehat a partikularis megoldés:

y(x) = (g + .r) tgg.

1

Feladatunk az —y' = —y + 1 differencidlegyenletnek az y(0) = 7 kezdeti feltételt
X

kielégité megoldasdnak meghatarozasa.

A feladatot az y' = a(z)y + b(x) egyenlet megoldasara levezetett
y(x) _ efa(:v)dm[c + /b(w)efa(:r)dxdx]

képlettel oldjuk meg.
Elébb azonban az egyenletet 1/ egyiitthatéjaval el kell osztani:
/

Yy = —xy + .

Innen

y(z) = e I 4 /xefxdxdx] =
= e‘é[c%— /:Eezjdx] =
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22

2

e TlcteT]

Tehat

y(r) = ce
A P(0,7) ponton dtmend megolddst a 7 = ce® + 1 egyenletbdl kapjuk, ¢ =

22
yo(x) =62 + 1.

5.32. y(x) =Cez — (z° + 2)
5.33. y(z) = sin(x) 4+ C cos(z)
5.34. y(x) = 22 (e* + C)
5.35. y(z) = v [C+In(z+ Va2 —1)]
5.36. y(z) = C cos(z) — 2 cos?(z)
5.37. y(z)-chax = 3e* + &3 + C.

~ C +Insin(z) 1
5-38. y(z) = Bz 2 cos(z)

zt  C

5.40.

1
y(r) =Ce ™™ + R sin(2zx) — %COS(Q.CE).

5.41. y(x) = Clnz + 2%

5.42. y(z) = (C + €”) sin(x).
5.43. y(x) = g + %xln |z| — }lw
5.44. y(z) =

5.45. y(z) = = + m

5.46. y(z) = (22 +1)e”

5.47. y(z) = 2@ L sin(x) — 1.
5.48. y(z) =

5.49.
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