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3.1. Valós függvények . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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5.1.1. Szeparábilis differenciálegyenletek . . . . . . . . . . . . . . . . . . 132
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Bevezető

A PPKE ITK Mérnök informatikus és Molekuláris bionika szakán, valamint az ELTE
IK Informatika minor szakon és esti tagozaton oktatott Matematikai Anaĺızis tárgyakhoz
kiadott elméleti jegyzetek mellett most egy megfelelő példatárat is adunk a diákok kezébe.
Az elméleti jegyzetek a Pázmány Egyetem eKiadónál jelentek meg: Vágó Zsuzsanna:
Matematikai Anaĺızis I és II.

A diákok számára bizonyára nagy seǵıtség az adott jegyzetek feléṕıtéséhez illő fela-
datgyűjtemény. Minden feladat megoldásának végeredményét közöljük. Az elmélet ala-
posabb elsaját́ıtását igyekszünk azzal seǵıteni, hogy bizonyos feladatokhoz kapcsolódóan
részletesen kidolgozott megoldásokat is találhatnak.

Ebben a kötetben a két féléves tananyag első feléhez adunk gyakorló feladatokat. Ter-
vezzük, hogy jelen munka folytatásaként, a második félévben sorra kerülő anyagrészekhez
is hasonló példatárat álĺıtunk össze.

Szeretnénk hálás köszönetet mondani dr. Szilvay Gézáné Panni néniek, aki a Példatár
végleges formájának kialaḱıtása során biztos hátterünk volt. Lelkiismeretes lektorként a
végeredmények ellenőrzésében igen nagy seǵıtségünkre volt.

Budapest, 2013. szeptember 9.

Vágó Zsuzsanna és Csörgő István
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1. fejezet

Valós számok
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1.1. Valós számok

1.1.1. Teljes indukció

Igazoljuk a teljes indukcióval a következő álĺıtások helyességét:

1.1
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

1.2 1 · 4 + 2 · 7 + · · ·+ n · (3n + 1) = n(n + 1)2.

1.3 a)
n∏

k=1

(
1 +

1

k

)
= n + 1.

b)
n∏

k=2

(
1− 1

k

)
=

1

n
(n ≥ 2).

1.4 1 · 1! + 2 · 2! + · · ·+ n · n! = (n + 1)!− 1.

1.5 1 · 2 · 3 + 2 · 3 · 4 + · · ·+ n(n + 1)(n + 2) =
n(n + 1)(n + 2)(n + 3)

4
.

1.6 cos(x) · cos(2x) · cos 22x . . . cos 2nx =
sin(2n+1x)

2n+1 sin(x)
.

1.7 11n+2 + 122n+1 osztható 133-mal.

1.8 4n + 15n− 1 osztható 9-cel.

1.9 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

1.1.2. Egyenlőtlenségek

Oldjuk meg a következő egyenlőtlenségeket:

1.10
37− 2x

3
+ 9 ≤ 3x− 8

4
. 1.11 8x− 4x2 < 3.

1.12 x2 + 5x− 14 ≥ 0. 1.13 x2 − 3x− 4 ≤ 0.

1.14 (x3 − 1)(x− 1) ≥ 0. 1.15
x− 5

x + 3
> 0.
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1.16

√
3x− 1

x− 1
> 1.

1.17 |2x− 3| < 2.

1.18

∣∣∣∣
1

x + 1

∣∣∣∣ ≤ 1. 1.19
|x + 2|
|x− 1| ≥ 1.

1.20 |3 lg x− 1| < 2.
1.21 sin |2x− 4| <

√
3

2
.

1.1.3. Közepek

Igazoljuk a számtani és mértani közép közti egyenlőtlenség felhasználásával a következő
álĺıtásokat:

1.22 a)

(
1 +

1

n

)n

<

(
1 +

1

n + 1

)n+1

(n ∈ N)

b)

(
1 +

1

n

)n

< 4 (n ∈ N)

1.23

(
n∑

i=1

ai

)
·
(

n∑
i=1

1

ai

)
≥ n2 (n ∈ N, ai > 0)

1.24 n ! <

(
n + 1

2

)n

(n ∈ N, n ≥ 2)

1.25 a) (a + b) · (b + c) · (c + a) ≥ 8abc (a, b, c > 0)

b) (a + b) · (b + c) · (c + a) ≤ 8

27
· (a + b + c)3 (a, b, c > 0)

Oldjuk meg a számtani és mértani közép közti egyenlőtlenség felhasználásával az
alábbi szélsőérték-feladatokat.

1.26 Adott k > 0 kerületű téglalapok közül melyiknek a területe a legnagyobb?

1.27 Egy folyó partján adott l > 0 hosszúságú keŕıtéssel egy téglalap alakú tel-
ket szeretnénk elkeŕıteni úgy, hogy a telek egyik határa a folyópart (ott nem kell
keŕıtés). Hogyan válasszuk meg a téglalap oldalait, hogy a telek területe a lehető
legnagyobb legyen?

1.28 Hogyan válasszuk meg egy felülről nyitott, henger alakú edény méreteit, hogy
elkésźıtéséhez a lehető legkevesebb anyagra legyen szükség?
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További közepekkel kapcsolatos feladatok:

1.29 Igazolja a mértani és a harmonikus közép közti egyenlőtlenségről szóló tételt:

n
1

a1

+ . . . +
1

an

≤ n
√

a1 · . . . · an (n ∈ N, n ≥ 2, ai > 0),

ahol egyenlőség akkor és csak akkor van, ha a1 = . . . = an.

Megjegyzés: a bal oldalon álló mennyiséget az a1, . . . , an számok harmonikus közepé-
nek nevezzük.

1.30 Igazolja a számtani és a négyzetes közép közti egyenlőtlenségről szóló tételt:

a1 + . . . + an

n
≤

√
a2

1 + . . . + a2
n

n
(n ∈ N, n ≥ 2, ai ≥ 0),

és egyenlőség akkor és csak akkor van, ha a1 = . . . = an.

1.31 Legyen n ∈ N, n ≥ 2, és jelölje m az a1, . . . , an pozit́ıv számok közül a legkiseb-
bet, M pedig a legnagyobbat. Jelölje továbbá Hn ugyanezen számok harmonikus
közepét, Gn a mértani közepét, An a számtani közepét, Qn pedig a négyzetes
közepét. Igazolja, hogy mind a négy közép m és M közé esik, azaz, hogy

m ≤ Hn ≤ M, m ≤ Gn ≤ M, m ≤ An ≤ M, m ≤ Qn ≤ M ,

továbbá ha az a1, . . . , an számok nem mind egyenlők, akkor

m < Hn < M, m < Gn < M, m < An < M, m < Qn < M .

1.1.4. Számhalmazok

Vizsgáljuk meg az alábbi halmazokat korlátosság, alsó és felső határ, legkisebb és legna-
gyobb elem szempontjából:

1.32 H =

{
4n− 2

2n + 3
| n ∈ N

}

1.33 H =

{
5n + 3

3n + 4
| n ∈ N

}

1.34 H =

{
n + 3

2n + 1
| n ∈ N

}

1.35 H =

{
3n + 5

n− 3
| n ∈ N, n ≥ 4

}
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1.2. Megoldás. Valós számok

1.2.1. Teljes indukció

1.3 a) n = 1 esetén az álĺıtás igaz, mivel mindkét oldal értéke 2.

Az indukciós lépés:

n+1∏

k=1

(
1 +

1

k

)
=

(
n∏

k=1

(
1 +

1

k

))
·
(

1 +
1

n + 1

)
.

Az indukciós feltevés miatt az első tényezőben álló produktum helyére n + 1
ı́rható, ezért a folytatás:

(n + 1) ·
(

1 +
1

n + 1

)
= n + 2,

ami az álĺıtás n + 1-re való bizonýıtását jelenti.

b) Az a) részhez hasonlóan igazolható, de vigyázzunk, az indukció n = 2-ről
indul.

n = 2 esetén az álĺıtás igaz, mivel mindkét oldal értéke
1

2
.

Az indukciós lépés:

n+1∏

k=2

(
1− 1

k

)
=

(
n∏

k=2

(
1− 1

k

))
·
(

1− 1

n + 1

)
.

Az indukciós feltevés miatt az első tényezőben álló produktum helyére
1

n
ı́r-

ható, ezért a folytatás:

1

n
·
(

1− 1

n + 1

)
=

1

n
· n + 1− 1

n + 1
=

1

n + 1
,

ami az álĺıtás n + 1-re való bizonýıtását jelenti.

1.6 n = 0-ra az egyenlőség egy ismert trigonometrikus azonosság átrendezése.

Az indukciós lépés:

cos x cos 2x cos 22x . . . cos 2nx cos 2n+1x =
sin 2n+1x cos 2n+1x

2n+1 sin x
=

=
sin 2n+2x

2n+2 sin x
.

Az első egyenlőség az indukciós feltételből, a második a 2 cos y sin y = sin 2y azo-
nosságból (y = 2n+1x helyetteśıtéssel) adódik.

8



1.7

11n+2 + 122n+1 = 121 · 11n + 12 · 144n ≡ (121 + 12) · 11n ≡ 0 (mod133)

Az első kongruencia 144 ≡ 11 (mod 133) miatt adódik.

1.2.2. Egyenlőtlenségek

1.10. x ≥ 56 1.11. x <
1

2
, x >

3

2

1.12. x ≤ −7, x ≥ 2 1.13. −1 ≤ x ≤ 4

1.14. −∞ < x < ∞ 1.15. x > 5, x < 3

1.16. Az egyenlőtlenség azokra az x valós számokra van értelmezve, melyekre

x− 1 6= 0 és
3x− 1

x− 1
≥ 0.

Ezen a tartományon az egyenlőtlenség ekvivalens az alábbival:

3x− 1

x− 1
> 1.

0-ra redukálás és rendezés után kapjuk, hogy

2x

x− 1
> 0.

Ennek első esete az, ha 2x > 0 és x − 1 > 0, második esete pedig ha 2x < 0 és
x − 1 < 0. Az első eset megoldása x > 1, a második eseté pedig x < 0. Mivel

ezekre az x-ekre teljesül, hogy
3x− 1

x− 1
> 1, ezért ezek az x-ek mind benne vannak

az egyenlőtlenség értelmezési tartományában. Tehát a feladat megoldása:

x < 0 vagy x > 1.

1.17.
1

2
< x < 5

1.18. x ≥ 0 vagy x ≤ −2 1.19. x ≥ −1
2

1.20. 10−1/3 < x < 10
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1.21. A z egyenlőtlenség minden valós számra értelmezett. Először a trigonometrikus
részt oldjuk meg, azaz y = |2x − 4| helyetteśıtés után (új ismeretlen bevezetése)
megoldjuk a

sin y <

√
3

2

egyenlőtlenséget. A középiskolában megismert módszerek valamelyikét alkalmazva
(egységkör vagy függvény ábrázolás) ennek megoldása:

2π

3
+ 2kπ < y < 2π +

π

3
+ 2kπ (k ∈ Z).

Ezek után egy paraméteres abszolút-értékes egyenlőtlenség-rendszert kell megolda-
nunk, ahol k a paraméter:

2π

3
+ 2kπ < |2x− 4| < 2π +

π

3
+ 2kπ (k ∈ Z).

Keressük először a 2x−4 ≥ 0, azaz az x ≥ 2 feltételt kieléǵıtő megoldásokat. Ekkor
az abszolút érték elhagyható, és a

2π

3
+ 2kπ < 2x− 4 < 2π +

π

3
+ 2kπ (k ∈ Z).

lineáris egyenlőtlenségekhez jutunk. Ezek rendezéssel könnyen megoldhatók:

2 +
2π

6
+ kπ < x < 2 +

7π

6
+ kπ (k ∈ Z).

Ezek a nýılt intervallumok k ≥ 0 esetén teljes egészében a [2, +∞) intervallumba
esnek, k < −1 esetben nincs közös pontjuk a [2, +∞) intervallummal, k = −1

esetben pedig a közös rész: 2 < x < 2 +
π

6
.

Ennek alapján az x ≥ 2 feltételt kieléǵıtő megoldások:

2 < x < 2 +
π

6
vagy 2 +

2π

6
+ kπ < x < 2 +

7π

6
+ kπ (k ∈ Z, k ≥ 0).

Második esetként keressük a 2x− 4 < 0 feltételt kieléǵıtő megoldásokat. Ekkor az
abszolút érték úgy hagyható el, hogy a benne szereplő kifejezés ellentettjét vesszük:

2π

3
+ 2kπ < −2x + 4 < 2π +

π

3
+ 2kπ (k ∈ Z).

Ezek a lineáris egyenlőtlenség-rendszerek rendezéssel könnyen megoldhatók:

2− 7π

6
− kπ < x < 2− 2π

6
− kπ (k ∈ Z).
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Ezek a nýılt intervallumok k ≥ 0 esetén teljes egészében a [−∞, 2) intervallumba
esnek, k < −1 esetben nincs közös pontjuk a [−∞, 2) intervallummal, k = −1

esetben pedig a közös rész: 2− π

6
< x < 2.

Ennek alapján az x < 2 feltételt kieléǵıtő megoldások:

2− π

6
< x < 2 vagy 2− 7π

6
− kπ < x < 2− 2π

6
− kπ (k ∈ Z, k ≥ 0).

A két esetben kapott megoldások halmazának egyeśıtése után kapjuk a feladat
megoldását:

2− π

6
< x < 2 +

π

6
vagy 2− 7π

6
− kπ < x < 2− 2π

6
− kπ

vagy

2 +
2π

6
+ kπ < x < 2 +

7π

6
+ kπ,

ahol k ≥ 0 egész szám.

1.2.3. Közepek

1.22 a) Alkalmazzuk a számtani és mértani közép közti egyenlőtlenséget az alábbi
n + 1 db számra:

1 +
1

n
, . . . , 1 +

1

n︸ ︷︷ ︸
n db

, 1

b) Alkalmazzuk a számtani és mértani közép közti egyenlőtlenséget az alábbi
n + 2 db számra:

1 +
1

n
, . . . , 1 +

1

n︸ ︷︷ ︸
n db

,
1

2
,

1

2

1.23 Alkalmazzuk a számtani és mértani közép közti egyenlőtlenséget az a1, . . . , an

számokra, továbbá az
1

a1

, . . . ,
1

an

számokra.

1.24 Alkalmazzuk a számtani és mértani közép közti egyenlőtlenséget az 1, . . . , n szá-
mokra, majd használjuk fel az első n természetes szám összegére tanult képletet.

1.25 a) Alkalmazzuk a két szám számtani és mértani közepe közti egyenlőtlenséget az
alábbi számpárokra:

a, b b, c c, a
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b) Alkalmazzuk a három szám számtani és mértani közepe közti egyenlőtlenséget
az a + b, b + c, c + a számokra.

1.26 Ha a téglalap oldalait x és y jelöli, akkor az xy maximumát keressük az

x > 0, y > 0, 2x + 2y = k

feltételek mellett. Alkalmazzuk a számtani és mértani közép közti egyenlőtlenséget
az x és y számokra:

xy ≤
(

x + y

2

)2

=

(
k/2

2

)2

=
k2

16
.

Azonban a jobb oldalon álló
k2

16
mennyiség állandó, ezért a bal oldalon álló xy

szorzat akkor és csak akkor veszi fel a legnagyobb értékét, ha a számtani és mértani
közép közti egyenlőtlenségben egyenlőség van, azaz, ha x = y. Az optimális téglalap

tehát a
k

4
oldalú négyzet.

1.27 Jelölje a téglalapnak a folyóval párhuzamos oldalát x, a folyóra merőleges oldalát
pedig y. Keressük az xy kifejezés maximumát az

x > 0, y > 0, x + 2y = l

feltételek mellett. Alaḱıtsuk át az xy kifejezést, majd alkalmazzuk a számtani és
mértani közép közti egyenlőtlenséget az x és a 2y számokra:

xy =
1

2
· x · 2y ≤ 1

2
·
(

x + 2y

2

)2

=
1

2
·
(

l

2

)2

=
l2

8
.

Azonban a jobb oldalon álló
l2

8
mennyiség állandó, ezért a bal oldalon álló xy szorzat

akkor és csak akkor veszi fel a legnagyobb értékét, ha a számtani és mértani közép
közti egyenlőtlenségben egyenlőség van, azaz, ha x = 2y. Az optimális téglalap

oldalai tehát x =
l

2
és y =

l

4
.

1.28 Jelölje a henger sugarát r, magasságát m. Keressük az A = r2π + 2rπm kifejezés
minimumát az

r > 0, m > 0, r2πm = V

feltételek mellett. Alaḱıtsuk át az A kifejezést, majd alkalmazzuk a számtani és
mértani közép közti egyenlőtlenséget az r2π, rπm, rπm számokra:

A = r2π + 2rπm = 3 · r2π + rπm + rπm

3
≥ 3 · 3

√
r2π · rπm · rπm .

12



A jobb oldalt átalaḱıtjuk:

3 · 3
√

r2π · rπm · rπm = 3 · 3
√

r4π3m2 = 3 · 3
√

(r2πm)2π = 3 · 3
√

V 2π .

Látható, hogy a jobb oldalon álló 3 · 3
√

V 2π mennyiség állandó, ezért a minimalizá-
landó A kifejezés akkor és csak akkor veszi fel a legkisebb értékét, ha a számtani
és mértani közép közti egyenlőtlenségben egyenlőség van, azaz, ha

r2π = rπm = rπm, azaz, ha r = m.

Az optimális edény méretei tehát r = m = 3

√
V

π
.

1.29 Alkalmazzuk a számtani és mértani közép közti egyenlőtlenséget az

1

a1

,
1

a2

, . . . ,
1

an

számokra, majd rendezzük át a kapott eredményt.

1.30 A bizonýıtandó egyenlőtlenséget ekvivalens átalaḱıtásokkal az alábbi alakra hozzuk:

(a1 + . . . + an)2 ≤ n · (a2
1 + . . . + a2

n)

Végezzük el a bal oldalon a négyzetre emelést, majd rendezzük az egyenlőtlenséget:

a2
1 + . . . + a2

n +
n−1∑
i=1

n∑
j=i+1

2aiaj ≤ n · (a2
1 + . . . + a2

n)

0 ≤ (n− 1) ·
n∑

i=1

a2
i −

n−1∑
i=1

n∑
j=i+1

2aiaj

A jobb oldalon szereplő különbség első tagja átrendezhető az alábbi formára:

n−1∑
i=1

n∑
j=i+1

(a2
i + a2

j) ,

ugyanis

n−1∑
i=1

n∑
j=i+1

(a2
i + a2

j) =
n−1∑
i=1

n∑
j=i+1

a2
i +

n−1∑
i=1

n∑
j=i+1

a2
j =

n−1∑
i=1

n∑
j=i+1

a2
i +

n∑
j=2

j−1∑
i=1

a2
j =

=
n−1∑
i=1

(n− i) · a2
i +

n∑
j=2

(j − 1) · a2
j = (n− 1) · a2

1 +
n−1∑
i=2

(n− i + i− 1) · a2
i +

+ (n− 1) · a2
n = (n− 1) ·

n∑
i=1

a2
i .

13



Ennek felhasználásával a bizonýıtandó egyenlőtlenség ı́gy ı́rható:

0 ≤
n−1∑
i=1

n∑
j=i+1

(a2
i + a2

j)−
n−1∑
i=1

n∑
j=i+1

2aiaj

0 ≤
n−1∑
i=1

n∑
j=i+1

(a2
i + a2

j − 2aiaj)

0 ≤
n−1∑
i=1

n∑
j=i+1

(ai − aj)
2

Ez pedig nyilvánvalóan igaz (négyzetösszeg ≥ 0), és az egyenlőségre vonatkozó
álĺıtás igazolása is könnyen kiolvasható belőle.

Megjegyzés : A bizonýıtás teljesen elemi volt, de mégis kissé bonyolult az összeg
átrendezése miatt. A számtani és a négyzetes közép közti egyenlőtlenség lényegesen
egyszerűbben igazolható a lineáris algebrában később sorra kerülő Cauchy-egyen-
lőtlenség alkalmazásával.

1.31 Használjuk fel, hogy i = 1, . . . , n esetén m ≤ ai ≤ M , továbbá, ha az a1, . . . , an

számok nem mind egyenlők, akkor ezek között az egyenlőtlenségek között vannak
olyanok, amelyek szigorú formában teljesülnek.

1.2.4. Számhalmazok

1.32 Mivel
4n− 2

2n + 3
= 2− 8

2n + 3
, ezért

H =

{
4n− 2

2n + 3
| n ∈ N

}
=

{
2− 8

2n + 3
| n ∈ N

}
.

Ebből látható, hogy n növelésével a halmaz elemei egyre nagyobbak. Ezért a
legkisebb elemet n = 1-re kapjuk:

min H = 2− 8

2 · 1 + 3
=

2

5
.

Mivel van minimum, ez egyben a halmaz legnagyobb alsó korlátja is: inf H =
2

5
.A

halmaz alulról korlátos.

Most bebizonýıtjuk, hogy a halmaz legkisebb felső korlátja 2, azaz, hogy sup H = 2.
Ez két lépésben történik: először belátjuk, hogy a 2 felső korlát, majd pedig azt,

14



hogy bármely, 2-nél kisebb szám már nem felső korlát. Az első lépés igazolása

egyszerű: mivel
8

2n + 3
> 0, ezért

2− 8

2n + 3
< 2 (n ∈ N) .

A második lépés igazolásához vegyünk egy tetszőleges ε > 0 számot, és mutassuk
meg, hogy a 2− ε szám nem felső korlátja H-nak. Ehhez elegendő egyetlen olyan
H-beli elem létezését bizonýıtani, amely nagyobb, mint 2− ε:

2− 8

2n + 3
> 2− ε

Ezt az egyenlőtlenséget átrendezve kapjuk, hogy

n >
1

2
·
(

8

ε
− 3

)
.

Ilyen n ∈ N szám pedig létezik az arkhimédeszi axióma miatt.

Mivel találtunk felső korlátot, a halmaz felülről korlátos.

Mivel a halmaz minden eleme kisebb, mint 2, ezért sup H /∈ H, amiből következik,
hogy a halmaznak nincs maximuma: @max H.

1.33 A halmaz alulról korlátos, inf H = min H =
8

7
, továbbá a halmaz felülről korlátos,

sup H =
5

3
, maximuma nincs.

1.34 Mivel
n + 3

2n + 1
=

1

2
+

5

4n + 2
, ezért

H =

{
n + 3

2n + 1
| n ∈ N

}
=

{
1

2
+

5

4n + 2
| n ∈ N

}
.

Ebből látható, hogy n növelésével a halmaz elemei egyre kisebbek. Ezért a legna-
gyobb elemet n = 1-re kapjuk:

max H =
1

2
+

5

4 · 1 + 2
=

4

3
.

Mivel van maximum, ez egyben a halmaz legkisebb felső korlátja is: sup H =
4

3
. A

halmaz felülről korlátos.

Most bebizonýıtjuk, hogy a halmaz legnagyobb alsó korlátja
1

2
, azaz, hogy inf H =

1

2
. Ez két lépésben történik: először belátjuk, hogy az

1

2
alsó korlát, majd pedig
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azt, hogy bármely,
1

2
-nél nagyobb szám már nem alsó korlát. Az első lépés igazolása

egyszerű: mivel
5

4n + 2
> 0, ezért

1

2
+

5

4n + 2
>

1

2
(n ∈ N) .

A második lépés igazolásához vegyünk egy tetszőleges ε > 0 számot, és mutassuk

meg, hogy az
1

2
+ ε szám nem alsó korlátja H-nak. Ehhez elegendő egyetlen olyan

H-beli elem létezését bizonýıtani, amely kisebb, mint
1

2
+ ε:

1

2
+

5

4n + 2
<

1

2
+ ε

Ezt az egyenlőtlenséget átrendezve kapjuk, hogy

n >
1

4
·
(

5

ε
− 2

)
.

Ilyen n ∈ N szám pedig létezik az arkhimédeszi axióma miatt.

Mivel találtunk alsó korlátot, a halmaz alulról korlátos.

Mivel a halmaz minden eleme nagyobb, mint
1

2
, ezért inf H /∈ H, amiből következik,

hogy a halmaznak nincs minimuma: @min H.

1.35 Vigyázzunk, az n nem 1-től, hanem 4-től indul.

A halmaz felülről korlátos, sup H = max H = 17, továbbá a halmaz alulról korlátos,
inf H = 3, minimuma nincs.
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2. fejezet

Számsorozatok, számsorok
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2.1. Számsorozatok és számsorok

2.1.1. Számsorozat megadása, határértéke

Írjuk fel képlettel az alábbi sorozatok n-dik elemét! Vizsgáljuk meg, hogy a sorozat
monoton, korlátos, illetve konvergens-e!

2.1.

1, 4, 9, 16, . . .

2.2.

1

4
,

2

9
,

3

16
,

4

25
, . . .

2.3.

−1, 2, 5, 8, . . .

2.4.

1, −1

2
,

1

3
, −1

4
, . . .

2.5.

−1, 1, −1, 1, −1, . . .

2.6.

0, 9; 0, 99; 0, 999; 0, 9999; . . .

2.7.

1, −3

2
,

5

3
, −7

4
, . . .

2.8.

1,
2

3
, 1,

3

4
, 1,

4

5
, . . .

Írjuk fel az alábbi, képlettel megadott sorozatok első néhány elemét! Vizsgáljuk meg,
hogy a sorozat monoton-e, korlátos-e, konvergens-e!

2.9. an = 3n 2.10. an = (−1)n

2.11. an = 2 + 4n 2.12. an = − 3

n2

2.13. an = 3n
2.14. an =

1

4n − 1

Határozzuk meg az alábbi sorozatok határértékét:

2.15

an = 2n2 − 7n + 4

2.16 an =
n8 − 9

n9 + 12n2 + 5

18



2.17 an =
3n− 4

5n + 1
2.18 an =

2n2 − 7n + 4

3n3 + 5n− 8

2.19 an =
2n3 − 7n + 4

3n2 + 5n− 8
2.20 an =

3n5 + 4n− 2

7n5 + 3n3

2.21 an =
2n2 − 7n + 4

3n2 + 5n− 8
2.22 an =

n2 − 1

n + 5

2.23 an =
−n3 + 10n2 + 25

7n− 5

Határozzuk meg az alábbi sorozatok határértékét:

2.24 an =
√

n + 1−√n 2.25 an =
√

n + 1−√n− 1

2.26 an =
√

n2 + 1−√n2 + n 2.27 an =
√

n(
√

n + 1−√n)

2.28 an = n 4
√

n4 + n2 − n2 2.29 an =
√

n + 4
√

n−
√

n− 10
√

n

2.30 an =
√

n2 + n + 1−√n2 − n + 1

2.31 an =
(n + 1)3 − (n− 1)3

(n + 1)2 + (n− 1)2

2.32 an =
(n + 2)! + (n + 1)!

(n + 3)!
2.33 an = n(

√
n2 − 1− n)

2.34 an =
1 + 2 + · · ·+ n

n
2.35 an =

1

2
+

1

4
+ · · ·+ 1

2n

2.36 an =
9

4
+

27

16
+ · · ·+ 3n+1

22n
2.37 an =

1 + 2 + · · ·+ n

(n + 1)(n + 2)

2.38 an =
1 + 3 + · · ·+ (2n− 1)

2 + 4 + · · ·+ 2n
2.39 an =

1 + 4 + 9 + · · ·+ n2

n3

2.40 an =
1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n + 1)

2.41

an =
1

1 · 3 +
1

3 · 5 +
1

5 · 7 + · · · 1

(2n− 1)(2n + 1)
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2.42 an =
3
√

n3 + 2n + 1

n + 1
2.43 an =

3
√

n2 + n

n + 1

2.44 an = n
√

2n + 5n 2.45 an = n
√

n6 + 2n

2.46 an =
n

√
n3 + 2n2

32n + 7n
2.47 an =

n

√
23n+1 + n4

8n + n2

Vizsgáljuk meg, hogy konvergensek-e az alábbi sorozatok. Ha igen, akkor adjunk meg
olyan N = N(ε) küszöbindexet, melynél nagyobb indexű elemek (a számsorozatban) az
elő́ırt ε-nál kisebb hibával közeĺıtik meg a határértéket.

2.48

an =
4n + 3

5n− 1
ε = 10−3

2.49

an =
n− 1

2n + 1
ε = 10−5

2.50

an =
4n + 1

7− 5n
ε = 10−4

2.51

an =
2

(n + 1)2
ε = 10−4

2.52

an =
n
√

2 ε = 10−1

2.53

an =
1

3n + 1
ε = 10−6

2.54

an =
3n2 + 1

16− n2
ε = 10−4

2.55

an =

√
n + 4

n
ε = 10−1

2.56

an =
2n5 − 7

3n5 + n4 − 2n3 − 1
ε = 10−3

Vizsgáljuk meg, hogy alábbi, +∞-be tartó, sorozatokban milyen N = N(K) küszöb-
indextől kezdve lesznek a sorozat elemei az adott K számnál nagyobbak.

2.57

an = n2 K = 106

2.58

an =
n− 1√
n + 1

K = 6500
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2.59

an =
5n

3n+2
K = 1030

2.60

an =
3n

2n+1
K = 1020

Határozzuk meg az alábbi sorozatok határértékét.

2.61

an =

(
1 +

3

n

)n

2.62

an =

(
1− 2

n

)n

2.63

an =

(
n + 2

n

)n

2.64

an =

(
n + 1

n− 1

)n

2.65

an =

(
n− 1

n

)n+1

2.66

an =

(
2n + 1

2n− 1

)n

2.67

an =

(
1 +

1

n

)2n+3

2.68

an =

(
n + 2

n + 3

)3n

2.69

an =

(
2n + 1

2n− 3

)3n−2

2.70

an =

(
3n− 4

3n + 5

)4n+2

2.71

an =

(
n + 1

2n− 1

)3n+1

2.72

an =

(
1 +

1

2n − 1

)2n+3+3

2.73

an =

(
1− 1

n

)n2

2.74

an =

(
1 +

1

n2

)n
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2.75

an =

[
1 +

(
1

2

)n]2n

2.76

an =

(
n2 − 1

n2

)n4

2.77

an =
nn+1

(n + 1)n

2.78

an =
1 · 2 + 2 · 3 + · · ·+ n(n + 1)

n3

Határozzuk meg az alábbi rekurźıv sorozatok határértékét.

2.79 an =
1

4
+ a2

n−1, a0 = 0 2.80 an =
2

1 + an−1

, a0 = 0

2.81 an+1 =
√

2 + an, a0 =
√

2 2.82 an+1 =
a2

n + 4

4
, a0 = 1

2.1.2. Számsorok összege

Számı́tsuk ki a következő sorok összegét.

2.83
∞∑

n=0

(
2

3

)n

2.84
∞∑

n=0

(
k2

k2 + 1

)n

, k ∈ R rögz.

2.85
∞∑

n=1

1

n2 + 3n
2.86

∞∑
n=6

5

n2 − 5n

2.87
∞∑

n=0

1

4n2 − 1
2.88

∞∑
n=1

1

n3 + 3n2 + 2n

2.89
∞∑

n=0

4n + 5n

32n
2.90

∞∑
n=1

1

n(n + 1)

2.91 Írjuk fel közönséges tört alakban az alábbi tizedes törteket:

s = 1.7 972 972 972 ... t = 0.78 123 123 ...

Konvergensek-e az alábbi végtelen sorok?
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2.92

∞∑
n=1

2n

n + 1

2.93

∞∑
n=1

0.5n

n

2.94

∞∑
n=1

(
1− 1

n

)n

2.95

∞∑
n=1

10n + 2

n2 + 1

2.96
∞∑

n=1

n2 + 1

10n + 2

2.97

∞∑
n=1

sin2 n

n(n + 1)

2.98

∞∑
n=2

3n

3n+2 − 27

2.99

∞∑
n=0

3n

4n + 2

2.100
∞∑

n=1

(
1 +

1

n

)n

2.101

∞∑
n=0

3n

2.102
∞∑

n=0

3n

2n + 1

2.103

∞∑
n=1

n · sin 1

n

2.104
∞∑

n=1

5n

n!

2.105

∞∑
n=1

3n

n

2.106

∞∑
n=1

(
n

n + 1

)n2

2.107

∞∑
n=1

3n

n2
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2.108
∞∑

n=1

3n

n · 2n

2.109

∞∑
n=2

1

n · ln n

2.110

∞∑
n=1

3n

n · 4n

2.111

∞∑
n=3

(
n

2

)

(
n

3

)

2.112
∞∑

n=2

1

n ln2 n

2.113

∞∑
n=1

(n!)2

(2n)!

2.114
∞∑

n=1

(
1 + n

1 + n2

)2

2.115

∞∑

k=1

sin2 k

k(k + 1)

2.116

∞∑
n=1

√
n + 1−√n√

n

2.117

∞∑
n=1

(−1)n(
√

n + 1−√n)

2.118

∞∑
n=1

(−1)n(n + 1)

(n + 2)(2n + 1)

2.119

1

3
+

23

32
+

33

33
+

43

34
+

53

35
+ . . .
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2.120

∞∑

k=0

sin kπ
2

k

2.121

∞∑
n=1

(
n

2

)

(
n

4

)

2.122

∞∑

k=1

ak ahol ak =





− 1

k + 2
ha k páratlan

1

k
ha k páros

2.123

∞∑
n=1

n2 + 1

(−2)n(n2 − n + 1)
.

2.124
∞∑

n=1

1

n(n + 3)

2.125

∞∑
n=1

(−1)n

(
n

n + 1

)n

2.126

∞∑
n=1

(
√

2)n

(2n + 1)!

2.1.3. Abszolút- ill. feltételes konvergencia

Vizsgáljuk meg, hogy az alábbi végtelen sorok melyik t́ıpusba tartoznak: abszolút kon-
vergens, feltételesen konvergens vagy divergens?

2.127
∞∑

n=0

(−1)n n + 1

n2 − 2

2.128

∞∑
n=0

(−1)n 1

n3 + 1
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2.129
∞∑

n=0

(−1)n

3n + 2

2.130

∞∑
n=1

(−1)n

3
√

n2

2.131

1

2
− 1√

2
+

1

3
− 1√

3
+ . . . +

1

n
− 1√

n
+ . . .

2.132
∞∑

n=2

(−1)n 1

ln n

2.133

∞∑
n=1

sin(nπ
2

)

n

2.134
∞∑

n=1

sin(nπ
2

)

n2

2.135

∞∑
n=1

(−1)n

n

2.1.4. Alkalmazás: Geometriai feladatok

2.136 Képezzünk sokszöget egy szabályos a oldalú, T területű háromszögből a követ-
kező rekurźıv eljárással:

1. Osszunk minden oldalt 3 egyenlő részre.

2. Minden középső oldal szakaszra illesszünk szabályos háromszöget.

Ismételjük ezeket a lépéseket. Az ı́gy kapott sokszög az úgynevezett Koch-görbe.
Mennyi a Koch görbe kerülete és területe?

2.1. ábra. A Koch görbe konstrukciójának 2. 3. és 4. lépése.
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2.137 Egységnyi területű szabályos háromszögbe béırjuk a középvonalai által alkotott
háromszöget. Ezután vesszük az eredetivel egyállású részeket es azokba is béırjuk
a kozépvonalai által alkotott háromszögeket. Ezt rekurźıvan ismételjük. A kapott
alakzat a SIERPINSKI háromszög.

A középvonalak által alkotott háromszögek összterülete hányadik iteráció után ha-
ladja meg a 175/256 értéket?

Mennyi a középvonalak által alkotott háromszögek területeinek összege?

2.2. ábra. A Sierpienski háromszög konstrukciójának 1. 2. és 3. lépése.
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2.2. Megoldás. Számsorozatok

2.2.1. Számsorozat megadása, határértéke

2.1 A sorozat monoton növő (sőt: szigorúan monoton növő). Alulról korlátos, felülről
nem korlátos, tehát nem korlátos. Továbbá divergens, +∞-be tart. an = n2 .

2.2 A sorozat monoton fogyó, (sőt: szigorúan monoton fogyó). Alulról is és felülről is

korlátos, tehát korlátos. Továbbá konvergens, határértéke: 0. an =
n

(n + 1)2
.

2.3 A sorozat monoton növő (sőt: szigorúan monoton növő). Alulról korlátos, felülről
nem korlátos, tehát nem korlátos. Továbbá divergens, +∞-be tart. an = −4+3n .

2.4 A sorozat nem monoton. Alulról is és felülről is korlátos, tehát korlátos. Továbbá

konvergens, határértéke: 0. an = (−1)n+1 · 1

n
.

2.5 A sorozat nem monoton. Alulról is és felülről is korlátos, tehát korlátos. Továbbá
divergens, határértéke nincs. an = (−1)n .

2.6 A sorozat monoton növő, (sőt: szigorúan monoton növő). Alulról is és felülről is
korlátos, tehát korlátos. Továbbá konvergens, határértéke: 1. an = 1− 10−(n+1) .

2.7 A sorozat nem monoton. Alulról is és felülről is korlátos, tehát korlátos. Továbbá

divergens, határértéke nincs. an = (−1)n+1 · 2n− 1

n
.

2.8 A sorozat nem monoton. Alulról is és felülről is korlátos, tehát korlátos. Továbbá
konvergens, határértéke: 1.

Megjegyzés. A 2.8 feladatban szereplő (an) sorozat a (bn = 1) és a

(
cn =

n + 1

n + 2

)

sorozatok ”̈osszefésülésével” keletkezett. Mivel páratlan n-ekre an = 1, páros n-ekre
pedig

an =
n
2

+ 1
n
2

+ 2
=

n + 2

n + 4
,

ezért olyan törtet kell késźıtenünk, melynek nevezője n + 4, számlálója pedig páratlan
n-re n + 4, páros n-re pedig n + 2. Könnyen kaphatunk ilyen számlálót: n + 3 + (−1)n.

2.15 ∞.

2.16

lim
n→∞

n8 − 9

n9 + 12n2 + 5
= lim

n→∞

1− 9

n8

n +
12

n6
+

5

n8

= 0 .
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2.17

lim
n→∞

3n− 4

5n + 1
= lim

n→∞

3− 4

n

5 +
1

n

=
3

5
.

2.18 0. 2.19 ∞.

2.20
3

7
. 2.21

2

3
.

2.22 ∞. 2.23 −∞.

2.24 0.

2.25

lim
n→∞

(
√

n + 1−√n− 1) = lim
n→∞

(
√

n + 1−√n− 1) ·
√

n + 1 +
√

n− 1√
n + 1 +

√
n− 1

=

lim
n→∞

(n + 1)− (n− 1)√
n + 1 +

√
n− 1

= lim
n→∞

2√
n + 1 +

√
n− 1

= 0 .

2.26 −1

2
. 2.27

1

2
.

2.28
1

4
. 2.29 7.

2.30 1. 2.31 3.

2.32

lim
n→∞

(n + 2)! + (n + 1)!

(n + 3)!
= lim

n→∞
(n + 1)!((n + 2) + 1)

(n + 1)!(n + 2)(n + 3)
=

= lim
n→∞

n + 3

n2 + 5n + 6
= 0 .

2.33 −1

2
.

2.34

lim
n→∞

1 + 2 + · · ·+ n

n
= lim

n→∞

(1 + n)n

2
n

= lim
n→∞

1 + n

2
= ∞ .
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2.35 2. 2.36 9.

2.37
1

2
. 2.38 1.

2.39
1

3
.

2.40 Teljes indukcióval belátható, hogy

1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n + 1)
=

n

n + 1
.

Ezért
lim

n→∞
an = lim

n→∞
n

n + 1
= 1 .

2.41
1

2
. 2.42 1.

2.43 0. 2.44 5.

2.45 2. 2.46
1

9
.

2.47 1.

Megjegyzés. A 2.48 - 2.60 feladatok végeredményében szereplő N természetesen egy
lehetséges küszöbindexet jelöl.

2.48 Konvergens, N = 760.

2.49 lim
n→∞

n− 1

2n + 1
=

1

2
, továbbá

∣∣∣∣an − 1

2

∣∣∣∣ =

∣∣∣∣
n− 1

2n + 1
− 1

2

∣∣∣∣ =

∣∣∣∣
2n− 2− 2n− 1

4n + 2

∣∣∣∣ =

∣∣∣∣
−3

4n + 2

∣∣∣∣ =
3

4n + 2
.

Tehát olyan küszöböt kell találni, hogy a nála nagyobb n-ekre

3

4n + 2
< 10−5

teljesüljön. Ezt az egyenlőtlenséget megoldva kapjuk, hogy n >
3 · 105 − 2

4
, tehát

N = 74999 egy jó küszöbindex.
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2.50 Konvergens, N = 13201. 2.51 Konvergens, N = 140.

2.52 Ismert tétel alapján lim
n→∞

n
√

2 = 1.

Továbbá | n
√

2 − 1| = n
√

2 − 1 < 10−1, azaz n
√

2 < 1.1. Mindkét oldal 2-es alapú
logaritmusát véve kapjuk, - a logaritmusfüggvény szigorú monotonitása miatt -

hogy
1

n
< log2 1.1, amiből n >

1

log2 1, 1
≈ 7.272. Ezért N = 7 egy jó küszöbindex.

2.53 Konvergens, N = 12. 2.54 Konvergens, N = 700.

2.55 Konvergens, N = 200. 2.56 Konvergens, N = 222.

2.57 Mivel n2 > 106 ⇐⇒ n > 103, ezért N = 103 jó lesz küszöbindexnek.

2.58 A törtet bőv́ıtve
n− 1√
n + 1

=
(
√

n− 1) · (√n + 1)√
n + 1

=
√

n − 1, ı́gy a vizsgálandó

egyenlőtlenség:
√

n− 1 > 6500. Ebből átrendezéssel kapjuk, hogy N = 65012.

2.59 N = 139. 2.60 N = 115.

2.61 e3. 2.62 e−2.

2.63 lim
n→∞

(
n + 2

n

)n

= lim
n→∞

((
1 + 1

n
2

)n
2

)2

= e2.

2.64 e2. 2.65
1

e
.

2.66 e. 2.67 e2.

2.68
1

e3
. 2.69 e2.

2.70 e−6.

2.71 0. 2.72 e8.

2.73 0. 2.74 1.

2.75 e. 2.76 0.

2.77

lim
n→∞

an = lim
n→∞

(n+1) ·
(

n

n + 1

)n+1

= lim
n→∞

(n+1) ·
(

1− 1

n + 1

)n+1

= ∞· 1
e

= ∞ .
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2.78 A számlálót az ismert összegképletek seǵıtségével tudjuk zárt alakban feĺırni:

n∑

k=1

k(k + 1) =
n∑

k=1

k2 +
n∑

k=1

k =
n(n + 1)(2n + 1)

6
+

n(n + 1)

2
=

n(n + 1)(n + 2)

3
.

Ennek alapján

lim
n→∞

an = lim
n→∞

n∑
k=1

k(k + 1)

n3
= lim

n→∞
n(n + 1)(n + 2)

3n3
=

1

3
.

2.79 Teljes indukcióval belátható, hogy a sorozat monoton növő, és felülről korlátos.
Ebből következik, hogy konvergens, vagyis létezik a

lim
n→∞

an = lim
n→∞

an+1 = A

véges határérték. A sorozatot megadó rekurźıv képlet mindkét oldalának határér-
tékét véve kapjuk, hogy

A =
1

4
+ A2 .

Ennek az egyenletnek egyetlen megoldása A =
1

2
. Tehát lim

n→∞
an =

1

2
.

2.80 1. 2.81 2.

2.82 2.

2.2.2. Számsorok összege

2.83 3.

2.84 Mértani sorról van szó, q =
k2

1 + k2
∈ (−1, 1), tehát konvergens. Összegzése az

ismert képlet seǵıtségével történik:

∞∑
n=0

(
k2

k2 + 1

)n

=
1

1− k2

k2 + 1

= k2 + 1
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2.85 A sor n-edik részletösszege:

Sn =
n∑

k=1

1

k2 + 3k
=

n∑

k=1

1

k(k + 3)
.

Az összeg k-adik tagját parciális törtekre bontjuk:

1

k(k + 3)
=

1

3
·
(

1

k
− 1

k + 3

)
.

Ezt behelyetteśıtjük, majd az összeget átrendezzük:

Sn =
n∑

k=1

1

3
·
(

1

k
− 1

k + 3

)
=

1

3
·
(

n∑

k=1

1

k
−

n∑

k=1

1

k + 3

)
.

Ezután a második szumma indexét eltoljuk úgy, hogy a tagok
1

k + 3
helyett

1

k
alakúak legyenek:

Sn =
1

3
·
(

n∑

k=1

1

k
−

n+3∑

k=4

1

k

)
.

Végül - mindkét szummából leválasztva a megfelelő tagokat - a közös indextar-
tományon vett összegek kiejtik egymást, s ı́gy kialakul Sn zárt alakja:

Sn =
1

3
·
(

1

1
+

1

2
+

1

3
+

n∑

k=4

1

k
−

n∑

k=4

1

k
− 1

n + 1
− 1

n + 2
− 1

n + 3

)
=

=
1

3
·
(

1

1
+

1

2
+

1

3
− 1

n + 1
− 1

n + 2
− 1

n + 3

)
(n ≥ 4) .

Innen n →∞ határátmenettel kapjuk a sor összegét:

∞∑
n=1

1

n2 + 3n
= lim

n→∞
1

3
·
(

11

6
− 1

n + 1
− 1

n + 2
− 1

n + 3

)
=

11

18
.

2.86
137

60
.

2.87
1

2
.

2.88 A sor n-edik részletösszege:

Sn =
n∑

k=1

1

k3 + 3k2 + 2k
=

n∑

k=1

1

k(k + 1)(k + 2)
.
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Az összeg k-adik tagját parciális törtekre bontjuk:

1

k(k + 1)(k + 2)
=

1

2
·
(

1

k
− 2

k + 1
+

1

k + 2

)
.

Ezt behelyetteśıtjük, majd az összeget a 2.85 feladatban látott módon átalaḱıtjuk
(átrendezés, index eltolás, leválasztás, kiejtés):

Sn =
n∑

k=1

1

2
·
(

1

k
− 1

k + 1
− 1

k + 1
+

1

k + 2

)
=

=
1

2
·
(

n∑

k=1

1

k
−

n∑

k=1

1

k + 1
−

n∑

k=1

1

k + 1
+

n∑

k=1

1

k + 2

)
=

=
1

2
·
(

n∑

k=1

1

k
−

n+1∑

k=2

1

k
−

n∑

k=1

1

k + 1
+

n+1∑

k=2

1

k + 1

)
=

=
1

2
·
(

1

1
+

n∑

k=2

1

k
−

n∑

k=2

1

k
− 1

n + 1
− 1

2
−

n∑

k=2

1

k + 1
+

n∑

k=2

1

k + 1
+

1

n + 2

)
=

=
1

2
·
(

1

2
− 1

n + 1
+

1

n + 2

)
(n→∞)−−−−→ 1

4
.

A sor összege tehát
1

4
.

2.89
81

20
. 2.90 1.

2.91 s =
399

222
és t =

5203

6660
.

2.92 Divergens.

2.93 Konvergens. Pozit́ıv tagú sor, melyet a
∞∑

n=1

1

2n
konvergens geometriai sor majorál.

2.94 Mivel lim
n→∞

(
1− 1

n

)n

=
1

e
6= 0, tehát a konvergencia szükséges feltétele nem tel-

jesül, ezért a sor divergens.

2.95 A sor divergens, ugyanis

∞∑
n=1

10 · n + 2

n2 + 1
>

∞∑
n=1

2 · n + 2

(n + 1)2
= 2 ·

∞∑
n=1

1

n + 1
,

a sort tehát a harmonikus sor minorálja, amely divergens.
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2.96 Divergens. 2.97 Konvergens.

2.98 Divergens, mert

lim
n→∞

3n

3n+2 − 27
= lim

n→∞
1

32 − 27
3n

=
1

9
6= 0,

s ı́gy a konvergencia szükséges feltétele nem teljesül.

2.99 Konvergens. Pozit́ıv tagú sor, melyet majorál a
∞∑

n=0

(
3

4

)n

konvergens geometriai

sor.

2.100 Divergens. 2.101 Divergens.

2.102 Divergens. 2.103 Divergens.

2.104 Konvergens. 2.105 Divergens.

2.106 Alkalmazzuk a gyök-kritériumot:

lim
n→∞

n

√(
n

n + 1

)n2

= lim
n→∞

(
n

n + 1

)n

= lim
n→∞

1(
1 + 1

n

)n =
1

e
< 1,

ezért a vizsgált sor konvergens.

2.107 Divergens. 2.108 Divergens.

2.109 Divergens. 2.110 Konvergens.

2.111 Divergens. Ugyanis (
n

2

)

(
n

3

) =
3

n− 2
,

s ı́gy
∞∑

n=3

(
n

2

)
/

(
n

3

)
=

∞∑
n=3

3

n− 2
= 3

∞∑
n=1

1

n
.

Ez a harmonikus sor viszont divergens.
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2.112 Konvergens. 2.113 Konvergens.

2.114 Konvergens. 2.115 Konvergens.

2.116 Divergens. 2.117 Konvergens.

2.118 Konvergens. 2.119 Konvergens.

2.120 Konvergens. 2.121 Konvergens.

2.122 A sor tagjai:

a2k−1 = − 1

(2k − 1) + 2
= − 1

2k + 1
, a2k =

1

2k
(k ∈ N) .

Jelölje a sor n-edik részletösszegét Sn. A páros indexű részletösszegek:

S2n = a1 + a2 + a3 + a4 + . . . + a2n−1 + a2n =

= (a1 + a2) + (a3 + a4) + . . . + (a2n−1 + a2n) =

=
n∑

k=1

(a2k−1 + a2k) =
n∑

k=1

(
− 1

2k + 1
+

1

2k

)
=

n∑

k=1

(
1

2k
− 1

2k + 1

)

=
1

2
− 1

3
+

1

4
− . . . ,

amiből látszik, hogy (S2n) egy konvergens Leibniz-t́ıpusú sor részletösszegeinek
sorozatával egyenlő. Ezért konvergens, jelöljük a határértékét S-sel. A páratlan
indexű részletösszegek is S-hez tartanak, ugyanis

S2n−1 = S2n − a2n = S2n − 1

2n

(n→∞)−−−−→ S − 0 = S .

Ezért (Sn) konvergens, vagyis a vizsgált sor konvergens.

Megjegyzés. A fenti feladatban szereplő sor példa olyan esetre, amikor a sor csupán
a monotonitás hiánya miatt nem Leibniz-t́ıpusú. Ennek ellenére konvergens.

2.2.3. Abszolút- ill. feltételes konvergencia

2.123 Konvergens. 2.124 Konvergens.
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2.125 Divergens.

2.126 Konvergens.

2.127 Feltételesen konvergens.

2.128 Abszolút konvergens.

2.129 Abszolút konvergens. 2.130 Feltételesen konvergens.

2.131 Vizsgáljuk az (Sn) részletösszeg-sorozat páros indexű tagjait:

S2n =
1

1
− 1√

1
+

1

2
− 1√

2
+ . . . +

1

n
− 1√

n
=

n∑

k=2

(
1

k
− 1√

k

)
=

=
n∑

k=2

1−
√

k

k
= −

n∑

k=2

√
k − 1

k

Itt alkalmazhatjuk a minoráns kritériumot, ugyanis k ≥ 4 esetén
√

k − 1 ≥
√

k

2
, s

ezt felhasználva √
k − 1

k
≥
√

k

2k
=

1

2
√

k
,

továbbá tudjuk, hogy a
∑ 1

2
√

k
sor divergens. Ezért az (S2n) részletösszeg-rész-

sorozat divergens, amiből következik, hogy (Sn) is divergens. A vizsgált sor tehát
divergens.

Megjegyzés. A feladatban szereplő sor példa olyan esetre, amikor a sor csupán a
monotonitás hiánya miatt nem Leibniz-t́ıpusú, és nem is konvergens.

2.2.4. Alkalmazás: Geometriai feladatok

2.132 Feltételesen konvergens. 2.133 Feltételesen konvergens.

2.134 Abszolút konvergens. 2.135 Feltételesen konvergens.

2.136 A feladat megoldása a jegyzet I. kötet 52. oldalán található.

KKoch = ∞, TKoch =
2
√

3a2

5
=

8T

5
.

2.137 Mivel a középvonalak által meghatározott háromszög
1

2
-szeres kicsinýıtése a há-

romszögnek, ezért területe
1

4
-szerese annak a háromszögének, amelybe beléırjuk.
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Ennek alapján a középvonalak által meghatározott háromszögek (besźınezett hároms-
zögek) száma és összterülete az alábbi módon adható meg:

Az első ábrán 1 db
1

4
területű háromszög.

A második ábrán 1 db
1

4
, továbbá még 3 db

1

4
· 1

4
=

1

42
területű háromszög.

A harmadik ábrán ugyanaz, mint a második ábrán, továbbá még 32 db
1

4
· 1

42
=

1

43

területű háromszög.

És ı́gy tovább, teljes indukcióval megmutatható, hogy az n-edik ábrán besźınezett
háromszögek összterülete:

Tn = 30 · 1

41
+ 31 · 1

42
+ 32 · 1

43
+ . . . + 3n−1 · 1

4n
=

1

4
·

n−1∑

k=0

(
3

4

)k

A mértani sorozat első n tagjára vonatkozó képlettel kapjuk, hogy az n-edik ábrán
besźınezett háromszögek összterülete:

Tn =
1

4
·

n−1∑

k=0

(
3

4

)k

=
1

4
·

(
3

4

)n

− 1

3

4
− 1

= 1−
(

3

4

)n

.

A kapott képlet alapján válaszolhatunk a feladat kérdéseire:

a) Megoldandó a Tn >
175

256
egyenlőtlenség, azaz:

1−
(

3

4

)n

>
175

256
;

(
3

4

)n

< 1− 175

256
=

81

256
=

(
3

4

)4

.

Ebből adódik, hogy n > 4. Sőt az is látható, hogy n = 4 esetén egyenlőség van.
Tehát a középvonalak által meghatározott háromszögek (besźınezett háromszögek)

összterülete a negyedik ábrán éppen
175

256
, s ezt az értéket először az ötödik ábrán

haladja meg.

b) A középvonalak által meghatározott háromszögek (besźınezett háromszögek)
összterülete:

lim Tn = lim(1−
(

3

4

)n

) = 1,

ami megegyezik az eredeti háromszög területével.
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Megjegyzés. A feladatot egyszerűbben is meg tudjuk oldani, ha nem a besźınezett, hanem
a fehéren maradt háromszögek összterületét számoljuk. Ez a terület mindegyik ábrán
– mint az könnyen látható – 3/4-szerese az előző ábrán lévő fehér területnek. Tehát az
n-edik ábrán lévő fehér terület: (3/4)n. Ebből következik, hogy a besźınezett terület az

n-edik ábrán 1−
(

3

4

)n

.
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3. fejezet

Valós függvények
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3.1. Valós függvények

3.1.1. Bevezető feladatok

Mivel egyenlő?

3.1 sin

(
arcsin(x)

)
3.2 sin

(
arccos(x)

)

3.3 sin

(
2 arccos(x)

)
3.4 tg

(
arccos(x)

)

3.5 cos

(
1

2
arcsin(x)

)
3.6 sin

(
arc tg (2, 4)

)

3.7 sh(2) 3.8 ch(3)

3.9 ch(2x), ha sh(x) = 1. 3.10 arsh(4)

3.11 arch(5) 3.12 arth(−0, 6)

Határozzuk meg a következő függvények értelmezési tartományát:

3.13

y =
√

1 + x +
√

1− x

3.14

y =
√

3− 2x

3.15

y =
2x− 3

x + 2

3.16

y =
x + 1

x2 − 3x

3.17

y = ln(x2 − 3x + 2)

3.18

y =

√
ln

5x− x2

4

3.19

y = arcsin
3− 2x

5

3.20

y = 2 arccos
√

9− x2

3.21

y = ln
x2 − 2x− 15

x2 − 10x + 16

3.22

y = ln (ln x)
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Rajzoljuk meg a következő függvények görbéit.

3.23

y =
x

x− 1

3.24

y =
x2 + 1

x

3.25

y =
x2 − 2x + 1

x2 + 1

3.26

y =
x

1 + x2

3.27

y =
1

1− x2

3.28

y =
1

x
+

1

x− 1
+

1

x− 2

3.29

y =
x

4− x2

3.30

y = ±
√

x− 1

x + 1

3.31

y = e−x2

3.32

y = e
1
x

3.33

y = e−
1

x2

3.34

y = arcsin(sin(x))

3.35

y = arccos(cos(x))

3.36

y = arctan(tg (x))

3.37

y = arctan

(
1

x

)

Határozzuk meg a következő függvények inverz függvényét.

3.38

y = 1− 2x

3.39

y = 1 + x
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3.40

y = x2 + 1 (x ≥ 0)

3.41

y =
1

1− x

3.42

y =
3
√

x2 + 1 (x ≥ 0)

3.43

y =
√

x2 − 16 (x ≥ 0)

3.44

y =
√

3− x

3.45

y =
2x + 3

x + 1

3.46

y =
x

2
+

√
x2

4
− 1 (x ≥ 2)

3.47

y =
1−√1 + 4x

1 +
√

1 + 4x

3.1.2. Határérték

Határozzuk meg a következő függvények határértékét az adott pontban.

3.48

lim
x→2

(x3 − x2 − x + 1)

3.49

lim
x→0

1

xk
(k ∈ N rögźıtett)

3.50

lim
x→2

x3 − 3x2 + 4

x3 − 2x2 + x− 2

3.51

lim
x→2

x3 − 3x2 + 4

x2 − 4x + 4

3.52

lim
x→2

x3 − 3x2

x2 − 4x + 4

3.53

lim
x→2

x2 + 3x− 10

x2 − x− 2

3.54

lim
x→0

x4 + 3x2

x5 + x3 + 2x2

3.55

lim
x→4

x2 − 6x + 8

x2 − 5x + 4
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3.56

lim
x→ 1

2

8x3 − 1

6x2 − 5x + 1

3.57

lim
x→1

x3 − x2 − x + 1

x3 + x− 2

3.58

lim
x→1

xn − 1

x− 1
(n ∈ Z rögźıtett)

3.59

lim
x→1

(
1

1− x
− 3

1− x3

)

3.60

lim
x→0

(
1

x− 1
− 4

x3 − 1

)
3.61

lim
x→0

3
√

1 + x− 1

x

3.62

lim
x→−1

1 + 3
√

x

1 + 5
√

x

3.63

lim
x→0

n
√

1 + x− 1

x

3.64

lim
x→∞

√
x2 + 3x

3
√

x3 − 2x2

3.65

lim
x→∞

3
√

x2 − 6 + 3
√

x
10
√

x7 + 1963−√x

3.66

lim
x→0

√
1 + x + x2 − 1

x

3.67

lim
x→2

√
3 + x + x2 −√9− 2x + x2

x2 − 3x + 2

3.68

lim
x→1

x2 −√x√
x− 1

3.69

lim
x→0

√
1 + x−√1 + x2

√
1 + x− 1
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3.70

lim
x→∞

(
√

x2 + 1− x)

3.71

lim
x→∞

(
√

x2 + 1−
√

x2 − 1)

3.72

lim
x→∞

x
(√

x2 + 1− x
)

3.73

lim
x→0

√
x2 + 1− 1√
x2 + 16− 4

3.74

lim
x→0

3
√

x2 + 1− 1

x2

3.75

lim
x→0

3
√

x2 + 1− 4
√

1− 2x

x + x2

3.76

lim
x→1

5x√
1 + x−√1− x

3.77

lim
x→5

√
x− 1− 2

x− 5

3.78

lim
x→−1

√
x + 2−√−x

3
√

x + 2− 3
√−x

3.79

lim
x→1

3
√

x− 1
5
√

x− 1

3.80

lim
x→0

sin(5x)

x

3.81

lim
x→0

sin(mx)

nx
, n, m ∈ N rögźıtett.

3.82

lim
x→0

sin(ax)

sin(bx)
, a, b ∈ R, b 6= 0 rögźıtett.
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3.83

lim
x→0

sin(2x)

tg (x)

3.84

lim
x→0

x · ctg (x)

3.85

lim
x→0

1− cos(x)

x2

3.86

lim
x→0

1− cos(x)

sin2(x)

3.87

lim
x→0

(
1

sin(x)
− 1

tg x

)
3.88

lim
x→0

tg x− sin(x)

x3

3.89

lim
x→0

1 + sin(x)− cos(x)

1− sin(x)− cos(x)

3.90

lim
x→0

1−
√

cos(x3)

1− cos(x)

3.91

lim
x→π

4

(tg (2x)) · tg
(π

4
− x

)

3.92

lim
x→π

6

2 sin2(x) + sin(x)− 1

2 sin2(x)− 3 sin(x) + 1

3.93

lim
x→0

x− sin(2x)

x + sin(3x)

3.94

lim
x→0

(1− cos(x))2

tg 3x− sin3(x)

3.95

lim
x→0

2 sin(x)− sin(2x)

x3

3.96

lim
x→π

6

sin
(
x− π

6

)

√
3

2
− cos(x)

3.97

lim
x→π

2

cos
x

2
− sin

x

2
cos(x)

3.98

lim
x→0

√
1 + tg (x)−

√
1− tg (x)

sin(x)
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3.1.3. Függvény deriválás

Határozzuk meg a következő függvények deriváltját.

3.99 f(x) = 4x3 − x2 + 7 3.100 f(x) = (x3 − 3) sin(x)

3.101 f(x) =
x3 + 3

(x2 + x + 1) cos(x)
3.102 f(x) = sin2(x)

3.103 f(x) = sin(x2) 3.104 f(x) = sin(x2 − 5x + 8)

3.105 f(x) = (x4 − 6x + 1)6 · tg 1

x
3.106 f(x) =

cos(x4)

2 + sin3 x

3.107 f(x) = tg 2(x2) 3.108 f(x) = sin3 (
1 + x2

tg 2x
)

3.109 f(x) = 10sin(x3) 3.110 f(x) = e−x2

3.111 f(x) = πsin(x)
3.112 f(x) =

√
x
√

x
√

x

3.113 f(x) =
√

sin(x2) 3.114 f(x) =
1√

x2 − 1

3.115 f(x) =

√
1 + tg 3x

x2 − 1
3.116 f(x) =

√
lg(1 + sin2(2x))

3.117 f(x) = sh[x3 − ln(x + 7)]
3.118 f(x) =

√
1 + th x

1− th x

3.119 f(x) = 25 arcsin x 3.120 f(x) = arcsin
√

1− x2

3.121 f(x) = ar ch
√

x + 1 3.122 f(x) = ear th x2

3.123 f(x) = 11
√

2− 3
√

x

Határozzuk meg az alábbi implicit módon megadott (y = f(x)) függvények derivált-
ját.

3.124 x2 + y2 = 1

3.125
sin(x)

cos(y)
+

sin(y)

cos(x)
= 1 3.126 x3 + y3 − 3axy = 0
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3.127 (x− 1) cos(y) + cos(2y) = 0 3.128 yx = xy

3.129 f(x) = x + arc tg f(x) 3.130 f(x) = (1 + x)(1−x)

3.1.4. Taylor polinom

Írjuk fel az alábbi függvényeknek a megadott x0 helyhez tartozó, megadott rendű Taylor
polinomját.

3.131

f(x) = ln x, x0 = e, T4(x) =?

3.132

f(x) = ex, x0 = 2, T4(x) =?

3.133

f(x) = tg (x), x0 =
π

4
, T3(x) =?

3.134

f(x) = sin(x), x0 =
π

4
, T3(x) =?

3.135

f(x) =
1

2
sin(3x), x0 = 1, T4(x) =?

3.136

f(x) = x3 − 6x2 + 11x− 5, x0 = 2, T3(x) =?

3.137

f(x) = 2 + x2 − 3x5 + 7x6, x0 = 1, T6(x) =?

3.138

f(x) = x5 − x4 − 2x3 + 3x2 + 4x + 10, x0 = 1, T5(x) =?
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Írjuk fel az alábbi függvények x0 = 0 helyhez tartozó, megadott rendű Taylor poli-
nomját.

3.139

f(x) = e2x, T4(x) =?

3.140

f(x) =
1

2
sin(3x), T6(x) =?

3.141

f(x) = cos(2x), T5(x) =?

3.142

f(x) = arc tg x, T3(x) =?

3.143

f(x) = ln(1 + x), Tn(x) =?

3.144

f(x) = (1 + x)α, Tn(x) =?

3.145 Mekkora hibát követünk el, ha az y = sin(x) függvény értékét a [0, 1] interval-
lumon a

T5(x) = x− x3

3!
+

x5

5!

Taylor polinommal közeĺıtjük?

3.146 Határozzuk meg az e szám értékét két tizedesjegy pontossággal Taylor polinom
seǵıtségével!

3.1.5. Határérték meghatározása L’Hospital szabállyal

3.147 lim
x→0

sin 3x

tg 5x
3.148 lim

x→0

tg (x)− 1 + cos 3x

ex − e−x
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3.149 lim
x→π

4

tg (x)− 1

sin 4x
3.150 lim

x→0

ex − 1

sin(x)

3.151 lim
x→0

ex − e−x − 2x

x− sin(x)
3.152 lim

x→0

tg (x)− x

x− sin(x)

3.153 lim
x→0

x− sin(x)

ex − 1− x− x2

2

3.154 lim
x→0

ln2(1 + x)− sin2 x

1− e−x2

3.155 lim
x→0

sin(x)− xecos(x)

1− sin(x)− cos(x)
3.156 lim

x→0

ln x

ln sin(x)

3.157 lim
x→∞

ln x
3
√

x
3.158 lim

x→∞
x · sin a

x
(a ∈ R rögźıtett)

3.159 lim
x→∞

x
(
e

1
x − 1

)
3.160 lim

x→0

(
1

x2
− 1

sin2 x

)

3.161 lim
x→0

(
ctg x− 1

x

)
3.162 lim

x→π
2

(sin(x))tg (x)

3.163 lim
x→0

(arcsin x)tg (x) 3.164 lim
x→π

2

(tg (x))2x−π

3.165 lim
x→0

(
1

x

)tg (x) 3.166

lim
x→∞

(
x + 1

x− 1

)x

3.167

lim
x→∞

(
x

x + 1

)x

3.168

lim
x→∞

(
2x + 1

x− 1

)x

3.169

lim
x→∞

(
x2 − 1

x2

)x4

3.170

lim
x→∞

(
1 +

1

x2

)x

3.171

lim
x→0

(1 + tg (x))ctg x
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3.1.6. Śıkbeli görbe érintője

3.172 Határozzuk meg az y = 3x− x2 parabola x0 = 1 abszcisszájú pontjához húzott
érintőjének egyenletét!

3.173 Hol metszi az y = ln x görbe x = e abszcisszájú pontjához húzott érintője az x
tengelyt?

3.174 Határozzuk meg az y = tg (x) görbének azt a pontját, melyhez tartozó érintő
párhuzamos az y = 2x− 5 egyenessel!

3.175 Határozzuk meg az y = x3− 6x + 1526 görbének azokat a pontjait, melyekben az
érintő párhuzamos az y = 6(x− π) egyenessel!

3.176 Bizonýıtsuk be, hogy az xy = a2 görbe (ahol a > 0 adott) bármely pontjához
húzott érintője és a koordináta tengelyek által alkotott háromszög területe független
az érintési ponttól!

3.177 Írjuk fel az y = tg (x) görbe x =
π

4
abszcisszájú pontjához tartozó normálisának

egyenletét. (A függvény görbe P pontjához tartozó normálisa az az egyenes, amely
a ponthoz húzott érintőre merőleges.)

3.178 Határozzuk meg az y3 − 3x2 − 4xy + 3 = 0 implicit alakban adott függvény
görbéjének x = 1 abszcisszájú pontjaiban az érintő és normális egyenletet.

3.179 Keressük meg az y =
1

3
x3 − x2 + 1 görbe azon pontjait, ahol

a.) az érintő párhuzamos az x tengellyel
b.) az érintő az x tengely pozit́ıv irányával +45◦-os szöget zár be.

3.1.7. Szélsőérték számı́tás

3.180 Határozzuk meg az y = x3 − 12x függvény lokális szélsőértékeit!

3.181 Határozzuk meg az y = x4e−x2
függvény lokális szélsőértékeit!

3.182 Keressük meg az f(x) = x3 − 9x2 + 15x− 3 függvény

a) lokális szélsőértékeit,

b) abszolút szélsőértékeit a [0; 2] és a (0; 2) intervallumokon.

3.183 Keressük meg az f(x) = x +
1

x
függvény

a.) lokális szélsőértékeit

b.) abszolút szélsőértékeit az [
1

2
; 2] intervallumon.
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3.184 Keressük meg az f(x) = x2 ln x függvény
a.) lokális szélsőértékeit
b.) abszolút szélsőértékeit az (0; 1] intervallumon.

3.185 Határozzuk meg az R sugarú körbe ı́rt legnagyobb területű téglalapot.

3.186 Határozzuk meg az R sugarú gömbbe ı́rt legnagyobb térfogatú hengert.

3.187 Határozzuk meg az R sugarú gömbbe ı́rt legnagyobb térfogatú kúpot.

3.188 Határozzuk meg az egy literes, felül nyitott legkisebb felsźınű hengert.

3.189 Egyenlő szélességű három deszkából csatornát késźıtünk. Az oldalfalak milyen
hajlásszöge mellett lesz a csatorna keresztmetszete maximális?

3.190 Határozzuk meg a h alkotójú kúpot közül azt, melynek a térfogata legnagyobb.

3.191 Egy a szélességű csatornából derékszögben kinyúlik egy b szélességű csatorna.
A csatornák falai egyenes vonalúak. Határozzuk meg azon gerenda legnagyobb
hosszát, amely az egyik csatornából átcsúsztatható a másikba.

3.192 Keressük meg az y2 = 8x parabolának azt a pontját, amely a (6, 0) ponttól a
legkisebb távolságra van.

3.193 Feltsszük, hogy a gőzhajó energiafogyasztása a sebesség harmadik hatványával
egyenesen arányos. Keressük meg a leggazdaságosabb óránkénti sebességet abban
az esetben, ha a hajó c km/óra sebességű v́ız-sodrással szemben halad.

3.194 Az A és B pontok a ill. b távolságra vannak a faltól. Melyik a legrövidebb út
A-ból B-be a falat érintve?

3.1. ábra.
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3.195 200 m hosszú drótkeŕıtéssel szeretnénk maximális területet közrezárni, miközben
csatlakozunk egy már meglevő 100 m hósszú kőfalhoz. Mekkorák lesznek a kert
oldalai?

3.2. ábra.

3.196 Keressük meg a 4x2 +9y2 = 36 ellipszisnek azt a pontját, ami a P (1, 0) ponthoz
legközelebb illetve legtávolabb van.

3.197 Egy derékszögű háromszög alakú telek egymásra merőleges oldalai
100 m és 200 m. Az ábra szerint ráéṕıtett téglalap alapú ház alapterülete mikor
lesz maximális?

3.3. ábra. 3.197. feladat.

3.198 Egy r sugarú félkörbe ı́rható téglalapok közül melyik területe maximális? Melyik
területe minimális?

3.199 Egy fapados repülőgépen 300 ülőhely van. Csak akkor ind́ıtják a járatot, ha
legalább 200 ülőhely foglalt. Ha 200 utas van, akkor egy jegy ára 30e Ft, és minden
egyes plusz utas esetén a jegyárak egységesen csökkennek 100 Ft-tal. Hány utas
esetén lesz a légitársaság bevétele maximális illetve minimális?

3.200 Adott T területű téglalapok küzül melyik kerülete a minimális?

3.201 Egy x hosszú drótból levágunk egy darabot, négyzetet csinálunk belőle. A mara-
dékot kör alakúra hajĺıtjuk. Mikor lesz a két alakzat össz-területe maximális?
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3.1.8. Függvényvizsgálat

3.202 Vizsgáljuk és ábrázoljuk az f(x) = x2 · ln x függvényt!

Vizsgáljuk az alábbi függvényeket.

3.203 f(x) = 2x3 − 9x2 − 24x− 12 3.204 f(x) =
x

1 + x2

3.205 f(x) = x +
1

x
3.206 f(x) = e−x2

3.207 f(x) =
x2

x + 1
3.208 f(x) = ex cos(x)
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3.2. Megoldások. Valós függvények

3.2.1. Bevezető feladatok

3.1 x

3.2
√

1− x2

3.3 sin(2 arccos x) = 2 sin(arccos x) · cos(arccos x) = 2x
√

1− x2

3.4

√
1− x2

x

3.5

√
1 +

√
1− x2

2

3.6 sin(x) =
tg (x)√
1 + tg 2x

, sin(arc tg 2.4) =
12

13

3.7 sh(2) =
e2 − e−2

2
= 3.627

3.8 ch(3) = 10.068

3.9 ch(2x) = ch2 x + sh2 x = 1 + 2 sh2 x = 3, ha sh x = 1.

3.10 ar sh x = ln(x +
√

x2 + 1), ezért ar sh 4 = ln(4 +
√

17) = 2.094

3.11 ar ch x = ln(x±
√

x211), ezért

ar ch 5 = ln(5±
√

24) = ln 9.8999 = 2.292

= ln 0.101 = −2.292

3.12 ar th x =
1

2
ln

1 + y

1− y
, ezért ar th (−0.6) =

1

2
ln

0.4

1.6
= −0.693.

3.13 A
√

1 + x+
√

1− x kifejezés azokra az x értékekre van értelmezve, melyek esetén
a négyzetgyökjel alatti kifejezések nem negat́ıvak, azaz, ha 1 + x ≥ 0 és 1− x ≥ 0.
Ezt az egyenlőtlenség rendszert megoldva kapjuk, hogy az értelmezési tartomány:
−1 ≤ x ≤ 1.

3.14 x ≤ 3

2
3.15 x ∈ R \ {2}

3.16 x ∈ R \ {0, 3}
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3.17 A logaritmusfüggvény értelmezési tartománya a pozit́ıv számok halmaza. Ezért
függvényünk pontosan az x2 − 3x + 2 > 0 feltételnek eleget tevő valós számokra
van értelmezve. Az egyenlőtlenséget megoldva azt nyerjük, hogy az értelmezési
tartomány: x ∈ R \ [1, 2]

3.18 A logaritmus mögött pozit́ıv számnak kell állnia, ezért
5x− x2

4
> 0. Továbbá a

gyökjel alatti számnak nem- negat́ıvnak kell lennie, ezért ln

(
5x− x2

4

)
≥ 0. E két

feltétel együttese pontosan akkor teljesül, ha
5x− x2

4
≥ 1. Ezért: 1 ≤ x ≤ 4.

3.19 −1 ≤ x ≤ 4. 3.20 −3 ≤ x ≤ −√8,
√

8 ≤ x ≤ 3.

3.21 −∞ < x < −3, 2 < x < 5, 8 < x < ∞.

3.22 1 < x < ∞.

3.23 - 3.37

Racionális törtfüggvényeknél az ábrázolás előtt határozzuk meg, hogy hol lesznek
a görbének a koordináta tengelyekkel párhuzamos aszimptotái.

Ahol egy törtfüggvénynek a nevezője zérus, ott pólusa van. Itt függőleges aszimp-
totája van. A v́ızszintes aszimptota helyét a függvény végtelenben vett határértéke
határozza meg.

3.38 y =
1− x

2
.

3.39 y = x− 1.

3.40 y =
√

x− 1.

3.41 y =
x− 1

x
.

3.42 y =
√

x3 − 1.

3.43 y =
√

x2 + 16.

3.44 y = 3− x2.

3.45 y =
3− x

x− 2
.

3.46 y = x +
1

x
.

3.47 y = − x

(x + 1)2
.
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3.2.2. Határérték

3.48 3. 3.49 +∞ ha k páros,

balról −∞, jobbról +∞ ha k páratlan.

3.50 0. 3.51 3.

3.52 ∞.

3.53 Az (x − 2) gyöktényezőt a számlálóból és a nevezőből is kiemeljük, majd egys-
zerűśıtünk:

lim
x→2

x2 + 3x− 10

x2 − x− 2
= lim

x→2

(x− 2)(x + 5)

(x− 2)(x + 1)
= lim

x→2

x + 5

x + 1
=

2 + 5

2 + 1
=

7

3
.

3.54
3

2
. 3.55

2

3
.

3.56 6. 3.57 0.

3.58 n. 3.59 −1.

3.60 ∞.

3.61 Helyetteśıtsük 3
√

1 + x-et u-val. Ekkor 3
√

1 + x = u és x = u3 − 1.

Ha x → 0, akkor u → 1, tehát

lim
x→0

3
√

1 + x− 1

x
= lim

u→1

u− 1

u3 − 1
= lim

u→1

u− 1

(u− 1)(u2 + u + 1)
= lim

u→1

1

u2 + u + 1
=

1

3
.

3.62 x = u15 helyetteśıtés alkalmazásával

lim
x→−1

1 + 3
√

x

1 + 5
√

x
= lim

u→−1

1 + u5

1 + u3
= lim

u→−1

u4 − u3 + u2 − u + 1

u2 − u + 1
=

5

3
.

3.63
1

n
. 3.64 1.

3.65 Mivel x → ∞, ezért a nevező domináns tagjával, azaz x
7
10 -nel egyszerűśıtjük a

törtet:

3
√

x2 − 6 + 3
√

x
10
√

x7 + 1963−√x
=

(x2 − 6)
1
3 + x

1
3

x
7
10 + 1963− x

1
2

=

(x2 − 6)
1
3

x
7
10

+ x
1
3
− 7

10

1 + 1963

x
7
10
− x

1
2
− 7

10

=

=

(
x2 − 6

x2,1

) 10
30

+ x−
11
30

1 + 1963 · x− 7
10 − x−

1
5

=

(
1

x0,1
− 1

x2,1

) 10
30

+ x−
11
30

1 + 1963 · x− 7
10 − x−

1
5

(x→∞)−−−−−→ 0
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3.66 A számlálót és a nevezőt egyaránt szorozva
(√

1 + x + x2 + 1
)
-el, a kifejezés értéke

nem változik. Viszont a számlálóból eltűnik a négyzetgyök jel, és ezt követően a
kifejezés egyszerűśıthető x-el. Így az ismert (a + b)(a − b) = a2 − b2 összefüggést
használtuk ki.

Négyzetgyökös kifejezések esetén hasonlóan szoktunk eljárni máskor is.

lim
x→0

√
1 + x + x2 − 1

x
= lim

x→0

√
1 + x + x2 − 1

x
·
√

1 + x + x2 + 1√
1 + x + x2 + 1

=

= lim
x→0

1 + x + x2 − 1

x
(√

1 + x + x2 + 1
) = lim

x→0

1 + x√
1 + x + x2 + 1

=
1

2
.

3.67
1

2
.

3.68

lim
x→1

x2 −√x√
x− 1

= lim
x→1

x2 −√x√
x− 1

·
√

x + 1√
x + 1

= lim
x→1

(x4 − x)(
√

x + 1)

(x− 1)(x2 +
√

x)
=

= lim
x→1

x(x2 + x + 1)(
√

x + 1)

x2 +
√

x
= 3.

Ebben a példában ugyanaz a kifejezés volt a négyzetgyökjel alatt mind a két helyen,
tehát az előzőekben emĺıtett példa módjára úgy is eljárhattunk volna, hogy x =
u2 helyetteśıtéssel oldjuk meg a feladatot. Az itt bemutatott módszer azonban
általánosabb esetben is alkalmazható.

3.69

lim
x→0

√
1 + x−√1 + x2

√
1 + x− 1

= lim
x→0

(1 + x− 1− x2) · (√1 + x + 1)

(
√

1 + x +
√

1 + x2) · (1 + x− 1)
=

= lim
x→0

(1− x) · (√1 + x + 1)√
1 + x +

√
1 + x2

=
1 · 2
2

= 1.

3.70 0. 3.71 0.

3.72
1

2
. 3.73 4.

3.74 Alkalmazzuk az u = 3
√

x2 + 1 → 1 helyetteśıtést. Ekkor x2 = u3 − 1, s ezzel

lim
x→0

3
√

x2 + 1− 1

x2
= lim

u→1

u− 1

u3 − 1
= lim

u→1

u− 1

(u− 1) · (u2 + u + 1)
= lim

u→1

1

u2 + u + 1
=

1

3
.
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3.75
1

2
. 3.76

5√
2
.

3.77
1

4
. 3.78

3

2
.

3.79
5

3
. 3.80 5.

3.81

lim
x→0

sin mx

nx
= lim

x→0

(
sin mx

mx

)
· mx

nx
= 1 · m

n
=

m

n
.

3.82

lim
x→0

sin ax

sin bx
= lim

x→0

ax · sin ax
ax

bx · sin bx
bx

=
a

b
· lim

x→0

sin ax
ax

sin bx
bx

=
a

b
· 1

1
=

a

b
.

3.83

lim
x→0

sin(2x)

tg (x)
= lim

x→0

sin(2x)
sin(x)
cos(x)

= lim
x→0

(cos(x)) · sin(2x)

sin(x)
= 1 · 2

1
= 2.

3.84 1.

3.85

lim
x→0

1− cos(x)

x2
= lim

x→0

(1− cos(x)) · (1 + cos(x))

x2 · (1 + cos(x))
= lim

x→0

1− cos2(x)

x2 · (1 + cos(x))
=

= lim
x→0

sin2(x)

x2 · (1 + cos(x))
= lim

x→0

(
sin(x)

x

)2

· 1

1 + cos(x)
=

1

2
.

3.86
1

2
.

3.87

lim
x→0

(
1

sin(x)
− 1

tg (x)

)
= lim

x→0

(
1

sin(x)
− cos(x)

sin(x)

)
= lim

x→0

1− cos(x)

sin(x)
=

= lim
x→0

1− cos(x)

x2
· x · x

sin(x)
=

1

2
· 0 · 1 = 0.
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3.88
1

2
.

3.89 −1.

3.90

lim
x→0

1−
√

cos(x3)

1− cos(x)
= lim

x→0

1− cos(x3)

(1− cos(x)) · (1 +
√

cos(x3))
=

= lim
x→0

1− cos(x3)

(x3)2

1− cos(x)

x2

· x4 · 1

1 +
√

cos(x3)
=

1
2
1
2

· 0 · 1

2
= 0.

3.91
1

2
3.92 -3

3.93

lim
x→0

x− sin(2x)

x + sin 3x
= lim

x→0

x− sin(2x)
2x

· 2x
x + sin 3x

3x
· 3x =

lim
x→0

1− sin(2x)

2x
· 2

1 +
sin 3x

3x
· 3

=
1− 1 · 2
1 + 1 · 3 = −1

4
.

3.94 ∞
3.95

lim
x→0

2 sin(x)− sin(2x)

x3
= lim

x→0

2 sin(x)− 2 sin(x) cos(x)

x3
=

lim
x→0

2 · sin(x)

x
· 1− cos(x)

x2
= 2 · 1 · 1

2
= 1.

3.96 2

3.97

lim
x→π

2

cos
x

2
− sin

x

2
cos(x)

= lim
x→π

2

cos
x

2
− sin

x

2

cos2
x

2
− sin2 x

2

=

lim
x→π

2

1

cos
x

2
+ sin

x

2

=
1

cos
π

2
+ sin

π

2

= 1.

3.98 1

60



3.2.3. Függvény deriválás

3.99 f ′(x) = 12x2 − 2x.

3.100 f ′(x) = 3x2 · sin(x) + (x3 − 3) · cos(x).

3.101 f ′(x) =
3x2(x2 + x + 1) cos(x)− (x3 + 3)[(2x + 1) cos(x)− (x2 + x + 1) sin(x)]

(x2 + x + 1)2 cos2(x)
.

3.102 f(x) = sin(x) · sin(x) tehát

f ′(x) = cos(x) · sin(x) + sin(x) · cos(x) = 2 sin(x) cos(x) = sin(2x).

3.103 f ′(x) = cos(x2) · 2x.

3.104 f ′(x) = (2x− 5) cos(x2 − 5x + 8).

3.105 f ′(x) = 6(x4 − 6x + 1)5 · (4x3 − 6)tg
1

x
− (x4 − 6x + 1)6

x2 cos2 1
x

.

3.106 f ′(x) =
−4x3 sin(x4) · (2 + sin3 x)− 3 cos(x4) sin2(x) · cos(x)

(2 + sin3(x))2
.

3.107 f ′(x) =
2tg (x2)

cos2(x2)
· 2x =

4xtg (x2)

cos2(x2)
.

3.108 f ′(x) = 3 sin2(
1 + x2

tg 2x
) · cos(

1 + x2

tg 2x
) · 2(xtg 2x− 1+x2

cos2 2x
)

tg 22x
.

3.109 f ′(x) = 10sin(x3) · ln 10 · cos(x3) · 3x2 = 3(ln 10)x2 · 10sin(x3) · cos(x3).

3.110 f ′(x) = −2xe−x2
.

3.111 f ′(x) = πsin(x) ln π · cos(x).

3.112 f(x) = x
7
8 tehát f ′(x) =

7

8
x−

1
8 .

3.113 f ′(x) =
x cos(x2)√

sin(x2)
.

3.114 f ′(x) = − 1

x2 − 1
· 1

2
√

x2 − 1
· 2x = − x√

(x2 − 1)3
.

3.115 f ′(x) =
1

2

√
x2 − 1

1 + tg 3x
·

3
cos2 3x

· (x2 − 1)− 2x(1 + tg 3x)

(x2 − 1)2
.
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3.116

f ′(x) =
4 sin(2x) cos(2x)

2
√

lg(1 + sin2 2x) · ln(10)
· (1 + sin2 2x) =

=
sin 4x√

lg(1 + sin2 2x) · ln(10)
· (1 + sin2 2x).

3.117 f ′(x) = ch[x3 − ln(x + 7)] · (3x2 − 1

x + 7
).

3.118 f ′(x) =
1

ch x− sh x
.

3.119 f ′(x) =
5 · 25 arcsin x · ln 2√

1− x2
.

3.120 f ′(x) = − 1√
1− x2

.

3.121 f ′(x) =
1√

(
√

x + 1)2 − 1
· 1

2
√

x + 1
=

1

2
√

x2 + x
.

3.122 Mivel ar th (x) =
1

2
ln

(
1 + x

1− x

)
, ezért

ear th x2

= e
1
2

ln 1+x
1−x = e

ln

r
1+x2

1−x2
=

√
1 + x2

1− x2
⇒ f ′(x) =

2x√
(1 + x2)(1− x2)3

3.123 f ′(x) =
1

11

1

( 11
√

2− 3
√

x)10

(
−1

3

)
1

( 3
√

x)2
.

3.124 Deriváljuk mindkét oldalt: 2x + 2yy′ = 0, innen: y′ = −x

y
.

3.125 Deriváljuk mindkét oldalt:

cos(x) cos(y) + y′ sin(x) sin(y)

cos2(y)
+

y′ cos(x) cos(y) + sin(x) sin(y)

cos2(x)
= 0.

Innen:

y′ = −
cos(x)

cos(y)
+

sin(x) sin(y)

cos2(x)

sin(x) sin(y)

cos2(y)
+

cos(x) cos(y)

cos2(x)

.
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3.126 Deriváljuk mindkét oldalt:

3x2 + 3y2y′ − (3ay + 3axy′) = 0.

Innen átrendezéssel: y′ =
a · y − x2

y2 − ax
.

3.127 y′ =
cos y

2 sin 2y + (x− 1) sin y

3.128 Vegyük mindkét oldal logaritmusát: x ln f(x) = f(x) ln x.

Deriváljuk mindkét oldalt: ln f(x) +
x

f(x)
f ′(x) = f ′(x) ln x +

f(x)

x
.

Innen azt kapjuk, hogy

f ′(x) =
f(x)2 − xf(x) ln f(x)

x2 − xf(x) ln x
.

3.129 f ′(x) = 1 +
1

f(x)2
.

3.130 Mindkét oldalnak a logaritmusát vesszük: ln f(x) = (1 − x) ln(1 + x). Aztán –
mint implicit függvényt – deriváljuk:

1

f(x)
f ′(x) = − ln(1 + x) +

1− x

1 + x
.

Innen átrendezéssel azt kapjuk, hogy

f ′(x) = (1 + x)1−x · (1− x

1 + x
− ln(1 + x)).

3.2.4. Taylor polinomok

3.131 A Taylor polinom képlete szerint:

T4(x) = f(e) +
f ′(e)
1!

(x− e) +
f ′′(e)

2!
(x− e)2 +

f ′′′(e)
3!

(x− e)3 +
f (4)(e)

4!
(x− e)4.

A fenti képletbeli számı́tások: f(e) = ln e = 1. A derivált

f ′(x) =
1

x
, f ′(e) =

1

e
.

f ′′(x) = − 1

x2
, f ′′(e) = − 1

e2
,
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f ′′′(x) =
2

x3
, f ′′′(e) =

2

e3
,

f (4)(x) = −2 · 3
x4

, f (4)(e) = − 6

e4
.

Így a keresett polinom:

T4(x) = 1 +
1

e
(x− e)− 1

2e2
(x− e)2 +

1

3e3
(x− e)3 − 1

4e4
(x− e)4.

3.132

T4(x) = e2[1 +
1

1!
(x− 2) +

1

2!
(x− 2)2 +

1

3!
(x− 2)3 +

1

4!
(x− 2)4].

3.133

T3(x) = 1 +
2

1!
(x− π

4
) +

4

2!
(x− π

4
)2 +

16

3!
(x− π

4
)3.

3.134 f(x) = sin(x), f(
π

4
) =

1√
2
.

f ′(x) = cos(x), f ′(
π

4
) =

1√
2
.

f ′′(x) = − sin(x), f ′′(
π

4
) = − 1√

2
.

f ′′′(x) = − cos(x), f ′′′(
π

4
) =

−1√
2

.

Tehát a keresett polinom:

T3(x) =
1√
2
·
[
1 +

1

1!
(x− π

4
)− 1

2!
(x− π

4
)2 − 1

3!
(x− π

4
)3

]

3.135

2 · T4(x) = sin(3) +
3 cos(3)

1!
(x− 1)− 32 sin(3)

2!
(x− 1)2−

33 cos(3)

3!
(x− 1)3 +

34 sin(3)

4!
(x− 1)4.

64



3.136 f(x) = x3 − 6x2 + 11x− 5, f(2) = 1.

f ′(x) = 3x2 − 12x + 11, f ′(2) = −1

f ′′(x) = 6x− 12, f ′′(2) = 0

f ′′′(x) = 6, f ′′′(2) = 6 .

Tehát a keresett polinom:

T3(x) = f(2) +
f ′(2)

1!
(x− 2) +

f ′′(2)

2!
(x− 2)2 +

f ′′′(2)

3!
(x− 2)3 =

= 1− 1

1!
(x− 2) +

6

3!
(x− 2)3 = (x− 2)3 − (x− 2) + 1.

Megjegyzés: Mivel az n-ed fokú polinom megegyezik bármely helyen feĺırt n-edfokú
Taylor polinomjával, ezért

x3 − 6x2 + 11x− 5 = (x− 2)3 − (x− 2) + 1 .

Természetesen ez az azonosság elemi úton is ellenőrizhető.

3.137

T (x) = 7 + 29(x− 1) + 76(x− 1)2 + 110(x− 1)3 + 90(x− 1)4 +

+ 39(x− 1)5 + 7(x− 1)6.

3.138 T5(x) = 6 + 5(x− 1) + (x− 1)2 + 4(x− 1)3 + 4(x− 1)4 + (x− 1)5.

3.139 T4(x) = 1 + 2x + 2x2 +
4

3
x3 +

2

3
x4.

3.140 f(x) =
1

2
sin 3x, f(0) = 0.

f ′(x) =
3

2
cos 3x, f ′(0) =

3

2

f ′′(x) = −32

2
sin 3x, f ′′(0) = 0

f ′′′(x) = −33

2
cos 3x, f ′′′(0) = −33

2

f (4)(x) =
34

2
sin 3x, f (4)(0) = 0

f (5)(x) =
35

2
cos 3x, f (5)(0) =

35

2

f (6)(x) = −36

2
sin 3x, f (6)(0) = 0.

65



Tehát a keresett polinom:

T6(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5 +

f (6)(0)

6!
x6 =

= 0 +
3
2

1!
x +

0

2!
x2 +

−33

2

3!
x3 +

0

4!
x4 +

35

2

5!
x5 +

0

6!
x6 =

=
1

2
[3x− 9

2
x3 +

81

40
x5].

3.141 T5(x) = T4(x) = 1− 2x2 +
2

3
x4.

3.142 f(x) = arc tg x, f(0) = 0

f ′(x) =
1

1 + x2
, f ′(0) = 1

f ′′(x) = − 2x

(1 + x2)2
, f ′′(0) = 0

f ′′′(x) = −2(1 + x2)2 − 8x2(1 + x2)

(1 + x2)4
=

6x2 − 2

(1 + x2)3
, f ′′′(0) = −2.

Tehát a keresett polinom:

T3(x) = x− 2

3!
x3 = x− x3

3
.

3.143

Tn(x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n+1xn

n

3.144

Tn(x) = 1 +
α

1!
x +

α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 +

+ · · ·+ α(α− 1) . . . (α− n + 1)

n!
xn =

= 1 +

(
α
1

)
x +

(
α
2

)
x2 + · · ·+

(
α
n

)
xn =

n∑

k=0

(
α
k

)
xk.

3.145 A feĺırt polinom hatod fokúnak is tekinthető, ezért az elkövetett hiba

|R6(x)| =
∣∣∣∣
f 7(ξ)

7!
x7

∣∣∣∣ =
| − cos(ξ)|x|7|

5040
<

1

5040
<

1

5000
< 5 · 10−3,

mert | − cos(ξ)| ≤ 1 bármilyen ξ esetén, és a 0 ≤ x ≤ 1 feltevés miatt |x| ≤ 1.
Ha tehát a 0-tól 1 radiánig (≈ 57, 3◦) terjedő szögek sinusát az előbbi ötödfokú
polinommal számı́tjuk ki, akkor a hiba 2 t́ızezrednél kisebb.
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3.146 Az e szám két tizedes jegy pontossággal való megközeĺıtése azt jelenti, hogy meg-
keressük a két tizedes jeggyel feĺırt tizedes törtek halmazából azt az elemet, amely
az e számhoz legközelebb esik. Ez a halmaz: {k · 0.01 | k ∈ Z}. Mivel két ilyen
szomszédos tizedes tört távolsága 0, 01, ezért célszerűnek tűnik, hogy az e számot

először
1

2
· 0.01 = 5 · 10−3 pontossággal közeĺıtsük meg racionális számmal, majd

ebből próbáljuk meg kikövetkeztetni, hogy az emĺıtett ”százados” skálán melyik
elem esik hozzá legközelebb.

Az e számot az f(x) = ex (x ∈ R) függvény x = 1 helyen vett helyetteśıtési értéke
adja. Ezért a feladat most olyan n ∈ N keresése, melyre

|e− Tn(1)| = |f(1)− Tn(1)| < 5 · 10−3 .

A Taylor-formulát x = 1 esetén alkalmazva kapjuk, hogy van olyan 0 < ξ < 1
szám, melyre

f(1)− Tn(1) = f(1)−
n∑

k=1

1

n!
=

f (n+1)(ξ)

(n + 1)!
· 1n+1 =

eξ

(n + 1)!
> 0 .

A ξ < 1, e < 3 becsléseket alkalmazva kapjuk, hogy

0 < f(1)− Tn(1) =
eξ

(n + 1)!
<

e1

(n + 1)!
<

3

(n + 1)!
, (3.1)

ezért elég megoldani a
3

(n + 1)!
< 5 · 10−3

egyenlőtlenséget. Ez az egyenlőtlenség egyenértékű azzal, hogy

(n + 1)! > 600 ,

amiből kiolvasható, hogy n ≥ 5. Nézzük tehát pl. az n = 5 esetet:

T5(1) = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
=

8, 15

3
= 2, 716666 . . .

Rendezzük át az (3.1) becslést:

Tn(1) < f(1) < Tn(1) +
3

(n + 1)!
,

majd alkalmazzuk n = 5-re:

2, 716666 · · · < e < 2, 716666 · · ·+ 3

6!
= 2, 72083333 . . .

Ebből már látható, hogy a ”százados” skálán az e számhoz a 2, 72 tizedes tört esik
legközelebb, tehát az e szám két tizedes jeggyel feĺırt közeĺıtő értéke: 2, 72.
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3.2.5. Határérték meghatározása L’Hospital szabállyal

3.147

lim
x→0

sin 3x

tg 5x
= lim

x→0

3 cos 3x
5

cos2 5x

= lim
x→0

3

5
cos 3x cos2 5x =

3

5
.

3.148
1

2
. 3.149 −1

2
.

3.150 1.

3.151

lim
x→0

ex − e−x − 2x

x− sin(x)
= lim

x→0

ex + e−x − 2

1− cos(x)
= lim

x→0

ex − e−x

sin(x)
= lim

x→0

ex + e−x

cos(x)
= 2.

3.152 2. 3.153 1.

3.154 0. 3.155 e− 1.

3.156

lim
x→0

ln x

ln sin(x)
= lim

x→0

1
x

cos(x)
sin(x)

= lim
x→0

sin(x)

x cos(x)
= lim

x→0

cos(x)

cos(x) − x sin(x)
= 1.

3.157 0.

3.158

lim
x→∞

x · sin a

x
= lim

x→∞
sin a

x
1
x

= lim
x→∞

(− a
x2

) · cos a
x

− 1
x2

=

= lim
x→∞

a · cos
a

x
= a · cos 0 = a

3.159 1. 3.160 −1

3
.

3.161 0.

3.162

lim
x→π

2

(sin(x))tg (x) = lim
x→π

2

e(tg (x))·(ln sin(x)) = e0 = 1.

Itt felhasználtuk, hogy

lim
x→π

2

(tg (x)) · (ln sin(x)) = lim
x→π

2

ln sin(x)

ctg x
= lim

x→π
2

cos(x)

sin(x)
−1

sin2 x

=

= lim
x→π

2

(− sin(x) cos(x)) = 0 .
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3.163 1. 3.164 1.

3.165 1.

3.166 e2. 3.167
1

e
.

3.168 ∞. 3.169 ∞.

3.170 1. 3.171 e.

3.2.6. Śıkgörbe érintője

3.172 Az érintő egyenlete y − y(x0) = y′(x0)(x− x0).

Példánkban x0 = 1, y(1) = 2, y′(1) = 1.

Az érintő egyenlete y = (x− 1) + 2 azaz y = x + 1.

3.173 Az érintő egyenlete y =
1

e
x Az x tengelyt ott metszi, ahol y = 0. Ebből x = 0.

Az érintő az origón megy keresztül.

3.174 Az érintő iránytangense y′ megegyezik az egyenes meredekségével. y′ = 1
cos2 x

=
2.

Innen cos(x) = ± 1√
2
, x = ±π

4
+ kπ.

Tehát a keresett pontok: Pk(
π

4
+ kπ; 1), Qk(−π

4
+ kπ; −1) (k ∈ Z).

3.175 P1(−2, 1530) ; P2(2, 1522). 3.176 T4 = 2a.

3.177 A normális meredeksége m = − 1

y′(
π

4
)

= − cos2 π

4
= −1

2
. Innen az érintő egyen-

lete:

y = −1

2
x + 1 +

π

8
.

3.178 Keressük meg először a jelzett pontokat. Az x = 1 értéket béırjuk a függvénybe:
y3 − 3− 4y + 3 = 0. Innen y(y2 − 4) = 0.

Három értéket találunk: y1 = 0, y2 = 2, y3 = −2, ezért a megfelelő pontok

P1(1, 0), P2(1, 2), P3(1,−2).
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A derivált

y′ = −−6x− 4y

3y2 − 4x
=

6x + 4y

3y2 − 4x
, y′(P1) = −3

2
, y′(P2) =

7

4
, y′(P3) = −1

4
.

Érintő egyenesek:

y = −3

2
(x− 1), y − 2 =

7

4
(x− 1), y + 2 = −1

4
(x− 1).

Normális egyenesek:

y =
2

3
(x− 1), y − 2 = −4

7
(x− 1), y + 2 = 4(x− 1).

3.179 y′ = x2 − 2x, ezt felhasználva:

a) x2−2x = 0, amiből x = 0 vagy x = 2. A keresett pontok: P1(0, 1), P2(2, −1

3
).

b) +45◦-os bezárt szög esetén az érintő meredeksége 1,

ezért megoldandó az x2−2x = 1 egyenlet. Ennek gyökei x1 = 1+
√

2, x2 = 1−√2.

Tehát a keresett pontok: Q1(1 +
√

2,
1

3
−
√

2

3
), Q2(1−

√
2,

1

3
+

√
2

3
).

3.2.7. Szélsőérték számı́tás

3.180 A függvénynek lokális szélsőértéke ott lehet, ahol az első derivált zérus. Ha ezen
a helyen az első el nem tűnő derivált páros rendű, akkor van lokális szélsőérték.
Ha ez a derivált az adott pontban pozit́ıv, akkor lokális minimum van, ha negat́ıv,
akkor lokális maximum van.

y = x3 − 12x, ezért y′ = 3x2 − 12 és y′′ = 6x.

y′ = 0 ha x2 = 4, azaz x = ±2

y′′(2) = 12 > 0, lokális minimum van y(2) = −16.

y′′(−2) = −12 < 0, lokális maximum van y(−2) = 16.

3.181 y′ = (4x3 − 2x5)e−x2

= x3(4− 2x2)e−x2

Mivel e−x2

mindenütt pozit́ıv, y′ = 0 akkor lehet, ha x1 = 0 ill. x2 =
√

2, x3 = −√2
y′′ = (12x2 − 18x4 + 4x6)e−x2

y′′(0) = 0, tehát ezt a helyet tovább kell vizsgálni.

y′′(
√

2) = y′′(−
√

2) = −16

e2
< 0, tehát ezeken a helyeken a függvénynek lokális

maximuma van.
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Vizsgáljuk az x = 0 helyet.
y′′′ = (24x− 96x3 + 60x5 − 8x7)e−x2

; y′′′(0) = 0

y(IV) = (24− 336x2 + 492x4 − 176x6 + 16x8)e−x2

y(IV)(0) = 24 > 0, tehát a függvénynek az x = 0 helyen van lokális szélsőértéke:
lokális minimuma van.
x1 = 0-nál ymin = 0

x2 =
√

2 és x3 = −
√

2-nél ymax =
4

e2
.

M egjegyzés: természetesen kereshetjük a lokális szélsőérték helyeket a függvény
monotonitásának vizsgálatával is.

3.182 a) f monotonitását vizsgáljuk, s ebből következtetünk a keresett szélsőérték he-
lyekre. A derivált f ′(x) = 3x2 − 18x + 15, melynek zérushelyei: x1 = 1, x2 = 5.
Ennek alapján a függvény monotonitása:

– a (−∞, 1] intervallumon: szigorúan nő,

– a [1, 5] intervallumon szigorúan csökken,

– a [5, +∞] intervallumon. szigorúan nő.

Emiatt az x = 1 helyen lokális maximuma van, melynek értéke: 4, és az x = 5
helyen lokális minimuma van, melynek értéke: −28.

b) A [0, 2] intervallumon vegyük figyelembe, hogy f a [0, 1] intervallumon szigorúan
nő, az [1, 2] intervallumon pedig szigorúan csökken. Emiatt abszolút maximuma
az x = 1 helyen felvett f(1) = 4, abszolút minimuma pedig min{f(0); f(2)} =
f(0) = −3.

A (0, 2) nýılt intervallumon - a monotonitás alapján - az x = 1 helyen van abszolút
maximum, abszolút minimum pedig nincs.

3.183 Lokális szélsőértékek: f(x)max = −2, ha x = −1 és f(x)min = 2, ha x = 1.

Abszolút szélsőértékek [
1

2
; 2]-n: abszolút minimum x = 1-nél 2, abszolút maximum

x =
1

2
-nél és x = 2-nél

5

2
.

3.184 Lokális szélsőérték: f(x)min = − 1

2e
, ha x =

1√
e
.

Abszolút szélsőérték (0; 1]-en: abszolút minimum x =
1√
e
-nél − 1

2e
, abszolút ma-

ximum x = 1-nél 0.
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3.4. ábra. 3.185 feladat

3.185 Jelöljük a négyszög alapját x-el, magasságát m-el, akkor a terület T = x · m.
Ekkor x2 + m2 = 4R2, ahonnan m =

√
4R2 − x2 .́Igy T = x ·

√
4R2 − x2.

A kapott függvény maximumát kell keresnünk. Egyszerűśıtést jelenthet, ha a
terület-függvény helyett annak négyzetét tekintjük. T 2-nek ugyanott van maxi-
muma, ahol T -nek:

T 2 = x2(4R2 − x2).

A maximális területű négyszög négyzet, és x = m =
√

2R. T = 2R2.

3.186 Legyen a henger sugara r, magassága m.

V = r2πm

Vmax =
4
√

3

9
R3π, ha r = R

√
2

3
, m =

2√
3
R.

3.187 Legyen a kúp alapkörének a sugara r, magassága m. Vezessük be az ábrán jelzett
x-et.

Ezzel a kúp sugara és magassága is kifejezhető.

V =
r2πm

3
; r2 = R2 − x2, m = R + x.

V =
π

3
(R2 − x2)(R + x)

Vmax =
32

81
R3π, ha m =

4

3
R, r =

2
√

2

3
R.

3.188 r = m =
1
3
√

π
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3.5. ábra. 3.186. feladat

3.6. ábra. 3.187. feladat

3.189 A feladat megoldásában seǵıt az ábra: T =
2a + 2x

2
m = (a + x)m

ϕ = 60◦.

3.190 A feladat megoldásában seǵıt az ábra: Vmax =
2
√

3

27
πh3, ha r =

√
2

3
h, m =

h√
3
.

3.191 A feladat megoldásában seǵıt az ábra: lmax =
(
a

2
3 + b

2
3

) 3
2
, ha tg α = 3

√
a

b
.
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3.7. ábra. 3.189. feladat

3.8. ábra. 3.190. feladat

3.192 P (2,±4).

3.193 Egy óra alatt a hajó v − c km-nyi utat tesz meg felfelé. Ez alatt a fogyasztása
E = av3 (a konstans arányossági tényező). A D költséget az egy km megtételéhez
felhasznált energiával mérhetjük. A hajózás akkor a leggazdaságosabb, ha egy km
út felfelé való megtételéhez a legkevesebb energia szükséges.

A költség minimumát a K = a
v3

v − c
költségfüggvény minimuma adja. A leggaz-
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3.9. ábra. 3.191. feladat

daságosabb sebesség: v =
3

2
c km/h.

3.194 Minimális távolság esetén α1 = α2.

3.195 Maximális terület 5000 m2, ekkor a = 100 m, b = 50 m.

A minimális terület 0 (egyenes vonal).

3.196 Jelölje (x, y) az ellipszis egy pontját. Ekkor P és (x, y) távolsága:

d =
√

(x− 1)2 + (y − 0)2 .

Ennek minimumát és maximumát keressük a 4x2 + 9y2 = 36 feltétel mellett.

Nyilvánvaló, hogy d és d2 szélsőérték-helyei ugyanott vannak, ezért d2 szélsőérték-
helyeit fogjuk keresni. A feltételi egyenletből kifejezzük y2-et, majd behelyetteśıtjük
d2 képletébe:

d2 = (x− 1)2 + y2 = (x− 1)2 +
36− 4x2

9
=

5

9
x2 − 2x + 5

Keressük tehát az f(x) =
5

9
x2 − 2x + 5 függvény abszolút szélsőértékeit a [−3, 3]

intervallumon. A [−3, 3] intervallumhoz úgy jutunk el, hogy a feltételi egyenlet
átrendezésével 9y2 = 36 − 4x2, amiből 36 − 4x2 ≥ 0, azaz −3 ≤ x ≤ 3 adódik.
Weierstrass tétele alapján tudjuk, hogy a keresett szélsőértékek léteznek.

Keressük meg a derivált zérushelyét: f ′(x) =
10

9
x − 2 = 0, ennek egyetlen me-

goldása x =
9

5
. Ez benne van a [−3, 3] intervallumban. Így:

min f = min

{
f

(
9

5

)
, f(−3), f(3)

}
= min

{
4√
5
, 4, 2

}
=

4√
5

= f

(
9

5

)
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max f = max

{
f

(
9

5

)
, f(−3), f(3)

}
= max

{
4√
5
, 4, 2

}
= 4 = f(−3)

Ennek alapján a P -hez legközelebbi pontok (2 ilyen van): A1(
9

5
,

8

5
) és A2(

9

5
, −8

5
),

a legtávolabbi pont pedig B(−3, 0).

3.197 A ház oldalainak hossza 100 m és 50 m.

3.198 A maximális területű téglalap oldalai
r√
2

és
2r√
2
. A minimális területű téglalap

a degenerált eset: egyetlen vonal.

3.199 Legyen f(x) a bevétel, ha x utas van. A 200 fölöttiek száma x − 200, ezért a
jegyek ára ennyivel csökken, tehát darabonként 30.000− 100 · (x− 200). Ezért az
összes jegy ára:

f(x) = x

(
30.000− 100(x− 200)

)
= 50.000x− 100x2

Az f ′(x) = 0 egyenlet megoldása x = 250, ı́gy a potenciális szélsőérték helyek:
x = 200, x = 250, x = 350. A megfelelő függvényértékek:

f(200) = 600.000, f(250) = 625.000, f(350) = 525.000

Maximális a bevétel 250 utas esetén, és minimális 350 utas esetén. (A feladat
csupán elméleti...)

3.200 Négyzet.

3.201 Az egész drótból kört hajĺıtunk.

3.2.8. Függvényvizsgálat

A függvényvizsgálat során a fő kérdések az alábbiak:

1. értelmezési tartomány

2. zérushelyek

3. a függvény viselkedése az értelmezési tartomány határain (határértékek)

4. növekvő és csökkenő szakaszok, szélsőérték

5. konvex és konkáv szakaszok, inflexiós pontok

6. grafikon felvázolása, értékkészlet
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3.202 Értelmezési tartomány : x ∈ R, x > 0.

A zérushelyeket az x2 ln x = 0 egyenlet megoldásával kapjuk: x = 1.

Határértékek : lim
x→0

x2 ln x = 0 (L’Hospital-lal), lim
x→+∞

x2 ln x = +∞.

Monotonitás, szélsőérték : f ′(x) = 2x ln x+x2 · 1
x

= x · (2 ln x +1). Ennek egyetlen

zérushelye van: x = e−1/2 =
1√
e
.

A deriváltfüggvény előjelének vizsgálatával az alábbi következtetésre jutunk:

f a

[
0,

1√
e

]
intervallumon csökken, az

[
1√
e
, +∞

)
intervallumon nő. Az x =

1√
e

helyen abszolút minimuma van. A minimum értéke: f

(
1√
e

)
= − 1

2e
.

Konvexitás, inflexiós pontok : f ′′(x) = 1 · (2 ln x + 1) + x · 2

x
= 2 ln x + 3. Ennek

egyetlen zérushelye van: x = e−3/2 =
1

e
√

e
.

f ′′ előjelének vizsgálatával az alábbi következtetésre jutunk:

f a

[
0,

1

e
√

e

]
intervallumon konkáv, az

[
1

e
√

e
, +∞

)
intervallumon konvex. Az

x =
1

e
√

e
helyen inflexiós pontja van.

A függvény grafikonja:

3.10. ábra. 3.202 feladat

Értékkészlet : Rf =

[
− 1

2e
, +∞

)
.
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3.203 f(−1) : maximum, f(4) : minimum, f

(
3

2

)
: inflexió.

3.204 Értelmezési tartomány : Df = R, a függvény páratlan.

A zérushelyeket az
x

1 + x2
= 0 egyenlet megoldásával kapjuk: x = 0.

Határértékek : lim
x→−∞

x

1 + x2
= lim

x→+∞
x

1 + x2
= 0.

Monotonitás, szélsőérték : f ′(x) =
1 · (1 + x2)− x · 2x

(1 + x2)2
=

1− x2

(1 + x2)2
. Ennek zérus-

helyei: x1 = −1, x2 = 1.

A deriváltfüggvény előjelének vizsgálatával az alábbi következtetésre jutunk:

f a (−∞, −1] intervallumon csökken, a [−1, 1] intervallumon nő, az [1, +∞) in-
tervallumon csökken. Az x = −1 helyen lokális minimuma, az x = 1 helyen lokális

maximuma van. A lokális minimum értéke −1

2
, a lokális maximum értéke

1

2
.

Konvexitás, inflexiós pontok : f ′′(x) =
2x · (x2 − 3)

(1 + x2)3
. Ennek három zérushelye van:

x1 = −√3, x2 = 0, x3 =
√

3.

f ′′ előjelének vizsgálatával az alábbi következtetésre jutunk:

f a
(−∞, −√3

]
és a

[
0,
√

3
]

intervallumokon konkáv, a
[−√3, 0

]
és a

[√
3, +∞)

intervallumokon konvex. Az x1 = −√3, x2 = 0, x3 =
√

3 helyeken inflexiós pontja
van.

Aszimptota az x-tengely. A függvény grafikonja:

3.11. ábra. 3.204 feladat

Értékkészlet : Rf =

[
−1

2
,

1

2

]
. Az x1 = −1 helyen abszolút minimuma, az x2 = 1

helyen abszolút maximuma van.
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3.205 Értelmezési tartomány : Df = R \ {0}, a függvény páratlan.

A zérushelyeket az x+
1

x
= 0 egyenlet megoldásával kapjuk. Ennek az egyen-

letnek azonban nincs valós gyöke, tehát a függvénynek nincs zérushelye.

Határértékek : lim
x→−∞

f(x) = −∞, lim
x→+∞

f(x) = +∞, lim
x→0−

f(x) = −∞,

lim
x→0+

f(x) = +∞.

Monotonitás, szélsőérték : f ′(x) =
x2 − 1

x2
. Ennek zérushelyei: x1 = −1,x2 =

1.

A deriváltfüggvény előjelének vizsgálatával az alábbi következtetésre jutunk:

f a (−∞, −1] intervallumon nő, a [−1, 0) intervallumon csökken, a (0, 1]
intervallumon csökken, az [1, +∞) intervallumon nő. Az x = −1 helyen
lokális maximuma, az x = 1 helyen lokális minimuma van. A lokális maximum
értéke −2, a lokális minimum értéke 2.

Konvexitás, inflexiós pontok : f ′′(x) =
2

x3
. Ennek nincs zérushelye.

f ′′ előjelének vizsgálatával az alábbi következtetésre jutunk:

f a (−∞, 0) intervallumon konkáv, a (0, +∞) intervallumon konvex. Inflexiós
pontja nincs.

Aszimptota az y = x egyenes. A függvény grafikonja:

3.12. ábra. f(x) = 1 +
1

x

Értékkészlet: Rf = (−∞, −2] ∪ [2, +∞). Abszolút szélsőértékei nincsenek.

3.206 Értelmezési tartomány : Df = R, a függvény páros.

Zérushely nincs, mivel bármely x ∈ R esetén e−x2
> 0.

Határértékek : lim
x→−∞

e−x2
= lim

x→+∞
e−x2

= 0.
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Monotonitás, szélsőérték : f ′(x) = e−x2 · (−2x). Ennek egyetlen zérushelye
van: x = 0.

A deriváltfüggvény előjelének vizsgálatával az alábbi következtetésre jutunk:

f a (−∞, 0] intervallumon nő, a [0, +∞) intervallumon csökken. Az x = 0
helyen abszolút maximuma van. A maximum értéke: f (0) = 1.

Konvexitás, inflexiós pontok : f ′′(x) = 2e−x2 · (2x2− 1). Ennek két zérushelye

van: x1 = − 1√
2
, x2 =

1√
2
.

f ′′ előjelének vizsgálatával az alábbi következtetésre jutunk:

f a

(
−∞, − 1√

2

]
és az

[
1√
2
, +∞

)
intervallumokon konvex, a

[
− 1√

2
,

1√
2

]

intervallumon konkáv. Az x1 = − 1√
2
, x2 =

1√
2

helyeken inflexiós pontja van.

A függvény grafikonja:

3.13. ábra. f(x) = e−x2

Értékkészlete a (0, 1] intervallum.

3.207 Df : {x ∈ R/{−1}} ; f(0) = 0 : minimum, f(−2) = 4 : maximum, inflexió
nincs, aszimptotája az y = x− 1 egyenes.

A (−∞, −2) és (0, +∞) szakaszokon növekvő, (−2, −1) és (−1, 0) szakaszokon
csökkenő.

Rf : {0 < f(x) ≤ −4, f(x) ≥ 0}

3.208 Értelmezési tartomány : Df = R.
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Zérushelyek : az ex · cos(x) = 0 egyenlet megoldásával kapjuk, hogy

x = zk =
π

2
+ kπ (k ∈ Z).

Kapcsolat az exponenciális függvénnyel: az ex · cos(x) = ex egyenlet me-
goldásával kapjuk, hogy cos(x) = 1, azaz x = xk = 2kπ (k ∈ Z). Könnyű
kiszámolni, hogy az xk pontokban f és ex deriváltja azonos. E két összefüg-
gés azt jelenti, hogy az xk pontokban f grafikonja érinti az x 7→ ex függvény
grafikonját.

Hasonlóan, az ex · cos(x) = −ex egyenlet megoldásával kapjuk, hogy az yk =
(2k + 1)π (k ∈ Z) pontokban f grafikonja érinti az x 7→ −ex függvény
grafikonját.

Szemléletesen: f ”be van szoŕıtva” ex és −ex közé.

Határértékek : Mivel −ex ≤ f(x) ≤ ex, ezért lim
x→−∞

f(x) = 0. A +∞-ben

viszont f -nek nincs határértéke, mivel

lim
k→+∞

f(zk) = lim
k→∞

0 = 0, és lim
k→+∞

f(xk) = lim
k→∞

e2kπ = +∞.

Monotonitás, szélsőérték : f ′(x) = ex(cos(x) − sin(x)). Ennek zérushelyei:

x =
π

4
+ kπ (k ∈ Z).

A deriváltfüggvény előjelének vizsgálatával az alábbi következtetésre jutunk:

f a

[
π

4
+ 2kπ,

5π

4
+ 2kπ

]
intervallumokon csökken, a

[
5π

4
+ 2kπ,

9π

4
+ 2kπ

]

intervallumokon nő (k ∈ Z).

Az x =
π

4
+2kπ helyeken lokális maximuma, az x =

5π

4
+2kπ helyeken lokális

minimuma van (k ∈ Z).

Konvexitás, inflexiós pontok : f ′′(x) = −2ex sin(x). Ennek zérushelyei: x =
kπ (k ∈ Z).

f ′′ előjelének vizsgálatával az alábbi következtetésre jutunk:

f a [2kπ, (2k + 1)π] intervallumokon konkáv), a [(2k + 1)π, (2k + 2)π] inter-
vallumokon konvex, az x = kπ helyeken inflexiós pontja van (k ∈ Z).

Vegyük észre, hogy az inflexiós pontok éppen azok a helyek, ahol az f ”hozzáér”
az exponenciális függvényhez.

Értékkészlete: Rf = R.
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4. fejezet

Integrálszámı́tás
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4.1. Integrálszámı́tás

4.1.1. Határozatlan integrál

Elemi függvények

4.1.

∫
1

x + 1
dx 4.2.

∫
x

x + 1
dx

4.3.

∫
x2

x2 + 1
dx 4.4.

∫
sin(x) cos(x) dx

4.5.

∫
dx

x2
4.6.

∫
dx
3
√

x

4.7.

∫
x2

(
x2 − 1

)
dx 4.8.

∫ (
x2 − 1

)2
dx

4.9.

∫ √
x− x + x4

x2
dx 4.10.

∫
(x + 1)2

√
x

dx

4.11.

∫
(
√

x + 1)(x−√x + 1) dx 4.12.

∫ 3
√

x2 − 4
√

x√
x

dx

4.13.

∫
x2 − 4x + 7

x− 2
dx 4.14.

∫
1 + 2x2

x2(1 + x2)
dx

4.15.

∫
6

5 + 5x2
dx 4.16.

∫
ln 2√

2 + 2x2
dx

4.17.

∫
tg 2x dx 4.18.

∫
cos(2x)

cos(x)− sin(x)
dx

4.19.

∫
3x5dx 4.20.

∫
x2 − 7x + 8

x2
dx

Helyetteśıtés

4.21.

∫
e−x dx

4.22.

∫
cos(4x− 5) dx

4.23. ∫ √
8− 2x dx

4.24. ∫
sin

(π

3
− 3x

)
dx
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4.25.

∫
10x · ex dx

4.26.

∫
dx

5 + x2

4.27.

∫
3√

3x2 − 2
dx

4.28.

∫
dx

(2x− 3)5

4.29.
∫

5
√

(8− 3x)6 dx

4.30.

∫
x
√

1− x2 dx

4.31.
∫

x2 3
√

x3 + 8 dx

4.32.

∫
x√

x2 + 1
dx

4.33.
∫

cos(x)√
sin(x)

dx

4.34.

∫
x sin(x2 + 2) dx

4.35.
∫

3
√

tg x

cos2(x)
dx

4.36.

∫
x

4 + x2
dx

4.37.

∫
dx

x ln x

4.38.

∫ √
ln x

x
dx

4.39.

∫
x + 2

2x− 1
dx

4.40.

∫
x4

1− x
dx

4.41. ∫
x

x4 + 1
dx

4.42. ∫
cos(x)√

1 + sin2(x)
dx

84



4.43.
∫

x7

√
x8 − 1

dx

4.44.

∫
3x− 1

x2 + 9
dx

4.45.
∫

sin (8x)dx

4.46.

∫
1

3x− 5
dx

4.47.
∫

e5x+7dx

4.48.

∫
sin3 (x) cos(x)dx

4.49.
∫

x2

3
√

1− x3
dx

4.50.

∫
tg xdx

4.51. ∫
1√

x · (√x + 1)
dx

Parciális integrálás

4.52.
∫

(x2 − 1) sin(3x) dx

4.53.

∫ (
x + 2

ex

)2

dx

4.54.
∫

x22x dx

4.55.

∫
x3e−x2

dx

4.56. ∫
sin
√

x dx

4.57.
∫

x · sin(x) · cos(x) dx

85



4.58.
∫

x2 · cos2 x dx

4.59.

∫
x · arc tg x dx

4.60.

∫
arc tg

√
x dx

4.61.

∫
ln3 x dx

4.62.

∫
(arc sin(x))2 dx

4.63.

∫
e3x cos(2x) dx

4.64. ∫
earc sin(x) dx

Racionális törtfüggvények

4.65.

∫
x− 2

x2 − 7x + 12
dx

4.66.

∫
3x− 2

x2 + 4x + 8
dx

4.67.

∫
x5 + x4 − 8

x3 − 4x
dx

4.68.

∫
x

x4 − 3x2 + 2
dx

4.69.
∫

2x2 − 5

x4 − 5x2 + 6
dx

4.70.

∫
4x + 3

(x− 2)3
dx

4.71.

∫
x3 − 6x2 + 11x− 5

(x− 2)4
dx

4.72.

∫
x3 − 2x2 + 4

x3(x− 2)2
dx
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4.73.

∫
dx

x4 − x2

4.74.

∫
dx

x6 + x4

4.75.

∫
x

x3 − 1
dx

4.76.

∫
x2

1− x4
dx

4.77.

∫
dx

(x + 1)2(x2 + 1)

4.78.

∫
1

1 + x4
dx

4.79.

∫
x(1− x2)

1 + x4
dx

4.80.

∫
dx

(x2 + 9)3

4.81.
∫

1

(x− 3)4
dx

4.82.

∫
2

x− 5
dx

4.83.
∫

x− 3

x2 − 6x + 27
dx

4.84.

∫
x− 1

x2 − 6x + 27
dx

4.85. ∫
4x2 + 13x− 9

x3 + 2x2 − 3x
dx

Trigonometrikus függvények

4.86.

∫
cos5 x dx

4.87.

∫
sin6 x dx
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4.88.

∫
sin6(x) cos3(x) dx

4.89.

∫
sin4 x

cos2 x
dx

4.90.

∫
sin3(x)

cos4(x)
dx

4.91.

∫
dx

sin(x) + cos(x)

4.92.

∫
dx

cos(x)

4.93.

∫
dx

5− 3 cos(x)

4.94.

∫
tg5x dx

4.95.

∫
dx

sin4(x) · cos4(x)

4.96.

∫
1 + tg x

sin(2x)
dx

4.97.

∫
dx

1 + sin2(x)

4.98.

∫
cos4(x) + sin4(x)

cos2(x)− sin2(x)
dx

4.99.

∫
sin(3x) · cos

(
5x− π

2

)
dx

4.100. ∫ √
1 + sin(x) dx

Hiperbolikus és exponenciális kifejezések

4.101.

∫
sh2x · ch3x dx

4.102.

∫
sh3x√
ch x

dx
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4.103.

∫
dx

sh x · ch x

4.104.

∫
dx

sh x

4.105.

∫
ch x · ch 2x · ch 3x dx

4.106.

∫
e2x

ex + 1
dx

4.107.

∫
6

ex − 3
dx

4.108.

∫
ex · sh 3x dx

4.109. ∫
ex · sh xdx

Gyökös kifejezések

4.110.

∫
x√

3x + 5
dx

4.111.

∫
(x2 − 3x + 2) · √2x− 1 dx

4.112.

∫
dx√

ex + 1

4.113.

∫ 3
√

x2

1 +
√

x
dx

4.114.

∫
dx√

x + 4
√

x

4.115.

∫ √
1− x

1 + x
· dx

x

4.116.

∫
x3

√
1 + 2x2

dx

4.117.

∫
dx√

9x2 − 6x + 2
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4.118.

∫
dx√

12x− 9x2 − 2

4.119.

∫
dx√

12x− 9x2 − 4

4.120.

∫ √
1 + 2x− x2 dx

4.121.

∫ √
3x2 − 3x + 1 dx

4.122.

∫ √
x2 + 6x + 10 dx

4.123.

∫ √
3− x2 dx

4.124.

∫
dx√

x2 − 4x + 40

4.125.

∫
dx√

3x2 + 12x + 30

4.126.

∫ √
2x2 + 8x + 5 dx

4.127.

∫
x2 + x + 1√
4 + x− x2

dx

4.1.2. Határozott integrálok. Vegyes feladatok

4.128.

1∫

0

2x2 + x + 1 dx

4.129.

√
3∫

1

1

1 + x2
dx

4.130.

3∫

2

1

(2x + 1)2
dx

4.131.

1∫

0

e2xdx

4.132.
π∫

π
2

sin2 (x)dx
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4.133.
π∫

0

sin3(x)dx

4.134.

2π∫

π

cos2(x) sin3(x) dx

4.135.

π
4∫

π
6

1

sin(x)
dx

4.136.
π∫

0

sin(4x) cos(3x) dx

4.137.

π∫

−π

cos4(x) sin2(x) dx

4.138.
π∫

0

sin (4x) cos (5x) dx

4.139.

1∫

0

x · e−x2

dx

4.140.

e
π
2∫

1

cos(ln x)

x
dx

4.141.

1∫

0

√
1− x2dx

4.142.
√

3/2∫

1/2

x2

√
1− x2

dx

4.143.
4∫

1

x√
5x− 4

dx

91



4.144.

2∫

0

xexdx

4.145.

√
3∫

0

2x · arc tg xdx

4.146.
∫ 1

−1

(x2 − 1) sin(3x) dx

4.147.

∫ 1

0

(
x + 2

ex

)2

dx

4.148. ∫ 1

0

x2ax dx, a > 0

4.1.3. Improprius integrálok

Számı́tsuk ki az alábbi improprius integrálok értékét!

4.149.

∫ ∞

2

1

x2
dx

4.150.

∫ ∞

1

1

x
dx

4.151.
∫ ∞

0

1

1 + x2
dx

4.152.

∫ −∞

+∞

5

x2 − 2x + 2
dx

4.153.
∫ −3

−∞
xex dx

4.154.

∫ 10

−∞
xex dx

4.155.
∫ ∞

4

1

x ln x
dx

4.156.

∫ ∞

1

1

(1 + 2x)3
dx

4.157.
∫ −1

−∞

2

3x + 1
dx

4.158.

∫ ∞

1

e−2x+1 dx
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4.159.
∫ ∞

3

1√
(x− 1)3

dx

4.160.

∫ ∞

0

1
3
√

(2x + 1)2
dx

4.161.

∫ 1

0

1

1− x
dx

4.162.

∫ 1

0

1√
1− x

dx

4.163.
∫ 1

1
2

1

2x− 1
dx

4.164.

∫ 1

1
2

1√
2x− 1

dx

4.165.

∫ 1

−1

1√
1− x2

dx

4.166.

∫ 5

0

dx√
25− x2

4.167.
∫ 5

4
3

dx√
3x− 4

4.168.

∫ 0

− 1
2

1√
1− 4x2

dx

4.169.

1∫

1/2

x2

√
1− x2

dx

4.170.

+∞∫

2

1

(x− 1)2
dx

4.171.

+∞∫

2

1

x− 1
dx

4.172.

+∞∫

−∞

1

x2 + 1
dx

4.173.

3∫

0

1√
3− x

dx

4.174.

∞∫

0

e−axdx, a > 0
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4.175.

∞∫

0

xe−axdx

4.176.

∞∫

0

cos (x)e−xdx

4.177.

∞∫

2/π

1

x2
sin

1

x
dx

4.178.

∞∫

0

sin(ax)e−bxdx

4.179.

∞∫

0

xe−x2

dx

4.180.

∞∫

0

xne−axdx

4.1.4. Az integrálszámı́tás alkalmazásai

Területszámı́tás

Határozzuk meg a függvények gráfjai alatti területet, és ábrázoljuk a függvényeket.

4.181. y =
3x2

2
; −2 ≤ x ≤ 2 4.182. y =

5

3x2
+ x; 1 ≤ x ≤ 3

4.183. y =
√

x; 0 ≤ x ≤ 1 4.184. y = (1− x)3; −2 ≤ x ≤ 1

4.185. y = x3 − 3; 3 ≤ x ≤ 4 4.186. y = x4 − x3; 1 ≤ x ≤ 2

4.187. y = e2x; −0.5 ≤ x ≤ 1 4.188. y = sin(3x); 0 ≤ x ≤ 0.3

4.189. y = cos(3x); −0.5 ≤ x ≤ 0.5 4.190. y = cos(
x

2
); 0 ≤ x ≤ π

4.191. y = ch(2x); 0 ≤ x ≤ 3 4.192. y = sh(x); 0 ≤ x ≤ 2

4.193. y =
2

x
; −2 ≤ x ≤ −1 4.194. y =

1

1 + x
; 1 ≤ x ≤ 3

4.195. y =
1

2x− 5
; 3 ≤ x ≤ 4 4.196. y =

1

2x− 5
; 5 ≤ x ≤ 10

4.197. Határozzuk meg x értékét úgy, hogy az y =
1

1 + x2
görbe alatti terület 0-tól x-ig

terjedő része
π

4
-gyel legyen egyenlő!
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4.198. Határozzuk meg x értékét úgy, hogy az y = e−2x görbe alatti terület x-től 1-ig
terjedő része 3-mal legyen egyenlő!

4.199. Határozzuk meg x ∈ [0, π] értékét úgy, hogy az y = sin(x) alatti terület 0-tól

x-ig terjedő része
1

4
-del legyen egyenlő!

Határozzuk meg a következő görbék közötti területet és ábrázoljuk is a görbéket.

4.200. y = x2 és y = 2x 4.201. y =
√

x és y =
x

2

4.202. y = x2 és y = 1− x2 4.203. y = x2 és y = 1− 3x2

4.204. y = x2 és y = 3x 4.205. y =
x2

3
és y = 2 +

x

3

4.206. y =
1

x
és y = 2.5− x 4.207. x

1
3 + y

1
3 = 1 és y = 1− x

4.208.
√

x +
√

y = 1 és x + y = 1

Végezzük el az alábbi területszámı́tásokat.

4.209. Határozzuk meg az y = x(1− x) parabola és ennek az x = 0, x = 2 abszcisszájú
pontjaihoz húzott érintői közötti területet!

4.210. Határozzuk meg az y = 4.5− 1

2
(x− 4)2 parabola, és ennek az x = 3 és x = 6

pontjában húzott érintői közötti területet!

4.211. Határozzuk meg az y =
1

x
hiperbola, és a P (2, 2) pontra illeszkedő, y = x egye-

nesre merőleges egyenes által határolt śıkidom területét.

4.212. Határozzuk meg az y =
1

x
hiperbola, az y = x és az y =

x

a2
(ahol a > 0 adott)

egyenes által határolt śıkidom területét! Ábrázoljuk is a szektort!

Görbe ı́vhossza

Határozzuk meg az függvények görbéjének ı́vhosszát a megadott határok között.

4.213. y = x2; 1 ≤ x ≤ 4 4.214. y = ch x; 0 ≤ x ≤ 3
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4.215. y = ln x; 2 ≤ x ≤ 6 4.216. y = ln(sin(x));
π

6
≤ x ≤ π

2

4.217. x2 + y2 = 25; 0 ≤ x ≤ 5 4.218. x = 5 cos t; y = 5 sin t; 0 ≤ t ≤ π

2

4.219. x = a(t − sin t); y = a(1 − cos t);
0 ≤ t ≤ 2π

4.220. x = 5 cos3 t; y = 5 sin3 t; 0 ≤ t ≤ π

3

4.221. x = 2t; y = 3t2; 2 ≤ t ≤ 5

Forgástestek térfogata

Forgassuk meg a következö görbéket az x tengely körül, és határozzuk meg a keletkező
forgásfelületek és a megadott intervallumok végpontjaiban az x tengelyre álĺıtott merő-
leges śıkok határolta térrész térfogatát.

4.222. y = e2x; 0 ≤ x ≤ 2 4.223. y =
1√
x

; 1 ≤ x ≤ 4

4.224. y =
x3

3
; 1 ≤ x ≤ 2 4.225. y = x− 1

x
; 1 ≤ x ≤ 3

4.226. y = 1− x2; −1 ≤ x ≤ 1 4.227. y2 − x2 = 1; 0 ≤ x ≤ 3

4.228.
√

x +
√

y = 1; 0 ≤ x ≤ 1 4.229. y = cos2 x; 0 ≤ x ≤ π

4.230. y =

√
x + 1√

x
; 1 ≤ x ≤ 3 4.231.

x2

a2
+

y2

b2
= 1; −a ≤ x ≤ a
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4.2. Integrálszámı́tás. Megoldások

4.2.1. Határozatlan integrál

Elemi függvények

4.1. ln |x + 1|+ C.

4.2.
∫

x

x + 1
dx =

∫
x + 1− 1

x + 1
dx =

∫ (
1− 1

x + 1

)
dx = x− ln |x + 1|+ C.

4.3. x− arc tg x + C.

4.4. −1

4
cos(2x) + C.

4.5.
∫

dx

x2
=

∫
x−2 dx =

x−1

−1
+ C = −1

x
+ C.

4.6.

∫
dx
3
√

x
=

∫
x−

1
3 dx = 3

x
2
3

2
+ C =

3

2

3
√

x2 + C.

4.7.
∫

x2
(
x2 − 1

)
dx =

∫ (
x4 − x2

)
dx =

∫
x4 dx−

∫
x2 dx =

x5

5
− x3

3
+ C.

4.8.
∫ (

x2 − 1
)2

dx =

∫ (
x4 − 2x2 + 1

)
dx =

x5

5
− 2x3

3
+ x + C.

4.9.
∫ √

x− x + x4

x2
dx =

∫ (
x−

3
2 − 1

x
+ x2

)
dx = − 2√

x
− ln |x|+ x3

3
+ C.

4.10.
2

5

√
x5 +

4

3

√
x3 + 2

√
x + C.
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4.11.
∫

(
√

x + 1)(x−√x + 1) dx =

∫ (
x

3
2 + 1

)
dx =

2

5

√
x5 + x + C.

4.12.
6

7
6
√

x7 − 4

3
4
√

x3 + C.

4.13.
x2

2
− 2x + 3 ln |x− 2|+ C.

4.14.
∫

1 + 2x2

x2(1 + x2)
dx =

∫ (
1 + x2

x2(1 + x2)
+

x2

x2(1 + x2)

)
dx =

=

∫ (
1

x2
+

1

1 + x2

)
dx = −1

x
+ arc tg x + C.

4.15.
∫

6

5 + 5x2
dx =

6

5

∫
dx

1 + x2
=

6

5
arc tg x + C.

4.16.
∫

ln 2√
2 + 2x2

dx =
ln 2√

2

∫
dx√

1 + x2
=

ln 2√
2
· arc sh x + C.

4.17. tg (x)− x + C.

4.18.
∫

cos(2x)

cos(x)− sin(x)
dx =

∫
cos2 x− sin2 x

cos(x)− sin(x)
dx

=

∫
(cos(x) + sin(x)) dx = sin(x)− cos(x) + C.

4.19.
x

2
+ C.

4.20. x− 7 ln |x| − 8

x
+ C.
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Helyetteśıtés

4.21. Végezzük el az u = −x helyetteśıtést, ezzel dx = −du:∫
e−x dx = −

∫
eu du = −eu + C = −e−x + C.

4.22. Végezzük el az u = 4x− 5 helyetteśıtést. Ekkor du = 4 dx, és ı́gy∫
cos(4x− 5) dx =

1

4

∫
cos u du =

1

4
sin u + C =

1

4
sin(4x− 5) + C.

M egjegyzés: Az ilyen integrálokat célszerű annak az összefüggésnek a felhasz-
nálásával kiszámı́tani, hogy ha∫

f(x)dx = F (x) + C,

akkor ∫
f(Ax + b) dx =

1

A
F (Ax + b) + C.

Például: ∫
cos(x) dx = sin(x) + C,

tehát ∫
cos(4x− 5) dx =

1

4
sin(4x− 5) + C.

A továbbiakban ezt az eljárást alkalmazzuk valahányszor a belső függvény x-nek
lineáris függvénye.

4.23. ∫ √
8− 2x dx = −1

2
· 2

3
(8− 2x)

3
2 + C = −1

3

√
(8− 2x)3 + C.

4.24. ∫
sin

(π

3
− 3x

)
dx = −1

3

[
− cos

(π

3
− 3x

)]
+ C =

1

3
cos

(π

3
− 3x

)
+ C.

4.25. ∫
10xex dx =

∫
ex ln 10 · ex dx =

∫
ex(1+ln 10) dx

=
ex(1+ln 10)

1 + ln 10
+ C =

10xex

1 + ln 10
+ C.

Megoldás közben azt az összefüggést használtuk fel, hogy a = eln a, ill. 10 = eln 10.
Ezért

10x =
(
eln 10

)x
= ex ln 10.
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4.26.
∫

dx

5 + x2
=

1

5

∫
dx

1 + x2

5

=
1

5

∫
dx

1 +
(

x√
5

)2 =

=
1

5
·
√

5arc tg
x√
5

+ C =

√
5

5
arc tg

x√
5

+ C.

4.27.
∫

3√
3x2 − 2

dx =
3√
2

∫
dx√

3x2

2
− 1

=
3√
2

∫
dx√(√
3
2
x
)2

− 1

=

=
3√
2

√
2

3
arch

(√
3

2
x

)
+ C = =

√
3 arch

(√
3

2
x

)
+ C.

4.28. − 1

8(2x− 3)4
+ C.

4.29. − 5

33
· 5
√

(8− 3x)11 + C.

4.30.
∫

x
√

1− x2 dx = −1

2

∫
(−2x) ·

√
1− x2dx = −1

2

∫ √
u du = −1

3
u

3
2 + C =

= −1

3

√
(1− x2)3 + C.

Az integrálban u = 1− x2 helyetteśıtést végeztük el, ekkor du = −2x dx.

4.31.
1

4
· 3
√

(x3 + 8)4 + C

4.32.
∫

x√
x2 + 1

dx =
1

2

∫
du√

u
=
√

x2 + 1 + C.

A használt helyetteśıtés: u = x2 + 1, ekkor du = 2x dx.

4.33.
∫

cos(x)√
sin(x)

dx =

∫
du√

u
= 2

√
sin(x) + C.

A használt helyetteśıtés: u = sin(x), ekkor du = cos(x) dx.
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4.34.
∫

x sin(x2 + 2) dx =
1

2

∫
sin u du = −1

2
cos

(
x2 + 2

)
+ C.

A használt helyetteśıtés: u = x2 + 2, ekkor du = 2x dx.

4.35.
3

4
· 3
√

tg 4x + C.

4.36.
∫

x

4 + x2
dx =

1

2

∫
2x

4 + x2
dx =

1

2
ln

(
4 + x2

)
+ C.

Azt látjuk, hogy 2-vel való szorzás után a számláló a nevező deriváltja, tehát a
kifejezés integrálja a nevező e alapú logaritmusával egyenlő. Ezt a szabályt jól
tanuljuk meg és az ilyen esetekben mellőzzük a helyetteśıtést, bár ez az előzőek egy
speciális esete. (Most is alkalmazhattuk volna az u = x2 + 4 helyetteśıtést.)

4.37.
∫

dx

x ln x
=

∫ 1
x

ln x
dx = ln ln x + C

4.38.
∫ √

ln x

x
dx =

∫ √
u du =

2

3
·
√

ln3 x + C.

A használt helyetteśıtés u = ln x, ekkor du =
1

x
dx.

4.39.
∫

x + 2

2x− 1
dx =

∫ (
1

2
+

5
2

2x− 1

)
dx =

x

2
+

5

2
· 1

2
ln(2x− 1) + C.

4.40.
∫

x4

1− x
dx =

∫ (
−x3 − x2 − x− 1− 1

x− 1

)
dx

= −x4

4
− x3

3
− x2

2
− x− ln(x− 1) + C.

Felhasználtuk, hogy

x4

1− x
= − x4

x− 1
= −

(
x3 + x2 + x + 1 +

1

x− 1

)
.
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4.41.
∫

x

x4 + 1
dx =

1

2

∫
du

u2 + 1
=

1

2
arc tg u + C =

1

2
arc tg x2 + C.

A használt helyetteśıtés u = x2, ekkor du = 2x dx.

4.42.
∫

cos(x)√
1 + sin2 x

dx =

∫
du√

1 + u2
= arsh u + C = arsh(sin(x)) + C.

A használt helyetteśıtés: u = sin(x), ekkor du = cos(x)dx.

4.43.
1

4
· √x8 − 1 + C.

4.44. Ilyen esetekben az integrálandó függvényt két függvény összegére bontjuk. Az
egyik függvénynél a számláló a nevező deriváltjának konstansszorosa legyen, a má-
sik függvénynél pedig a számláló már csak egy konstans, melyet az integrál jel elé
is kivihetünk. Tehát

∫
3x− 1

x2 + 9
dx =

∫ (
3x

x2 + 9
− 1

x2 + 9

)
dx =

=
3

2

∫
2x

x2 + 9
dx− 1

9

∫
dx

1 +
(

x
3

)2 =
3

2
ln

(
x2 + 9

)− 1

3
arc tg

x

3
+ C.

4.45.

∫
sin(8x)dx = −cos(8x)

8
+ C.

4.46.

∫
dx

3x− 5
= ln |3x− 5|+ C.

4.47.

∫
e5x+7dx =

1

5
e5x+7 + C.

4.48.

∫
sin3(x) cos(x)dx =

sin4(x)

4
+ C.

4.49. −1

2
(1− x3)2/3 + C.

4.50. − ln | cos(x)|+ C.

4.51. 2 ln(
√

x + 1) + C.
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Parciális integrálás

4.52. −(x2 − 1) cos 3x

3
+

2x sin 3x

9
+

2 cos 3x

27
+ C.

4.53.
∫ (

x + 2

ex

)2

dx =

∫ (
x2 + 4x + 4

)
e−2x dx = −

(
x2

2
+

5

2
x +

13

4

)
e−2x + C.

4.54.
x22x

ln 2
− x2x+1

(ln 2)2
+

2x+1

(ln 2)3
+ C.

4.55.
∫

x3e−x2
dx =

1

2

∫
x2e−x2

2x dx =
1

2

∫
ue−udu = −1

2
(x2 + 1) e−x2

+ C,

ahol u = x2 helyetteśıtéssel du = 2xdx.

4.56. t =
√

x helyetteśıtéssel, majd parciális integrálással: −2
√

x cos
√

x+2 sin
√

x+C.

4.57.
∫

x sin(x) cos(x) dx =
1

2

∫
x sin(2x) dx =

1

8
sin(2x)− x

4
cos(2x) + C.

4.58. A cos2(x) =
1 + cos(2x)

2
linearizáló formulát alkalmazzuk, majd kétszer parciáli-

san integrálunk.

Az eredmény:
x3

6
+

x2 sin(2x)

4
+

x cos(2x)

4
− sin(2x)

8
+ C.

4.59.
∫

x︸︷︷︸
u′

arc tg x︸ ︷︷ ︸
v

dx = ∗,

ahol a parciális integráláskor u = x2

2
, és v′ = 1

1+x2 . Így

∗ =
x2

2
arc tg x− 1

2

∫
x2

1 + x2
dx =

x2

2
arc tg x− x

2
+

1

2
arc tg x + C.

Felhasználtuk, hogy

∫
x2

1 + x2
dx =

∫ (
1− 1

1 + x2

)
dx.
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4.60.
∫

arc tg
√

x dx = 2

∫
uarc tg u du = xarc tg

√
x−√x + arc tg

√
x + C

A használt helyetteśıtés: x = u2, ekkor dx = 2u du.

4.61. Két parciális integrálást kell elvézgezni:

∫
1︸︷︷︸
u′

· ln3 x︸︷︷︸
v

dx = x ln3 x−
∫

3︸︷︷︸
u′

ln2 x︸︷︷︸
v

dx =

= x ln3 x− 3x ln2 x + 6

∫
ln x dx == x ln3 x− 3x ln2 x + 6x ln x− 6x + C.

4.62. u′ = 1, v = (arcsin x)2 válsztással egy parciális integrálást végzünk, ekkor

u = x v′ =
2 arcsin x√

1− x2
,

és ezért
∫

(arcsin x)2 dx = x(arcsin x)2 − 2

∫
x√

1− x2
arc sin(x)dx = ∗

Újabb parciális integrálást végzünk

u = arcsin x, v′ =
x√

1− x2

választással, ekkor

∗ = x(arcsin x)2 + 2
√

1− x2 · arcsin x− 2

∫
dx =

= x(arcsin x)2 + 2
√

1− x2 · arcsin x− 2x + C.

4.63. Kt́féleképpen végezz̈ınk parciális integrálást:

∫
e3x︸︷︷︸
u

cos(2x)︸ ︷︷ ︸
v′

dx =
1

2
e3x sin(2x)− 3

2

∫
e3x sin(2x) dx (4.1)

ahol

u′ = 3e3x v =
1

2
sin(2x).
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Másrészt ∫
e3x︸︷︷︸
u′

cos(2x)︸ ︷︷ ︸
v

dx =
1

3
e3x cos(2x) +

2

3

∫
e3x sin(2x) dx (4.2)

ahol

u =
1

3
e3x v′ = −2 sin(2x).

Szorozzuk meg (4.1)-et néggyel, (4.2)-t pedig kilenccel és vonjuk össze az ı́gy adódó
kifejezések jobb- illetve bal oldalát.

4

∫
e3x cos(2x) dx = 2e3x sin 2x− 6

∫
e3x sin(2x) dx

9

∫
e3x cos 2x dx = 3e3x cos 2x + 6

∫
e3x sin(2x) dx

13

∫
e3x cos(2x) dx = 2e3x sin 2x + 3e3x cos(2x) + C.

Végül 13-al való osztás után nyerjük, hogy:

∫
e3x cos 2x dx =

1

13
e3x(2 sin(2x) + 3 cos(2x)) + C.

4.64.
∫

earcsin x dx =

∫
eu cos u du,

ahol arcsin x = u, azaz x = sin u helyetteśıtéssel dx = cos u du Így olyan alakra ju-
tottunk, melyet parciálisan lehet integrálni, éppen az előző példában is bemutatott
módszerrel. A parciális integrálást elvégezve adódik, hogy

∫
eu cos udu =

1

2
eu(sin u + cos u) + C,

tehát ∫
earcsin xdx =

1

2
earcsin x(x +

√
1− x2 + C).
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Racionális törtfüggvények integrálja

4.65. Ha a másodfokú nevezőjű törtfüggvény nevezője tényezők szorzataként ı́rható fel,
akkor a tört lineáris nevezőjű törtek összegére bontható.

Annak érdekében, hogy ezt a felbontást elvégezhessük a nevezőt egyenlővé tesszük
0-val és megoldjuk az ı́gy nyert egyenletet, mert ennek az egyenletnek a gyökténye-
zői lesznek a szorzat alakban feĺırt nevező tényezői. Az x2 − 7x + 12 = 0 egyenlet
gyökei: x1 = 3, x2 = 4, azaz

x2 − 7x + 12 = (x− 3) · (x− 4)

Most már ismerjük a keresett lineáris tört-függvények nevezőit, határozzuk még
a számlálókat, melyek lineáris nevező esetén konstansok. Jelöljük ezeket A-val és
B-vel, akkor

x− 2

x2 − 7x + 12
=

A

x− 3
+

B

x− 4
≡ A(x− 4) + B(x− 3)

(x− 3)(x− 4)
.

Azonosságot ı́rtunk, mert olyan A és B értéket keresünk, melyek mellett az egyen-
lőség minden x-re fennáll. Mivel a nevezők azonosan egyenlők az azonosságnak a
számlálókra is fenn kell állni, azaz

x− 2 ≡ A(x− 4) + B(x− 3).

Az azonosság nyilván fennáll, ha az x-es tagok együtthatója mind a két oldalon
egyenlő ugyanúgy, mint a konstansok. Ez azonban két egyenletet szolgáltat, me-
lyekből A és B kiszámı́tható.

B = 2, A = −1

A kapott értékeket behelyetteśıtve

x− 2

x2 − 7x + 12
= − 1

x− 3
+

2

x− 4
.

Ezért az integrál

∫
x− 2

x2 − 7x + 12
dx =

∫ (
− 1

x− 3
+

2

x− 4

)
dx = − ln(x− 3) + 2 ln(x− 4) + C =

= ln c
(x− 4)2

x− 3
, (C = ln c bevezetésével)
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4.66. Az x2 + 4x + 8 = 0 egyenletnek nincsenek valós gyökei, tehát x2 + 4x + 8 nem
bontható tényezők szorzatára.

Bontsuk fel a törtet két tört összegére, melynek nevezője közös (a régi nevező), az
egyik számlálója a nevező deriváltjának valami konstans-szorosa, a másiké pedig
konstans. A nevező deriváltja 2x + 4, tehát a számlálókat a következő alakban
keressük

α(2x + 4) és β.

α és β értékét a következő feltételekből határozhatjuk meg:

α(2x + 4) + β = 3x− 2.

Most is két egyenletet ı́rhatunk fel, melyekből α és β meghatározható.

2α = 3, 4α + β = −2,

ezekből

α =
3

2
, β = −8.

Így az integrált két integrál összegére bontottuk:

∫
3x− 2

x2 + 4x + 8
dx =

3

2

∫
2x + 4

x2 + 4x + 8
dx− 8

∫
dx

x2 + 4x + 8
.

Az első integrál eredménye ismert, hiszen a számláló a nevező deriváltja. A máso-
dikat pedig teljes négyzetté való átalaḱıtással vezetjük vissza ismert feladatra.

1

x2 + 4x + 8
=

1

(x + 2)2 + 4
=

1

4
[

(x+2)2

4
+ 1

]

ezért ∫
dx

x2 + 4x + 8
=

1

4

∫
dx(

x+2
2

)2
+ 1

=
1

4
2arc tg

x + 2

2
+ C.

Tehát a megoldás:
∫

3x− 2

x2 + 4x + 8
dx =

3

2
ln(x2 + 4x + 8)− 4arc tg

x + 2

2
+ C.

4.67.
x5 + x4 − 8

x3 − 4x
számlálója magasabb fokú mint a nevezője, ezért felbontható egy po-

linom és egy valódi tört összegére.

(
x5 + x4 − 8

)
:
(
x3 − 4x

)
= x2 + x + 4
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−(x5 − 4x3)

x4 + 4x3 − 8
−(x4 − 4x2)

4x3 + 4x2 − 8
−(4x3 − 16x)

4x2 + 16x− 8 A polinom osztás eredménye:

x5 + x4 − 8

x3 − 4x
= x2 + x + 4 +

4x2 + 16x− 8

x3 − 4x
,

tehát ∫
x5 + x4 − 8

x3 − 4x
dx =

∫
(x2 + x + 4)dx +

∫
4x2 + 16x− 8

x3 − 4x
dx.

Az első integrál kiszámı́tása nem okoz gondot. A második meghatározásához a
törtet részlet-törtek összegére kell bontanunk.

A nevezőt most minden különösebb számı́tás nélkül fel tudjuk ı́rni szorzat alakjában

x3 − 4x = x(x2 − 4) = x(x + 2)(x− 2),

tehát
4x2 + 16x− 8

x3 − 4x
=

A

x
+

B

x + 2
+

C

x− 2
=

=
A(x2 − 4) + B(x2 − 2x) + C(x2 + 2x)

x3 − 4x
.

Ennek alapján feĺırhatjuk az egyenletrendszert, melyből A, B és C kiszámı́tható:

A + B + C = 4 − 2B + 2C = 16 − 4A = −8,

és innen
A = 2, B = −3, C = 5.

Megjegyezzük, hogy ilyen esetekben, amikor a gyökök mind különbözőek, általában
gyorsabban kapjuk az ismeretlen A, B, C értékeket, ha a számlálók egyenlőségét
kifejező egyenletben x helyére a gyököket helyetteśıtjük.

Példánkban az

4x2 + 16x− 8 = A(x2 − 4) + B(x2 − 2x) + C(x2 + 2x)

kifejezésben x helyébe zérust ı́rva azonnal nyerjük, hogy −8 = −4A azaz A = 2.
x = 2-nél 40 = 8C, innen C = 5. Végül x = −2-nél −24 = 8B, azaz B = −3,
tehát ∫

4x2 + 16x− 8

x3 − 4x
dx =

∫ (
2

x
− 3

x + 2
+

5

x− 2

)
dx =
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= 2 ln x− 3 ln(x + 2) + 5 ln(x− 2) + C.

A keresett megoldás:

∫
x5 + x4 − 8

x3 − 4x
dx =

x3

3
+

x2

2
+ 4x + ln

x2(x− 2)5

(x + 2)3
+ C.

4.68. Könnyen meggyőződhetünk róla, hogy a nevező négy különböző tényező szorzatára
bontható. Ezután a feladat az előzőhöz hasonlóan oldható meg. De munkát ta-
kaŕıthatunk meg az u = x2 helyetteśıtéssel. Ekkor ugyanis du = 2xdx és

∫
x

x4 − 3x2 + 2
dx =

1

2

∫
du

u2 − 3u + 2
=

1

2
ln

u− 2

u− 1
+ C =

=
1

2
ln

x2 − 2

x2 − 1
+ C.

4.69.
1

2
√

3
ln

∣∣∣∣∣
x−√3

x +
√

3

∣∣∣∣∣−
1

2
√

2
ln

∣∣∣∣∣
x−√2

x +
√

2

∣∣∣∣∣
4.70.

∫
4x + 3

(x− 2)3
dx =

∫
4x− 8 + 11

(x− 2)3
dx =

∫ [
4

(x− 2)2
+

11

(x− 2)3

]
dx =

= − 4

x− 2
− 11

2(x− 2)2
+ C

4.71.

x3 − 6x2 + 11x− 5

kifejezést x− 2 polinomjaként feĺırva (pld. előálĺıtjuk az

x0 = 2

helyhez tartozó Taylor polinomját, lásd, 401. példát).

x3 − 6x2 + 11x− 5 = (x− 2)3 − (x− 2) + 1

adódik, azaz

∫
x3 − 6x2 + 11x− 5

(x− 2)4
dx =

∫
(x− 2)3 − (x− 2) + 1

(x− 2)4
dx =
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=

∫ (
1

x− 2
− 1

(x− 2)3
+

1

(x− 2)4

)
dx =

=

ln(x− 2) +
1

2(x− 2)2
− 1

3(x− 2)3
+ C

(Természetesen úgy is eljárhattunk volna, hogy a részlet-törtekre bontást a többs-
zörös gyököknek megfelelően végeztük volna el

x3 − 6x2 + 11x− 5

(x− 2)4
=

A

x− 2
+

B

(x− 2)2
+

C

(x− 2)3
+

D

(x− 2)4

alapján).

4.72. Többszörös gyökök esetén a gyöktényező a multiplicitásnak megfelelő számosság-
gal szerepel a nevezőben az egytől a multiplicitásnak megfelelő hatványig. Elsőfokú
gyöktényező esetén a számláló konstans.

x3 − 2x2 + 4

x3(x− 2)2
=

A

x
+

B

x2
+

C

x3
+

d

x− 2
+

e

(x− 2)2
.

Ugyanis ebben a példában a 0 háromszoros, 2 pedig kétszeres gyök.

x3 − 2x2 + 4 ≡
≡ A(x4 − 4x3 + 4x2) + B(x3 − 4x2 + 4x) + C(x2 − 4x + 4) + d(x4 − 2x3) + ex3

A + d = 0
−4A + B − 2d + e = 1
4A− 4B + C = −2
4B − 4C = 0
4C = 4





=

Egyenletrendszerből

A =
1

4
, B = 1, C = 1, d = −1

4
, e =

1

2
∫

x3 − 2x2 + 4

x3(x− 2)2
dx =

∫ (
1

4x
+

1

x2
+

1

x3
− 1

4(x− 2)
+

1

2(x− 2)2

)
dx =

=
1

4
ln

x

x− 2
− 1

x
− 1

2x2
− 1

2(x− 2)
+ C

4.73.
∫

dx

x4 − x2
=

∫ (
− 1

x2
+

0

x
+

1
2

x− 1
−

1
2

x + 1

)
dx =

1

x
+

1

2
ln

x− 1

x + 1
+ C
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4.74.

1

x6 + x4
=

1

x4(x2 + 1)
=

A

x
+

B

x2
+

C

x3
+

D

x4
+

Ex + F

x2 + 1
.

Másodfokú gyöktényező esetén a számláló elsőfokú!

1 ≡ A(x5 + x3) + B(x4 + x2) + C(x3 + x) + D(x2 + 1) + Ex5 + Fx4

azonosságból ı́rható fel az egyenletrendszer, melyből A, B, C, D, E és F meghatá-
rozható.

A + e = 0

B + F = 0

A + C = 0

B + d = 0

C = 0 A = 0 E = 0

D = 1 B = −1 F = 1

Tehát
∫

dx

x6 + x4
=

∫ (
0

x
− 1

x2
+

0

x3
+

1

x4
+

1

x2 + 1

)
dx =

1

x
− 1

3x3
+ arc tg x + C.

4.75.

x

x3 − 1
=

x

(x− 1)(x2 + x + 1)
=

A

x− 1
+

Bx + C

x2 + x + 1
=

=
A(x2 + x + 1) + B(x2 − x) + C(x− 1)

x3 − 1

A + B = 0 A =
1

3
A−B + C = 1 B = −1

3
A− C = 0 C =

1

3∫
x

x3 − 1
dx =

∫
1

3

(
1

x− 1
+

−x + 1

x2 + x + 1

)
dx =

=
1

3

∫ (
1

x− 1
− x + 1

2

x2 + x + 1
+

3
2

x2 + x + 1

)
dx =

=
1

3
ln(x− 1)− 1

6
ln(x2 + x + 1) +

1√
3
arc tg

2x + 1√
3

+ C
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4.76.
∫

x2

1− x4
dx =

∫
x2

(1 + x2)(1− x2)
dx =

∫
x2

(1 + x)(1− x)(1 + x2)
dx =

=

∫ ( 1
4

1 + x
−

1
4

1− x
+

1
2

1 + x2

)
dx =

=
1

4
ln

1 + x

1− x
+

1

2
arc tg x + C.

4.77.

1

(x + 1)2(x2 + 1)
=

A

x + 1
+

B

(x + 1)2
+

Cx + d

x2 + 1

alapján végezzük a részlet-törtekre bontást és nyerjük:

∫
dx

(x + 1)2(x2 + 1)
=

∫ (
1

2(x + 1)
+

1

2(x + 1)2
− x

2(x2 + 1)

)
dx =

=
1

2
ln(x + 1)− 1

2(x + 1)
− 1

4
ln(x2 + 1)C

4.78. A nevező tényezőkre bontását a következőképpen végezhetjük el:

1 + x4 = 1 + 2x2 + x4 − 2x2 = (1 + x2)2 − 2x2 = (1 + x2)2 − (
√

2 x)2 =

= (1 + x2 +
√

2 x)(1 + x2 −
√

2 x)

A rész törtekre való bontás vázlata

1

1 + x4
=

Ax + B

x2 +
√

2x + 1
+

Cx + d

x2 −√2x + 1

Az eredmény:

∫
dx

1 + x4
=

1

4
√

2
ln

x2 +
√

2 x + 1

x2 +
√

2 x + 1
+

1

2
√

2
arc tg

√
2 x

1− x2
+ C

4.79. A feladat első pillanatra azonos jellegű az előzővel. Meg is oldható annak alapján,
de gondosabb vizsgálat után kiderül, hogy speciális tulajdonságai figyelembe vételé-
vel sokkal egyszerűbben is megoldható.

∫
x(1− x2)

1 + x4
dx =

∫
x

1 + x4
dx−

∫
x3

1 + x4
dx
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Az első integrált
u = x2

helyetteśıtéssel hozhatjuk még egyszerűbb alakra (lásd a 4.39. feladatot), a második
pedig máris integrálható, mert a számláló a nevező deriváltjának a negyede.

∫
x

1 + x4
dx−

∫
x3

1 + x4
dx =

1

2
arc tg x2 − 1

4
ln(1 + x4) + C

4.80. Többszörös komplex gyök esetén javasolható a tg t helyetteśıtés.
∫

dx

(x2 + 9)3
=

1

729

∫
dx(

x2

9
+ 1

)3 =
1

729

∫
dx[

(x
3
)2 + 1

]3 =

=
1

729

∫
3

(tg2t + 1)
3
cos2 t

dt =
1

243

∫
cos6 t

cos2 t
dt = (∗)

x

3
= tg t; dx =

3

cos2 t
dt

(∗) =
1

243

∫
cos4 tdt =

1

243

∫ (
1 + cos2 t

2

)2

dt =
1

243

∫
1 + 2 cos 2t + cos2 2t

4
dt =

=
1

972

∫
(1 + 2 cos 2t +

1 + cos 4t

2
)dt =

1

972

(
t + sin 2t +

t

2
+

sin 4t

8

)
+ C =

=
1

972

(
3

2
arc tg

x

3
+

6x

x2 + 9
+

3x(9− x2)

2(9 + x2)2

)
+ C =

1

648
arc tg

x

3
+

x

216(x2 + 9)
+

x

36(x2 + 9)2
+ C

4.81. − 1

3(x− 3)3
+ c.

4.82. 2 ln |x− 5|+ c.

4.83.
1

2
ln(x2 − 6x + 27) + c.

4.84.
1

2
ln(x2 − 6x + 27) +

2
√

2

3
arc tg

x− 3

3
√

2
+ c.

4.85. ln
x3(x− 1)2

x + 3
.
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Trigonometrikus függvények

4.86. Páratlan kitevő esetén helyetteśıtéssel oldhatjuk meg a feladatot.
∫

cos5 xdx =

∫
cos4 x · cos(x)dx =

∫
(cos2 x)2 cos(x)dx =

=

∫
(1−sin2 x)2 cos(x)dx =

∫
(1−u2)2du =

∫
(1−2u2+u4)du = u−2u3

3
+

u5

5
+C =

= sin(x)− 2

3
sin3 x +

1

5
sin5 x + C

u = sin(x) du = cos(x)dx

4.87. Páros kitevő esetén a linearizáló formula alkalmazását javasoljuk.

∫
sin6 xdx =

∫
(sin2 x)3dx =

∫ (
1− cos(2x)

2

)3

dx =

=
1

8

∫ (
1− 3 cos(2x) + 3 cos2 2x− cos3 2x

)
dx =

=
1

8

∫ (
1− 3 cos(2x) + 3 · 1 + cos 4x

2

)
dx− 1

8

∫
cos3 2xdx

Az első integrálban újból alkalmaztuk a linearizáló formulát, ı́gy került

cos2 2x

helyébe
1 + cos 4x

2
.

A második integrálban pedig már páratlan kitevőn szerepel trigonometrikus függ-
vény, tehát az az előző példa mintájára megoldható.

Az eredmény:
∫

sin6 xdx =
1

8

(
5

2
x− 3

2
sin(2x) +

3

8
sin 4x− 1

2
sin(2x) +

1

6
sin3 2x

)
+ C

4.88.
∫

sin6 x ·cos3 x dx =

∫
sin6 x ·cos2 x ·cos(x) dx =

∫
sin6 x ·(1−sin2 x) ·cos(x)dx =

u = sin(x) du = cos(x)dx

=

∫
u6(1− u2)du =

1

7
sin7 x− 1

9
sin9 x + C
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4.89.
∫

sin4 x

cos2 x
dx =

∫
(1− cos2 x)2

cos2 x
dx =

∫
1− 2 cos2 x + cos4 x

cos2 x
dx =

∫ (
1

cos2 x
− 2 + cos2 x

)
dx =

= tg (x)− 3

2
x +

sin(2x)

4
+ C

4.90.
∫

sin3 x

cos4 x
dx =

∫
(1− cos2 x) · sin(x)

cos4 x
dx = −

∫
1− u2

u4
du =

∫ (
1

u2
− 1

u4

)
du =

u = cos(x) du = − sin(x)dx

= −1

u
+

1

3u3
+ C =

1

3 cos3 x
− 1

cos(x)
+ C

4.91. Alkalmazzuk a t = tg x
2

helyetteśıtést, akkor

∫
dx

sin(x) + cos(x)
=

∫ 2
1+t2

2t
1+t2

+ 1−t2

1+t2

dt =

∫
2

2t + 1− t2
dt =

1√
2

ln
tg x

2
+
√

2− 1

tg x
2
−√2− 1

+ C

4.92. Itt is válogathatunk a megoldási módszerek között. Alkalmazhatjuk a

t = tg
x

2

helyetteśıtést, akkor
∫

dx

cos(x)
=

∫
2

1− t2
dt = 2 · arth + C = ln

1 + tg x
2

1− tg x
2

+ C = ln tg (
π

4
+

x

2
) + C

De ugyanúgy használhatjuk fel a páratlan kitevőjű jellegét is.

∫
dx

cos(x)
=

∫
cos(x)

cos2 x
dx =

∫
cos(x)

1− sin2 x
dx =

∫
du

1− u2
= ln

√
1 + sin(x)

1− sin(x)
+ C

Megfelelő átalaḱıtások után az eredmény ugyanolyan alakra bontható:
∫

dx

cos(x)
= ln tg (

π

4
+

x

2
) + C.
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4.93.
∫

dx

5− 3 cos(x)
=

1

2
arc tg (2 · tg x

2
) + C.

4.94. Ha sin(x)-nek és cos(x)-nek csak páros kitevőjű hatványai és tg (x) fordulnak elő,
akkor (bár a t = tg x

2
helyetteśıtés akkor is alkalmazható) előnyösebb a t = tg (x)

helyetteśıtés alkalmazása.

∫
tg5x dx =

∫
t5

1 + t2
dt =

∫
(t3− t +

t

1 + t2
)dt =

t4

4
− t2

2
+

1

2
ln(t2 + 1) + C = (∗)

t = tg (x) x = arc tg t dx =
dt

1 + t2

(∗) =
1

4
· tg4x− 1

2
· tg2x− ln · cos(x) + C.

4.95.

1

cos2 x
= 1 + tg2x;

1

sin2 x
=

1 + tg2x

tg2x
.

Tehát
t = tg (x)

helyetteśıtés esetén

∫
dx

sin4 x · cos4 x
=

∫
(1 + t2)2 · (1 + t2)2

t4
· dt

1 + t2
=

∫
(1 + t2)3

t4
dt =

=

∫
1 + 3t2 + 3t4 + t6

t4
dt =

∫ (
1

t4
+

3

t2
+ 3 + t2

)
dt =

= − 1

3t3
− 3

t
+ 3t +

t3

3
+ C = −1

3
· ctg 3x− 3 · ctg (x) + 3 · tg (x) +

1

3
· tg3x + C.

4.96.
∫

1 + tg x

sin(2x)
dx =

1

2
· tg (x) +

1

2
· ln tg x + C

4.97.
∫

dx

1 + sin2 x
=

1√
2
· arc tg (

√
2 tg x) + C.
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4.98.
∫

cos4 x + sin4 x

cos2 x− sin2 x
dx =

1

4
ln

1 + tg (x)

1− tg (x)
+

1

2
· sin(x) · cos(x) + C.

(A linearizáló formula seǵıtségével cos(2x) függvényeként ı́rhatjuk fel az integrá-
landó függvényt. Ezáltal a feladat nagymértékben egyszerűsödik.)

4.99.
∫

sin 3x · cos
(
5x− π

2

)
dx =

1

2

∫ [
sin(8x− π

2
) + sin(

π

2
− 2x)

]
dx =

=
1

4
cos(2x− π

2
)− 1

26
cos(8x− π

2
) + C.

4.100. Nem t́ıpus feladat, de

sin(x) = sin 2 · x

2
= 2 · sin x

2
· cos

x

2

és
sin2 x

2
+ cos2 x

2
= 1

összefüggések felhasználásával egyszerű megoldást nyerünk.

∫ √
1 + sin(x)dx =

∫ √
sin2 x

2
+ 2 sin

x

2
· cos

x

2
+ cos2

x

2
dx =

=

∫
(sin

x

2
+ cos

x

2
)dx = 2 · sin x

2
− 2 · cos

x

2
+ C.

Hiperbolikus és exponenciális kifejezéseinek integrálja

4.101. A hiperbolikus függvények integrálását sok esetben, - mint pl. most is - a tri-
gonometrikus integrálhoz hasonlóan végezzük el. (Megemĺıtjük azonban, hogy a
hiperbolikus függvények racionális függvényeinek az integrálása mindig visszave-
zethető ex racionális függvényének az integrálására. A célszerűség dönti el, hogy
mikor melyik utat választjuk.)
∫

sh2x·ch3x dx =

∫
sh2x·(1+sh2x)·ch x dx =

∫
u2(1+u2)du =

∫
(u2+u4)du = (∗)

u = sh x; du = ch xdx

(∗) =
u3

3
+

u5

5
+ C =

1

3
sh3x +

1

5
sh5x + C.

117



4.102.

∫
sh3x√
ch x

dx =

∫
(ch2x− 1)sh x√

ch x
dx =

∫
u2 − 1√

u
du =

2

5

√
ch5x− 2

√
ch x + C

u = ch x du = sh xdx.

4.103. A ch2x− sh2x = 1 aznonosság felhasználásávalazt kapjuk, hogy

∫
dx

sh x · ch x
=

∫
ch2x− sh2x

sh x · ch x
dx =

∫ (
ch x

sh x
− sh x

ch x

)
dx = ln sh x−ln ch x+C =

= ln
sh x

ch x
+ C = ln th x + C.

4.104. Az előző példa alapján nagyon egyszerűen kapjuk az eredményt a következő
átalaḱıtás után: ∫

dx

sh x
=

∫
dx

2 sh x
2

ch x
2

= ln th
x

2
+ C.

Alternat́ıv megoldás, ha sh x helyébe
ex − e−x

2
kifejezést ı́runk, vagy ha sh x-el való

szorzás és osztás után
sh x

ch2 − 1
integrálására alkalmazzuk az u = ch x helyetteśıtést.

4.105.

ch α · chβ =
1

2
[ch(α + β) + ch(α− β)]

összefüggés alapján ∫
ch x · ch 2x · ch 3xdx =

=
1

4

∫
(ch 6x + ch 4x + ch 2x + 1)dx =

1

24
sh 6x +

1

16
sh 4x +

1

8
sh 2x +

1

4
x + C.

4.106.
∫

e2x

ex + 1
dx =

∫
u2

u + 1
·du

u
=

∫
u

u + 1
du =

∫
(1− 1

u + 1
)du = u−ln(u+1)+C = (∗)

u = ex x = ln u dx =
1

u
du

(∗) = ex − ln(ex + 1) + C.
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4.107.
∫

6

ex − 3
dx =

∫
6

(u− 3)u
du =

∫ (
−2

u
+

2

u− 3

)
du = 2 ln

ex − 3

ex
+ C

ex = u x = ln u dx =
1

u
du

4.108. A parciális integrálás alkalmazható, de a megoldás ilyen módon sokkal hosszabb,
mintha sh 3x-et ex-el fejezzük ki, ezért ezt a megoldást ajánljuk hasonló esetekben
is.
∫

ex · sh 3x dx =

∫
ex · e3x − e−3x

2
dx =

∫
e4x − e−2x

2
dx =

1

8
e4x +

1

4
e−2x + C.

4.109.
1

2

(
e2x

2
− x

)
+ c.

Gyökös kifejezések integrálja

4.110.

∫
x√

3x + 5
dx =

∫ u2−5
3

u
· 2

3
u du =

2

9

∫
(u2 − 5)du =

2

9

(
u3

3
− 5u

)
+ C = (∗)

u =
√

3x + 5 ; 3x + 5 = u2 ; x =
u2 − 5

3
; dx =

2

3
u du

(∗) =
2

27

√
(3x + 5)3 − 10

9

√
3x + 5 + C =

2

27

√
3x + 5 · (3x− 10) + C.

4.111.
∫

(x2 − 3x + 2) · √2x− 1 dx =

∫ (
u4 + 2u2 + 1

4
− 3 · u2 + 1

2
+ 2

)
u · u du = (∗)

u =
√

2x− 1 ; u2 = 2x− 1 ; x =
u2 + 1

2
; dx = u du

(∗) =
1

4

∫
(u6 − 4u4 + 3u2)du =

1

4

(
u7

7
− 4u5

5
+ u3

)
+ C =

=
1

28

√
(2x− 1)7 − 1

5

√
(2x− 1)5 +

1

4

√
(2x− 1)3 + C.
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4.112. A feladatot kisebb lépésekben kétszeri helyetteśıtéssel is megoldhatjuk. Előbb
ex = t, majd pedig u =

√
t + 1 helyetteśıtést alkalmazva racionális törtfüggvény

integrálására vezetjük vissza.
∫

dx√
ex + 1

=

∫
dt

t · √t + 1
=

∫
2u

(u2 − 1)u
du = 2

∫
du

u2 − 1
=

= −2 arth u + C = − ln
1 + u

1− u
+ C =

t = ex ; x = ln t ; dx =
1

t
dt; u =

√
t + 1 ; t = u2 − 1 ; dt = 2u du

= ln
1− u

1 + u
+ C = ln

1−√ex + 1

1 +
√

ex + 1
+ C

Természetesen rövidebb lesz a megoldás (és azért általában ı́gy is járunk el), ha a
két helyetteśıtést összevonva egy megfelelő helyetteśıtést alkalmazunk.

∫
dx√

ex + 1
=

∫
2u

u(u2 − 1)
du = 2

∫
du

u2 − 1

(A folytatás azonos.)

√
ex + 1 = u ex = u2 − 1 x = ln(u2 − 1) dx =

2u

u2 − 1
du.

4.113.
∫ 3

√
x2

1 +
√

x
dx =

∫
u4

1 + u3
· 6u5du =

x = u6 dx = 6u5du u = 6
√

x.

A gyökkitevők legkisebb közös többszöröse lesz a helyetteśıtendő kifejezés gyök-
kitevője.

6

∫
u9

u3 + 1
du = 6

∫ (
u6 − u3 + 1− 1

u3 + 1

)
du =

6

7

6
√

x7 − 3

4

6
√

x4 + 6 6
√

x− 2 ln( 6
√

x + 1)+

+ ln
(

6
√

x2 − 6
√

x + 1
)
− 2

√
3 arc tg

2 6
√

x− 1√
3

+ C =

6

7

6
√

x7 − 3

4

3
√

x2 + 6 6
√

x +
ln

6
√

x2 − 6
√

x + 1

ln
6
√

x2 + 2 6
√

x + 1
−

−2
√

3arc tg
2 6
√

x− 1√
3

+ C.
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4.114.
∫

dx√
x + 4

√
x

=

∫
4u3

u2 + u
du = 4

∫
u2

u + 1
du = 4

∫
(u− 1 +

1

u + 1
)du =

2u2 − 4u + 4 ln(u + 1) + C =

x = u4 dx = 4u3du

= 2
√

x− 4 4
√

x + 4 ln( 4
√

x + 1) + C.

4.115.
∫ √

1− x

1 + x
· dx

x
= −

∫
4u2

(1 + u2)2
· 1 + u2

1− u2
du = −4

∫
u2

(1 + u2)(1− u2)
du =

=

∫ (
1

u− 1
− 1

u + 1
+

0 · u + 2

u2 + 1

)
du = (∗)

√
1− x

1 + x
= u ;

1− x

1 + x
= u2 ; x =

1− u2

1 + u2
; dx =

−4u

(1 + u2)2
du

(∗) = ln(u− 1)− ln(u + 1) + 2arc tg u + C = ln
u− 1

u + 1
+ 2arc tg u + C =

= ln

√
1−x
1+x

− 1
√

1−x
1+x

+ 1
+2 arc tg

√
1− x

1 + x
+C = ln

√
1− x−√1 + x√
1− x +

√
1 + x

+2arc tg

√
1− x

1 + x
+C

4.116. x2 = t helyetteśıtéssel a gyökjel alatt már lineáris kifejezés lesz, tehát ı́gy si-
került a feladatot az előzőkben tárgyalt t́ıpusra visszavezetni. Az eljárás azért
alkalmazható a jelen esetben, mert a számlálóban x3dx áll, ami ı́gy ı́rható x2 · xdx.

Itt x2 helyébe t, xdx helyébe pedig
1

2
dt ı́rható.

Gyakorlásként oldjuk meg a feladatot ilyen bontásban is. Tekintettel azonban arra,
hogy az ı́gy nyert integrált egy újabb helyetteśıtéssel racionalizáljuk, joggal merül
fel az az igény, hogy lehetőleg egyetlen helyetteśıtéssel oldjuk meg a feladatot. Ez
lehetséges

∫
x3

√
1 + 2x2

dx =
1

4

∫ u−1
2√
u

du =
1

8

∫
u− 1√

u
du =

1

8

∫ (√
u− 1√

u

)
du =

1 + 2x2 = u du = 4xdx x2 =
u− 1

2

=
1

8

(
2

3

√
u3 − 2

√
u

)
+ C =

1

6

√
1 + 2x2 · (x2 − 1) + C.
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4.117.
∫

dx√
9x2 − 6x + 2

=

∫
dx√

(3x− 1)2 + 1
=

1

3
arsh (3x− 1) + C.

4.118.
∫

dx√
12x− 9x2 − 2

=

∫
dx√

−(9x2 − 12x + 2)
=

∫
dx√

− [(3x− 2)2 − 4 + 2]
=

∫
dx√

2− (3x− 2)2
=

1√
2

∫
dx√

1−
(

3x−2√
2

)2
=

=
1√
2
·
√

2

3
arc sin

3x− 2√
2

+ C =
1

3
arc sin

3x− 2√
2

+ C.

4.119.
∫

dx√
12x− 9x2 − 4

=

∫
dx√

−(3x− 2)2

A gyökjel alatti kifejezés az x =
2

3
hely kivételével (amikor is 0) mindenütt negat́ıv,

ezért belőle négyzetgyök nem vonható. Az integrálandó függvény tehát sehol nincs

értelmezve (még az x =
2

3
helyen sem, mert ott a nevező 0).

4.120.
∫ √

1 + 2x− x2 dx =

∫ √
1− (x2 − 2x)dx =

∫ √
1− [(x− 1)2 − 1]dx =

=

∫ √
2− (x− 1)2dx =

√
2 ·

∫ √
1−

(
x− 1√

2

)2

dx =

√
2

∫ √
1− sin2 u

√
2 cos udu = 2 ·

∫
cos u · cos u du =

x− 1√
2

= sin u ; x =
√

2 sin u + 1 ; dx =
√

2 cos udu

= 2 ·
∫

cos2 u du = 2 ·
∫

1 + cos 2u

2
du = u +

1

2
sin 2u + C

A visszahelyetteśıtéshez egyrészt

x− 1√
2

= sin u
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kifejezésből feĺırjuk, hogy

u = arcsin
x− 1√

2
,

másrészt sin 2u-t kifejezzük sin u-val, mert sin u helyébe
x− 1√

2
ı́rható

1

2
sin 2u = sin u · cos u = sin u ·

√
1− sin2 u =

x− 1√
2
·
√

1−
(

x− 1√
2

)2

=
x− 1√

2

√
1− x2 − 2x + 1

2

tehát ∫ √
1 + 2x− x2 dx = arcsin

x− 1√
2

+
x− 1

2

√
1 + 2x− x2 + C.

4.121.

∫ √
3x2 − 3x + 1dx =

√
3 ·

∫ √
x2 − x +

1

3
dx =

√
3 ·

∫ √
(x− 1

2
)2 +

1

12
dx =

=

∫ √√√√
(√

3x−
√

3

2

)2

+
1

4
dx =

1

2

∫ √
(2
√

3x−
√

3)2 + 1dx = (∗)

2
√

3x−
√

3 = sh t ; x =
sh t +

√
3

2
√

3
; dx =

1

2
√

3
· ch tdt

(∗) =
1

2

∫ √
sh2t + 1 · 1

2
√

3
· ch tdt =

1

4
√

3

∫
ch2tdt =

1

4
√

3

∫
ch 2t + 1

2
dt =

=
1

8
√

3

(
sh 2t

2
+ t

)
+ C =

1

8
√

3

(
sh t ·

√
1 + sh2t + t

)
+ C =

=
1

8
√

3

[√
3(2x− 1)

√
1 + 3(2x− 1)2 + arsh

√
3 · (2x− 1)

]
+ C =

=
1

8
(2x− 1)

√
12x2 − 12x + 4 +

1

8
√

3
arsh

√
3 · (2x− 1) + C =

=
2x− 1

4

√
3x2 − 3x + 1 +

1

8
√

3
arsh

√
3 · (2x− 1) + C.

4.122.
∫ √

x2 + 6x + 10 dx =
x + 3

2

√
x2 + 6x + 10 +

1

2
arsh (x + 3) + C.
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4.123.
∫ √

3− x2 dx =
x

2

√
3− x2 +

1

2
arc sin

x√
3

+ C.

4.124.
∫

dx√
x2 − 4x + 40

= arsh
x− 2

6
+ C.

4.125.
∫

dx√
3x2 + 12x + 30

=
1√
3

arsh
x + 2√

6
+ C

4.126.

∫ √
2x2 + 8x + 5dx =

x + 2

2

√
2x2 + 8x + 5− 3

2
√

2
arch

[√
2

3
(x + 2)

]
+ C

4.127.
∫

x2 + x + 1√
4 + x− x2

dx =
31

8
arc sin

2x− 1√
17

− 2x + 7

4

√
4 + x− x2 + C.

4.2.2. Határozott integrálok. Vegyes feladatok

4.128.
13

6
. 4.129.

π

12
.

4.130.
1

35
. 4.131.

e2 − 1

2
.

4.132.
π

4
. 4.133.

4

3
.

4.134. − 4

15
. 4.135. ln tg (

π

8
)− ln tg (

π

12
).

4.136.
8

7
. 4.137.

π

8
.
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4.138. −4

9
.

4.139.
1

2

(
1− 1

e

)
. 4.140. 1.

4.141.
π

4
. 4.142.

π

12
.

4.143.
66

25
.

4.144. e2 + 1. 4.145.
4

3
π −√3.

4.146. 0. 4.147.
25

4e2
+

13

4

4.148.

a

(ln a)3

[
(ln a)2 − 2 ln a + 2

]− 2

(ln a)3

4.2.3. Improprius integrálok

4.149.

∫ ∞

2

1

x2
dx = lim

ω→∞

∫ ω

2

1

x2
= lim

ω→∞

[
−1

x

]ω

2

= lim
ω→∞

[
1

ω
+

1

2

]
=

1

2
.

4.150.

∫ ∞

1

1

x
dx = lim

ω→∞

∫ ω

1

1

x
dx = lim

ω→∞
(ln ω − ln 1).

Mivel limω→∞ ln ω = ∞, ezért a fenti integrál divergens.

4.151.
π

2
. 4.152. 5π.

4.153. − 4

e3
. 4.154. 9e10.

4.155. Divergens. 4.156.
1

36
.
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4.157. Divergens. 4.158.
1

2e
.

4.159.
√

2. 4.160. 1.

4.161.

∫ 1

0

1

1− x
dx = lim

ε→0

∫ 1

ε

1

1− x
dx = lim

ε→0
[− ln(1− x)]1−ε

0 =

= lim
ε→0

(− ln ε + ln 1)

tehát divergens.

4.162.

∫ 1

0

1√
1− x

dx = lim
ε→0

∫ 1

ε

1√
1− x

dx = lim
ε→0

[−2
√

1− x
]1−ε

0
=

= lim
ε→0

(−2
√

ε + 2) = 2.

4.163.

∫ 1

1
2

1

2x− 1
dx = lim

ε→0

∫ 1

1
2
+ε

1

2x− 1
dx = lim

ε→0

[
1

2
ln(2x− 1)

]1

1
2
+ε

=

= lim
ε→0

(
1

2
ln ε− 1

2
ln 1),

tehát az integrál divergens.

4.164. 1.
4.165.

∫ 1

−1

1√
1− x2

dx.

4.166.
π

2
. 4.167.

2
√

11

3
.

4.168. −π

4
. 4.169.

1

24
(10π − 3

√
3).

4.170. 1. 4.171. Nem konvergens.

4.172. π. 4.173. 2
√

3.
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4.174.
1

a
. 4.175.

1

a2

4.176.
1

2
. 4.177. 1.

4.178.
a

a2 + b2
. 4.179.

1

2
.

4.180.
n!

an
.

4.2.4. Az integrálszámı́tás alkalmazásai

Területszámı́tás

4.181.

8

4.182.

46

9

4.183

2

3

4.184.

81

4

4.185.

163

4

4.186.

49

20

4.187.

e3 − 1

2e
≈ 3.5106

4.188.

T =

0,3∫

0

sin 3x dx =

[
−cos 3x

3

]0,3

0

=
1

3
· (1− cos 0, 9) ≈ 0.1261

4.189.

2

3
· sin 1.5 ≈ 0.665

4.190.

2

4.191.

1

2
sh 6 ≈ 100.86

4.192.

ch 2− 1 ≈ 2.762
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4.193

2 ln 2 ≈ 1.386

4.194.

ln 2

4.195.

1

2
ln 3

4.196.

1

2
ln 3

4.197.

x = 1

4.198.

x = −1

2
ln(6 + e−2) ≈ −0.9070

4.199.

x = arccos
3

4
≈ 0.7227

4.200.

4

3

4.201.

4

3

4.202 A metszéspontok abszcisszái: − 1√
2
,

1√
2

T =

1√
2∫

− 1√
2

(1− x2)− x2 dx =

[
x− 2x3

3

] 1√
2

− 1√
2

=
2
√

2

3
≈ 0.9428

4.203.
2

3

4.204.

9

2

4.205.

125

18

4.206.

0.49

4.207.

0.45

4.208.

1

3

4.209

2

3
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4.210.

1.12

4.211.

4.29

4.212.

ln a

Görbe ı́vhossza

4.213.

1

4

(
8
√

65− 2
√

5 + ar sh 8− ar sh 2
)
4.214.

sh 3 ≈ 10.02

4.215.

√
37−

√
5− ar sh

1

6
+ ar sh

1

2
≈ 4.49

4.216.

1.32

4.217.

5π

2

4.218.

5π

2

4.219.

8a

4.220.

15
√

3

4

4.221.

63.3

Forgástestek térfogata

4.222.

V = π

2∫

0

e4x dx = π

[
e4x

4

]2

0

=
π

4

(
e8 − 1

)

4.223

π · ln 4

4.224.

127π

63
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4.225.

16π

3

4.226.

16π

15

4.227.

12π

4.228.

π

15

4.229.

V = π

π∫

0

cos4 x dx = π

π∫

0

(
1 + cos(2x)

2

)2

dx =
π

4

π∫

0

1 + 2 cos(2x) +
1 + cos 4x

2
dx =

=
π

4
[x + sin 2x]π0 +

π

8

[
x +

sin 4x

4

]π

0

=
3π2

8

4.230.

6π

4.231.
4

3
ab2π
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5. fejezet

Differenciálegyenletek
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5.1. Differenciálegyenletek

5.1.1. Szeparábilis differenciálegyenletek

5.1. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást.

a) y′ = x.

b) y′ = y.

c) y′ = xy.

5.2. Határozzuk meg a

sin(x) cos3(x) + (cos(x) + 1) sin(y)y′ = 0

differenciálegyenletnek a P
(
2π,

π

4

)
ponton átmenő partikuláris megoldását.

Oldjuk meg az alábbi szétválasztható változójú differenciálegyenleteket.

5.3. y2 − 1 = (2y + xy)y′.

5.4. xy′ + y = y2.

5.5. 2(xy + x− y − 1) = (x2 − 2x)y′.

5.6. xy +
√

1− x2 y′ = 0.

5.7. (x + xy2) y′ − 3 = 0.

5.8.
√

1− y2 =
√

1 + x2y′.

5.9.
√

1− y2 = (1− x2) y′.

5.10. sin(y) = ex y′.

5.11. (1 + x2) y′ =
√

1− y2.

5.12. x(1 + y2) + (1 + x2) y′ = 0.

5.13. xy y′ − (1− y2) = 0.

5.14. y(4 + 9x2) = 1
y′ .

5.15. sin(x)y′ = sin(y).
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5.16. (2x + 1)y′ + y2 = 0.

5.17. (1 + 2y)x + (1 + x2)y′ = 0.

5.18. y′ sin(x) sin(y) + 5 cos(x) cos3(y) = 0.

Határozzuk meg az alábbi differenciálegyenleteknek azt a partikuláris megoldását,
mely az adott kezdeti feltételeket kieléǵıti.

5.19.

yy′

1 + x
=

x

1 + y
;

a) y(1) = 1 b) y(0) = 1

5.20. y′ sin(x) = y ln(y), y(0) = 1.

5.21. yy′ = ex

1+ex , y(1) = 1.

5.22. x
√

1− x2 + y
√

1− y2y′ = 0, y(0) = 1.

5.23. 2y = y′, y(0) = 1.

5.24. y ln(y) + xy′ = 0, y(1) = 1.

5.25. Határozzuk annak a görbeseregnek az egyenletét, melyben mindegyik görbéjére
fennálla k|’ovetkező tulajdonság: bármely (x, y) koordinátájú P pontjához tartozó
normálisának az x tengelyig terjedő darabja ugyanakkora, mint a P pontnak az
origótól mért távolsága.

5.26. Mi az egyenlete annak a görbének, melyben a görbe alatti terület az a és x
abszcisszájú pontok között arányos a pontok közötti görbék hosszával?

5.27. Határozzuk meg azokat a görbéket, amelyeknél a szubtangens hosszúsága egy rög-
źıtett a állandóval egyenlő.

5.28. Határozzuk meg azokat a görbéket, amelyeknél a szubnormális állandó.
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5.1.2. Lineáris differenciálegyenletek

5.29. Oldjuk meg az

y′ = −2xy + 2xe−x2

inhomogén lineáris differenciálegyenlet.

5.30. Határozzuk meg az

y′ =
1

sin(x)
y +

1− cos(x)

sin(x)

differenciálegyenlet általanos megoldását. Adja meg a P
(π

2
, π

)
ponton áthaladó

partikuláris megoldást.

5.31. Írjuk fel az
1

x
y′ = −y + 1

differenciálegyenletnek a P (0, 7) ponton átmenő megoldását.

Oldjuk meg az alábbi differenciálegyenleteket:

5.32. y′ = xy + x3.

5.33. y′ cos(x) + y sin(x) = 1.

5.34. y′ − 2

x
y = x2ex.

5.35. (x2 − 1)y′ = xy + x2.

5.36. y′ + y tg (x) = sin(2x).

5.37. y′y + th x = 6e2x.

5.38. y′ cos(x)− 3y sin(x) = ctg (x).

5.39. xy′ + 2y = x4.

5.40. y′ + y = sin(2x).

5.41. y′x ln(x)− y = x2(2 ln(x)− 1).

5.42. y′ sin(x)− y cos(x) = ex sin2(x).

5.43. xy′ + y = x ln |x|.
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Számı́tsuk ki az alábbi differenciálegyenleteknek az adott kezdeti feltételeket kieléǵıtő
megoldását:

5.44. xy′ + 2y = 3x, y(1) = 1.

5.45. (1− x2)y′ + xy = 1, y(0) = 1.

5.46. y′ + 2xy = 3xe−x2
, y

(√
ln 2

)
=

1

2
(1 + ln 2).

5.47. y′ + y cos(x) =
1

2
sin(2x), y(0) = 1.

5.48. y′ + x2y = x2, y(2) = 1.

5.49. xy′ + y + xex = 0, y(1) = 0.
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5.2. Differenciálegyenletek. Megoldások

5.2.1. Szeparábilis differenciálegyenletek

5.1. a) A differenciálegyenlet általános megoldása az y =
x2

2
+ C görbesereg.

A megoldásfüggvények grafikonja (az ún. integrálgörbék) olyan parabolák,
melyek tengelye az y tengellyel esik egybe.

5.1. ábra. 5.1. feladat a) és b) rész

c) Az általános megoldás: y = Ce
x2

2 .

Néhány integrál görbe grafikonja:

5.2. A változókat szétválasztva:
∫

sin(y)

cos3(y)
dy =

∫ − sin(x)

cos(x) + 1
dx + c

Az egyenlőség jobboldalán álló integrálban a számláló a nevező deriváltja, ezért:

∫ − sin(x)

cos(x) + 1
dx + ln C = ln C(cos(x) + 1).
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5.2. ábra. 5.1 feladat

A baloldalon u = cos(y) helyetteśıtéssel számolunk. Ekkor du = − sin(y)dy, s ı́gy:
∫

sin(y)

cos3(y)
dy = −

∫
u−3du = −u−2

−2
=

1

2 cos2(y)
.

Innen a számolás lépései:

1

2 cos2(y)
= ln C(cos(x) + 1)

2 cos2(y) =
1

ln C(cos(x) + 1)

1 + cos(2y) =
1

ln C(cos(x) + 1)

cos(2y) =
1− ln C(cos(x) + 1)

ln C(cos(x) + 1)

y =
1

2
· arccos

(
1− ln C(cos(x) + 1)

ln C(cos(x) + 1)

)

Ez a differenciálegyenlet általános megoldása. Válasszuk ki ezek közül a keresett
partikuláris megoldást!

Mivel P
(
2π,

π

4

)
ponton áthaladó megoldást keresük, y(2π) =

π

4
kell legyen.

π

2
= arccos ·1− ln 2C

ln 2C
.
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Azaz:
π

2
= arccos

(
1− ln 2C

ln 2C

)
.

Az egyenlőség mindkét oldalának cosinusát véve:

cos
π

2
=

1− ln 2C

ln 2C
= 0,

innen:

1− ln 2C = 0

1 = ln 2C

e = 2C

azaz C =
e

2
és ı́gy

y =
1

2
arccos

(
1− 1

2
ln(cos(x) + 1)

1
2
ln(cos(x) + 1)

)

5.3. y2 − 1 = C(x + 2)2, y = ±1.

5.4. y =
1

1− Cx
, y = 0, y = 1.

5.5. C(y + 1) = x(x− 2), y = −1.

5.6. y = Ce
√

1−x2
, y = 0.

5.7. 3y + y3 = 9 ln Cx.

5.8. y = sin(sh−1 x + C), y = ±1.

5.9. y = sin(th −1x + C), y = ±1, x = ±1.

5.10. x = − ln
(− ln C · tg y

2

)
, y = kπ, k = 0,±1,±2, . . .

5.11. y = sin(arctan x + C), y = ±1.

5.12. y = tg

(
ln

C√
1 + x2

)
.

5.13. y =
1

Cx
· √C2x2 − 1.

5.14. 3y2 = arctan
3x

2
+ C.
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5.15. y = 2 arctan
(
C + tg

x

2

)
, , k = 0,±1,±2, . . .

5.16. y =
1

ln C
√

2x + 1
, y = 0

5.17. y =
C

2(1 + x2)
− 1

2

5.18.
1

cos2 y
= −10 ln sin(x) + C

5.19. 1. a.) y = x

2. b.) 2 (x3 − y3) + 3 (x2 − y2) + 5 = 0

5.20. y = etg x
2 .

5.21. y2 − 1 = 2 ln (ex + 1)− 2 ln(e + 1).

5.22. (1− x2)
3/2

+ (1− y2)3/2 = 1

5.23. y = e2x

5.24. y = 1

5.25. A feladatnak megfelelő ábrából leovlasható, de az adott feltételekből is következik,
hogy:

OP = PN és PN⊥PT .

Tehát

5.3. ábra. 5.25 feladat
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dy

dx
= tg ϕ = cot ϑ.

Másrészt:
cot ϑ =

x

y
.

Ezek felhasználásával a görbesereg differenciálegyenlete:

dy

dx
=

x

y
.

A változókat szétválasztva:
y2 − x2 = C.

Az integrálgörbék olyan hiperbolák, melyeknek valós tengelye az y tengely.

5.26. Legyen P̂Q a görbe ı́ve az a és x abszcisszák között. A görbe alatti terület

5.4. ábra. 5.26 feladat

∫ x

a

y(t)dt,

az ı́vhossz pedig ∫ x

a

√
1 + [y′(t)]2dt.

Ha a görbe alatti terület arámyos az ı́vhosszal, akkor fennáll:

∫ x

a

y(t)dt = k

∫ x

a

√
1 + [y′(t)]2dt.
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Az egyenlőség mindkét oldalát x szerint differenciálva, az

y(x) = k

√
1 + [y′(t)]2 ill. y′ = ±1

k

√
y2 − k2

differenciálegyenlethez jutunk.

A változókat szétválasztva és integrálva:
∫

dy√
y2 − k2

= ±1

k

∫
dx

cosh−1 y

k
= ±x + C

k

Megoldva y-ra:

y = k cosh
x + C

k
.

Ez a differenciálegyenlet általános megoldása, ezenḱıvül partikuláris megoldás az√
y2 − k2 = 0 egyenletből adódó y = ±k is.

5.27. y = Ce
x
a

5.28. y2 = 2p(x + C)

5.2.2. Lineáris differenciálegyenletek

5.29. Az y′ = −2xy +2xe−x2
differenciálegyenlethez tartozó homogén differenciálegyen-

let:
Y ′ = −2xY.

Ezt a változók szétválasztásával oldjuk meg:
∫

dY

Y
= −2

∫
xdx

ln Y = −x2 + ln C

azaz ln Y
C

= −x2.

A homogén differenciálegyenlet általános megoldása:

Y = Ce−x2

.

Az inhomogén differenciálegyenlet egy partikuláris megoldását az állandó variálás
módszerével álĺıtjuk elő:

y0 = C(x) · e−x2

y′0 = [C ′(x)− 2x · C(x)] e−x2
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Behelyetteśıtük az inhomogén differenciálegyenletbe:

[C ′(x)− 2x · C(x)] e−x2

= [−2x · C(x)] e−x2

+ 2xe−x2

Innen:
C ′(x)e−x2

= 2x · e−x2

,

ezután szorzunk az ex2
kifejezéssel: C ′(x) = 2x. Az egyenlőség mindkét oldalát

integrálva C = x2, ı́gy:
y0(x) = x2 · e−x2

.

A keresett általános megoldás a homogén egyenlet általános megoldásának és az
inhomogén egyenlet egy partikuláris megoldásának az összege:

y(x) =
(
x2 + C

)
e−x2

.

5.30. y′ =
1

sin(x)
y +

1− cos(x)

sin(x)
.

A homogén egyenlet megoldása: Y ′ =
1

sin(x)
Y

dY

Y
=

1

sin(x)
dx

∫
dY

Y
=

∫
1

2 sin x
2

cos2 x
2

cos x
2

dx =

∫ 1
2
· 1

cos2 x
2

tg x
2

dx

ln Y = ln
(
C · tg x

2

)
.

A homogén egyenlet általános megoldása tehát

Y (x) = C · tg x

2

Az inhomogén egyenlet megoldása állandók variálásával:

y0(x) = C(x) · tg x

2

y′0(x) = C ′(x) · tg x

2
+

C(x)

cos2 x
2

· 1

2
.

Behelyetteśıtve a differenciálegyenletbe:

C ′ · tg x

2
+

C

2 cos2 x
2

=
1

sin(x)
· C · tg x

2
+

1− cos(x)

sin(x)
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Mivel

C ′(x) · tg x

2
=

1− cos(x)

sin(x)
=

2 sin2 x
2

2 sin x
2
cos x

2

= tg
x

2

tehát

C ′(x) = 1, azaz C(x) = x.

y0(x) = x · tg x

2
.

A differenciálegyenlet általános megoldása:

y(x) = (C + x)tg
x

2
.

P
(π

2
, π

)
ponton áthaladó megoldást úgy kaphatunk, ha az általános megoldásban

a C állandót megfelelő módon határozzuk meg:

y
(π

2

)
= π =

(
C +

π

2

)
tg

π

4
= C +

π

2
.

Innen: C = π
2
.

Tehát a partikuláris megoldás:

y(x) =
(π

2
+ x

)
tg

x

2
.

5.31. Feladatunk az
1

x
y′ = −y + 1 differenciálegyenletnek az y(0) = 7 kezdeti feltételt

kieléǵıtő megoldásának meghatározása.

A feladatot az y′ = a(x)y + b(x) egyenlet megoldására levezetett

y(x) = e
R

a(x)dx[c +

∫
b(x)e

R
a(x)dxdx]

képlettel oldjuk meg.

Előbb azonban az egyenletet y′ együtthatójával el kell osztani:

y′ = −xy + x.

Innen

y(x) = e−
R

xdx[c +

∫
xe
R

xdxdx] =

= e−
x2

2 [c +

∫
xe

x2

2 dx] =
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e−
x2

2 [c + e
x2

2 ]

Tehát

y(x) = ce−
x2

2 + 1

A P (0, 7) ponton átmenő megoldást a 7 = ce0 + 1 egyenletből kapjuk, c = 6, ı́gy

y0(x) = 6e−
x2

2 + 1.

5.32. y(x) = Ce
x2

2 − (x2 + 2) .

5.33. y(x) = sin(x) + C cos(x).

5.34. y(x) = x2 (ex + C) .

5.35. y(x) =
√

x2 − 1
[
C + ln

(
x +

√
x2 − 1

)]− x.

5.36. y(x) = C cos(x)− 2 cos2(x).

5.37. y(x) · ch x = 3ex + e3x + C.

5.38. y(x) =
C + ln sin(x)

cos3 x
+

1

2 cos(x)
.

5.39. y(x) =
x4

6
+

C

x2
.

5.40. y(x) = Ce−x +
1

5
sin(2x)− 2

5
cos(2x).

5.41. y(x) = C ln x + x2.

5.42. y(x) = (C + ex) sin(x).

5.43. y(x) =
C

x
+

1

2
x ln |x| − 1

4
x.

5.44. y(x) = x.

5.45. y(x) = x +
√

1− x2.

5.46. y(x) = (x2 + 1) e−x2
.

5.47. y(x) = 2e− sin(x) + sin(x)− 1.

5.48. y(x) = 1.

5.49. y(x) = ex

(
1

x
− 1

)
.
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