
Integrálok

Motiváció: Kör területe
Tudjuk, hogy a kör kerülete . A terület a következő lesz, ha a sugár :

Parciális Integrálás 
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Általánosan nem igaz, de most ennél ez pont 

Táblázatos parciális integrálás trükk:

Linearizáló formulák:

(Ebből könnyen ki is lehet számolni: )
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Először kiszámoljuk a határozatlan integrált:
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