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1.1. Természetes számok

A jegyzetben N jelöli a természetes számok halmazát. N = {1, 2, 3, . . . }.

Az N halmaznak két fontos alaptulajdonsága a következ®:

1. Van legkisebb elem, ez 1 (egység).

2. Mindegyik elem után van közvetlenül következ®: n → n+ 1

Megjegyzés. Más könyvekben néha el®fordul, hogy a természetes számok

halmazát az n = 0 számmal kezdik. Itt N0 fogja jelölni a 0-val kib®vített

természetes számok halmazát.

1.2. Teljes indukció

Tipikus feladat egy képlet bizonyítása. Sokszor ezt megel®zi egy sejtés.

1.1. Állítás. (Valamely) An tulajdonság igaz minden nϵN számra igaz.

(Például: "Minden nϵN szám érdekes.")

Bizonyítás menete:

1. Kiinduló lépés. Belátjuk, hogy A1 teljesül.

2. Indukciós lépés. Belátjuk, hogy minden rögzített k-ra: Ak teljesülése

esetén Ak+1 is igaz.
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Megjegyzés. A teljes indukciót úgy képzelhetjük el, mintha fel kellene men-

nünk egy végtelen hosszú lépcs®n. Ha meg tudjuk tenni az els® lépést, és

bármely lépcs®fokról eggyel feljebb tudunk jutni, akkor valóban bármilyen

magasra fel tudunk menni.

1.Gyakorlat. Igazoljuk teljes indukcióval, hogy minden természetes szám

szép.

Megjegyzés. A teljes indukció nem mindig n = 1-gyel kezd®dik, hanem azzal

a legkisebb természetes számmal, ahonnan a az adott tulajdonság érvényes.

Példa. Igazoljuk, hogy minden nϵN esetén

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
. (1.1)

Bizonyítás teljes indukcióval.



4 1. FEJEZET. VALÓS SZÁMOK

1. 1. Kiinduló lépés.

n = 1 esetén az állítás igaz, hiszen n = 1 esetén az (1.1) képlet:

1 =
1 · 2 · 3

6
.

√

2. 2. Indukciós lépése.

Tegyük fel, hogy egy rögzített n-re teljesül az állítás (ez az indukciós

feltevés.) Nézzük meg, mit mondhatunk, ha n+1 számot adunk össze:

12 + 22 + · · ·+ n2︸ ︷︷ ︸+(n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 = (∗)

Felhasználtuk az indukciós feltevést. Egyszer¶ algebrai átalakításokkal

folytathatjuk:

(∗) = (n+ 1)

6
(n(2n+ 1) + 6n+ 6) =

(n+ 1)(n+ 2)(2n+ 3)

6
,

ami épp az (1.1) képlet, ha n helyére n+ 1 kerül.

1.3. Valós számok értelmezése

Az N halmazból kiindulva egyre b®vebb számhalmazokat lehet értelmezni:

A számfogalom felépítésének els® lépése volt: N = {1, 2, 3, . . . }.

A természetes számok halmazán értelmezve van két m¶velet, az összeadás

(+) és szorzás (·), továbbá a < rendezési reláció.

1. Egyik m¶velet az N halmazon: összeadás. 13 + 134 =
√

Az inverz kérdés 13+? = 11 megoldásával egy b®vebb halmazt kapunk:

−→ egész számok: Z = {0,±1,±2,±3, . . . }.



1.3. VALÓS SZÁMOK ÉRTELMEZÉSE 5

2. Másik m¶velet az N halmazon: szorzás. 13 · (−134) =
√

Az inverz kérdés 13 · ? = 11 megoldásával egy még b®vebb halmazt

kapunk:

−→ racionális számok: Q = {r = p

q
| p, qϵZ, q ̸= 0}.

3. Hogyan tovább?

IR-et szeretnénk megfeleltetni a számegyenes pontjainak, természetes módon.

Egyel®re "lyukas" a megfelelteés. hiszen csak racionális számokig tudunk

eljutni.

Egyik lehetséges út a valós számok axiomatikus értelmezése. Ennek alapjait

röviden leírjuk.

Adott egy IR halmaz, melynek elemeit valós számoknak nevezzük. A

halmazban van két kitüntetett elem, ezek: 0 és 1 (0 ̸= 1).

IR-en de�niálva van két m¶velet, az összeadás (+) és a szorzás (·), valamint

egy < rendezési reláció.

A m¶veletek és a rendezés tulajdonságait axiómákban adjuk meg. Az

axiómák triviális alaptulajdonságok, melyeket bizonyítás nélkül elfogadunk.

A pozitív valós számok halmazát IR+ jelöli.

Jelölések

∀ = MINDEN

∃ = LÉTEZIK

∃! = EGYÉRTELM�EN LÉTEZIK
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1.3.1. Axiómák∗

Megadjuk a valós számok felépítésére szolgáló egyik lehetséges axiómarendszert.

1. csoport: a m¶veletek alaptulajdonságai.

A1. Az összeadás asszociatív, azaz (x+ y) + z = x+ (y + z)

A2. x+ 0 = x

A3. ∀xϵIR-hez ∃uϵIR, melyre x+ u = 0. Ezc a szám ellentettje.

A4. Az összeadás kommutatív, azaz x+ y = y + x

A5. A szorzás asszociatív, azaz (x · y) · z = x · (y · z)

A6. x · 1 = x, ∀xϵIR.

A7. ∀xϵIR, x ̸= 0-hoz ∃vϵIR, melyre x · v = 1.

Ezt a szám reciprokának nevezzük.

A8. A szorzás kommutatív, azaz x · y = y · x, ∀x, yϵIR.

A9. A szorzás disztributív az összeadásra, azaz

(x+ y) · z = x · z + y · z, ∀x, yϵIR.

2. csoport: a rendezési reláció tulajdonságai.

R1. Tetsz®leges x ̸= y esetén az x < y és y < x közül pontosan egy igaz.

R2. A rendezési reláció tranzitív, azaz ha x < y és y < z, akkor x < z.

R3. Ha x < y, akkor x+ z < y + z minden zϵIR esetén.

R4. Ha x < y és 0 < z, akkor x · z < y · z.
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3. csoport:

Els®ként elkülönítjük IR egy részhalmazát, melyet N jelöl, és az alábbi tulaj-

donságokkal rendelkezik:

� 1ϵN.

� Ha nϵN, akkor n+ 1ϵN.

� Bármely nϵN esetén n+ 1 ̸= 1 (vagyis 1 a legels® elem).

� Ha valamely S ⊂ N rendelkezik az alábbi tulajdonságokkal:

1ϵS, és ∀nϵS esetén n+ 1ϵS,

akkor S = N.

Ezt a részhalmazt természetes számoknak nevezzük.

14. (Archimedeszi axióma) Bármely a, bϵIR, a > 0 valós számhoz létezik

nϵN, melyre b < na.

15. (Cantor axióma) Adott korlátos és zárt intervallumok egy sorozata:

I1 = [a1, b1], I2 = [a2, b2], . . . In = [an, bn], . . . (1.2)

melyek egymásba skatulyázottak, azaz

I1 ⊇ I2 ⊇ . . . ⊇ In . . . . (1.3)

Ekkor van közös pont, azaz

∃cϵIR melyre cϵIn, ∀nϵN.
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Megjegyzés. A Cantor axióma átfogalmazható a következ®képp: Tegyük fel,

hogy adottak az

a1 ≤ a2 ≤ a3 ≤ . . . ≤ an . . .

számok ("bal oldalak") és a

b1 ≥ b2 ≥ b3 ≥ . . . ≥ bn . . .

számok ("jobb oldalak"), melyekre teljesül, hogy:

an ≤ bn ∀nϵN.

Ekkor létezik cϵIR , melyre

an ≤ c ≤ bn ∀nϵN.

1.3.2. Irracionális számok bevezetése

Miel®tt bevezetnénk az irracionális számokat, vizsgáljuk meg két példán ke-

resztül, hogy a Cantor axióma használatához milyen plusz feltételre van szük-

ség.

Cantor-féle axióma, 1. példa

I1 = [3, 4].

I2 = [3.1, 3.2].

...

I8 = [3.14159265, 3.14159266]

...
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1.1. ábra. 1.Példa. Els® 3 intervallum

Vajon mi a közös pont? Láthatóan ez a szám a π, ami NEM racionális.

Tehát a Cantor axióma biztosítja, hogy IR-ben irracionális számok is vannak.

Cantor-féle axióma, 2. példa

I1 = [0, 3].

I2 = [1− 1

2
, 2 +

1

2
].

I3 = [1− 1

3
, 2 +

1

3
].

...

In = [1− 1

n
, 2 +

1

n
].

...

Vajon mi a közös pont? Láthatóan sok-sok közös pont van.

Els® fontos tétel, amit az axiómák alapján bebizonyítunk a közös pont egy-

értelm¶ségér®l szól.
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1.2. ábra. 2.Példa. Els® 4 intervallum

1.1. Tétel (Cantor-féle közös-pont tétel). Legyen I1 ⊇ I2 ⊇ · · · ⊇ In . . .

véges és zárt intervallumok sorozata, In = [an, bn].

Tegyük fel, hogy ∀ε > 0-hoz ∃In intervallum, mely az adott ε-nál rövidebb,

azaz |In| = bn − an < ε.

Ekkor egyértelm¶en létezik a c közös pont, melyre cϵIn minden n-re.

Bizonyítás. A Cantor-axiómából következik, hogy létezik közös pont. In-

direkt módon látjuk be aa egyértelm¶séget. Feltesszük, hogy két közös pont

van: c, dϵIn minden n-re, és például c < d.

1.3. ábra. A Cantor féle közöspont-tétel bizonyítása

Legyen ε = d− c > 0. Ekkor a feltétel szerint ∃nϵN, amire bn − an < ε.

Ekkor mivel

cϵ[an, bn], dϵ[an, bn],
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ezért ε = d− c ≤ bn − an < ε, ami ellentmondás.

1.4. A valós számok részhalmazai

1.4.1. In�mum és supremum

1.1. De�níció. Legyen H ⊂ IR a valós számok halmazának egy részhalmaza.

1. A H halmaz alulról korlátos, ha van olyan kϵIR, melyre

k ≤ x ∀xϵH.

2. A H halmaz felülr®l korlátos, ha van olyan KϵIR, melyre

x ≤ K ∀xϵH.

3. A H halmaz korlátos, ha alulról és felülr®l is korlátos.

1.2. De�níció. Legyen H egy alulról korlátos nem üres halmaz. A halmaz

legnagyobb alsó korlátját in�mumnak nevezzük. Jele inf(H).

Más szóval, az sϵIR szám a H halmaz in�muma, ha teljesülnek az alábbiak:

1. Egyrészt s alsó korlát, azaz

s ≤ x, ∀xϵH.

2. Másrészt ha s′ egy tetsz®leges alsó korlátja H-nak, akkor

s′ ≤ s.

Megmutatható, hogy az alsó korlátok közt létezik legnagyobb.
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1.3. De�níció. Legyen H egy felülr®l korlátos nem üres halmaz. A halmaz

legkisebb fels® korlátját supremumnak nevezzük. Jele sup(H).

Más szóval, az SϵIR szám a H halmaz supremuma, ha teljesülnek az alábbiak:

1. Egyrészt S fels® korlát, azaz

S ≥ x, ∀xϵH.

2. Másrészt ha S ′ egy tetsz®leges fels® korlátja H-nak, akkor

S ′ ≥ S.

Megmutatható, hogy a fels® korlátok közt van legkisebb.

1. Példa. Legyen H = [a, b] zárt intervallum. Ekkor

inf(H) = a, sup(H) = b.

Megjegyzés. Ha van H elemei közül legkisebb, akkor ez az in�mum. Tehát

ha H-ban létezik minimum, akkor

inf(H) = min(H).

Hasonlóan, ha a halmazban van maximális elem, akkor

sup(H) = max(H).

2. Példa. Legyen H = (a, b) nyílt intervallum. Ekkor is

inf(H) = a, sup(H) = b.

Megjegyzés. A fenti példákból is látszik, hogy inf(H)ϵH vagy inf(H)ϵ|H is

el®fordulhat.
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3. Példa. Legyen H =

{
1

n
: nϵN

}
.

Ekkor nyilván sup(H) = max(H) = 1. Legkisebb eleme nincs a halmaznak.

Belátjuk, hogy inf(H) = 0. Nyilván 0 ≤ 1/n minden n -re, tehát a 0 alsó

korlát. Legyen ε > 0 tetsz?leges. Belátjuk, hogy ε nem lehet alsó korlát.

Valóban, legyen

N =

[
1

ε

]
(egész rész).

Ekkor

ε >
1

N + 1
ϵH.

Igazoljunk kell, hogy a fenti in�mum és supremum jól de�niáltak.

1.2. Tétel. Minden alulról korlátos, nem üres H halmaznak VAN in�muma.

Bizonyítás∗ Konstrukcióval igazoljuk az in�mum létezését. Mivel H alulról

korlátos, ezért van alsó korlátja. Legyen a1 egy alsó korlát.

1. eset. Ha a1ϵH, akkor ez minimális elem, egyben in�mum is.

2. eset. Ha a1ϵ|H, akkor legyen b1ϵH tetsz®leges, b1 > a1. Legyen I1 = [a1, b1]

egy zárt intervallum, és de�niáljuk a c1 =
a1 + b1

2
számot.

Kétféle folytatás lehetséges.

a) Ha c1 alsó korlát, akkor legyen a2 := c1 és b2 := b1. Ha ráadásul c1ϵH

is teljesül, akkor minimális elem, egyben in�mum is.

b) Ha c1 nem alsó korlát, akkor legyen a2 := a1 és b2 := c1. (Ha esetleg

c1ϵ|H, akkor b2ϵH-t válasszuk meg úgy, hogy a2 < b2 < c1 legyen.)

I2 = [a2, b2] intervallum hossza biztosan rövidebb (vagy egyenl®), mint I1

hosszának fele. Ezen kívül a2 alsó korlát, b2ϵH.
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Ezt a konstrukciót folytatva vagy "rátalálunk" véges lépésben a minimumra,

vagy egy végtelen Ik intervallum-sorozatot kapunk, melyre:

(i) Ik = [ak, bk] zárt és Ik+1 ⊂ Ik,

(ii) Ik+1 hossza rövidebb, mint 2−k|I1|,

(iii) ak alsó korlát és bkϵH minden k-ra.

Az (i) és (ii) tulajdonságok miatt az intervallumsorozat teljesíti a 1.1 Té-

tel feltételeit, ezért az intervallumoknak egyértelm¶enlétezik közös pontja,

legyen ez s. Belátjuk, hogy

s = inf(H).

Ehhez egyrészt igazolni kell, hogy s alsó korlát. Ha ugyanis lenne egy olyan

hϵH elem, melyre h < s teljesülne, akkor a (ii) tulajdonság miatt találnánk

egy olyan Ik intervallumot, melyre h < ak ≤ s lenne, ami ellentmond annak,

hogy ak alsó korlát.

Hasonlóképp igazoljuk, hogy nincs s-nél nagyobb alsó korlát. Ha ugyanis

indirekt módon feltesszük, hogy van ilyen s′ > s alsó korlát, akkor találunk

egy Ik intervallumot, melyre s ≤ bk < s′. De mivel bkϵH minden k-ra, így ez

sem lehetséges.

1.1. Következmény. Minden nem üres, felülr®l korlátos H halmaznak léte-

zik supremuma.

1.4.2. Topológiai alapfogalmak

1.4. De�níció. Egy x0 valós szám környezetei az

(x0 − ε, x0 + ε)

nyílt intervallumok, ahol ε > 0 tetsz®leges.
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1.5. De�níció. Adott H ⊆ IR tetsz®leges részhalmaz.

Az x0ϵIR pont a H halmaz bels® pontja, ha ∃ε > 0, hogy

(x0 − ε, x0 + ε) ⊆ H.

A bels® pontok halmazát int(H) jelöli. (Az INTERIOR szó rövidítéséb®l.)

Az x0ϵIR pont a H halmaz küls® pontja, ha ∃ε > 0, hogy

(x0 − ε, x0 + ε) ∩H = ∅.

A küls® pontok halmazát ext(H) jelöli. (Az EXTERIOR szó rövidítéséb®l.)

x0ϵIR a H halmaz határpontja, ha se nem küls®, se nem bels® pontja.

Ez azt jelenti, hogy ∀ε > 0 mellett az (x0 − ε, x0 + ε) környezet tartalmaz

H-beli és H-n kívüli pontokat is. A határpontok halmazát ∂H jelöli.

1.6. De�níció. A H halmaz nyílt, ha minden pontja bels® pont.

A H halmaz zárt, ha minden határpontját tartalmazza. Egy H halmaz le-

zárását úgy kapjuk meg, hogy hozzávesszük a határpontokat. H = H ∪ ∂H.

1. Példa. Legyen H = (a, b) egy nyílt intervallum. Bels® pontok halmaza:

int(H) = {x : a < x < b}.

A határpontok halmaza: ∂(H) = {a, b}. A lezárás

H = int(H) ∪ ∂H = [a, b].

2. Példa. Legyen H = {0 < x < 1 : xϵQ}.

Ebben a halmazban bels® pont NINCS. Hiszen például az
1

2
pontnak nincs

olyan
(
1
2
− ε, 1

2
+ ε
)
környezete, amire teljesülne, hogy (1

2
− ε, 1

2
+ ε) ⊆ H.

Bármely kicsi intervallumban van racionális és irracionális szám is, ezért nincs

olyan (1
2
− ε, 1

2
+ ε) intervallum, melyben csak racionális számok lennének.
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Így H minden pontja határpont! Hasonló meggondolással igazolható, hogy

a [0, 1] -beli irracionális számok is határpontok.

Tehát a halmaz határpontjai:

∂H = {x : 0 ≤ x ≤ 1} = [0, 1]. (!)

1.5. Néhány alap-egyenl®tlenség

1.5.1. Háromszög egyenl®tlenség

1.2. Állítás. Tetsz®leges a, b valós számokra

|a+ b| ≤ |a|+ |b|.

Bizonyítás. Abból a triviális egyenl®tlenségb®l indulunk ki, hogy

±a ≤ |a|, ±b ≤ |b|.

Ebb®l azt kapjuk, hogy

a+ b ≤ |a|+ |b|, −a− b ≤ |a|+ |b|,

és ebb®l az állítás következik.

Megjegyzés. Az elnevezés vektorokra utal, ott valóban egy háromszög három

oldalának hosszáról van szó.

1.2. Következmény. (1.2.Á ltalános háromszög egyenl®tlenség)

Tetsz®leges nϵN, n ≥ 2 esetén adottak az a1, a2, ..., an valós számok. Ekkor

|a1 + ...+ an| ≤ |a1|+ ...+ |an|,

azaz ∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣ ≤
n∑

k=1

|ak|. (1.4)
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Bizonyítás. Teljes indukcióval. n = 2 esetén beláttuk az állítást.

Tegyük fel, hogy valamely n ≥ 2-re (1.4) igaz. Vizsgáljuk n+ 1-re

|
n+1∑
k=1

ak| = |
n∑

k=1

ak + an+1| ≤ |
n∑

k=1

ak|+ |an+1|,

ahol a két tagú összegre vonatkozó tulajdonságot használtuk. Ezután a jobb-

oldal els® tagjára az indukciós feltételt alkalmazhatjuk.

|
n∑

k=1

ak| ≤
n∑

k=1

|ak|.

1.3. Tétel. (Bernoulli egyenl®tlenség.) Tetsz®leges nϵN0 természetes szám

és h ≥ −1 valós szám esetén teljesül az alábbi összefüggés:

(1 + h)n ≥ 1 + hn. (1.5)

Bizonyítás∗ h = 0 esetén egyenl®ség van.

h ̸= 0 esetén teljes indukcióval látjuk be az állítást.

1. Ha n = 1 akkor

(1 + h)1 = 1 + h,

tehát az állítás igaz.

2. Tegyük fel, hogy valamely n-re igaz:

(1 + h)n ≥ 1 + hn,

majd tekintsük az egyenl®tlenség baloldalát n+ 1-re:

(1 + h)n+1 = (1 + h)n(1 + h) ≥ (1 + nh)(1 + h) =

= 1 + (n+ 1)h+ nh2 ≥ 1 + (n+ 1)h.

A fenti átalakítások során felhasználtuk az indukciós feltevést és el-

hagytuk az nh2 pozitív tagot.
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1.5.2. Számtani és mértani közép

Tekintsünk két nemnegatív valós számot, x, y ≥ 0. Ezek számtani közepe

(számtani átlaga)

A =
x+ y

2
,

és mértani közepe (mértani átlaga)

G =
√
xy.

1.3. Állítás. Tetsz®leges x, y ≥ 0 valós számok esetén

x+ y

2
≥ √

xy,

és egyenl®ség pontosan akkor teljesül, ha x = y.

2.Gyakorlat. A fenti állítás szemléletes módon igazolható a 1.4. ábra alap-

ján. Igazolja.

1.4. ábra. A számtani és mértani közép geometriai ábrázolása

1.4. Tétel (Számtani és mértani közép közti egyenl®tlenség). Legyenek a1, a2, . . . , an
nemnegatív valós számok. Ezek számtani átlaga (más elnevezéssel számtani

közepe)

An :=
a1 + a2 + ...+ an

n
=

1

n

n∑
k=1

ak,
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és mértani átlaga (vagy mértani közepe)

Gn := n
√
a1a2 . . . an = n

√√√√ n∏
k=1

ak.

Ekkor

An ≥ Gn minden n −re,

és egyenl®ség pontosan akkor teljesül, ha a1 = a2 = . . . = an.

Kiegészít® tananyag. A fenti állítást analitikus eszközökkel általános esetben

látjuk be.

A Tétel bizonyításához kezdetnek két lemmát igazolunk.

1.1. Lemma. Legyen n ≥ 2 adott természetes szám. Legyenek xk ≥ 0,

k = 1, 2, . . . n olyan számok, amelyek közt van legalább kett® különböz®, és

átlaguk 1, azaz
x1 + x2 + . . .+ xn

n
= 1.

Ekkor x1x2 . . . xn < 1.

Bizonyítás. Teljes indukcióval látjuk be a lemmát.

1. Ha n = 2, akkor a lemma állítása igaz, hiszen a két szám

x1 = 1 + t, x2 = 1− t, t > 0.

Ezekre a számokra

(1− t)(1 + t) = 1− t2 < 1.
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2. Tegyük fel hogy valamely rögzített n-re igaz az állítás. Tekintsünk n+1

db számot, melyek számtani átlaga 1, és ezeket írjuk az alábbi alakba:

x1 = 1 + t1,

x2 = 1 + t2,
...

xn = 1 + tn,

xn+1 = 1 + tn+1.

Ekkor a t1, . . . tn+1 számok közt van pozitív es negatív is, mert összegük

0 és nem mind egyforma. Feltehet® például, hogy tn < 0 < tn+1.

Nézzük az n+ 1 tényez®s szorzatot:

x1x2 . . . xn−1xnxn+1 = x1x2 . . . xn−1(1 + tn)(1 + tn+1) <

< x1x2 . . . xn−1(1 + tn + tn+1),

ahol az utolsó tényez®b®l elhagytuk a tntn+1 < 0 tagot. A szorzat utolsó

tényez®jét jelölje x∗
n = 1 + tn + tn+1. Ekkor egy n tényez®s szorzatunk

van, a tényez®k összege:

x1 + x2 + . . .+ xn−1 + 1 + tn + tn+1 =

= (n− 1) + t1 . . .+ tn−1 + 1 + tn + tn+1 = n.

Tehát adott n db szám, x1, x2, . . . , xn−1, x
∗
n, melyek átlaga 1. Ha az így

kapott számok egyformák, akkor szorzatuk = 1. Ha nem egyformák,

akkor az indukciós feltevés miatt szorzatuk< 1.

Ezek után megfogalmazhatjuk az fenti lemmát kicsit általánosabban:

1.2. Lemma. Legyenek xk ≥ 0, k = 1, . . . n olyan számok, amelyekre

x1 + x2 + . . .+ xn

n
= 1.

Ekkor

x1x2 . . . xn ≤ 1.
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A Tétel bizonyítása. Ha adottak az a1, a2, . . . , an számok, akkor legyen

A =
a1 + a2 + . . .+ an

n
,

és legyenek

xk =
ak
A
, k = 1, . . . n.

Ekkor

x1 + x2 + · · ·+ xn =
a1 + a2 + · · ·+ an

A
= n,

ezért
x1 + x2 + · · ·+ xn

n
= 1,

így alkalmazhatjuk ezekre a számokra a 1.2. Lemmát. Tehát

x1x2 . . . xn ≤ 1,

azaz
a1a2 . . . an

An
≤ 1.

Ezt az egyenl®tlenséget átrendezve kapjuk a Tétel állítását:

n∏
k=1

ak ≤

(
1

n

n∑
k=1

ak

)n

.
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2.1. Számsorozatok

2.1.1. Alapfogalmak

2.1. De�níció. Számsorozat egy olyan hozzárendelés, melyben ∀nϵN ter-

mészetes számhoz egy valós számot rendelünk. Az (a) sorozat n-dik elemét

an jelöli, az egész sorozatot (an)-nel jelöljük.

Az (an) sorozat korlátos ha ∃K szám, hogy |an| < K minden nϵN esetén.

Az (an) sorozat monoton növ®, ha ∀n < m esetén an ≦ am. (Nagyobb

indexhez nem kisebb elem tartozik.) Az (an) sorozat monoton fogyó, ha

∀n < m esetén an ≧ am (nagyobb indexhez nem nagyobb elem tartozik.)

2.1.2. Határérték

Arra leszünk kíváncsiak, hogy n növelésével mi történik az an számokkal.

Példa. Egy aϵIR irracionális szám esetén legyen an az els® n db jegy a végtelen

tizedestört felírásában. Ekkor an "egyre közelebb kerül" a-hoz. Ezt így

jelölhetjük: an → a.

Miel®tt pontosan de�niálnánk a határértéket, egy-két példát tekintünk.

1. Példa. Legyen an =
1

n
. Tetsz®leges ε > 0 mellett az (−ε, ε) intervallumot

tekintjük. Ekkor ∃N küszöbindex, amire aNϵ(−ε, ε) éspedig legyen

N >

[
1

ε

]
+ 1,

ahol [x] jelöli az x szám egész részét (az x-nél nem nagyobb egészek közül a

legnagyobbat). Ekkor
1

N
<

1

[1/ε] + 1
< ε
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s®t ∀n > N -re anϵ(−ε, ε), tehát an "tart" 0-hoz. Így jelöljük: an → 0.

2. Példa. Legyen an = (−1)n
1

n
, azaz a sorozat tagjai

−1;
1

2
; −1

3
;
1

4
; −1

5
; . . . .

Ekkor is an → 0, mert ∀ε > 0-hoz ∃N küszöbindex, amire teljesül, hogy

∀n > N esetén |an| < ε.

3. Példa. Legyen

an =


1

2n
ha n = 2k

1

n
ha n = 2k + 1

.

A sorozat elemei

a1 = 1; a2 =
1

4
; a3 =

1

3
; a4 =

1

8
; a5 =

1

5
; . . .

2.1. ábra. A 3. példa sorozata

Nyilván most is an → 0.
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4. Példa. Legyen

an =
n

n+ 1
= 1− 1

n+ 1
.

Ekkor an-nek az 1-t®l való eltérése csökken és tart a 0-hoz. Így an → 1.

5. Példa. Legyen p > 0 tetsz®leges rögzített szám és legyen an = n
√
p. Hova

tart az (an) sorozat? Például p = 2 esetén a sorozat

a1 = 2, a2 =
√
2, a3 =

3
√
2, . . .

Három eset van:

1. eset. Ha p = 1, ekkor a1 = a2 = a3 = . . . = 1, így an → 1.

2. eset. Ha p > 1, ekkor n
√
p > 1, ez felírható összegként:

n
√
p = 1 + hn,

ahol hn > 0. Így p = (1 + hn)
n, és a Bernoulli egyenl®tlenséget alkalmazva

p = (1 + hn)
n ≥ 1 + nhn.

Ezt átrendezve

hn ≦
p− 1

n
.

Mivel
p− 1

n
→ 0,

ezért hn → 0. Így most is n
√
p → 1.

3. eset. Ha p < 1, akkor 1/p > 1, tehát a 2. esetnél leírtak miatt

n

√
1

p
→ 1

is teljesül. Mivel

n

√
1

p
=

1
n
√
p
,

ezért n
√
p → 1.
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2.2. De�níció. Azt mondjuk, hogy az (an) sorozat konvergens és határ-

értéke az A szám, ha ez rendelkezik a következ® tulajdonsággal:

∀ε > 0-hoz ∃N = N(ε) (egy ε-tól függ® N küszöbindex), melyre

|an − A| < ε ∀n > N.

Ezt így jelöljük

lim
n→∞

an = A.

2.1. Állítás. Ha egy (an) sorozatnak van határértéke, akkor a határérték

egyértelm¶.

Bizonyítás∗ Indirekt úton. Tegyük fel, hogy két szám is rendelkezik a fenti

tulajdonsággal, jelölje ezeket A < B. Válasszuk meg az ε számot úgy, hogy

ε <
B − A

2
legyen. Ekkor az (A−ε, A+ε) és a (B−ε, B+ε) intervallumok

diszjunktak, (nincs közös elemük). Ez ellentmondás, tehát a kiindulópontunk

hibás volt, nem lehet két különböz® határértéke egy sorozatnak.

6. Példa. Legyen

an =
n2 − 1

n2 + n+ 1
.

Ekkor

an =
n2 + n+ 1− n− 2

n2 + n+ 1
= 1− n+ 2

n2 + n+ 1
= 1− rn.

Mivel

0 < rn =
n+ 2

n2 + n+ 1
<

2n

n2
=

2

n
,

és 1/n → 0, ezért lim
n→∞

(an − 1) = 0, azaz lim
n→∞

an = 1.

2.3. De�níció. Ha (an) nem konvergens, akkor divergensnek nevezzük.

Kétféle speciális divergenciát mutatunk be.
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2.4. De�níció. Az (an) sorozat a +∞-be divergál, ha ∀KϵIR korláthoz meg-

adható N = N(K) küszöbindex, hogy ha n > N akkor an > K. Ezt így

jelöljük

lim
n→∞

an = +∞.

Szokásos elnevezés, hogy (an) minden határon túl n®.

Hasonlóan, az (an) sorozat −∞-hez divergál, ha ∀K-hoz ∃N = N(K) kü-

szöbindex, melyre ha n > N(K), akkor an < K. Így jelöljük:

lim
n→∞

an = −∞.

Másik fajta gyakori divergencia, ha a sorozat elemei több pont körül torlód-

nak. Például, ha

an = (−1)n,

akkor ennek a sorozatnak elemei:

−1; 1; −1; 1; −1; 1; . . . .

Ez a sorozat nyilván nem konvergens.

Megadjuk az (el®z® de�níció átfogalmazását, a határérték általános de�níci-

óját.) Ez a kés®bbieken lesz fontos.

De�níció. Azt mondjuk, hogy

lim
n→∞

an = A,

ha A-nak tetsz®leges U környezetéhez megadható N = N(U) küszöbindex,

melyre minden n > N esetén anϵU . Ez a de�níció alkalmazható AϵIR vagy

A = ±∞ esetén is.

Megjegyzés. Emlékeztetünk rá, hogy a környezetet de�níciója szerint véges

A mellett U = (A− ε, A+ ε), így

anϵU ⇐⇒ |an − A| < ε.
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Ha A = +∞ akkor ennek a környezetei a U = (K,∞) alakú, jobbról végtelen

intervallumok. Ekkor

anϵU ⇐⇒ an > K.

Megjegyzés. Konvergens sorozatból akárhány elemet elhagyva konvergens

marad, és ugyanahhoz a számhoz fog tartani, mint az eredeti.

2.1.3. Konvergens sorozatok tulajdonságai

2.2. Állítás. Ha egy sorozat konvergens, akkor korlátos.

Bizonyítás∗ Legyen (an) konvergens, és

lim
n→∞

an = A.

Ekkor ε = 1-hez is ∃N , hogy ha n ≥ N akkor |an − A| < 1, azaz anϵ(A −
1, A+ 1). Legyen

m = min{an : n < N}, M = max{an : n < N}.

Más szóval, legyen m az aN el®tti elemek közül a legkisebb, és a legnagyobb

M . Legyenek továbbá

k = min{m,A− 1}, K = max{M,A+ 1}.

Ekkor

k ≤ an ≤ K, ∀nϵN.

Megjegyzés. Az állítás fordítva nem igaz: ha egy sorozat korlátos, akkor még

nem feltétlenül konvergens. Például an = (−1)n.

2.3. Állítás. 1. Ha (an) monoton növ® sorozat, és felülr®l korlátos, akkor

konvergens.
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2. Ha (an) monoton fogyó és alulról korlátos, akkor konvergens.

Bizonyítás∗ Az állítás két része ekvivalens. Belátjuk az 1. részt.

Tekintsük a következ® halmazt:

H = {an : nϵN}.

EkkorH felülr®l korlátos, és létezik sup(H) =: A. Ez azt jelenti, hogy ∀ε > 0-

ra A − ε nem fels® korlát. Emiatt van H-ban ennél nagyobb elem. Jelölje

ezt például aN , ekkor aN > A− ε. A monotonitás miatt az is teljesül, hogy

∀n > N esetén an ≧ aN , azaz an > A− ε. Mivel an ≦ A minden n-re (hiszen

A fels® korlát), így

A− ε < an ≦ A < A+ ε ha n ≥ N.

Példa. Gyakorlatokon beláttuk azt a két összefüggést, hogy(
1 +

1

n

)n

<

(
1 +

1

n+ 1

)n+1

∀nϵN,

és hogy (
1 +

1

n

)n

< 4 ∀nϵN.

Ez azt jelenti, hogy az alábbi sorozat:

an =

(
1 +

1

n

)n

monoton növ® és felülr®l korlátos. Ezért

(
1 +

1

n

)n

konvergens.

2.5. De�níció. Az e számot - ez az Euler-féle szám - úgy de�niáljuk, mint

a fenti sorozat határértéke:

e := lim
n→∞

(
1 +

1

n

)n

.
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(e ≈ 2, 718281..., egy irracionális szám.)

2.4. Állítás. Tettsz®leges aϵIR esetén

lim
n→∞

(
1 +

a

n

)n
= ea.

Példa.

lim
n→∞

(
1− 1

n

)n

=
1

e
.

2.1.4. A határérték alaptulajdonságai

2.5. Állítás. Legyen adott két konvergens sorozat (an) és (bn), melyekre

lim
n→∞

an = A, lim
n→∞

bn = B.

Ekkor

1. ∀cϵIR esetén (can) is konvergens, és lim
n→∞

can = cA.

2. (an + bn) is konvergens, és lim
n→∞

(an + bn) = A+B.

3. (anbn) is konvergens, és lim
n→∞

(anbn) = AB.

Bizonyítás∗

1. Legyen ε > 0 tetsz®leges. Be kell látnunk, hogy

|can − cA| < ε

teljesül bizonyos N indext®l kezdve.

c = 0 esetén az állítás triviális.
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Ha c ̸= 0, akkor az (an) sorozatot tekintve
ε

|c|
-hez ∃N küszöbindex,

melyre

|an − A| < ε

|c|
∀n ≥ N.

Így ha n ≥ N , akkor

|can − cA| = |c| |an − A| < |c| ε
|c|

= ε.

2. Tetsz®leges ε > 0 szám esetén ε/2-hez ∃N1, hogy ha n ≥ N1, akkor

|an − A| < ε

2
.

Hasonlóan ∃N2, hogy ha n ≥ N2, akkor

|bn −B| < ε

2
.

Így N = max(N1, N2) választással n ≥ N esetén

|an + bn − (A+B)| ≤ |an − A|+ |bn −B| < ε

2
+

ε

2
= ε.

3.Gyakorlat. Igazolja a 3. tulajdonságot.

Folytatjuk az alaptulajdonságok felsorolását:

2.6. Állítás. Adott két konvergens sorozat (an) és (bn), melyekre

lim
n→∞

an = A, lim
n→∞

bn = B.

Ekkor

4. lim
n→∞

|an| = |A|.

5. Tegyük fel, hogy A ̸= 0 és an ̸= 0. Ekkor lim
n→∞

1

an
=

1

A
.
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5∗. Az el®z® feltételekkel

lim
n→∞

bn
an

=
B

A
.

Bizonyítás∗

4.

∣∣∣∣|an| − |A|
∣∣∣∣ ≤ |an − A| alapján triviális.

5. Feltesszük, hogy A > 0 és an > 0. Az állítás igazolásához felhasználjuk,

hogy ∣∣∣∣ 1an − 1

A

∣∣∣∣ = |an − A|
|an · A|

≤ . . .

A folytatást az olvasóra ízzuk.

Példa. Az (an) sorozatot rekurzívan de�niáljuk a következ®képp. Legyen

a1 := 1

an+1 :=
a2n + 4

4
, n ≥ 1 (2.1)

A sorozat minden tagja poziív. Konvergens-e?

El®ször belátjuk, hogy a sorozat monoton növ®, azaz an ≤ an+1 ∀nϵN.

Valóban, teljes indukcióval:

1. n = 1 esetén a1 = 1 és a2 =
5

4
, ezért a1 < a2.

2. Tegyük fel, már beláttuk, hogy an ≥ an−1. Ekkor

an+1 =
a2n + 4

4
≥

a2n−1 + 4

4
= an,

a középen lev® egyenl®tlenség az indukciós feltétel miatt igaz.

Belátjuk azt is, hogy a sorozat korlátos : igazoljuk, hogy an < 2 teljesül ∀n-re.
Ezt is teljes indukcióval bizonyíjuk.
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1. n = 1 esetén a1 = 1 < 2, így az állítás igaz.

2. Tegyük fel hogy an < 2. Felhasználjuk az indukciós feltételt:

an+1 =
a2n + 4

4
<

4 + 4

4
= 2.

A sorozat monoton növ® és felülr®l korlátos, ezért konvergens. Legyen

A := lim
n→∞

an.

Az eredeti (2.1) egyenletben határértéket véve azt kapjuk, hogy

lim
n→∞

a2n + 4

4
=

A2 + 4

4
,

ezért

A =
A2 + 4

4
.

A fenti egyenlet egyetlen megoldása A = 2, ez a sorozat határ¯téke.

2.1.5. Részsorozatok

Adott az (an) sorozat. Egy index-sorozatot úgy de�niálunk, hogy minden

kϵN természetes számhoz hozzárendelünk egy nk-val jelölt indexet, melyekre

n1 < n2 < . . . < nk < nk+1, . . .

teljesül. A részsorozat elemei an1 , an2 , an3 , . . . lesznek.

Pl. (a2n) a páros index¶ tagokból álló részsorozat: a2, a4, a6, . . ..

2.1. Tétel. Minden sorozatnak van monoton részsorozata.

Bizonyítás∗ A sorozat egy an elemét csúcsnak nevezzük, ha

an ≥ am ∀m > n,
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azaz nincs nála nagyobb az utána következ® elemek közt. Két eset lehet.

1. eset. Ha végtelen sok csúcs van, melyek indexei n1 < n2 < n3 < . . ., akkor

az (ank
) részsorozat monoton fogyó.

2. eset. Ha csak véges sok csúcs van, akkor legyen az utolsó csúcs indexe n,

ha egyáltalán nincs csúcs, akkor n = 0. De�niáljuk n1-t, mint n1 := n + 1.

Ekkor, mivel an1 már nem csúcs, ezért van nála nagyobb elem, legyen ez

an2 > an1 , ahol n2 > n1. Hasonlóan, mivel an2 nem csúcs, ezért van ennél

nagyobb an3 , melyre n3 > n2 és an3 > an2 . Így tudunk monoton növ®

részsorozatot konstruálni.

Egy alapvet® fontosságú tétel a Bolzano-Weierstrass tétel, ami a konver-

gencia és korlátosság összefüggésének másik irányáról szó.

2.2. Tétel. Minden korlátos sorozatnak van konvergens részsorozata.

Bizonyítás. Tekintsünk egy (an) korlátos sorozatot. A 2.1 Tétel szerint van

(ank
) monoton részsorozata, amely szintén korlátos. Ezért ez a részsorozat

konvergens is.

2.7. Állítás. Az (an) sorozat nullsorozat, ha határértéke 0.

1. (an) konvergens és határértéke A azzal ekvivalens, hogy (bn) = (an−A)

nullsorozat.

2. Ha (an) nullsorozat és (bn) korlátos, akkor (anbn) is nullsorozat, azaz

lim
n→∞

anbn = 0.

3. Tegyük fel, hogy (an) divergens és lim
n→∞

|an| = ∞. Legyen

bn :=


1

an
, ha an ̸= 0

0, ha an = 0
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Ekkor lim
n→∞

bn = 0, azaz (bn) nullsorozat.

4. (an) pontosan akkor nullsorozat ha (|an|) nullsorozat.

5. Legyen (an) divergens sorozat, lim
n→∞

an = ∞. Legyen (bn) olyan alulról

korlátos sorozat, melynek alsó korlátja pozitív. Ekkor:

lim
n→∞

anbn = ∞.

Bizonyítás∗

2. Ha (bn) korlátos, akkor |bn| ≤ K, minden n-re. Tetsz®leges ε > 0 esetén

a ε/K-hoz létezik N :

|an| <
ε

K
∀n ≥ N.

Ekkor

|anbn| = |an| · |bn| ≤
ε

K
K = ε.

3. Legyen ε > 0 tetsz®leges. Mivel |an| → +∞, ezért K = 1/ε-hoz

∃N = N(K) küszöbindex, hogyv ∀n ≥ N -re |an| ≥ K(> 0). Ekkor

|bn| =
1

|an|
≤ 1

K
= ε

5. Legyen (bn) egy pozitív alsó korlátja k:

|bn| = bn ≥ k > 0

Legyen KϵIR tetsz®leges pozitív szám. Ekkor K/k-hoz ∃N küszöbin-

dex, melyre ha n ≥ N , akkor an ≥ K/k. Ekkor:

anbn ≥ K

k
k = K
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2.1.6. Cauchy sorozatok

2.6. De�níció. Az (an) sorozat eleget tesz a Cauchy feltételnek, ha ∀ε > 0-

hoz ∃N küszöbindex, N = N(ε), melyre teljesül, hogy

|an − am| < ε ∀n,m ≥ N.

Ha egy sorozat kielégíti a Cauchy feltételt, akkor ez Cauchy sorozat.

2.3. Tétel. Egy (an) sorozat pontosan akkor konvergens, ha Cauchy sorozat.

Bizonyítás. Az egyik irányt igazoljuk. Tegyük fel, hogy (an) konvergens:

lim
n→∞

an = A.

∀ε > 0 mellett az ε/2 számhoz ∃N küszöbindex, melyre ∀n,m ≥ N esetén

|an − A| < ε

2
, |am − A| < ε

2
.

Ekkor a háromszög egyenl®tlenség miatt

|an − am| = |(an − A) + (A− am)| ≤
≤ |an − A|+ |am − A| ≤ ε

2
+

ε

2
= ε.

Példa. Legyen

an =
n∑

k=1

1

k
= 1 +

1

2
+

1

3
+ . . .+

1

n
.

Becsüljük meg az n-dik és 2n-dik tag különbségét:

a2n − an =
2n∑

k=n+1

1

k
=

1

n+ 1
+

1

n+ 2
+ . . .+

1

2n
>

>
1

2n
+

1

2n
+ . . .+

1

2n
= n

1

2n
=

1

2
.

Tehát azt kaptuk, hogy

a2n − an >
1

2
∀n.

Ezért ε =
1

2
esetén nem teljesül a Cauchy kritérium, (an) nem konvergens.
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2.1.7. Konvergenciák összehasonlítása

2.8. Állítás. (Konvergencia monotonitása) Tegyük fel, hogy az (an) és (bn)

sorozatok konvergensek, jelölje

lim
n→∞

an = A, lim
n→∞

bn = B.

Ha ∃N0, hogy an < bn teljesül ∀n ≥ N0, akkor A ≤ B.

Bizonyítás. Triviális.

Megjegyzés. Bár a feltételben szigorú egyenl®tlenség áll, a határértékben

egyenl®ség is el®fordulhat. Példaként nézzük ezeket a sorozatokat:

an =
1

n2
< bn =

1

n
.

Nyilván
1

n2
<

1

n
∀n ≥ 2,

azaz an < bn minden n > 1 esetén. Mégis határértékben

lim
n→∞

1

n2
= lim

n→∞

1

n
= 0.

2.4. Tétel. (Rend®r-elv) Tegyük fel, hogy az (xn) és (yn) sorozatok egy N0

indext®l kezdve közrefognak egy harmadik sorozatot:

xn ≤ zn ≤ yn ∀n ≥ N0.

Tegyük fel azt is, hogy (xn) és (yn) konvergens sorozatok a határérté:

lim
n→∞

xn = lim
n→∞

yn = z.

Ekkor (zn) is konvergens, és

lim
n→∞

zn = z.
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Bizonyítás. Legyen ε > 0 tetsz®leges. Ekkor ∃N1 és ∃N2, melyekre

|xn − z| < ε ha n ≥ N1, |yn − z| < ε ha n ≥ N2

Ekkor n ≥ max(N0, N1, N2) esetén

z − ε < xn ≤ zn ≤ yn < z + ε,

amib®l a konvergencia következik.

Példa. Legyen an = n
√
n. Belátjuk, hogy lim

n→∞
an = 1. Azt tudjuk, hogy

1 < an, minden n > 1-re. Ekkor

1 < an =
n

√√
n ·

√
n · 1 . . . · 1 ≤

√
n+

√
n+ 1 . . .+ 1

n
=

=
2
√
n

n
+

n− 2

n
=

2√
n
+

n− 2

n
<

2√
n
+ 1.

Az els® sorban a számtani és mértani közép közti egyenl®séget használtuk.

Azt kaptuk, hogy

1 < an <
2√
n
+ 1.

Legyen: bn ≡ 1 (minden eleme 1) és cn = 2/
√
n + 1. Mindkét sorozat

határértéke 1, és bn < an < cn minden n-re. Ekkor lim
n→∞

bn = 1, lim
n→∞

cn = 1,

ezért lim
n→∞

an = 1. Hasonlóan belátható: lim
n→∞

1
n
√
n
= 1.

Példa. (Az el®z® példa következménye.) Legyen p > 0 tetsz®leges, an := n
√
p,

láttuk, hogy lim
n→∞

n
√
p = 1, most másképp is belátjuk. Tetsz®leges p > 0 esetén
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igaz, az 1/n < p < n bizonyos N után (azaz ∃N index, hogy 1/n < p < n,

minden n ≥ N esetén). Ekkor:

n

√
1

n
< n

√
p < n

√
n,

és emiatt

1 ≤ lim
n→∞

n
√
p ≤ 1.

2.9. Állítás. (Összehasonlító kritériumok)

1. (Majoráns kritérium) Tegyük fel, hogy (an) nullsorozat, és (bn) olyan

sorozat, melyre |bn| ≤ |an| minden n-re (vagy rögzített N mellett min-

den n ≥ N-re). Ekkor lim
n→∞

bn = 0

2. (Minoráns kritérium) Tegyük fel, hogy (an) +∞-be divergál, azaz

lim
n→∞

an = +∞.

Tegyük fel azt is, hogy van olyan N index, melyre bn ≥ an, ha n ≥ N .

Ekkor lim
n→∞

bn = +∞.

Figyekelem! A lim
n→∞

anbn = ” +∞ · 0” típusú határérték bármi lehet.

4.Gyakorlat. Vajon lehet-e −∞ is egy felnti típusú határérték?

()

Emlékeztetünk arra, hogy

lim
n→∞

pn =


0, ha |p| < 1

1, ha p = 1

∞, ha p > 1

divergens, ha p ≤ −1
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1. Példa. Legyen an = npn. Belátjuk, hogy ha 0 < p < 1, akkor

lim
n→∞

npn = 0.

Átírjuk a sorozat elemeit ilyen alakba:

an = npn = ( n
√
np)n.

Mivel n
√
n tart az 1-hez és 1/p > 1, ezért ∃N küszöbindex, hogy ha n ≥ N ,

akkor n
√
n < 1/p. Ezekre az n-ekre

| n
√
np| < 1

p
p = 1, ∀n ≥ N.

Tehát létezik 0 < q < 1, melyre

n
√
np < q < 1.

Ezért 0 < an < qn, ha n ≥ N , így a rend®relv alapján lim
n→∞

an = 0.

1.+ Példa. Legyen kϵN tetsz®leges rögzített természetes szám, és tekintsük

az alábbi sorozatot valamely 0 < p < 1 paraméterrel:

an = nkpn.

Ekkor lim
n→∞

an = 0.

Bizonyítás∗ Az el®z® esethez hasonlóan an = (
n
√
nkp)n. Mivel n

√
n → 1,

ezért n
√
nk → 1, és emiatt n

√
nk < 1/p, ha n > N . A bizonyítás ugyanúgy

megy, mint a k = 1 esetben.

2. Példa. Legyen an =
3n

n!
. Belátjuk, hogy lim

n→∞
an = 0.

Legyen n > 3. Ekkor

an =
3n

1 · 2 · 3 · . . . · n
=

3 · 3 · 3 · . . . · 3
1 · 2 · 3 · . . . · n

= (
3

1

3

2

3

3
)
3

4
. . .

3

n
≤ 9

2
(
3

4
)n−3 → 0.
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2.+ Példa. Legyen aϵIR tetsz®leges. Ekkor az

an =
an

n!
,

sorozatra lim
n→∞

an = 0 most is igaz.

2.1.8. Számtani átlag-sorozatok∗

(Kiegészít® tananyag)

Tetsz®leges (an) sorozatból konstruálhatunk egy számtani átlag sorozatot a

következ®képpen:

An =
a1 + . . .+ an

n
,

tehát az új sorozat n-dik eleme az eredeti sorozat els® n elemének számtani

átlaga. Ennek konvergenciáját vizsgáljuk ebben a fejezetben.

Els®ként nézzük meg mit állíthatunk, ha a kiinduló sorozat nullsorozat.

2.10. Állítás. Adott (an) nullsorozat. Legyen

An =
a1 + . . .+ an

n
=

1

n

n∑
k=1

ak.

Ekkor lim
n→∞

An = 0.

Bizonyítás. Az (an) nullsorozat korlátos, |an| ≤ K fels® korlát. A három-

szög egyenl®tlenség miatt:

|An| =
1

n
|

n∑
k=1

ak| ≤
1

n

n∑
k=1

|ak|.

Legyen ε > 0 tetsz®leges. ε/2-höz létezik N küszöbindex, hogy ha n ≥ N ,

akkor |an| < ε/2. Ezekre az n indexekre

|An| ≤
|a1|+ . . .+ |aN |+ |aN+1|+ . . .+ |an|

n
≤
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≤ N

n
K +

ε

2
· n−N

n
<

N

n
K +

ε

2
.

Szeretnénk elegend®en nagy n-et választani, melyre az is teljesül, hogy

N

n
K ≤ ε

2
.

Kis átalakítással azt kapjuk, hogy ez valóban így lesz, ha

n ≥ 2NK

ε
= N1.

Azt kaptuk tehát, hogy ha n ≥ max(N,N1), akkor

|An| ≤
ε

2
+

ε

2
= ε,

ezzel az állítást beláttuk.

Megjegyzés. Az állítás megfordítása nem igaz!

An → 0 ̸=⇒ an → 0.

Ellenpélda: Ha an = (−1)n, akkor

An =


0, ha n = 2k

− 1

n
, ha n = 2k + 1

,

tehát An → 0, bár az eredeti sorozat divergens volt.

2.1. Következmény. Legyen (an) konvergens sorozat, melynek határértéke

A. Ekkor a számtani átlag sorozat is konvergens, és határértéke ugyanaz:

lim
n→∞

An = A.

Bizonyítás. Tudjuk, hogy lim
n→∞

an = A azzal ekvivalens, hogy (an − A)

nullsorozat. Legyen most bn := an−A. Ennek a sorozatnak a számtani átlag

sorozata

Bn =
b1 + · · ·+ bn

n
=

a1 − A+ . . . an − A

n
=

a1 + · · ·+ an
n

− A = An − A.
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Az el®z® tétel alapján

lim
n→∞

Bn = 0,

ahonnan azonnal következik, hogy

lim
n→∞

An = A.

2.11. Állítás. Legyen (an) pozitív tagú sorozat, ennek mértani átlag sorozata:

Gn := n
√
a1 . . . an

Tegyük fel, hogy (an) nullsorozat, ekkor

lim
n→∞

Gn = 0.

Bizonyítás. A számtani-mértani közép közti egyenl®tlenség miatt

0 < Gn ≤ An,

és mivel (An) nullsorozat, ezért (Gn) is az.

2.1.9. Torlódási pont

2.7. De�níció. A tϵIR szám torlódási pontja (an) sorozatnak, ha t bármely

környezetében végtelen sok tagja van a sorozatnak.

Más szavakkal a t torlódási pont, ha ∀ε > 0 esetén a (t−ε, t+ε) intervallum-

ban a sorozatnak végtelen sok tagja van. Lényeges különbség a határértékhez

képest, hogy a határérték tetsz®lges környezetén kívül csak véges sok tagja

lehet a sorozatnak.

Példa. Tekintsük az an = (−1)n sorozatot. Ennek két torlódási pontja van,

t1 = 1 és t2 = −1.
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Példa. "Összefésült sorozatok". Legyen

an =
1

n
, bn =

n

n+ 1
.

De�niáljunk egy harmadik sorozatot a következ®képpen:

cn =


an ha n = 2k

bn ha n = 2k + 1

A (cn) sorozatnak két torlódási pontja van, 0 és 1. Ez a sorozat nem konver-

gens.

2.12. Állítás. Ha az (an) sorozat konvergens, akkor egyetlen torlódási pontja

van, ami egyben a határértéke is.

Megjegyzés. A fenti állítás megfordítása nem igaz. Az a sorozat, aminek

egyetlen torlódási pontja van, nem feltétlenül konvergens. Példa erre a kö-

vetkez® sorozat

an :=


1

n
, ha n = 2k + 1

(−1)n/2n ha n = 2k

.

A sorozat elemei tehát

1, −2,
1

3
, 4,

1

5
, −6, . . .

A sorozatnak egyetlen torlódási pontja van, a 0, de nyilván nem konvergens,

hiszen nem korlátos.

De�níció* Ha a torlódási pontok halmaza felülr®l korlátos, akkor ezek a

legkisebb fels® korlátját limes superiornak nevezzük. (A torlódási pontok

supremuma.) Jelölése:

lim sup(an) = lim(an).
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Ha a torlódási pontok halmaza alulról korlátos, akkor ezek a legnagyobb alsó

korlátját limes inferiornak nevezzük, ennek jelölése:

lim inf(an) = lim(an).

Példa. Jogos kérdés, vajon van-e olyan számsorozat, aminek végtelen sok

torlódási pontja van? Egy "egyszer¶" példát mutatunk:

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . .

Ennek a sorozatnak minden nϵN torlódási pontja lesz.

2.2. Végtelen sorok

Emlékeztetünk rá, hogy sorozat valós számok rendezett halmaza. Sor alatt

valós számok összegét értjük, ahol az összeadandók száma végtelen:

a1 + a2 + a3 + . . .+ an . . . .

Formálisan, végtelen sor alatt egy végtelen összeget értünk, ami ilyen alakú:

∞∑
n=1

an.

Kérdés, hogy milyen értelmet tulajdoníthatunk egy ilyen végtelen összegnek.

ZENO paradoxon. (Az ókori görög gondolkodók hagyták ránk ezt az érdekes

paradoxont.) A sétáló ember az ajtótól szeretne eljutni a falig.

A sétáló elmegy e táv feléig. Ezután a maradék táv feléig, és így tovább.

Végtelen sok lépés, és soha nem ér oda... Valóban?

Persze TUDJUK, hogy eléri a falat - ha akarja. A paradoxon feloldása az a

tény, hogy végtelen sok szám összege lehet véges.
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2.2. ábra. A Zeno paradoxon.

2.2.1. Végtelen sor konvergenciája

2.8. De�níció. A végtelen sor jelölése: (
∑

an). A végtelen sor konver-

gens, ha a részletösszegek sorozata

sn =
n∑

k=1

ak, nϵN

konvergens. Ekkor azt mondjuk, hogy a sor összege

∞∑
n=1

an = lim
n→∞

sn.

Példa. Legyen an =
1

2n
, ekkor a végtelen sor

1

2
+

1

4
+

1

8
+ . . . .

Teljes indukcióval belátható (HF), hogy

sn =
1

2
+

1

4
+ . . .+

1

2n
= 1− 1

2n
.

Tehát (sn) konvergens és 1-hez tart, ezért

∞∑
n=1

1

2n
= 1.
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Példa. Legyen an = (−1)n , ekkor a végtelen sor

−1 + 1− 1 + 1− 1 + 1− 1 + . . . .

A részletösszegek sorozata:

sn =


0 ha n = 2k,

−1 ha n = 2k + 1.

Mivel az (sn) sorozat nem konvergens, a végtelen sor összege nem létezik.

2.9. De�níció. Ha a részletösszegek (sn) sorozata nem konvergens, akkor

azt mondjuk, hogy a végtelen sor divergens.

Példa. Legyen an = qn−1. A
∞∑
n=1

qn−1 végtelen sor elnevezése mértani sor.

Kérdés, mikor konvergens a sor, és mennyi az alábbi összeg:

1 + q + q2 + . . . =?

Az els® n tag összege

sn = 1 + q + q2 + . . .+ qn−1 =
1− qn

1− q
, ha q ̸= 1.

Így

lim
n→∞

sn =



1

1− q
ha |q| < 1,

+∞ ha q ≥ 1,

̸ ∃ ha q ≤ −1.

2.13. Állítás. Ha (
∑

an) konvergens, akkor (an) nullsorozat.
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Bizonyítás. Tekintsük az alábbi részletösszegeket n ≥ 2 esetén:

sn =
n∑

k=1

ak, Sn =
n−1∑
k=1

ak.

Tudjuk, hogy

lim
n→∞

sn = S, lim
n→∞

Sn = S,

ezért

lim
n→∞

an = lim
n→∞

(sn − Sn) = 0.

A fenti állítás másik oldalról megfogalmazva a Divergencia teszt :

Divergencia teszt. Ha (an) nem nullsorozat, akkor (
∑

an) divergens.

Megjegyzés. Az állítás megfordítása nem igaz. Ha (an) nullsorozat, akkor

(
∑

an) lehet divergens is.

Példa. Tekintsük an =
1

n
választással a

(∑ 1

n

)
végtelen sort. A sor össze-

adandói 0-hoz tartanak. A részletösszegek sorozata

sn =
n∑

k=1

1

k
.

Err®l már beláttuk, hogy nem konvergens, lim
n→∞

sn = +∞.

Példa.
∞∑
n=1

1

n(n+ 1)
=?

Elemi törtekre bontva az összeadandókat

sn =
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
=

= (1− 1

2
) + (

1

2
− 1

3
) + . . .+ (

1

n
− 1

n+ 1
) = 1− 1

n+ 1
,
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ezért

lim
n→∞

sn = 1.

A sorozatoknál tanultakból következik, hogy a végtelen sor pontosan akkor

konvergens ha (sn) teljesíti a Cauchy feltételt.

Cauchy feltétel sorokra. A (
∑

an) végtelen sor teljesíti a Cauchy feltételt,

ha ∀ε > 0-hoz ∃N = N(ε) küszöbindex, melyre ∀n > m ≥ N esetén

|am+1 + . . .+ an| = |
n∑

k=m+1

ak| < ε.

Ez azt jelenti, hogy a N küszöbindex után bármennyi elemet adunk össze,

az összeg kisebb lesz, mint ε.

2.2.2. Összehasonlító kritériumok

Az alábbi két tétel azonnal következik a sorozatokra igazolt összehasonlító

kritériumokból.

2.5. Tétel. 1. (Majoráns kritérium) Tegyük fel, hogy adott két sor, mely-

re ∃NϵN:
0 ≤ bn ≤ an ∀n ≥ N

Ha (
∑

an) sor konvergens, akkor (
∑

bn) is konvergens.

2. (Minoráns kritérium) Tegyük fel, hogy ∃NϵN:

bn ≥ an ∀n ≥ N

Ha (
∑

an) divergens és
∞∑
n=1

an = +∞,

akkor (
∑

bn) is divergens, és
∑∞

n=1 bn = +∞.
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Példa. Konvergens-e
∞∑
n=1

1

n2
?

Felhasználjuk azt a becslést, hogy

1

n2
<

1

n(n− 1)
, ∀n ≥ 2.

Ekkor alkalmazhatjuk a majoráns kritériumot, hiszen a

∞∑
n=2

1

n(n− 1)

sor konvergens. Tehát beláttuk, hogy

∞∑
n=1

1

n2
< ∞.

Megjegyzés. Láttuk, hogy

∞∑
n=1

1

n
= +∞,

∞∑
n=1

1

n2
< ∞.

A kés®bbiek során igazolni fogjuk, hogy a

∞∑
n=1

1

nα

sor akkor konvergens, ha α > 1.

Példa. Végtelen tizedestörtek értelmezése. Egy végtelen tizedestört a (0, 1)

intervallumban így írható:

0, a1a2a3 . . . =
∞∑
k=1

ak10
−k, 0 ≤ ak ≤ 9.

A fenti sort majorálni tudjuk, a

9
∞∑
k=1

10−k < ∞
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mértani sorral, tehát konvergens.

Példa. Képezzünk sokszöget egy szabályos, a oldalú, T terület¶ háromszög-

b®l a következ® rekurzív eljárással:

1. Osszunk minden oldalt 3 egyenl® részre.

2. Minden középs® oldal szakaszra illesszünk szabályos háromszöget.

3. Ismételjük meg az el®z® lépéseket.

Az így kapott végtelen oldalú sokszög az úgynevezett Koch-görbe. Mennyi

az így kapott alakzat kerülete és területe?

2.3. ábra. A Koch görbe konstrukciójának 2. 3. és 4. lépése.

Megoldás:

1. A Koch-görbe kerületét egy sorozat határértékeként kapjuk. Minden

lépésben minden oldal hossza
4

3
-szorosára n®, mivel minden oldal kö-

zéps® harmadát nála kétszer hosszabbra cseréltük. A kerület tehát:

K∞ = 3a lim
n→∞

(
4

3

)n

= ∞

2. A Koch-görbe területe geometriai sor határértékeként áll el®. Az egyes

lépésekben újonnan illesztett háromszögek száma az oldalszámmal egyen-

l® (azaz lépésenként 4-szeresére n®), melyek területe az el®z® háromszö-

gek területének
1

9
-szerese. E két tényez® �gyelembevételével a terület
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határértékére felírható geometriai sor:

T∞ = T + 3
T

9
+ 3

T

92
4 + 3

T

93
16 + . . . =

= T + 3· lim
n→∞

T

9

n∑
k=0

(
4

9

)k

= T +
T

3
· 1

1− 4
9

= T +
3T

5
=

8T

5
.

Megjegyzés. Érdekes belegondolni abba a ténybe, hogy a kapott alakzat

véges területét önmaga kicsinyített másaiból el®álló végtelen hosszú görbe

határolja. A Koch-görbe tipikus példája az önhasonló fraktáloknak.

2.2.3. Abszolút konvergens sorok

2.10. De�níció. A (
∑

an) végtelen sor abszolút konvergens, ha az abszo-

lútértékekb®l álló (
∑

|an|) sor konvergens.

2.14. Állítás. Ha (
∑

an) abszolút konvergens, akkor konvergens is.

Bizonyítás. Belátjuk a Cauchy kritérium teljesülesét. A háromszög egyen-

l®tlenség miatt

|
n∑

k=m+1

ak| ≤
n∑

k=m+1

|ak|,

és a jobboldal tetsz®legesen kicsi lehet elegend®en nagy m < n esetén az

abszolút konvergencia miatt.

Az állítás megfordítása nem igaz, látunk majd rá ellenpéldát.

2.11. De�níció. A (
∑

an) végtelen sor feltételesen konvergens, ha kon-

vergens, de nem abszolút konvergens.
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2.2.4. Hányados-kritérium

2.6. Tétel. (D'Alemert féle hányadoskritérium)

1. Tegyük fel, hogy ∃qϵ(0, 1), melyre∣∣∣∣an+1

an

∣∣∣∣ ≤ q < 1

teljesül minden nϵN-re. Akkor a sor abszolút konvergens.

2. Tegyük fel, hogy ∣∣∣∣an+1

an

∣∣∣∣ ≥ 1, ∀n.

Akkor a sor divergens.

Bizonyítás.

1. A feltétel szerint∣∣∣∣a2a1
∣∣∣∣ ≤ q,

∣∣∣∣a3a2
∣∣∣∣ ≤ q, . . .

∣∣∣∣an+1

an

∣∣∣∣ ≤ q.

Ezeket összeszorozva azt kapjuk, hogy∣∣∣∣an+1

a1

∣∣∣∣ ≤ qn,

azaz |an+1| ≤ |a1| · qn. Így a majoráns kritérium szerint az abszolú�t-

értékekb®l álló sor konvergens.

2. Ha ∣∣∣∣an+1

an

∣∣∣∣ ≥ 1,

akkor |an+1| ≥ |an|, tehát (an) nem lehet nullsorozat. (Például ε = |a1|-
hez már nincs olyan N küszöbindex, hogy |an| < ε teljesülne n ≥ N

mellett.)



2.2. VÉGTELEN SOROK 55

Megjegyzés. Elegend® a fenti tételben, hogy a feltételek �x NϵN mellett

minden n ≥ N esetén teljesülnek.

Megjegyzés. A tétel els® részéhez fontos a q < 1 szám létezése, nem lenne

elegend® azt mondani, hogy ∣∣∣∣an+1

an

∣∣∣∣ < 1.

Mutatunk rá ellenpéldát.

Példa. Legyen an = 1/n. Ekkor

∞∑
n=1

1

n
= ∞,

és itt az egymást követ® elemek hányadosára mindig teljesül, hogy

an+1

an
=

n

n+ 1
< 1,

de nem tudunk közös q < 1 fels® korlátot mondani. A sor nem is konvergens,

mint már láttuk.

2.7. Tétel. (Hányados-kritérium gyengített változata.) Tegyük fel, hogy lé-

tezik az alábbi határérték:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = A.

Ekkor

1. ha A < 1, akkor a sor abszolút konvergens,

2. ha A > 1, akkor a sor divergens,

3. ha A = 1, akkor a sor lehet konvergens és divergens is.

Bizonyítás∗ Visszavezetjük az el®z® tételre.
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1. Tegyük fel, hogy A < 1. Ekkor az ε = 1−A
2
-hoz is ∃N index, melyre

minden n > N esetén: ∣∣∣∣|an+1

an
| − A

∣∣∣∣ < ε,

azaz ∣∣∣∣an+1

an

∣∣∣∣ < A+ ε =
A+ 1

2
< 1.

2. Tegyük fel, hogy A > 1. Ekkor ∃N ,∣∣∣∣an+1

an

∣∣∣∣ ≥ 1,

minden n ≥ N esetén.

3. Tegyük fel, hogy A = 1. Mindkét lehetséges esetre mutatunk példát.

Legyen an = 1/n, ekkor

lim
n→∞

an+1

an
= 1,

és
∞∑

n→1

an = ∞.

Legyen an = 1/n2, ekkor

lim
n→∞

an+1

an
= 1,

és
∞∑

n→1

an < ∞.

Példa. Legyen

an =
1

n!
.

Ekkor a végtelen sor

1 +
1

2!
+

1

3!
+

1

4!
+ . . . .
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A hányados kritérium szerint

an+1

an
=

1

(n+ 1)!
1

n!

=
1

n+ 1
<

1

2
< 1,

így a sor konvergens.

2.2.5. Gyökkritérium

A korábbi fejezetben szerepl® hányadoskritérium helyett használhatjuk az

ú.n. gyökkritériumot. Az alábbi tételek bizonyítása teljesen hasonló a hánya-

doskritériumra vonatkozó megfelel® tételek bizonyításához, így nagyrészt el-

hagyjuk.

2.8. Tétel. (Cauchy féle gyökkritérium) Adott az (an) sorozat.

1. Tegyük fel, hogy létezik olyan 0 < q < 1 szám, melyre

n
√

|an| ≤ q

teljesül minden nϵN-re. Ekkor a (
∑

an) sor abszolút konvergens.

2. Tegyük fel, hogy n
√

|an| ≥ 1, minden nϵN-re. Ekkor a (
∑

an) sor di-

vergens.

Bizonyítás.

1. A feltétel szerint n
√
|an| ≤ q, ahol 0 < q < 1, így igaz az is, hogy

|an| ≤ qn, ∀nϵN.

Mivel
∞∑
n=1

qn < ∞
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ezért a majoráns kritérium alkalmazásával ebb®l következik, hogy

∞∑
n=1

|an| < ∞.

2. Mivel n
√

|an| ≥ 1, így emiatt |an| ≥ 1, azaz (an) nem nullsorozat, tehát

a
(∑

an

)
sor nem lehet konvergens.

2.9. Tétel. (Gyengített gyökkritérium) Adott a (
∑

an) sor. Tegyük fel, hogy

létezik az alábbi határérték:

lim
n→∞

n
√
|an| = A.

Ekkor

1. Ha A < 1, akkor a (
∑

an) sor abszolút konvergens,

2. Ha A > 1, akkor a (
∑

an) sor divergens,

3. Ha A = 1, akkor a kritérium alapján nem dönthet® el a sor konvergen-

ciája.

2.2.6. Leibniz sorok

2.12. De�níció. (
∑

an) Leibniz sor, ha az (an) sorozat rendelkezik az

alábbi három tulajdonsággal.

1. Váltakozó el®jel¶, azaz anan+1 < 0,

2. (|an|) monoton fogyó,

3. (an) nullsorozat.
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Alternatív de�nició. Adott egy (bn) pozitiív tagú számsorozat, mely mo-

noton fogyó nullsorozat. Ekkor a

∞∑
n=1

(−1)nbn,
∞∑
n=1

(−1)n+1bn

alakú sorok Leibniz típusúak.

2.10. Tétel. Minden Leibniz sor konvergens.

Bizonyítás.

2.4. ábra. A Leibniz sor konvergencia bizonyításának alapötlete.

Feltehet®, hogy az els® tagra a1 > 0. Ekkor a páratlan index¶ tagokra

a2n+1 > 0, a páros index¶ tagokra a2n < 0 teljesül. Képezzük az alábbi

sorozatokat:
α1 := a1 + a2

β1 := a1

}
⇒ α1 ≤ β1

α2 := a1 + a2 + a3 + a4

β2 := a1 + a2 + a3

}
⇒ α2 ≤ β2

...

Az (an) sorozat abszolútértékének monotonitása miatt

α1 < α2 < . . . β1 > β2 > . . .
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A Cantor féle közöspont tételt fogjuk alkalmazni az I1 = [α1, β1], I2 =

[α2, β2], ... intervallum sorozatra. Könnyen látható, hogy

- In+1 ⊂ In, egymásba skatulyázott zárt intervallumok,

- az intervallumok hossza: |I1| = |a2|, |I2| = |a4| . . . , ezért

lim
n→∞

|In| = 0.

Mivel a Cantor tétel feltételei teljesülnek, ezért létezik egyetlen közös pont,

s, melyre

s = lim
n→∞

αn = lim
n→∞

βn,

ami egyben a kiinduló sor összege is lesz.

Példa. Tekintsük az alábbi végtelen sort:

1− 1

2
+

1

3
− 1

4
+ . . .

Látható, hogy ez Leibniz-típusú, ezért konvergens. Létezik a részletösszegek

határértéke:

1− 1

2
+

1

3
− 1

4
+ . . . =

∞∑
n=1

(−1)n+1 1

n
< ∞.

De tagok abszolút értékeinek összege már nem véges! Hiszen

∞∑
n=1

∣∣∣∣(−1)n+1 1

n

∣∣∣∣ = ∞∑
n=1

1

n
= ∞,

ahogy korábban már beláttuk. Tehát ez a sor feltételesen konvergens.

2.15. Állítás. (Összeadás sorrendje és a sor összege)

1. Abszolút konvergens sor esetén a sor összege független az összeadandók

sorrendjét®l.
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2. (Riemann-féle átrendezési tétel.) Feltételesen konvergens sor esetén a

sor átrendezésével az összeg bármi lehet.

A fenti Állítást itt nem bizonyítjuk.

M egjegyzés: Mivel a
∞∑
n=1

(−1)n+1 1

n

sor feltételesen konvergens, így az összeg függ az összeadás sorrendjét®l.
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3.1. Bevezetés

3.1.1. Alaptulajdonságok

Adott két halmazX és Y , valamint egy f : X −→ Y leképezés. Ez azt jelenti,

hogy ∀xϵX elemhez hozzárendelünk az Y halmazból egyetlen y elemet, és ezt

így jelöljük:

y = f(x).

Szokásos még az x 7→ y jelölés is.

3.1. ábra. Függvény, egy hozzárendelés.

A függvény értelmezési tartományát Df jelöli (ha külön hangsúlyozzuk,

melyik függvényr®l van szó). A függvény értékkészlete mindazon yϵY ele-

mek halmaza, melyek el®állnak képként, azaz

Rf = {yϵY : ∃xϵX, y = f(x)}.

3.1. De�níció. Az f függvény injektív, ha f(x1) ̸= f(x2) bármely x1 ̸=
x2ϵDf esetén. A függvény szürjektív, ha minden yϵY - hoz létezik x, melyre
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y = f(x). A függvény bijektív, ha injektív és szürjektív, azaz a hozzárendelés

kölcsönösen egyértelm¶ X és Y között.

3.2. De�níció. Adott két függvény, f : X → Y és g : Y → Z. Az összetett

függvény X → Z típusú hozzárendelés lesz, melyre x 7→ g(f(x)). Jele: g◦f ,
ahol g a küls® függvény, f a bels® függvény. Értelmezési tartománya

Dg◦f = {x : xϵDf , f(x)ϵDg}.

Példa. f(x) = x2, g(x) = sin(x). Ekkor f ◦ g és g ◦ f is értelmezhet®:

f ◦ g(x) = sin2(x), g ◦ f(x) = sin(x2).

Ha a függvény bijektív, akkor létezik inverz függvény

f−1 : Y → X,

melyre

f−1(f(x)) = x, ∀xϵX.

Illetve hasonlóképpen

f(f−1(y)) = y, ∀yϵY.

Megjegyzés. A függvények esetén az f−1 jelölés nem jelent reciprokot!

Egészen mást jelent, mint az
1

f
függvény.

A fenti de�níciók tetsz®leges X és Y halmazok esetén értelmezhet®ek.

Egyel®re a csak valós függvényekkel foglalkozunk, tehát feltesszük, hogy

X ⊂ IR, Y ⊂ IR.

3.3. De�níció. Adott D ⊂ IR és f : D → IR egy valós függvény. A függvény

gráfját így értelmezzük:

{(x, f(x)) : xϵD} ⊂ IR2.



66 3. FEJEZET. VALÓS FÜGGVÉNYEK

Megjegyzés. Valós függvények esetén szemléletesen az inverz függvény gráfját

úgy kapjuk, hogy az x és y tengelyeket felcseréljük. Egy függvény akkor

invertálható, ha bármely x tengellyel párhuzamos egyenes legfeljebb csak

egy pontban metszi a gráfot.

3.2. ábra. Függvény és inverze.

3.4. De�níció. Az f függvény alulról (felülr®l) korlátos, ha Rf alulról (fe-

lülr®l) korlátos. Az f függvény korlátos, ha Rf korlátos.

Megjegyzés. Másképp fogalmazva, az f függvény korlátos, ha ∃K, hogy

|f(x)| ≤ K, ∀xϵDf .

3.5. De�níció. Az f függvény páros, ha

1. Df szimmetrikus, azaz xϵDf esetén −xϵDf is teljesül,

2. f(−x) = f(x), ∀xϵDf .

Az f függvény páratlan, ha Df szimmetrikus és f(−x) = −f(x), ∀xϵDf .

Példa. Az f(x) = x2 függvény páros, az f(x) = x5 függvény páratlan.
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3.6. De�níció. Az f függvény monoton növ®, ha ∀x1, x2ϵDf esetén

x1 < x2 =⇒ f(x1) ≤ f(x2).

f szigorúan monoton növ®, ha minden x1, x2ϵDf esetén

x1 < x2 =⇒ f(x1) < f(x2).

Az f függvény monoton fogyó, ha ∀x1, x2ϵDf esetén

x1 < x2 =⇒ f(x1) ≥ f(x2).

f szigorúan monoton fogyó, ha ∀x1, x2ϵDf esetén

x1 < x2 =⇒ f(x1) > f(x2).

3.7. De�níció. Az f függvény periodikus p periódussal, ha

f(x+ p) = f(x) ∀x, x+ pϵDf .

Megjegyzés. Ha egy függvény periodikus p periódussal, akkor p tetsz®leges

egész számú többszöröse is periódusa lesz.

3.1.2. Elemi függvények∗

(Kiegészít® anyag)

Felsoroljuk az elemi függvények néhány alaptípusát, melyek már részben is-

mer®sek lehetnek.

1. Racionális függvények. Ezek olyan függvények, melyeket az y = x függ-

vényb®l elemi algebrai m¶veletekkel kaphatunk meg.

Polinomok. Általános alakjuk a következ®:

p(x) = anx
n + . . .+ a2x

2 + a1x+ a0 Dp = IR.
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Például n = 1 esetén l(x) = ax + b lineáris függvény, n = 2 esetén

q(x) = ax2 + bx+ c kvadratikus függvény.

Racionális törtfüggvények. Ezek a függvények két polinom hányadosa-

ként állnak el®:

f(x) =
a0 + a1x+ . . .+ anx

n

b0 + b1x+ . . .+ bmxm
, n,mϵN, an · bm ̸= 0.

Ha a nevez® zérushelyeit H jelöli, akkor Df = IR \H. Például:

f(x) =
1

x
=⇒ Df = IR \ {0}.

2. Algebrai függvények. Ezek a racionális tört függvények inverzei. Például

az f(x) = xn függvény IR+-re vett lesz¶kítését tekintjük. Ennek inverze:

f−1(x) = n
√
x = x

1
n .

Az inverzfüggvény értelmezési tartománya Df−1= IR+ = {x : x ≥ 0}. Ha n

páratlan, akkor a fenti inverz függvény ÉT-a kiterjeszthet® a negatív x-ekre.

3.3. ábra. Példa algebrai függvényre.

3. Trigonometrikus függvények. A szögfüggvények geometriai értelmezését

középiskolából ismertnek tételezzük fel: Az alábbi geometriai de�níció sin(α)
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3.4. ábra. A trigonometrikus függvények geometriai értelmezése.

és cos(α) függvényekre 0 ≤ α ≤ 2π esetén, a tg (α)-re αϵ(−π

2
,
π

2
) esetén,

illetve ctg (α)-ra αϵ(0, π) esetén alkalmazható.

A fent de�niált függvényeket 2π szerint periodikusan terjesztjük ki. Például:

3.5. ábra. A sin(x) függvény gráfja.

Megjegyzés. Ne felejtsük el, hogy a szögeket radiánban mérjük, nem fokban.

4. Exponenciális és logaritmus függvények. Ha a > 0, akkor y = ax egyel®re

csak xϵQ esetén van értelmezve.



70 3. FEJEZET. VALÓS FÜGGVÉNYEK

3.6. ábra. A cos(x) függvény gráfja.

3.2. Folytonosság, határérték

3.2.1. A folytonosság értelmezése

Heurisztikusan, egy függvény x0 pontbeli folytonossága azt jelenti, hogy ha

x0-ban picit változtatunk, akkor a függvényérték is picit változik, nincs ugrás

ebben a pontban.

3.8. De�níció. Adott egy f : D → IR függvény és egy x0ϵD. Azt mondjuk,

hogy f az x0-ban folytonos, ha ∀ε > 0 hoz ∃δ > 0, melyre teljesül, hogy

∀xϵD, |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

Szemléletesen így képzelhetjük el a folytonosságot egy x0 pontban. Legyen

az x0-hoz tartozó függvényérték f(x0) = y0. Az y0 körül tekintünk egy

(y0 − ε, y0 + ε) közti vízszintes sávot. Ekkor megadható az x0 körül egy

(x0−δ, x0+δ) (függ®leges) sáv, melyre a függvény gra�konja az (y0−ε, y0+ε)

és (x0 − δ, x0 + δ) sávok metszetébe esik.

De�níció átfogalmazása: Az f függvény folytonos az x0ϵDf pontban, ha

f(x0) tetsz®leges U környezetéhez létezik az x0-nak olyan V környezete, a-

melyre minden xϵV , xϵDf esetén f(x)ϵU .
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3.7. ábra. A folytonosság geometriai értelmezése.

Példa. Tekintsünk egy lineáris függvényt, legyen f(x) = 5x + 3 és x0ϵIR

tetsz®leges pont. Ekkor

|f(x)− f(x0)| = |(5x+ 3)− (5x0 + 3)| = |5(x− x0)|.

Adott ε > 0. Kérdés: |f(x)− f(x0)| < ε mikor teljesül?

δ =
ε

5
választással, ha |x− x0| < ε/5, akkor

|f(x)− f(x0)| < 5
ε

5
= ε.

Megjegyzés. Szokás akkor is szakadási helyr®l beszélni, ha x0ϵ|Df , de van

x0-nak olyan U = (x0 − ε, x0 + ε) alakú környezete, melyre U \ {x0} ⊂ Df .

Példa. El®jel függvény. Ennek szokásos jelölése sgn(x).

f(x) = sgn(x) =


1 ha x > 0

0 ha x = 0

−1 ha x < 0

.
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3.8. ábra. A sgn(x) függvény gráfja.

Értelmezési tartománya Df = IR. f -nek a 0-ban szakadása van. f(0) =

0, és ha például ε =
1

2
, akkor ∄(−δ, δ) intervallum a 0 körül, melyben a

függvényértékek abszolút értéke kisebb lesz mint
1

2
.

3.9. De�níció. Az f függvény értelmezési tartományának egy x0 pontjában

sorozatfolytonos, ha ∀(xn) ⊂ Df sorozatra, melyre

lim
n→∞

xn = x0

teljesül, hogy lim
n→∞

f(xn) = f(x0).

3.1. Tétel. Az f függvény az x0-ban pontosan akkor folytonos, ha sorozat-

folytonos.

Bizonyítás∗ Két részb®l áll a bizonyítás, két irányt kell belátni.

1. Tegyük fel, hogy f az x0-ban folytonos.

Legyen (xn) ⊂ Df olyan sorozat, melyre xn → x0. Igazolni kell, hogy

f(xn) → f(x0). Legyen ε > 0 tetsz®leges. A folytonosság miatt ehhez

az ε-hoz létezik olyan δ > 0, melyre

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε.
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Az (xn) sorozat konvergenciája miatt ehhez a δ-hoz létezik N(δ) küszö-

bindex, hogy ha n ≥ N , akkor |xn − x0| < δ. Így ezekre az indexekre

|f(xn)− f(x0)| < ε teljesül.

2. Tegyük fel, hogy f az x0-ban sorozatfolytonos. Indirekt módon tegyük

fel, hogy f nem folytonos x0-ban. Ez azt jelenti, hogy van olyan ε > 0,

melyre "∀δ rossz":

∀δ > 0 hoz ∃xϵDf : |x− x0| < δ, mégis |f(x)− f(x0)| ≥ ε.

Ekkor ∀nϵN esetén δ =
1

n
-hez is ∃xn, melyre

|xn − x0| < δ és |f(xn)− f(x0)| ≥ ε.

.

Tekintsük ezt az (xn) sorozatot. Ez a következ® tulajdonságú: (xn) ⊂
Df , lim

n→∞
xn = x0 és mivel |f(xn) − f(x0)| ≥ ε ∀n-re, ezért f(xn) nem

tart f(x0)-hoz, ez ellentmondás. Így az indirekt feltevésünk nem helyes,

tehát f az x0-ban folytonos.

Példa. Dirichlet függvény. Legyen f : [0, 1] → IR, melynek de�níciója:

f(x) =


1, ha x racionális,

0, ha x irracionális.

Ez a függvény sehol nem folytonos. Valóban, ha x0ϵIR racionális, akkor legyen

xn = x0 +

√
2

n
,

xn irracionnális szám. Erre a sorozatra

lim
n→∞

xn = x0, f(xn) ≡ 0.
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Másrészt f(x0) = 1, így nem teljesül a sorozatfolytonosság. Ha x0 irracioná-

lis, akkor a sorozat n-dik tagja legyen x0 végtelen tizedestört felírásában az

els® n tagot tartalmazó szám, ez racionális. Ekkor

lim
n→∞

xn = x0, lim
n→∞

f(xn) = 1 ̸= f(x0) = 0,

a függvény itt sem folytonos.

Megjegyzés. Közvetlenül is igazolható, hogy a Dirichlet függvény nem foly-

tonos, például ε = 0.5-re sem találhatunk megfelel® δ > 0-t.

3.2.2. Határérték

3.10. De�níció. Adott f : D → IR függvény és x0ϵIR. Tegyük fel, hogy

∃U = (x0 − r, x0 + r) környezet, melyre ∀xϵU \ {x0}esetén xϵDf . (Itt esetleg

az x0ϵ|D is el®fordulhat). Az f függvény határértéke x0-ban α, ha ∀ε > 0-

hoz létezik ∃δ > 0, melyre ha

0 < |x− x0| < δ, xϵD =⇒ |f(x)− α| < ε.

Ezt így jelöljük:

lim
x→x0

f(x) = α.

Figyelem! A határérték de�níciójában az x0-beli helyettesítési érték nem

játszik szerepet.

3.11. De�níció. (Általános de�níció) Azt mondjuk, hogy f határértéke az

x0ϵIR-ben αϵIR, ha az α szám ∀U környezetéhez x0-nak ∃V környezete, melyre

∀xϵV , x ̸= x0 esetén f(x)ϵU .

3.12. De�níció. Azt mondjuk, hogy f jobboldali határértéke az x0 pont-

ban αϵIR, ha minden ε > 0-hoz létezik δ > 0, melyre ha

xϵDf , x0 < x < x0 + δ =⇒ |f(x)− α| < ε.
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Ezt így jelöljük:

lim
x→x0+

f(x) = α.

Azt mondjuk, hogy f baloldali határértéke x0-ban αϵIR, ha minden ε > 0-

hoz létezik δ > 0, melyre ha

xϵDf , x0 − δ < x < x0 =⇒ |f(x)− α| < ε.

Ezt így jelöljük:

lim
x→x0−

f(x) = α.

A jobb- és baloldali határértékre használatos még az alábbi jelölés:

lim
x→x0+

f(x) = f(x0 + 0), lim
x→x0−

f(x) = f(x0 − 0).

3.1. Állítás.

lim
x→x0

f(x) = α ⇐⇒ lim
x→x0+

f(x) = α és lim
x→x0−

f(x) = α

A határérték-fogalmat kiterjesztjük arra az esetre, amikor x0 = ±∞ és/vagy

α = ±∞ lesz.

3.13. De�níció. ("x0 = ±∞ és αϵIR")

lim
x→∞

f(x) = α,

ha minden ε > 0-hoz létezik KϵIR, melyre minden xϵDf , x > K esetén

|f(x)− α| < ε teljesül.

Hasonlóan,

lim
x→−∞

f(x) = α,

ha minden ε > 0-hoz létezik KϵIR, melyre minden xϵDf , x < K esetén

|f(x)− α| < ε teljesül.
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3.9. ábra. Végtelenben a függvény határértéke véges.

Példa. Legyen

f(x) =
x

x+ 1
, Df = IR \ {−1} .

Belátjuk hogy lim
x→∞

f(x) = 1.

Legyen ε > 0 tetsz®leges. Ekkor a∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ < ε

feltétel azt jelenti, hogy ∣∣∣∣ x

x+ 1
− 1

∣∣∣∣ = ∣∣∣∣ 1

x+ 1

∣∣∣∣ < ε.

Így tetsz®leges ε > 0 választás esetén

x >
1

ε
− 1 = K =⇒ |f(x)− 1| < ε.

3.14. De�níció. (α = ±∞, x0ϵIR)

lim
x→x0

f(x) = +∞,

ha minden KϵIR-hez létezik δ > 0, melyre minden |x− x0| < δ, x ̸= x0 eseén

f(x) > K teljesül. Hasonlóan,

lim
x→x0

f(x) = −∞,
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ha minden KϵIR-hez létezik olyan δ > 0, melyre minden |x− x0| < δ, x ̸= x0

esetén f(x) < K teljesül.

Példa. Legyen f(x) =
1

|x|
, Df = IR\ {0} . Belátjuk, hogy

lim
x→0

f(x) = +∞.

Ehhez igazolni kell, hogy minden KϵIR-hez létezik δ, melyre 0 < |x| < δ

esetén teljesül, hogy f(x) > K. Legyen K tetsz®leges. Ekkor |x| < 1/K

esetén
1

|x|
> K , azaz f(x) > K. Tehát δ = 1/K jó választás.

3.10. ábra. f(x) =
1

|x|
. Véges pontban a függvény határértéke végtelen.

3.15. De�níció. (x0 = +∞ és α = +∞)

lim
x→∞

f(x) = +∞,

ha minden KϵIR-hez létezik LϵIR, melyre minden x > L, xϵDf esetén f(x) >

K. Hasonlóan,

lim
x→−∞

f(x) = −∞,

ha minden KϵIR-hez létezik olyan LϵIR, hogy minden x < L, xϵDf esetén

f(x) < K.
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Példa. Legyen f(x) = x2, Df = IR. Ekkor lim
x→∞

x2 = ∞.

Valóban, legyen KϵIR tetsz®leges. Ha x >
√
K = L, akkor x2 > K.

Megjegyzés. Hasonlóan értelmezhet®, hogy a jobb- illetve baloldali határérték

a véges x0ϵIR-ben +∞ illetve −∞:

lim
x→x0+

f(x) = ∞, lim
x→x0−

f(x) = ∞.

3.2.3. Átviteli elv

3.2. Állítás. (Függvény határérték és sorozat határérték közötti kapcsolat)

1. lim
x→x0

f(x) = α akkor és csak akkor, ha minden (xn) ⊂ Df sorozatra,

melyre

lim
n→∞

xn = x0, xn ̸= x0

teljesül, hogy lim
n→∞

f(xn) = α.

2. lim
x→x0+

f(x) = α akkor és csak akkor ha minden (xn) ⊂ Df sorozatra,

melyre

xn > x0, lim
n→∞

xn = x0

teljesül, hogy lim
n→∞

f(xn) = α.

3. lim
x→x0−

f(x) = α akkor és csak akkor, ha minden (xn) ⊂ Df sorozatra,

melyre

xn < x0, lim
n→∞

xn = x0

teljesül, hogy lim
n→∞

f(xn) = α.

Példa. Legyen

f(x) =
x2 − 1

x− 1
, Df = IR \ {1}.
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Meghatározzuk a lim
x→1

f(x) határértéket az átviteli elv alkalmazásával.

Legyen (xn) olyan sorozat, melyre xn ̸= 1, és lim
n→∞

xn = 1. Ebben az esetben

f(xn) = xn + 1, így a határérték:

lim
n→∞

f(xn) = lim
n→∞

(xn + 1) = 2.

Megjegyzés. Az átviteli elvek x0 = ±∞ és/vagy α = ±∞ esetre is átfogal-

mazhatók.

3.2.4. A határérték tulajdonságai

3.3. Állítás. Tegyük fel, hogy lim
x→x0

f(x) = α, lim
x→x0

g(x) = β. Ekkor

1. lim
x→x0

cf(x) = cα, cϵIR.

2. lim
x→x0

(f(x) + g(x)) = α + β.

3. lim
x→x0

(f(x)g(x)) = αβ.

A fenti tulajdonságok az átviteli elv alkalmazásával a sorozatokra igazolt

tulajdonságokból következnek.

3.4. Állítás. (Kompozíció határértéke.) Legyenek f, g olyan függvények,

melyekre

lim
x→x0

g(x) = α, lim
x→α

f(x) = β,

ahol α, β, x0 véges számok. Ekkor

lim
x→x0

f(g(x)) = β.

Bizonyítás∗ Átviteli elv segítségével szinte triviális.

Legyen (xn) sorozat, melyre

lim
n→∞

xn = x0.
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Mivel

lim
x→x0

g(x) = α =⇒ lim
n→∞

g(xn) = α.

Hasonlóan, mivel

lim
x→α

f(x) = β, =⇒ lim
n→∞

f(g(xn)) = β,

ezzel az állítást beláttuk.

Példa. Legyen

f(x) =
1

1 + 2
1
x

, Df = IR \ {0}.

A jobboldali határérték

lim
x→0+

f(x) = lim
x→0+

1

1 + 2
1
x

kiszámítására a kompozícióra vonatkozó tulajdonságokat használjuk. Mivel

lim
x→0+

1

x
= +∞,

ezért

lim
x→0+

2
1
x = +∞, =⇒ lim

x→0+
f(x) = 0.

Hasonlóan számolható a baloldali határérték:

lim
x→0−

1

x
= −∞ =⇒ lim

x→0−
2

1
x = 0, =⇒ lim

x→0−

1

1 + 2
1
x

= 1.

Tehát f(0 + 0) ̸= f(0− 0), ezért lim
x→0

f(x) nem létezik.

Példa. Legyen

f(x) = sin

(
1

x

)
, Df = IR \ {0}.

Belátjuk, hogy nem létezik az alábbi határérték:

lim
x→0

sin

(
1

x

)
.
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3.11. ábra. Az f(x) =
1

1 + 2
1
x

függvény gra�konja a 0 pont körül.

Tekintsük ugyanis (xn) és (yn) sorozatokat, melyekre:

1

xn

=
π

2
+ 2nπ,

1

yn
=

3π

2
+ 2nπ.

Ekkor lim
n→∞

xn = lim
n→∞

yn = 0, és

f(xn) ≡ 1 =⇒ lim
n→∞

f(xn) = 1,

f(yn) ≡ −1 =⇒ lim
n→∞

f(yn) = −1.

S®t, minden αϵ[−1, 1]-hez létezik (zn) sorozat, hogy zn → 0 és sin

(
1

zn

)
→ α.

3.12. ábra. Az f(x) = sin

(
1

x

)
függvény a 0 közelében.
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3.5. Állítás. (A határérték monotonitása.) Legyenek f : Df → IR és

g : Dg → IR adott függvények, melyeknek létezik határértéke az x0 pontban.

Tegyük fel, hogy az x0 pont valamely U környezetében igaz, hogy

f(x) ≤ g(x) ∀xϵU \ {x0}.

Ekkor lim
x→x0

f(x) ≤ lim
x→x0

g(x).

Megjegyzés. Ha az állításban a feltétel így szerepel:

f(x) < g(x) ∀xϵU \ {x0},

akkor is konklúzió határértékben változatlan:

lim
x→x0

f(x) ≤ lim
x→x0

g(x).

Határértékben a két függvény "összeérhet".

3.6. Állítás. (Rend®r-elv) Adottak az f , g és h függvények. Feltesszük, hogy

az x0 egy U környezetében teljesül, hogy

f(x) ≤ g(x) ≤ h(x), xϵU, x ̸= x0.

Feltesszük azt is, hogy a két széls® függvénynek van határértéke, és

lim
x→x0

f(x) = lim
x→x0

h(x) = α.

Ekkor a középs® függvény határértéke is létezik, és:

lim
x→x0

g(x) = α.

Példa. Legyen

f(x) = x · sin 1

x
Df = IR \ {0}.

Határozzuk meg az lim
x→0

x · sin 1

x
határértéket.
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3.13. ábra. Rend®r-elv szemléletesen.

Mivel −1 ≤ sin
1

x
≤ 1, ezért

−x ≤ x · sin 1

x
≤ x.

Alkalmazzuk a fenti rend®r-elvet. Így

lim
x→0

(−x) = 0 ≤ lim
x→0

f(x) ≤ lim
x→0

x = 0,

ezért

lim
x→0

x · sin 1

x
= 0.

Példa. Legyen

f(x) =
sin(x)

x
, Df = IR \ {0}.

Belátjuk, hogy

lim
x→0

sin(x)

x
= 1.

Mivel f(x) páros függvény, azaz f(x) = f(−x), így csak a jobboldali határ-

értéket vizsgáljuk.
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3.14. ábra. Az f(x) = x sin
1

x
függvény a 0 közelében.

Tegyük fel tehát, hogy x > 0, és elegend® a x < π
2
intervallumot tekinteni.

Itt felhasználjuk az alábbi triviális becsléseket (ld. a 3.15 ábrát):

sin(x) < x, tg (x) > x.

Emiatt egyrészt
sin(x)

x
< 1, másrészt

tg (x) =
sin(x)

cos(x)
> x =⇒ sin(x)

x
> cos(x).

Összesítve:

1 >
sin(x)

x
> cos(x), xϵ(0,

π

2
).

Határértéket véve

1 ≥ lim
x→0+

sin(x)

x
≥ lim

x→0+
cos(x) = 1.
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3.15. ábra. Az sin(x) < x < tg (x) összefüggés szemléletes jelentése.

3.7. Állítás. Az f függvény pontosan akkor folytonos az x0ϵ intDf bels®

pontban, ha létezik a lim
x→x0

f(x) határérték, és

lim
x→x0

f(x) = f(x0).

3.16. De�níció. Ha f az értelmezési tartomány egy x0 pontjában nem foly-

tonos, akkor itt szakadási helye van.

x0ϵ|Df akkor is szakadási hely, ha valamaly δ > 0 esetén (x0 − δ, x0 + δ) \
{x0} ⊂ Df .

A szakadási helyek fajtái:

1. Els®fajú szakadás van x0-ban, ha léteznek a

lim
x→x0+

f(x) = f(x0 + 0) < ∞, lim
x→x0−

f(x) = f(x0 − 0) < ∞

jobb- és baloldali határértékek.

Speciális esetben x0-ban megszüntethet® szakadás van, ha ezek a

jobb- és baloldali határértékek megegyeznek, de

lim
x→x0

f(x) ̸= f(x0).
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Példa: f(x) = sgn(x) függvény, melynek ax x0 = 0-ban els®fajú, nem

megszüntethet® szakadása van.

2. Másodfajú a szakadás, ha nem els®fajú.

3.16. ábra. Els®fajú szakadások típusai

3.2.5. Folytonos függvények tulajdonságai

3.8. Állítás. Tegyük fel, hogy f folytonos az x0ϵ int(Df ) bels® pontban és

f(x0) > 0. Ekkor létezik U környezete x0-nak, melyre

f(x) > 0, ∀xϵU ∩Df .

Bizonyítás. Legyen 0 < ε < f(x0). A folytonosság miatt létezik δ > 0,

melyre ha |x− x0| < δ akkor |f(x)− f(x0)| < ε. Ezen x pontokra tehát

f(x0)− ε < f(x) < f(x0) + ε.

Mivel 0 < f(x0)− ε, ezért ∀xϵ(x0 − δ, x0 + δ) ∩Df esetén f(x) > 0.

3.17. De�níció. Legyen f : Df → IR adott függvény. Azt mondjuk, hogy f

folytonos a Df -en, ha minden x0ϵDf -re folytonos x0-ban.
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Megjegyzés. Ha Df = [a, b] zárt intervallum, akkor f folytonos [a, b]-ben,

ha az (a, b) intervallumon lim
x→x0

f(x) = f(x0), és a végpontokban:

lim
x→a+

f(x) = f(a), lim
x→−b

f(x) = f(b).

3.2. Tétel. Adott f : [a, b] → IR folytonos függvény. Tegyük fel, hogy f(a) <

0 < f(b). Ekkor létezik olyan ξϵ(a, b) pont az intervallum belsejében, melyre

f(ξ) = 0.

3.17. ábra. A Bolzano tétel szemléletesen.

Bizonyítás. Meghatározunk egy alkalmas ξ pontot.

1. Legyen a1 = a és b1 = b.

2. Legyen ξ1 =
a1 + b1

2
. Ha f(ξ1) = 0, akkor készen vagyunk.

Ha f(ξ1) > 0, akkor legyen a2 := a1, b2 := c1.
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Ha f(ξ1) < 0, akkor legyen a2 := c1, b2 := b1.

Ekkor az [a2, b2] ⊂ [a, b] intervallum éppen fele hosszúságú, és

f(a2) < 0, f(b2) > 0.

3. Újra 'próbálkozunk' : legyen ξ2 =
a2 + b2

2
.

Ha f(ξ2) = 0, akkor készen vagyunk.

Ha f(ξ2) ̸= 0, akkor megkonstruáljuk az [a3, b3] intervallumot úgy, hogy

f(a3) < 0 és f(b3) > 0 teljesüljön, mint az el®bb.

És így tovább. Ekkor két eset lehetséges:

(i) vagy véges sok lépésben vége van az iterációnak, ekkor megkapjuk a

kívánt ξ pontot.

(ii) vagy "nincs vége", ekkor az intervallumok végpontjaiból álló soroza-

tokra teljesül, hogy
(an) : f(an) < 0

(bn) : f(bn) > 0
.

Ezen kívül [a1, b1] ⊃ [a2, b2] ⊃ . . ., és az intervallumok hossza nullához

tart. Ekkor a Cantor-féle közöspont-tétel szerint egyértelm¶en létezik

a ξ közös pont, ξϵ(a, b). Vegyük észre, hogy

lim
n→∞

an = ξ, lim
n→∞

bn = ξ.

Mivel f folytonos ξ-ben ezért minden (xn) sorozatra, melyre

lim
n→∞

xn = ξ =⇒ lim
n→∞

f(xn) = f(ξ),

tehát

lim
n→∞

f(an) = f(ξ), lim
n→∞

f(bn) = f(ξ).

Emiatt f(ξ) ≤ 0 és f(ξ) ≥ 0, ezért f(ξ) = 0.
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3.1. Következmény (Bolzano-tétel). Tegyük fel, hogy f folytonos az [a, b]

intervallumban, f(a) < f(b). Ha c tetsz®leges szám, melyre f(a) < c < f(b),

akkor létezik olyan ξϵ(a, b), melyre f(ξ) = c.

3.18. ábra. A Bolzano tétel általános esetben

3.2. Következmény. Ha f páratlan fokú polinom, akkor van valós gyöke.

3.2.6. Inverz függvény

3.18. De�níció. Tegyük fel, hogy f : [a, b] → IR szigorúan növ®, folytonos

függvény. Ekkor minden cϵ[f(a), f(b)] számhoz egyértelm¶en létezik ξϵ[a, b],

melyre f(ξ) = c. Ez a c 7→ ξ leképezés az inverz függvény:

f−1 : [f(a), f(b)] → [a, b].

3.9. Állítás. A fent de�niált inverz függvény is folytonos lesz.
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3.3. Következmény. Ha f : D → IR szigorúan monoton és folytonos függ-

vény, akkor invertálható és az inverz függvény is folytonos.

Példa. Legyen f(x) = ex. Mivel f : IR → IR+ szigorúan monoton növ® az

egész IR-en, ezért létezik az inverze:

(ex)−1 = loge x =: lnx, ln : IR+ → IR.

3.19. ábra. Az exponenciális függvény és inverze.

Trigonometrikus függvények inverzei

f(x) = sin(x)

A függvény periodikus, ezért csak alkalmas megszorítása lehet invertálható.

Tudjuk, hogy a sin függvény a [−π

2
,
π

2
] intervallumban szigorúan monoton

növ®. Itt már van inverze, ezt arcsin(x) jelöli.

arcsin : [−1, 1] → [−π

2
,
π

2
].
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f(x) = cos(x)

Hasonlóan, ha xϵ[0, π], akkor ezen a szakaszon a cos függvény szigorúan mo-

noton fogyó, tehát invertálható. Az inverz függvényt arccos(x) jelöli. Mivel

most cos : [0, π] → [−1, 1], ezért inverze:

arccos : [−1, 1] → [0, π].

3.20. ábra. A sin(x) és cos(x) függvény inverze.

f(x) = tg (x)

A tg : (−π

2
,
π

2
) → IR lesz¶kítését tekintjük, itt a függvény szigorúan monoton

növ®. Ezért létezik inverze, melyet arctan(x) jelöl.

arctan : IR → (−π

2
,
π

2
).



92 3. FEJEZET. VALÓS FÜGGVÉNYEK

f(x) = ctg (x)

Az f(x) = ctg (x) függvény megszorítását tekintjük a (0, π) intervallumra,

ahol szigorúan fogyó. Ekkor f invertálható, és ezt így jelöljük f−1 = arcctg .

arcctg : IR → (0, π).

3.21. ábra. A tg (x) és ctg (x) függvény inverze.

3.2.7. Hiperbolikus függvények

3.19. De�níció. A sinus hiperbolikus függvény sh : IR → IR, melyet így

értelmezünk:

sh (x) :=
ex − e−x

2
, xϵIR.

Ez szigorúan monoton növ®, páratlan függvény.

3.20. De�níció. A cosinus hiperbolikus függvény ch : IR → IR+, melyet

így értelmezünk:

ch (x) :=
ex + e−x

2
.

Ez páros függvény, ami szigorúan monoton növ® IR+-n.
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3.21. De�níció. A tangens hiperbolikus függvényt így de�niáljuk:

th (x) :=
sh (x)

ch (x)
=

ex − e−x

ex + e−x
, Dth = IR.

3.22. ábra. Az sh (x), ch (x) és th (x) függvények

3.10. Állítás. A ch (x) és sh (x) egyik alaptulajdonsága:

ch 2(x)− sh 2(x) = 1, ∀x− re.

Bizonyítás. A de�níciók alapján:

sh 2(x) =
e2x + e−2x − 2

4

ch 2(x) =
e2x + e−2x + 2

4
,

ahonnan az állítás következik.

3.2.8. Korlátos és zárt halmazon folytonos függvények

Fontos speciális eset, amikor a függvény értelmezési tartománya Df = [a, b]

korlátos és zárt (≡ kompakt) halmaz.
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3.3. Tétel. (Weierstrass I. tétele) Legyen f : [a, b] → IR folytonos függvény.

Ekkor f korlátos.

Bizonyítás∗ Indirekt módon tegyük fel például, hogy a függvény felülr®l

nem korlátos. Ez azt jelenti, hogy minden n-hez létezik xnϵ[a, b], melyre

f(xn) > n. Tekintsük ezt az (xn) sorozatot. Mivel a ≤ xn ≤ b, ezért a sorozat

korlátos, tehát létezik (xnk
) konvergens részsorozata a Bolzano-Weierstrass

tétel miatt. Ennek a sorozatnak a határértéke legyen:

lim
nk→∞

xnk
= ξ.

Mivel az [a, b] zárt intervallum, ezért ξϵ[a, b]. f folytonos ξ-ben, tehát soro-

zatfolytonos is. Ezért

lim
nk→∞

f(xnk
) = f(ξ),

de a konstrukció szerint f(xnk
) > nk, ami ellentmondás.

3.4. Tétel. (Weierstrass II. tétele) Legyen f : [a, b] → IR folytonos függvény.

Ekkor f felveszi minimumát és maximumát [a, b]-n.

Bizonyítás∗ Belátjuk például a maximum létezését. Legyen

H =
{
f(x) : xϵ[a, b]

}
.

Az el®z® tétel szerint ez a halmaz korlátos. Legyen β = sup(H) < ∞. Ez

azt jelenti, hogy minden n-re létezik xnϵ[a, b], melyre a függvényérték

β − 1

n
< f(xn) ≤ β.

Erre a sorozatra (xn) ⊂ [a, b], ezért korlátos, így létezik konvergens (xnk
)

részsorozata. A részsorozat határértéke:

lim
nk→∞

(xnk
) = ξϵ[a, b].
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A sorozatfolytonosság miatt egyrészt

lim
nk→∞

f(xnk
) = f(ξ),

másrészt

β − 1

n
< f(xnk

) ≤ β =⇒ β = f(ξ).

Ezért βϵH, tehát valóban β = max(H).

3.2.9. Nevezetes határértékek

Ebben a fejezetben olyan függvény határértékeket gy¶jtöttünk össze, melyek

részben a számsorozatok határértékének általánosításai, és a jöv®ben hasz-

nosak lesznek.

1. Példa.

lim
x→∞

x
1
x = 1.

Igazolni kell, hogy minden ε > 0-hoz létezik K, hogy ha x > K, akkor

1− ε < x
1
x < 1 + ε.

x > 1 esetén nyilván

1 < x
1
x .

Legyen n = [x], ahol [x] az x valós szám egész része, ami az x-nél nem

nagyobb egészek közt a legnagyobb. Ekkor

n ≤ x < n+ 1,

ezért

x
1
x < (n+ 1)

1
x ≤ n

√
n+ 1.

Mivel

lim
n→∞

n
√
n+ 1 = 1,
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ezért létezik N , melyre ha n > N , akkor

n
√
n+ 1 < 1 + ε.

Így ha [x] ≥ N , akkor

x
1
x < 1 + ε.

2. Példa.

Tekintsük az f(x) =
logc x

x
függvényt, c > 1 mellett.

Ennek határértéke +∞-ben:

lim
x→∞

logc x

x
= lim

x→∞

1

x
logc x = lim

x→∞
logc(x

1
x ) =

= logc

(
lim
x→∞

x
1
x

)
= logc 1 = 0.

Megjegyzés. 0 < c < 1 esetén triviálisan teljesül, hogy

lim
x→∞

logc x

x
= 0,

hiszen ekkor lim
x→∞

logc x = 0.

3. Példa. Láttuk, hogy az e szám az alábbi sorozat határértéke:

e = lim
n→∞

(
1 +

1

n

)n

.

Belátjuk, hogy a határértéket tekinthetjük a valós számokon keresztül is,

azaz

e = lim
x→∞

(
1 +

1

x

)x

.

Valóban, például az alsó becslés(
1 +

1

x

)x

≤
(
1 +

1

[x]

)x

≤
(
1 +

1

[x]

)[x]+1

=

(
1 +

1

[x]

)(
1 +

1

[x]

)[x]

.
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Ezért

lim
x→∞

(
1 +

1

x

)x

≤ lim
x→∞

(
1 +

1

[x]

)(
1 +

1

[x]

)[x]

= e.

Hasonlóan, a −∞-beli határérték:

lim
x→−∞

(
1 +

1

x

)x

= lim
u→∞

(
1− 1

u

)−u

= lim
u→∞

1

(1− 1
u
)u

=
1

e−1
= e

3.+ Példa. Ugyanígy igazolható, hogy tetsz®leges aϵIR esetén:

lim
x→∞

(
1 +

a

x

)x

= ea.

3.++ Példa. Az e szám fenti el®állításait használva:

lim
x→0

(1 + x)x = e.

4. Példa. Belátjuk, hogy

lim
x→∞

x sin
1

x
= 1.

Valóban,

lim
x→∞

x sin
1

x
= lim

t→0+

sin t

t
= 1.

5. Példa. Az el®z® példabeli függvény határértékét a 0-ban nézzük:

lim
x→0

x · sin 1

x
= 0,

mert

∣∣∣∣x · sin 1

x

∣∣∣∣ ≤ |x|.

6. Példa. Legyen f(x) = xx, x > 0. Értelmezni szeretnénk a 00 értéket a

függvény határértékeként. u = 1/x helyettesítéssel azt kapjuk, hogy

lim
x→0+

xx = lim
u→∞

(
1

u

) 1
u

= lim
u→∞

1

u
1
u

= 1
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9. Példa. Legyen

f(x) =
xn − xn

0

x− x0

,

ahol x0 rögzített szám, nϵN, Df = IR\{x0}. Ekkor

lim
x→x0

xn − xn
0

x− x0

= lim
x→x0

(x− x0)(x
n−1 + xn−2x0 + . . .+ xn−1

0 )

x− x0

= nxn−1
0 .

Közben felhasználtuk, hogy lim
x→x0

g(x) = g(x0), ha g folytonos.

3.2.10. Egyenletes folytonosság∗

(Kiegészít® tananyag.)

Emlékeztetünk arra, hogy x0ϵDf esetén f folytonossága x0-ban egy lokális

tulajdonság: ∀ε > 0-hoz ∃δ = δ(ε, x0) az ismert feltételekkel.

Van-e olyan függvény, mely bármely ε esetén minden x0ϵDf -re "közös" δ-val

rendelkezik, δ = δ(ε,��x0)?

Példa. Legyen f(x) = x2 + 1, a Df = [1, 2] értelmezési tartományon. Ha

ε > 0 tetsz®leges, akkor van hozzá univerzális δ-t.∣∣∣∣f(x)− f(x0)

∣∣∣∣ = ∣∣∣∣x2 + 1− x2
0 − 1

∣∣∣∣ = ∣∣∣∣(x− x0)(x+ x0)

∣∣∣∣ ≤ |x− x0| · 4,

hiszen |x+ x0| ≤ 4 teljesül∀x, x0ϵ[1, 2].

Ezért adott ε esetén minden x0-ra jó a δ = ε/4 választás.

3.22. De�níció. Az f : D → IR függvény egyenletesen folytonos D-ben,

ha minden ε > 0-hoz létezik δ = δ(ε), melyre minden x1, x2ϵD esetén

∣∣x1 − x2

∣∣ < δ =⇒
∣∣∣∣f(x1)− f(x2)

∣∣∣∣ < ε.



3.2. FOLYTONOSSÁG, HATÁRÉRTÉK 99

3.4. Következmény. Ha f egyenletes folytonos D-n, akkor ∀x0ϵD-re x0-ban

folytonos.

Példa. Legyen f(x) = x2 + 1, D = [0,+∞). Belátjuk, hogy f nem egyenle-

tesen folytonos. Megmutatjuk, hogy van olyan ε, melyre minden δ "rossz".

Valóban, legyen ε = 2. Ekkor tetsz®leges δ > 0-hoz létezik n, melyre
1

n
< δ.

Legyen ekkor

x1 = n, x2 = n+
1

n
, =⇒ |x1 − x2| < δ.

Mégis∣∣∣∣f(x1)−f(x2)

∣∣∣∣ = ∣∣∣∣n2+1−
(
n+

1

n

)2

−1

∣∣∣∣ = ∣∣∣∣n2−n2−2− 1

n2

∣∣∣∣ = 2+
1

n2
> 2.

Példa. Legyen

f(x) = sin(x), xϵIR.

Belátjuk, hogy egyenletesen folytonos az egész IR-en. Ehhez felhasználjuk,

hogy

sin(x)− sin(x0) = 2 sin

(
x− x0

2

)
cos

(
x+ x0

2

)
.

Ezért

| sin(x)− sin(x0)| ≤ 2

∣∣∣∣sin(x− x0

2

)∣∣∣∣ · ∣∣∣∣cos(x+ x0

2

)∣∣∣∣ ≤
≤ 2

|x− x0|
2

· 1 = |x− x0|.

Felhasználtuk, hogy | sin(α)| ≤ |α| és | cos(β)| ≤ 1. Ebben az esetben a δ = ε

választás jó x0-tól függetlenül, tehát a függvény egyenletesen folytonos.

Példa. f(x) = 1/x, D = (0, 1). Belátjuk, hogy f nem egyenletesen folytonos.

Legyen δ > 0 tetsz®leges, ekkor létezik olyan n, melyre

1

n
− 1

n+ 1
< δ.
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Válasszuk a következ® két alappontot:

x1 =
1

n
, x2 =

1

n+ 1
.

Ekkor

|x1 − x2| < δ,

és mégis

|f(x1)− f(x2)| = |n− (n+ 1)| = 1.

Tehát tetsz®leges δ-hoz megadható két olyan pont, mely közelebb van, mint

δ, viszont a függvényértékek eltérése nagyobb, mint például 1/2.

3.5. Tétel. (Heine tétel) Tegyük fel, hogy az f függvény értelmezési tar-

tománya korlátos és zárt intervallum. Ha f : [a, b] → IR folytonos, akkor

egyenletesen is folytonos.

Bizonyítás. Indirekt módon látjuk be az állítást. Feltesszük, hogy van

olyan ε > 0, melyre nincs minden x0-ra közösen jó δ, azaz minden δ > 0

"rossz". Ezért például δ = 1/n sem jó. Ez azt jelenti, hogy vannak olyan

xn, ynϵ[a, b] számok, melyekre

|xn − yn| <
1

n
,

és mégis

| f(xn)− f(yn) | > ε. (3.1)

Tekintsük az (xn) sorozatot. Ez korlátos, tehát létezik konvergens részsoro-

zata: (xmk
). Hasonlóan, az (ymk

) sorozat korlátos, tehát létezik konvergens

részsorozata: (ynk
). Ezek határértéke:

lim
nk→∞

xnk
= x0, lim

mk→∞
ymk

= y0.

Mivel |xn − yn| <
1

n
, ezért a részsorozatok határértékei egyenl®k: x0 = y0.

Ebben a pontban is folytonos a függvény, tehát sorozatfolytonos is. Ezért

lim
nk→∞

f(xnk
) = f(x0) = lim

mk→∞
f(ymk

) = f(y0).
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Ez ellentmondás a (3.1) egyenl®tlenségel.

Megjegyzés. f(x) =
1

x
megszorítása a [δ, 1], (0 < δ < 1) halmazra egyenlete-

sen folytonos a Heine tétel miatt. Hasonlóképpen f(x) = x2 megszorítása a

[0, K] intervallumra (K > 0) is egyenletesen folytonos.

Példa. f(x) = x5 + 4x2 + 3, Df = (0, 1]. Egyenletesen folytonos-e? Igen,

hiszen a [0, 1] intervallumon egyenletesen folytonos, ezért annak tetsz®leges

részhalmazán is egyenletesen folytonos.

3.6. Tétel. (Elégséges feltétel egyenletes folytonosságra) Legyen f folytonos

függvény, f : [a,∞) → IR. Tegyük fel, hogy lim
x→∞

f(x) = A véges. Ekkor f

egyenletesen folytonos.
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4.1. Di�erenciálhányados, derivált

Értelmezni fogjuk egy függvény gráf valamely P = (x0, f(x0)) pontjához

tartozó érint® egyenesét.

Az érint®t szel®vel közelítjük, aminek meredekségét (≡ iránytangensét) adjuk

meg. Legyen Q = (x, f(x)) a gráf egy tetsz®leges másik pontja.

4.1. ábra. A szel®k közelítik az érint®t

Ekkor a P és Q pontokat összeköt® szel® meredeksége:

m(x) = tg α(x) =
y − y0
x− x0

, y0 = f(x0), y = f(x).

Ha x → x0 esetén létezik a fenti tg α(x) határértéke, akkor az érint® egyenes

létezik, meredeksége a kapott határérték.

4.1. De�níció. Az f függvény P = (x0, y0) ponthoz tartozó érint®je olyan

egyenes, ami

� átmegy a ponton,

� meredeksége m = lim
x→x0

y − y0
x− x0
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Példa. Határozzuk meg az y = x2 parabola P (1, 1) pontjához húzott érint®

egyenes egyenletét.

Megoldás: Most x0 = 1, f(x) = x2. A meredekség:

m = lim
x→1

f(x)− f(1)

x− 1
= lim

x→1

x2 − 1

x− 1
= 2.

Az (x0, y0) = (1, 1) ponton átmen® és m = 2 meredekség¶ egyenes:

y − 1 = 2(x− 1) azaz y = 2x− 1

4.2. ábra. y = x2 és egyik érint®je

4.2. De�níció. Adott egy f : D → IR függvény és x0ϵ intD az ÉT egy rög-

zített bels® pontja. Az x ponthoz tartozó di�erenciahányados (különbségi

hányados) a szel® meredeksége:

f(x)− f(x0)

x− x0

, xϵD.

A függvény di�erenciálható x0-ban, ha létezik és véges ez a határérték:

lim
x→x0

f(x)− f(x0)

x− x0

.
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Ennek a határértéknek elnevezése: derivált, vagy di�erenciálhányados.

Jele:

f ′(x0) = ” lim
∆f(x)

∆x
” =

df

dx
(x0)

Vezessük be a h = x − x0 jelölést. Ekkor x → x0 azzal ekvivalens, hogy

h → 0. Így a derivált egy ekvivalens de�nícióját kapjuk:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Példa. Görbe mentén mozgó pont x id® alatt y = f(x) utat tesz meg. Az

[x0, x0 + h] id®intervallumban az átlagsebesség

f(x0 + h)− f(x0)

h
.

Egyre kisebb h, s®t h → 0 esetén: pillanatnyi sebességet kapunk:

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0).

Ez a derivált (egyik) �zikai jelentése. Szokás még a �zikában az ḟ(x) jelölés

is (azaz vessz® helyett egy pont kerül f fölé).

4.3. De�níció. Adott egy f függvény és x0ϵ intDf . A függvény jobboldali

deriváltja x0-ban:

f ′
+(x0) := lim

x→x0+

f(x)− f(x0)

x− x0

= lim
h→0+

f(x0 + h)− f(x0)

h
,

ha ez a határérték létezik és véges. A függvény baloldali deriváltja x0-ban:

f ′
−(x0) = lim

x→x0−

f(x)− f(x0)

x− x0

= lim
h→0−

f(x0 + h)− f(x0)

h
,

ha ez a határérték létezik és véges.

4.1. Állítás. f di�erenciálhatósága x0-ban azzal ekvivalens, hogy létezik

f ′
+(x0) és f ′

−(x0), és ezek megegyeznek:

f ′(x0) = f ′
+(x0) = f ′

−(x0).
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4.4. De�níció. f : (a, b) → IR di�erenciálható, ha ∀x0ϵ(a, b)-ban di�erenci-

álható.

1. Példa. f(x) ≡ c konstans függvény. Minden x0ϵIR bels® pontja Df -nek.

Ez a függvény di�erenciálható:

f ′(x0) = lim
x→x0

c− c

x− x0

= 0 ∀x0ϵIR.

2. Példa. f(x) = x A függvény di�erenciálható, és deriváltja:

f ′(x0) = lim
x→x0

x− x0

x− x0

= 1 ∀x0ϵIR.

3. Példa. f(x) = xn, n > 1, nϵN. A függvény di�erenciálható és deriváltja:

lim
x→x0

xn − xn
0

x− x0

= lim
x→x0

(xn−1 + x0x
n−2 + . . .+ xn−1

0 ) = nxn−1
0 ,

ezt már láttuk. Tehát (xn)′ = nxn−1.

4. Példa. f(x) = sin(x). Egy trigonometrikus azonosságot használunk:

sin(x)− sin(x0) = 2 sin

(
x− x0

2

)
cos

(
x+ x0

2

)
.

Így határértékben a di�erenciahányados:

lim
x→x0

sin(x)− sin(x0)

x− x0

= lim
x→x0

2 sin

(
x− x0

2

)
cos

(
x+ x0

2

)
x− x0

=

= lim
x→x0

sin

(
x− x0

2

)
x− x0

2

· lim
x→x0

cos

(
x+ x0

2

)
= 1 · cos(x0).
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Az utolsó lépésben így alakítottuk az els® limest:

lim
x→x0

sin

(
x− x0

2

)
x− x0

2

= lim
h→0

sin(h)

h
= 1.

Tehát azt kaptuk, hogy sin′(x) = cos(x).

5. Példa. f(x) = |x|, Df = IR. Ha x0 > 0, akkor

lim
x→x0

|x| − |x0|
x− x0

= lim
x→x0

x− x0

x− x0

= 1,

hiszen a lim-ben is x > 0 teljesül, ha x már elegend®en közel került x0-hoz.

Hasonlóan, ha x0 < 0 , akkor

lim
x→x0

|x| − |x0|
x− x0

= lim
x→x0

−x+ x0

x− x0

= −1.

De x0 = 0-ban a határérték nem létezik:

∄ lim
x→0

|x| − 0

x− 0
,

ezért az f(x) = |x| függvény nem deriválható az x0 = 0 pontban.

4.3. ábra. Az f(x) = |x| függvény és deriváltja

A fenti ábrán látható, hogy a deriválhatóság azt jelenti, hogy a függvény

gráfja sima.
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6. Példa. f(x) =
√
x, x ≥ 0. Legyen x0 > 0

f(x)− f(x0)

x− x0

=

√
x−

√
x0

(
√
x−

√
x0)(

√
x+

√
x0)

.

Ezért határértéket véve

lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

1√
x+

√
x0

=
1

2
√
x0

.

Tehát az f függvény a (0,∞) intervallumban deriválható és f ′(x) =
1

2
√
x
.

Folytonosság és deriválhatóság kapcsolata

Láttuk, hogy f x0-beli folytonosságából még nem következik a di�erenciál-

hatóság. Például f(x) = |x| folytonos x0 = 0-ban, de nem deriválható.

Fordítva azonban már igaz az alábbi tulajdonság:

4.2. Állítás. Ha f di�erenciálható x0-ban, akkor ott folytonos is.

Bizonyítás∗ Mivel

lim
x→x0

f(x)− f(x0)

x− x0

= f ′(x0),

ezért ha |x− x0| elegend®en kicsi, akkor∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ < K =⇒ |f(x)− f(x0)| < K|x− x0|,

például K = |f ′(x0)|+1.. Ebb®l a sorozatfolytonosság triviálisan következik.

4.2. Di�erenciálási szabályok

4.5. De�níció. Az f : D → IR függvény di�erenciálható D-ben, ha minden

x0ϵD pontban di�erenciálható.



110 4. FEJEZET. DIFFERENCIÁLSZÁMÍTÁS

A deriválást tekinthetjük úgy, mint egy hozzárendelést: mely egy di�erenci-

álható függvényhez hozzárendeli deriváltfüggvényét:

f 7→ f ′.

De�niáljuk az alábbi függvény-halmazokat:

X := {f : f(a, b) → IR, f di�erenciálható} , Y := {f : f(a, b) → IR} .

Ekkor a di�erenciálás m¶velete egy

Dif : X −→ Y

operátor, amely egy függvényhez másik függvényt rendel.

4.1. Tétel. (Di�erenciálási szabályok) Legyenek f és g di�erenciálható függ-

vények. Ekkor

1. (f + g)′(x) = f ′(x) + g′(x).

2. (cf)′(x) = cf ′(x), cϵIR.

3. (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

4. Tegyük fel, hogy g(x) ̸= 0, ekkor(
1

g(x)

)′

= − g′(x)

g2(x)
.

5. Tegyük fel, hogy g(x) ̸= 0, ekkor(
f(x)

g(x)

)′

=
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

6. Láncszabály

(f ◦ g)′ (x) = f ′ (g(x)) g′(x).

Bizonyítás.
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3. Szorzat deriválási szabály:

(fg)′(x0) = lim
x→x0

f(x)g(x)− f(x0)g(x0)

x− x0

=

= lim
x→x0

(
f(x)

g(x)− g(x0)

x− x0

)
+ g(x0) lim

x→x0

f(x)− f(x0)

x− x0

,

ahonnan felhasználva f folytonosságát következik az állítás.

4. Reciprok deriválási szabály:

(
1

g(x0)

)′

= lim
x→x0

1

g(x)
− 1

g(x0)

x− x0

= lim
x→x0

g(x0)− g(x)

g(x)g(x0)

x− x0

=

= lim
x→x0

(
−1

g(x)g(x0)

g(x)− g(x0)

x− x0

)
=

−1

g2(x0)
g′(x0).

6. Láncszabály:

(f ◦ g)′ (x0) = lim
x→x0

f(g(x))− f(g(x0))

x− x0

=

= lim
x→x0

f(g(x))− f(g(x0))

g(x)− g(x0)

g(x)− g(x0)

x− x0

.

Figyelem! Szorzat deriváltja nem egyenl® a deriváltak szorzatával !

1. Példa. f(x) = tg (x) =
sin(x)

cos(x)
, x ̸= π

2
+ kπ, k = 0,±1,±2 . . . .

A tg (x) függvényben a számláló és nevez® deriváltja:

sin′(x) = cos(x), cos′(x) = − sin(x).

Ezért a hányados-függvény deriváltja

tg ′(x) =
cos(x) cos(x)− (− sin(x)) sin(x)

cos2(x)
=

cos2(x) + sin2(x)

cos2(x)
=

1

cos2(x)
.

Másképp felírva

tg ′(x) = ... =
cos2(x) + sin2(x)

cos2(x)
= 1 + tg 2(x).
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2. Példa. f(x) = (x2 + 1)
√
x2 + 5

Az els® tényez® deriváltja (x2 + 1)′ = 2x + 0. A második tényez® összetett

függvény, a küls® függvény: g(x) =
√
x, g′(x) =

1

2
√
x
, a bels® függvény:

h(x) = x2 + 5, h′(x) = 2x+ 0. Így

(g ◦ h)′(x) = 1

2
√
x2 + 5

2x.

Tehát a szorzat-függvény deriváltja:

f ′(x) = 2x
√
x2 + 5 + (x2 + 1)

x√
x2 + 5

.

Az f ′(x0) derivált de�níciója az (x0, f(x0)) ponthoz húzott érint®egyenes

meredeksége volt. Ebb®l következik, hogy ha f di�erenciálható x0-ban, akkor

f(x) ≈ f(x0) + (x− x0)f
′(x0).

Itt az ≈ jel azt jelenti, hogy f(x) közelíthet® ebben az értelemben:

f(x)−
(
f(x0) + (x− x0)f

′(x0)
)

x− x0

−→ 0, ha x → x0.

4.6. De�níció. Legyen x0 az f függvény értelmezési tartományának bels®

pontja, itt di�erenciálható. Ekkor a függvény x0-hoz tartozó lineáris érint®

egyenese

y = f(x0) + (x− x0)f
′(x0).
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Példa. f(x) =
√
x+ 3. Ennek lineáris közelítés x0 = 1-ben:

y = f(1) + f ′(1)(x− 1)

A függvényérték f(1) = 2. A derivált(√
x+ 3

)′
=
(
(x+ 3)1/2

)′
=

1

2

1√
x+ 3

.

Tehát f ′(1) =
1

4
, ezért az érint® egyenlete

y = 2 +
1

4
(x− 1) =

7

4
+

x

4
.

A lineáris közelítés az (1, 2) pont körül:

√
x+ 3 ≈ 7

4
+

x

4
.

Így például
√
3.98 ≈ 7

4
+

0.98

4
= 1.995.
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Magasabb rend¶ deriváltak

4.7. De�níció. Ha az f : D → IR függvény deriválható x0 egy környezetében,

és az f ′ függvény deriválható x0-ban, akkor ez az eredeti függvény második

deriváltja:

f ′′(x0) = lim
x→x0

f ′(x)− f ′(x0)

x− x0

.

Hasonlóképpen értelmezzük a magasabb rend¶ deriváltakat is. Az n-ed rend¶

deriváltat így jelöljük: f (n)(x).

Példa. f(x) = ex függvény deriváltja, x0ϵIR tetsz®leges. Ekkor

ex − ex0

x− x0

= ex0
ex−x0 − 1

x− x0

,

ezért

lim
x→x0

ex − ex0

x− x0

= ex0 lim
h→0

eh − 1

h
.

Ez utóbbi határértéket számoljuk ki:

lim
h→0

eh − 1

h
= lim

t→1

t− 1

ln t
= lim

y→0

y

ln(1 + y)
,

ahol a t = eh és y = t− 1 helyettesítéseket végeztük el. Ennek reciproka

lim
y→0

ln(1 + y)

y
= lim

y→0
ln(1 + y)

1
y = ln

(
lim
y→0

(1 + y)
1
y

)
= ln e = 1.

Ezért (ex)′ = ex, a függvény deriváltja önmaga, s®t (ex)(n) = ex minden n > 1

esetén is.

Hiperbolikus függvények deriváltja

A sinus hiperbolikus függvény sh (x) :=
ex − e−x

2
, xϵIR.
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Deriváltja:

sh ′(x) =
ex − (e−x)(−1)

2
=

ex + e−x

2
= ch (x).

A cosinus hiperbolikus függvény ch (x) :=
ex + e−x

2
, xϵIR.

Deriváltja:

ch ′(x) =
ex − e−x

2
= sh (x).

Ezek a függvények er®sen emlékeztetnek a trigonometrikus függvényekre, hi-

szen

sh ′(x) = ch (x), ch ′(x) = sh (x).

4.3. Inverz függvény deriváltja

4.2. Tétel. Tegyük fel, hogy f szigorúan monoton, di�erenciálható függvény,

melyre f ′(x) ̸= 0, xϵDf mellett. Ekkor f−1 is di�erenciálható, és(
f−1
)′
(y) =

1

f ′ (f−1(y))
.

Másik felírás, ahol az f(x) = y jelölést használjuk:(
f−1
)′
(f(x)) =

1

f ′(x)
.

.

Bizonyítás. (Vázlat) A di�erenciálhatóságot bizonyítás nélkül elfogadjuk.

Induljunk ki az

f−1(f(x)) = x

azonosságból, és deriváljuk az összetett függvény deriválási szabályát alkal-

mazva. Ekkor (
f−1
)′
(f(x)) · f ′(x) = 1,
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ahonnan a tétel állítása következik.

Példa. Láttuk, hogy az f(x) = ex függvény deriváltja önmaga, f ′(x) = ex.

Az inverz függvénye ln : IR+ → IR. Ennek deriváltja

ln′(x) =
1

elnx
=

1

x
.

Példa. (Általános exponenciális függvény). Legyen a > 0, f(x) = ax. Mivel

ax = eln ax = ex ln a,

ezért f(x) = ex ln a és így

f ′(x) = ex ln a ln a = ax ln a.

Az inverze

f−1(x) = loga x, (f−1)′(x) =
1

aloga x ln a
=

1

x ln a
.

4.3.1. Trigonometrikus inverz-függvények deriváltja

1. f(x) = sin(x)

Az inverz függvény arcsin : [−1, 1] → [−π

2
,
π

2
]. A derivált xϵ(−1, 1) esetén:

arcsin′(x) =
1

cos(arcsin(x))
=

1√
1− sin2(arcsin(x))

=
1√

1− x2
,

mivel sin2(x) + cos2(x) = 1, és így cos(x) =
√
1− sin2(x).

2. f(x) = cos(x).

Az inverze arccos : [−1, 1] → [0, π] . A deriváltja xϵ(−1, 1) esetén:

arccos′(x) =
1

− sin(arccos(x))
= − 1√

1− cos2(arccos(x))
= − 1√

1− x2
.
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3. f(x) = tg (x).

f−1 : IR → (−π

2
,
π

2
). A tg függvény deriváltja tg ′(x) = 1+ tg 2(x), ezért az

inverz függvényre

(f−1)′(x) =
1

1 + tg 2(arctan(x))
=

1

1 + x2
.

4. f(x) = ctg (x).

Az inverz függvény arcctg : IR → (0, π). Az eredeti függvény deriváltja:

ctg ′(x) = −1− ctg 2(x) = − 1

sin2(x)
.

Az inverz függvény deriváltja

(f−1)′(x) =
1

−1− ctg 2(arcctg (x))
=

−1

1 + x2
.

4.4. Di�erenciálszámítás alkalmazásai

4.4.1. Lokális széls®érték

4.8. De�níció. f tetsz®leges valós függvény, x0ϵDf . Ez az x0 lokális ma-

ximuma f -nek, ha létezik egy U környezete x0-nak, melyre:

f(x) ≤ f(x0) ∀xϵU ∩Df .

x0 lokális minimuma f -nek, ha létezik egy U környezete x0-nak, melyre:

f(x) ≥ f(x0) ∀xϵU ∩Df .

A lokális minimum és maximum közös neve lokális széls®érték.
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4.9. De�níció. x0 globális maximum, ha ∀xϵDf esetén

f(x) ≤ f(x0).

x0 globális minimum, ha ∀xϵDf esetén

f(x) ≥ f(x0).

4.3. Tétel. (Szükséges feltétel lokális szél®értékre) Legyen f : Df → IR,

x0ϵ int(Df ) bels® pont. Tegyük fel, hogy f -nek x0-ban lokális széls®értéke van

és x0-ban di�erenciálható. Ekkor

f ′(x0) = 0.

Bizonyítás. (Lokális maximum esetén) A derivált de�níciója szerint

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

.

A lokális maximum tulajdonsága miatt ∃ε > 0, hogy ha xϵ(x0 − ε, x0 + ε),

akkor f(x) ≤ f(x0). Így xϵ(x0 − ε, x0) esetén
f(x)− f(x0)

x− x0

(≤ 0)

(< 0)
, ezért

f ′(x0) ≥ 0. (4.1)

Hasonlóan, ha xϵ(x0, x0 + ε), akkor
f(x)− f(x0)

x− x0

(≤ 0)

(> 0)
, ezért

f ′(x0) ≤ 0. (4.2)

(4.1)-t és (4.2)-t összevetve f ′(x0) = 0.

Megjegyzés. A tétel megfordítása nem igaz. Ha például f(x) = x3, akkor

x0 = 0 nem lokális széls®érték. Mégis, deriváltja f ′(x) = 3x2, és f ′(0) = 0.

De�níció. f : D → IR di�erenciálható függvény. Azokat az x0ϵD pontokat,

melyekre f ′(x0) = 0, stacionárius pontnak nevezzük.
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4.4.2. Középérték tételek

4.4. Tétel. (Rolle tétel) Legyen f : [a, b] → IR. Tegyük fel, hogy f

1. folytonos [a, b]-n és di�erenciálható (a, b)-n,

2. f(a) = f(b).

Ekkor létezik ξϵ(a, b), melyre f ′(ξ) = 0.

4.4. ábra. A Rolle tétel geometriai jelentése.

Bizonyítás. Mivel az f : [a, b] → IR folytonos függvény, ezért Weierstrass

II. tétele miatt létezik maximuma (M) és minimuma (m). Ha M = m =

f(a) = f(b), akkor a függvény konstans, és triviálisan igaz a Tétel állítása.

Ha m < M , akkor van olyan ξϵ(a, b) bels® pont, melyre m = f(ξ) vagy

M = f(ξ). Ebben a ξ pontban lokális széls®érték van. Ekkor az el®z® tétel

miatt f ′(ξ) = 0.

4.5. Tétel. (Lagrange-féle középérték tétel) Legyen f : [a, b] → IR. Tegyük

fel, hogy f

- folytonos [a, b]-n és di�erenciálható (a, b)-n.
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4.5. ábra. A Lagrange tétel geometriai jelentése.

Ekkor létezik olyan ξϵ(a, b), melyre: f ′(ξ) =
f(b)− f(a)

b− a
.

Bizonyítás∗ Az (a, f(a)) és (b, f(b)) pontokat összeköt® egyenes egyenlete

h(x) = f(a) +
f(b)− f(a)

b− a
(x− a).

Legyen

g(x) := f(x)− h(x).

Ekkor g di�erenciálható, és

g(a) = f(a)− h(a) = 0, g(b) = f(b)− h(b) = 0.

A Rolle tételt alkalmazva g-re megkapjuk, hogy ∃ξϵ(a, b), melyre g′(ξ) = 0,

azaz

f ′(ξ) = h′(ξ) =
f(b)− f(a)

b− a
.

4.6. Tétel. (Cauchy-féle középérték tétel) Legyenek f, g : [a, b] → IR di�e-

renciálható függvények. Tegyük fel, hogy g(b) ̸= g(a), és g′(x) ̸= 0 minden

xϵ(a, b) esetén. Ekkor létezik ξϵ(a, b), melyre

f(b)− f(a)

g(b)− g(a)
=

f ′(ξ)

g′(ξ)
.
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Megjegyzés. A Cauchy-féle középérték tétel speciális eseteként g(x) = x

választással a Lagrange tételt kapjuk.

4.7. Tétel. Legyen f : [a, b] → IR di�erenciálható függvény. Tegyük fel, hogy

f ′(x) = 0 minden xϵ(a, b) esetén. Ekkor f(x) ≡ c valamilyen c-re.

Megjegyzés. Eddig a fenti állítás fordítottját láttuk: ha f(x) ≡ c minden

xϵ(a, b)-re, akkor f ′(x) ≡ 0. Most azt látjuk majd be, hogy csak a konstans

függvény deriváltja lehet azonosan 0.

Bizonyítás. Legyenek x1, x2ϵ[a, b] és x1 < x2. Tekintsük f megszorítását az

[x1, x2] intervallumra. A 4.5 Tétel alapján ∃ξϵ(x1, x2), melyre:

f(x2)− f(x1)

x2 − x1

= f ′(ξ).

Mivel f ′(ξ) = 0 (hiszen a derivált mindenütt 0), ezért

f(x2)− f(x1)

x2 − x1

= 0 =⇒ f(x2) = f(x1).

4.1. Következmény. (Integrálszámítás I. alaptétele) Legyen f, g : (a, b) →
IR olyan di�erenciálható függvények, melyekre f ′(x) = g′(x) teljesül minden

xϵ(a, b)-re. Ekkor ∃cϵIR, melyre

f(x) = g(x) + c, ∀xϵ(a, b).

A derivált kiszámításához határérték meghatározása kellett. Most fordított

eset lesz: kritikus határérték meghatározásához deriválást használunk majd.

4.8. Tétel. (L'Hopital szabály) Legyenek f és g di�erenciálhatóak x0 egy

környezetében.Tegyük fel, hogy

lim
x→x0

f(x) = lim
x→x0

g(x) = 0.
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Ekkor, ha létezik az alábbi határérték:

lim
x→x0

f ′(x)

g′(x)
= A,

akkor

lim
x→x0

f(x)

g(x)
= A.

Itt A = ±∞ és/vagy x0 = ±∞ is lehet.

Bizonyítás∗ (Vázlat) Azt az esetet tekintjük, amikor x0ϵIR. Mivel

f(x)

g(x)
=

f(x)− f(x0)

g(x)− g(x0)
,

ezért használjuk a Cauchy-féle középérték tételt az [x0, x] (ill. az [x, x0])

intervallumon. Eszerint létezik ξ az x és x0 pontok között, melyre

f(x)− f(x0)

g(x)− g(x0)
=

f ′(ξ)

g′(ξ)
.

Megjegyzés. A
”∞”

”∞”
típusú határértékre is igaz a L'Hopital szabály.

1. Példa. A már ismert határértéket újra kiszámolhatjuk:

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
= 1.

2. Példa. lim
x→∞

ex

x
= lim

x→∞

ex

1
= ∞.

Megjegyzés. A L'Hopital szabály ismételhet®, ha lim
x→x0

f ′(x) = lim
x→x0

g′(x) to-

vábbra is kritikus határértéket adna hányadosként.

3. Példa.

lim
x→∞

xn

ex
= lim

x→∞

nxn−1

ex
= · · · = lim

x→∞

n!

ex
= 0.
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4.4.3. Monoton függvények jellemzése

4.9. Tétel. (Monoton függvények jellemzése) Legyen f egy I intervallumon

értelmezett di�erenciálható függvény. Ekkor

1. f monoton növ® I-ben ⇐⇒ f ′(x) ≥ 0, ∀xϵI.

2. f monoton fogyó I-ben ⇐⇒ f ′(x) ≤ 0, ∀xϵI.

Bizonyítás. A két állítás ekvivalens. Legyen például f monoton növ® az I

intervallumban. Vizsgáljuk meg a di�erenciahányados el®jelét x0 környeze-

tében. Ha x < x0, akkor az

f(x)− f(x0)

x− x0

tört nevez®je negatív, számlálója negatív vagy 0, ezért a tört nemnegatív.

Ha x > x0, akkor ugyanennek a törtnek számlálója nemnegatív és nevez®je

pozitív, ezért a tört most is nemnegatív.

Emiatt a határértékre f ′(x0) ≥ 0 lesz.

4.2. Következmény. Ha f ′(x) > 0 ∀xϵ(a, b), akkor a függvény szigorúan

monoton növ® az (a, b) intervallumban.

Megfordítva, szigorúan monoton növ® függvény esetén nem feltétlenül igaz,

hogy f ′(x) > 0 teljesül ∀x esetén. Például f(x) = x3 mindenütt szigorúan

monoton növ®, mégis f ′(0) = 0.

4.10. Tétel. (Elégséges feltétel lokális szél®értékre) Tegyük fel, hogy az f

függvény x0-ban kétszer folytonosan di�erenciálható, és f ′(x0) = 0 (stacio-

nárius pont). Akkor f ′′(x0) ̸= 0 esetén x0-ban lokális széls®érték van. S®t,

1. ha f ′′(x0) > 0, akkor x0 lokális minimum,



124 4. FEJEZET. DIFFERENCIÁLSZÁMÍTÁS

2. ha f ′′(x0) < 0, akkor x0 lokális maximum,

Ha f ′′(x0) = 0, akkor ebb®l még nem eldöntehet®, vajon x0-ban széls®értéke

van-e a függvénynek.

Bizonyítás. Tegyük fel, hogy f ′′(x0) > 0. Ekkor f ′′(x) > 0 az x0 valamely

környezetében is, ezért f ′(x) szigorúan monoton n®veked® ebben a környe-

zetben. Mivel f ′(x0) = 0, ezért x < x0 esetén f ′(x) < 0, tehát a függvény

itt szigorúan monoton fogy. Hasonlóan x > x0 esetén f ′(x) > 0, ezért f itt

szigorúan monoton n®veked®.

x < x0 x0 x > x0

f ′′ + + +

f ′ − 0 +

f ↘ lok. minimum ↗

4.4.4. Konvex és konkáv függvények

4.10. De�níció. f : [a, b] → IR konvex, ha minden x1 < x2ϵ[a, b] esetén

f ((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2), tϵ[0, 1].

A függvény konkáv az I intervallumban, ha −f konvex.

Szemléletesen, ha a függvény gráfjának bármely két pontját összeköt® egyenes

a gráf fölött van, akkor a függvény konvex.

4.11. De�níció. Az x0ϵDf in�exiós pont, ha ebben a pontban a függvény

konvexb®l vált konkávba, vagy konkávból konvexbe vált át.

4.11. Tétel. Legyen f : [a, b] → IR di�erenciálható függvény. Ekkor:

1. f konvex [a, b]-n ⇐⇒ f ′ monoton növ®,
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4.6. ábra. Konvex függvény deriváltjának monotonitása.

2. f konkáv [a, b]-n ⇐⇒ f ′ monoton csökken®.

Di�erenciálható függvény esetén az érint® egyenes helyzetéb®l megállapítható

a konvexitás.

1. Ha a függvény gráfja mindenütt az érint® egyenes fölött van, akkor a

függvény konvex.

2. Ha a függvény gráfja mindenütt az érint® egyenes alatt van, akkor a

függvény konkáv.

3. Szemléletesen az in�exiós pontban a függvény érint®je "átdö�" a függ-

vény gra�konját.

Példa. Tekintsük az f(x) = x3 függvényt. Ekkor az x = 0-ban az érint®

egyenes y = 0, ami átdö� a gráfot. A függvény konvex, ha x ≥ 0, és konkáv,

ha x ≤ 0, az x = 0 pontban in�exiója van.

4.12. Tétel. Tegyük fel, hogy az f függvény x0 egy környezetében kétszer

folytonosan di�erenciálható. Ekkor
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1. f ′′(x0) ≥ 0 esetén f konvex x0 környezetében,

2. f ′′(x0) ≤ 0 esetén f konkáv x0 környezetében.

4.3. Következmény. Ha f kétszer folytonosan di�erenciálható x0 egy kör-

nyezetében és x0-ban in�exiós pontja van, akkor f ′′(x0) = 0.

4.3. Állítás. Legyen f kétszer folytonosan di�erenciálható x0 egy környeze-

tében. Tegyük fel, hogy f ′′(x0) = 0.

1. Ha f ′′ el®jelet vált x0-ban, akkor x0 in�exiós pont.

2. Tegyük fel, hogy f háromszor deriválható, és f ′′′(x0) ̸= 0. Ekkor x0

in�exiós pont.
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5.1. Határozatlan integrál

5.1.1. Primitív függvény és határozatlan integrál

Határozatlan integrál meghatározása primitív függvény keresését jelenti. En-

nek során a di�erenciálás operátornak (melyre f 7→ f ′), az inverzét keressük.

5.1. De�níció. Adott egy f : I → IR függvény, ahol I ⊂ IR intervallum. A

F : I → IR függvény a f függvény primitív függvénye, ha

F ′(x) = f(x), ∀xϵI.

Példa. Legyen f(x) = sin(x) cos(x). Mi a primitív függvénye? Felhasználjuk,

hogy sin(2x) = 2 sin(x) cos(x), és ezért f(x) = sin(2x)/2. Ebb®l

F (x) = −cos(2x)

4
.

De egy másik primitív függvényt is felírhatunk, hiszen f(x) = sin(x) sin′(x),

G(x) =
sin2(x)

2
.

Nyilván F ′(x) = G′(x) = f(x). Látható, hogy a primitív függvény - ha

létezik - akkor nem egyértelm¶.

5.1. Tétel. Ha az f függvény két primitív függvénye F (x) és G(x), akkor

létezik egy cϵIR konstans, melyre

F (x) = G(x) + c minden xϵI-re.

Bizonyítás. Ez az Integrálszámítás I. alaptétele, ld. 4.1 Tétel.

Megjegyzés. Van olyan függvény, melynek nincs primitív függvénye. (Ki tud

ilyent?)
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5.2. De�níció. ha Adott f : I → IR függvény primitív függvényeinek halma-

zát határozatlan integrálnak nevezzük, és így jelöljük:∫
f(x)dx = {H : I → IR | H ′(x) = f(x)} = {F + c : cϵIR},

ahol F : I → IR tetsz®leges rögzített promitív függvény.

Példa. Legyen f(x) = x. Ekkor∫
f(x)dx =

x2

2
+ c, cϵIR.

Megjegyzés. A fenti határozatlan integrált csak intervallumon értelmezett

függvényekre de�niáljuk. Például

∫
1

x
dx =


ln(x) + c ha I ⊂ (0,∞),

ln(−x) + c ha I ⊂ (−∞, 0).

Bizonyos esetekben � ha az intervallumról nem rögzítjük konkrétan, hogy a

(−∞, 0) vagy a (0,∞) része, � használjuk az alábbi jelölést:∫
1

x
dx = ln |x|+ c. (5.1)

Alaptulajdonságok

5.1. Állítás. A határozatlan integrálnak az alábbi tulajdonságai vannak:

1.
∫

(f + g)(x)dx =

∫
f(x)dx+

∫
g(x)dx.

2.
∫

c · f(x)dx = c ·
∫

f(x)dx.

3.
∫

f ′(φ(x)) · φ′(x)dx = f(φ(x)) + c.
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Bizonyítás.

1. Triviális.

2. Triviális

3. Láncszabályt alkalmazva azt kapjuk, hogy (f(φ(x)))′ = f ′(φ(x))·φ′(x).

A 3. tulajdonságnak néhány speciális esetét tekintjük.

3/a. Mivel (fα(x))′ = α · fα−1(x) · f ′(x), ezért∫
fα(x) · f ′(x)dx =

fα+1(x)

α + 1
+ c, α ̸= −1.

3/b. Az α = −1 esetben: ∫
f ′(x)

f(x)
dx = ln |f(x)|+ c.

Itt az abszolút érték csak jelölés, ahogy korábban a (5.1) egyenletben

már szerepelt.

3/c. Mivel (ef(x))′ = ef(x) · f ′(x), ezért∫
ef(x) · f ′(x)dx = ef(x) + c.

1. Példa. ∫
sin(x) · cos(x)dx =

sin2(x)

2
+ c.

Itt f(x) = sin(x), f ′(x) = cos(x), α = 1.

2. Példa. ∫
(1 + ex)5 · exdx =

(1 + ex)6

6
+ c.
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5.2. Riemann integrál

5.2.1. Riemann integrál, mint terület

A Riemann integrál szemléletes jelentése nemnegatív függvények esetén a

függvény gra�konja és az x tengely közti terület mértéke.

Általános esetben "el®jeles" területet jelent majd az integrál: az x tengely

alatti terület negatív el®jelet kap.

A függvény gráfja és az x tengely közötti területet egyel®re közelítjük. Füg-

g®leges téglalapokat írunk be, melyek területe ismert.

5.3. De�níció. Az [a, b] intervallum egy felosztása néhány osztópontot je-

lent. Nevezetesen:

F = {x0 = a < x1 < · · · < xn = b}.
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A felosztás �nomsága a leghosszabb részintervallum hossza:

δ(F) = max{xk − xk−1 : k = 1, . . . , n}.

Legyen F egy rögzített felosztása az [a, b] intervallumnak. A felosztás k-dik

részintervallumát jelölje

∆xk = xk − xk−1.

A szemléletesség miatt most feltesszük hogy a függvény nemnegatív. Adott

egy f : [a, b] → IR+ korlátos függvény.

5.4. De�níció. Az F felosztáshoz tartozó alsó közelít® összeg s(F):

s(F) :=
n∑

k=1

mk(xk−xk−1) =
n∑

k=1

mk ·∆xk itt mk = inf {f(x) : xϵ[xk−1, xk]} .

Az F felosztáshoz tartozó fels® közelít® összeg S(F):

S(F) :=
n∑

k=1

Mk(xk−xk−1) =
n∑

k=1

Mk·∆xk itt Mk = sup{f(x) : xϵ[xk−1, xk]}.

Az alsó közelít® összeg azoknak a téglalapoknak az össz-területét adják meg,

amik még "épp beférnek" a függvény gráfja alá. A téglalapok alapjának

hosszát a felosztás osztópontjai adják meg.

A fels® közelít® ósszeg azoknak a téglalapoknak az össz-területét adja meg,

amelyek felülr®l "épp érintik" a függvény gráfját. Itt is a téglalapok alapjának

hosszát a felosztás osztópontjai adják meg.

A következ® ábrán egy konkrét feloszához tartozó alsó- és fels® felosztások

láthatóak:

Ezek a közelít® összegek eleget tesznek az alábbi tulajdonságoknak:
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5.1. ábra. A függvény alatti terület alsó és fels® közelítése.

5.2. Állítás. 1. Tetsz®leges F felosztás esetén

s(F) ≤ S(F).

2. Tegyük fel, hogy az F ′ felosztás annyiban különbözik az F felosztástól,

hogy egyetlen új osztópontot veszünk hozzá. Ekkor

s(F) ≤ s(F ′) ≤ S(F ′) ≤ S(F).

3. Tetsz®leges F és F ′ felosztáspárra

s(F) ≤ S(F ′).

Bizonyítás∗

1. Triviális.

2. Belátjuk például az alsó közelít® összegekre vonatkozó összefüggést.

Tegyük fel, hogy az új x∗ osztópont a k-dik részintervallumban van:

xk−1 < x∗ < xk.
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A két részintervallumon a függvény in�mumát jelölje mk1 ill. mk2.

Ekkor

s(F ′)− s(F) = mk1(x
∗ − xk−1) +mk2(xk − x∗)−mk(xk − xk−1) =

= (mk1 −mk)(x
∗ − xk−1) + (mk2 −mk)(xk − x∗) ≥ 0,

hiszen az intervallum sz¶kítésével az in�mum értéke csak n®het.

3. Az F és F ′ felosztások oszópontjainak egyesítésével kapott felosztást

jelölje F0. Ekkor az 1. és 2. pont szerint

s(F) ≤ s(F0) ≤ S(F0) ≤ S(F ′).

Az összes lehetséges felosztások halmazát jelölje F. Legyenek

s := sup{s(F) : FϵF}, S := inf{S(F) : FϵF}.

A fenti 5.2. Állítás következtében s ≤ S.

5.5. De�níció. Azt mondjuk, hogy az f : [a, b] → IR korlátos függvény

Riemann-integrálható az [a, b] intervallumon, ha

sup{s(F) : FϵF} = inf{S(F) : FϵF}.

Ekkor a függvény Riemann integrálja [a, b]-n a fenti érték, ezt így jelöljük:

b∫
a

f(x)dx = s = S.

Ebben az esetben röviden csak azt fogjuk mondani, hogy f integrálható.

Példa. Ha f(x) ≡ c konstans függvény, akkor integrálható. Az integrál

b∫
a

f(x)dx = c · (b− a).
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Példa. Nem integrálható, korlátos függvény a Dirichlet függvény. Ezt így

de�niáltunk:

f : [0, 1] → IR, és f(x) :=


1 ha xϵQ,

0 ha xϵ|Q.

Ez nem integrálható, hiszen tetsz®leges F felosztás esetén

s(F) = 0, S(F) = 1.

5.6. De�níció. Az F felosztáshoz tartozó oszcillációs összeg

o(F) =
n∑

k=1

(Mk −mk)∆xk.

A felosztáshoz tartozó egyik Riemann összeg

σ(F) =
n∑

k=1

f(ξk)∆xk,

ahol ξkϵ[xk−1, xk] tetsz®leges pont az intervallumban.

Megjegyzés. Figyeljünk arra, hogy itt két különböz® bet¶ szerepel; o (kis o)

az oszcillációs összeg jelölésére, és σ (szigma) a Riemann összeg jelölésére.

Ezekre a mennyiségekre minden felosztás esetén teljesülnek az alábbi össze-

függések:

s(F) ≤ σ(F) ≤ S(F), o(F) ≥ 0.

Megjegyzés. Mivel minden F és F ′ felosztáspárra

s(F) ≤ S(F ′),

ezért az integrálhatósághoz elegend® belátni, hogy létezik olyan (Fn) felosztás

sorozat, melyre δ(Fn) → 0 és

lim
n→∞

s(Fn) = lim
n→∞

S(Fn),
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azaz lim
n→∞

o(Fn) = 0.

Ezzel beláttuk a következ® tételt:

5.2. Tétel. Ha f integrálható, akkor minden olyan (Fn) felosztás sorozatra,

melyre δ(Fn) → 0:

lim
n→∞

σ(Fn) =

∫ b

a

f(x)dx.

Más szóval: ha f integrálható függvény, akkor minden felosztássorozat men-

tén - melynek �nomsága 0-hoz tart - a Riemann-összegek határértéke mindig

a Riemann integrál értéke.

5.3. Tétel. (El®z® Tétel megfordítása) Tegyük fel, hogy létezik olyan (Fn)

felosztás sorozat, amire δ(Fn) → 0 és

lim
n→∞

σ(Fn) = I,

ahol a határérték független a ξk pontok választásától. Akkor f integrálható.

Elegend® feltételek integrálhatóságra∗

(Kiegészít® tananyag)

Ebben a fejezetben néhány olyan kritériumot fogalmazunk meg, amelyek

elegend®ek az integrálhatósághoz. A bizonyítások alapja ez a lemma lesz:

5.1. Lemma. Legyen f : [a, b] → IR korlátos függvény. Ekkor az integrál-

hatóság azzal ekvivalens, hogy ∀ε > 0-hoz létezik olyan F felosztás, melyre

o(F) < ε,

tehát az oszcillációs összeg tetsz®legesen kicsi lehet.

A következ® Tételek bizonyítása azon alapul, hogy a 5.1 Lemma feltételét

igazoljuk.
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5.4. Tétel. Tegyük fel, hogy f : [a, b] → IR korlátos és monoton. Ekkor f

integrálható.

5.5. Tétel. Tegyük fel, hogy f : [a, b] → IR folytonos függvény. Ekkor f

integrálható.

5.6. Tétel. Legyen f : [a, b] → IR korlátos, mely véges sok szakadási

helyt®l eltekintve folytonos. Ekkor f integrálható.

5.2. ábra. Szakadásos függvény integrálja

5.2.2. Az integrál kiszámítása

A Riemann integrál közelít® összegek határértékének meghatározását jelen-

tette. A gyakorlatban ezt nem használható az integrál értékének kiszámítá-

sára. Ebben a fejezetben "összeér" a határozatlan és határozatlan integrál,

ezzel tudjuk a Riemann integrál értékét kiszámolni.

A következ® Tétel az integrálszámítás egyik legfontosabb alappillére.

5.7. Tétel. (Newton-Leibniz formula) Legyen f : [a, b] → IR integrálható

függvény. Tegyük fel, hogy létezik F primitív függvénye f -nek, azaz van olyan

F : [a, b] → IR di�erenciálható függvény, melyre

F ′(x) = f(x) ∀xϵ(a, b).
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Ekkor ∫ b

a

f(x)dx = F (b)− F (a).

Bizonyítás∗ Tekintsünk egy tetszöleges felosztást:

F = {a = x0 < . . . < xn = b}.

Vizsgáljuk F megszorítását egy részintervallumon, F : [xk−1, xk] → IR. Mi-

vel F di�erenciálható, ezért a Lagrange-féle középérték tétel alkalmazható.

Eszerint létezik olyan ξkϵ(xk−1, xk), melyre

F ′(ξk) =
F (xk)− F (xk−1)

xk − xk−1

= f(ξk). (5.2)

Az
∫ b

a

f(x)dx integrál közelítésére Riemann összeget alkalmazunk ezekkel a

ξk-kal, és felhasználjuk a fenti (5.2) összefüggést:

σ(F) =
n∑

k=1

f(ξk)(xk − xk−1) =
n∑

k=1

F (xk)− F (xk−1)

xk − xk−1

(xk − xk−1) =

=
n∑

k=1

(
F (xk)− F (xk−1)

)
= F (xn)− F (x0) = F (b)− F (a).

Tekintsünk most egy felosztás sorozatot: (Fn), melyre δ(Fn) → 0. A fenti

konstrukcióval választva a Riemann-összeg alappontjait, azt kapjuk, hogy

σ(Fn) = F (b)− F (a) ∀n.

adódik. Mivel

lim
n→∞

σ(Fn) =

∫ b

a

f(x)dx,

ezzel a tételt beláttuk. □

A fenti tételhez kapcsolódóan az alábi jelölést fogjuk használni:∫ b

a

f(x)dx = F (x)

∣∣∣∣b
a

=

[
F (x)

]b
a

.
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Felmerülhet az a kérdés, hogy a Newton-Leibniz-formulában melyik primitív

függvényt válasszuk? Legyenek F és G primitív függvényei f -nek. Ekkor

tudjuk, hogy

F (x) = G(x) + c ∀x

valamely c konstanssal Í gy

F (b)− F (a) = G(b)−G(a),

tehát bármelyik primitív függvényt választhatjuk.

Példa. Az f(x) = sin(x) egyik primitív függvénye F (x) = − cos(x), ezért∫ 2π

0

sin(x)dx = − cos(x)

∣∣∣∣2π
0

= − cos(2π) + cos(0) = −1 + 1 = 0,

∫ π

0

sin(x)dx = − cos(x)

∣∣∣∣π
0

= − cos(π) + cos(0) = 2.

5.7. De�níció. Ha b > a, akkor legyen∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

Ezért ∫ a

a

f(x)dx = 0.

A de�nícióból azonnal következik az alábbi állítás.
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5.3. Állítás. A határozott integrál tulajdonságai:

1. Tegyük fel, hogy f : [a, b] → IR integrálható és f : [b, c] → IR is integ-

rálható, akkor f : [a, c] → IR is integrálható, és:∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx.

2. Ha f, g : [a, b] → IR integrálhatóak, akkor (f + g) is integrálható, és∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

3. Ha f : [a, b] → IR integrálható , akkor cf : [a, b] → IR is integrálható és∫ b

a

c · f(x)dx = c ·
∫ b

a

f(x)dx.

4. Ha f és g két integrálható függvény, melyekre f(x) ≤ g(x) teljesül

minden xϵ[a, b] pontban, akkor

b∫
a

f(x)dx ≤
∫ b

a

g(x)dx.

5. Ha f integrálható, akkor |f | is integrálható, és∣∣∣∣∣∣
b∫

a

f(x)dx

∣∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx.

Bizonyítás.

1.-4. triviális következménye a de�níciónak.

5. A 4. tulajdonságból következik, felhasználva azt az összefüggést, hogy

−|f(x)| ≤ f(x) ≤ |f(x)|.
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Megjegyzés. Az 5. tulajdonság megfordítása nem feltétlenül igaz. Ha |f |
integrálható, abból még nem következik, hogy f is integrálható. Erre példa:

legyen f : [0, 1] → IR az alábbi függvény:

f(x) :=


1 ha xϵQ,

−1 ha xϵ|Q.

Ekkor f nem integrálható, pedig |f | ≡ 1, integrálható.

Bevezetjük az alábbi jelölést:

R[a, b] =
{
f : [a, b] → IR, f integrálható

}
.

Nyilván R[a, b] lineáris tér, azaz vektortér.

5.2.3. Integrálközép

Emlékeztetünk arra, hogy az a1, . . . , an valós számok számtani közepét úgy

de�niáltuk, mint
a1 + . . . an

n
.

Ennek általánosításaként természetes módon adódik az integrálokra vonat-

kozó integrálközép:
b∫

a

f(x)dx

b∫
a

1dx

.

5.8. De�níció. Az f : [a, b] → IR integrálható függvény integrálközepe az

alábbi κ (kappa) szám:

κ :=

b∫
a

f(x)dx

b− a
.
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5.3. ábra. Integrálközép szemléletesen

5.4. Állítás. Tegyük fel, hogy az f integrálható függvényre teljesül, hogy

m ≤ f(x) ≤ M ∀xϵ[a, b].

Ekkor az integrálközépre is fennáll:

m ≤ κ ≤ M.

5.8. Tétel. (Integrál középérték tétel) Tegyük fel, hogy f folytonos [a, b]-n.

Ekkor létezik olyan ξϵ[a, b], melyre

f(ξ) =

b∫
a

f(x)dx

b− a
.

Bizonyítás∗ Legyen a függvény minimuma m, maximuma M . Ekkor a Wei-

erstrass II. tétel szerint léteznek ξ1, ξ2ϵ[a, b] számok, melyekre f(ξ1) = m,

f(ξ2) = M . Mivel az el®z® állítás értelmében m ≤ κ ≤ M , ezért a tétel

állítása a Bolzano tételb®l következik.

5.2.4. Parciális integrálás

Emlékeztet®ül írjuk fel a szorzat függvény deriválásáról szóló képletet:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).
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Mindkét oldal primitív függvényét véve megkapjuk az alábbi szabályt.

5.9. Tétel. (Parciális integrálás) Legyenek f, g : [a, b] → IR deriválható

függvények. Ekkor

1. (Határozatlan alak)∫
f ′(x)g(x)dx = f(x)g(x)−

∫
f(x)g′(x)dx.

2. (Határozott alak)

b∫
a

f ′(x)g(x)dx = f(x)g(x)

∣∣∣∣b
a

−
b∫

a

f(x)g′(x)dx.

1. Példa. ∫
xexdx =?

Alkalmazzuk a parciális integrálási szabályt a következ® "szereposztással":

f ′(x) = ex, g(x) = x.

Ekkor

f(x) = ex, g′(x) = 1,

tehát azt kapjuk, hogy∫
xexdx = xex −

∫
exdx = (x− 1)ex + c.

Ugyanez az eljárást használjuk, ha a kiszámítandó integrál alakja:∫
polinom · exdx.

2. Példa.
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x cos(x)dx =?

Alkalmazzuk a parciális integrálási szabályt a következ® szereposztással:

f ′(x) = cos(x), g(x) = x.

Ekkor

f(x) = sin(x), g′(x) = 1.

Tehát azt kapjuk, hogy∫
x cos(x)dx = x sin(x)−

∫
sin(x)dx = x sin(x) + cos(x) + c.

Hasonló típusú integrálok, amiket így számolunk:

∫
polinom ·


sin(x)

cos(x)

ch (x)

sh (x)

 dx.

3. Példa. ∫
eax sin(bx)dx =?, a, bϵIR

Alkalmazzuk a parciális integrálási szabályt a következ® szereposztással:

f(x) = eax, g′(x) = sin(bx).

Ekkor

f ′(x) = aeax, g(x) = −cos(bx)

b
,

tehát azt kapjuk, hogy∫
eax sin(bx)dx = −1

b
eax cos(bx) +

a

b

∫
eax cos(bx)dx = (∗∗)

Itt újabb parciális integrálást végzünk:

(∗∗) = −1

b
eax cos(bx) +

a

b2
eax sin(bx)− a2

b2

∫
eax sin(bx)dx.
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Az egyenlet kiinduló alakját és végs® alakját összehasonlítva az ismeretlen

integrálra egy összefüggést kapunk, ahonnan∫
eax sin(bx)dx =

eax

a2 + b2
(−b cos(bx) + a sin(bx)) + c.

Teljesen hasonlóan számolható az alábbi integrál is:∫
eax cos(bx)dx.

4. Példa. ∫
ln(x)dx =?

Alkalmazzuk a parciális integrálási szabályt a következ® szereposztással:

f(x) = ln(x), g′(x) = 1.

Ekkor

f ′(x) =
1

x
, g(x) = x,

tehát azt kapjuk, hogy∫
ln(x)dx = x ln(x) +

∫
1

x
x dx = x ln(x) +

∫
1dx = x(ln(x) + 1) + c.

Hasonlóan számolhatók az alábbi integrálok, ahol a szorzat második ténye-

z®jének deriváltja egy polinom reciproka:

∫
polinom ·


ln(x)

arctg (x)

arcctg (x)

. . .

 dx.
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5.2.5. Helyettesítés integrálban

Emlékeztet®ül felírjuk a láncszabályt, mely az összetett függvény deriválására

vonatkozó képlet: (
f(ϕ(t))

)′
= f ′(ϕ(t)) ϕ′(t).

Ennek az összefüggésnek a megfelel®je az integrálszámításban a helyettesítés integrálban.

5.10. Tétel. Legyen f : [a, b] → IR integrálható függvény. Legyen továbbá

ϕ : [α, β] → [a, b] szigorúan monoton, di�erenciálható függvény, melyre

ϕ(α) = a, ϕ(β) = b.

(Az x változó helyére a ϕ(t) függvényt írjuk majd az integrálban.) Ekkor a

helyettesítéses integrál alapformulája:

1. (Határozott alak)

b∫
a

f(x)dx =

β∫
α

f(ϕ(t))ϕ′(t)dt =

ϕ−1(b)∫
ϕ−1(a)

f(ϕ(t))ϕ′(t)dt.

2. (Határozatlan alak)∫
f(ϕ(x))ϕ′(x)dx =

∫
f(t)dt

∣∣∣∣
t=ϕ(x)

.

Megjegyzés. Lényegében itt is a korábban említett formuláról van szó∫
f(x)dx =

∫
f(ϕ)dϕ,

ahol ϕ = ϕ(t) egy függvény. Formálisan könnyen megjegyezhet® a fenti

formula, éspedig a következ®képpen:

ϕ′(t) =
dϕ(t)

dt
=⇒ ” dϕ(t) = ϕ′(t)dt ”.
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Példa. Számoljuk ki az alábbi integrált:

1∫
0

√
1− x2dx =?

Végezzük el a következ® helyettesítést:

x = sin(t).

Ekkor xϵ[0, 1] ⇐⇒ tϵ
[
0,

π

2

]
.

Így a helyettesítés:

1∫
0

√
1− x2dx =

π/2∫
0

√
1− sin2(t) cos(t) dt =

π/2∫
0

cos2(t)dt =

=

π/2∫
0

1 + cos(2t)

2
dt =

=
π

4
+

sin(2t)

4

∣∣∣∣π/2
0

=
π

4
.

5.2.6. Integrálfüggvény

Legyen f : [a, b] → IR integrálható függvény.

5.9. De�níció. Az f függvény integrálfüggvényét így de�niáljuk:

F : [a, b] → IR, F (x) =

x∫
a

f(t)dt

Az integrálási tartomány egyik végpontját rögzítjük, és a másik végpont lesz

az integrálfüggvény változója.
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5.4. ábra. Az integrálfüggvény szemléletesen

A következ® tételre szokás úgy is hivatkozni, mint "Az integrálszámítás II.

alaptétele"

5.11. Tétel. Az integrálfüggvény rendelkezik az alábbi tulajdonságokkal:

1. F folytonos [a, b]-n.

2. Ha f folytonos az x0ϵ(a, b) pont egy környezetében, akkor x0-ban F

di�erenciálható, és

F ′(x0) = f(x0).

Példa. Az alábbi függvény zárt alakban nem írható fel:

F (x) =

x∫
0

e−t2dt.

Mégis, ismerjük deriváltjait:

F ′(x) = e−x2

, F ′′(x) = −2xe−x2

,

Ezek alapján a függvény viselkedésár®l már sokat tudhatunk.

A következ® fejezetben épp ilyen helyezettel találkozunk.
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5.3. Improprius integrál

5.3.1. Az improprius integrál de�níciója

Eddig olyan függvényekkel foglalkoztunk, melyek értelmezési tartománya kor-

látos intervallum, és értékkészlete is korlátos.

Az intergálfogalmat kiterjesztjük arra az esetre, amikor ezek valamelyike nem

teljesül.
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Legyen f : (α, β) → IR tetsz®leges függvény, ahol esetleg α = −∞ és/vagy

β = ∞ is el®fordulhat. Bevezetjük az I = (α, β) jelölést.

5.10. De�níció. Az f függvény lokálisan integrálható I-ben, ha minden

[a, b] ⊂ I korlátos és zárt intervallum esetén f
∣∣
[a,b]

integrálható. Ezt a tulaj-

donságot így jelöljük:

fϵRloc(I).

Példa. Az

f(x) =
1

x
, xϵ(0, 1)

függvény lokálisan integrálható, bár nem korlátos az adott intervallumon.

Példa. Az

f(x) =
1

x2
, xϵ(1,∞)

függvény lokálisan integrálható, bár nem korlátos az értelmezési tartomány.

Vezessük be ennek integrálfüggvényét:

F (t) =

t∫
1

1

x2
dx =

[
−1

x

]t
1

= 1− 1

t
< 1 ∀t > 1.

Mivel lim
t→∞

F (t) = 1, természetes módon de�niálhatjuk az integrált (1,∞)

tartományon:
∞∫
1

1

x2
dx = lim

t→∞

t∫
1

1

x2
dx = 1.

5.11. De�níció. Az fϵRloc(I) függvény improprius értelemben integrál-

ható, ha

lim
a→α+
b→β−

b∫
a

f(x)dx =:

β∫
α

f(x)dx

határérték létezik és véges.
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Megjegyzés. Ha fϵR[α, β], akkor improprius értelemben is integrálható.

Ha f impropriusan integrálható [a,∞)-n, akkor elegend® az egyik határérték:∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx.

Megjegyzés. Az integrál eddigi tulajdonságai megmaradnak:

1. linearitás (összeg és skalárszoros integrálja)

2. monotonitás

3. Newton-Leibniz formula; ha a primitív függvény határértéke létezik.

Ha I = (α, β), ahol a végpontok nem feltétlenül végesek, használni fogjuk az

alábbi jelölést is
β∫

α

f(x)dx =

∫
I

f(x)dx.

Példa. ∫ ∞

0

1

1 + x2
dx = lim

b→∞

∫ b

0

1

1 + x2
dx.

A véges intervallumon vett integrált ki tudjuk számolni a Newton-Leibniz

formula alapján∫ b

0

1

1 + x2
dx = arctan(x)

∣∣∣∣b
0

= arctan(b)− arctan(0),

ezért ∫ ∞

0

1

1 + x2
dx = lim

b→∞
arctan(b) =

π

2
.

Emiatt ∫ ∞

−∞

1

1 + x2
dx = π.
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5.3.2. Hatványfüggvény integrálja

Példa. Milyen α > 0 esetén létezik az alábbi improprius integrál:∫ 1

0

1

xα
dx?

A függvény nem korlátos 0 környezetében, de lokálisan integrálható (0, 1)-

ben. Az improprius integrál de�níciója szerint - ha létezik - így számolható:
1∫

0

1

xα
dx = lim

ε→0+

∫ 1

ε

1

xα
dx.

A primitív függvényt ismerjük:

∫
1

xα
dx =


ln |x|, ha α = 1,

x1−α

1− α
, ha α ̸= 1.

Tehát α ̸= 1 esetén: ∫ 1

ε

1

xα
dx =

x1−α

1− α

∣∣∣∣1
ε

=
1− ε1−α

1− α
.

Ezért ε → 0+ határátmenettel ezt kapjuk:

lim
ε→0+

1− ε1−α

1− α
=


1

1− α
ha α < 1,

∞ ha α > 1,

α = 1 esetén ∫ 1

ε

1

x
dx = lnx

∣∣∣∣1
ε

= − ln ε, lim
ε→0+

(− ln ε) = ∞.

Összefoglalva:

∫ 1

0

1

xα
dx =


1

1− α
< ∞ ha α < 1

∞ ha α ≥ 1
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Példa. Hasonlóképpen vizsgáljuk meg az∫ ∞

1

1

xα
dx

improprius integrált, α > 0 esetén. Ekkor∫ ∞

1

1

xα
dx = lim

b→∞

∫ b

1

1

xα
dx.

α ̸= 1 esetén: ∫ b

1

1

xα
dx =

x1−α

1− α

∣∣∣∣b
1

=
b1−α − 1

1− α
,

és ekkor

lim
b→∞

b1−α − 1

1− α
=


∞, ha 1− α > 0,

1

α− 1
, ha 1− α < 0.

α = 1 esetén: ∫ b

1

1

x
dx = lnx

∣∣∣∣b
1

= ln b, lim
b→∞

(ln b) = ∞.

Összefoglalva ∫ ∞

1

1

xα
dx =


∞, ha α ≤ 1,

< ∞, ha α > 1.

(5.3)

Megjegyzés. A fenti két példából következik, hogy minden α > 0 értékre∫ ∞

0

1

xα
dx

impropriusan nem integrálható.
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5.3.3. Kritériumok improprius integrálokra

5.12. Tétel. 1. (Majoráns kritérium) Adottak az f, g : I → IR lokálisan

integrálható függvények. Tegyük fel, hogy

0 ≤ |f(x)| ≤ g(x), xϵI.

Ekkor ∫
I

g(x)dx < ∞ =⇒
∫
I

f(x)dx < ∞.

2. (Minoráns kritérium) Legyenek f, g : I → IR adott függvények, ahol

I = (α, β). Tegyük fel, hogy f(x) ≤ g(x) minden xϵI-re. Ekkor∫ β

α

f(x)dx = ∞ =⇒
∫ β

α

g(x)dx = ∞.

A majoráns kritériumot használjuk fel arra, hogy egy függvényt egy meg-

felel® hatványfüggvénnyel összehasonlítva igazoljuk az improprius integrál

létezését.

5.13. Tétel. Legyen a > 0 és f : [a,∞) → IR lokálisan integrálható függvény.

Tegyük fel, hogy valamilyen α > 1 és cϵIR+ mellett:

|f(x)| ≤ c · x−α, ∀x ≥ a.

Ekkor az
∫ ∞

a

f(x)dx improprius integrál létezik.

Szokás a fenti nagyságrendre vonatkozó tulajdonságot így jelölni

f(x) ∼ O(
1

xα
), x → ∞.

Példa. (Dirichlet integrál) Tekintsük az alábbi improprius integrált:∫ ∞

0

sin(x)

x
dx.
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Ezt két részre bontjuk∫ ∞

0

sin(x)

x
dx =

∫ 1

0

sin(x)

x
dx+

∫ ∞

1

sin(x)

x
dx.

Az f(x) =
sin(x)

x
függvény [0, 1]-re vett megszorítása folytonos, tehát az els®

integrál véges. A másik integrált becsülni fogjuk.

I2 =

∫ ∞

1

sin(x)

x
dx = lim

b→∞

∫ b

1

sin(x)

x
dx.

Az
∫ b

1

sin(x)

x
dx-t parciálisan integrálva:

∫ b

1

sin(x)

x
dx = −cos(x)

x

∣∣∣∣b
1

−
∫ b

1

cos(x)

x2
dx,

ahol a parciális integrálást így végeztük:

f(x) =
1

x
→ f ′(x) = − 1

x2
,

g′(x) = sin(x) → g(x) = − cos(x).

Mivel

lim
b→∞

(
− cos(x)

x

∣∣∣∣b
1

)
= 0 + cos(1),

és

0 ≤
∣∣∣∣cos(x)x2

∣∣∣∣ ≤ 1

x2
,

használhatjuk a majoráns kritériumot, majoránsként∫ ∞

1

1

x2
dx < ∞.

Tehát I2 < ∞, a Dirichlet-integrál véges.

5.Gyakorlat. Belátható, hogy∫ ∞

0

sin(x)

x
dx =

π

2
.

(Nem könny¶, s®t!)
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5.14. Tétel. (Cauchy feltétel improprius integrálra) Legyen I = (α, β), ahol

a végpontok esetleg nem végesek Tekintsünk egy f : I → IR függvényt. Ekkor∫ β

α

f(x)dx

integrál pontosan akkor konvergens, ha minden ε > 0-hoz léteznek olyan U(α)

és U(β) környezetei α-nak és β-nak, melyekre

∀α1, α2ϵU(α) :

∣∣∣∣ ∫ α2

α1

f(x)dx

∣∣∣∣ < ε,

∀β1, β2ϵU(β) :

∣∣∣∣ ∫ β2

β1

f(x)dx

∣∣∣∣ < ε.

A fenti tétel egy fontos következménye I = (−∞,∞) = IR esetén az alábbi

állítás:

5.1. Következmény. Tegyük fel, hogy
∞∫

−∞

f(x)dx < ∞.

Ekkor minden ε > 0 számhoz létezik olyan K > 0 szám, melyre∣∣∣∣∣∣
−K∫

−∞

f(x)dx+

∫ ∞

K

f(x)dx

∣∣∣∣∣∣ < ε.

Improprius integrálok esetén is végezhetünk helyettesítést, az ismert szabá-

lyok betartásával. A helyettesítés néha egyszer¶sít, és az improprius integ-

rálból közönséges integrál lesz.

Példa.∫ 1

0

1√
1− x2

dx =

∫ π/2

0

1√
1− sin2(t)

· cos(t)dt =
∫ π/2

0

1dt =
π

2
.

Az x = sin(t) helyettesítést végeztük el, így dx = cos(t)dt. Az integrálási

határok x = sin(t)ϵ[0, 1] miatt tϵ[0,
π

2
] lett.
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5.3.4. A Γ függvény∗

(Kiegészít® tananyag.)

A Γ : IR+ → IR (gamma) függvényt így de�niáljuk:

Γ(t) :=

∫ ∞

0

e−x · xt−1dx, t > 0.

Elöször belátjuk, hogy a fenti improprius integrál véges, azaz a Γ függvény

jól de�niált. Valóban, két részre bontva az integrálási tartományt,∫ 1

0

e−x · xt−1dx < ∞.

Ez csak 0 < t < 1 esetén nem triviális, de ekkor is e−x · xt−1 < x−α, ahol

0 < α < 1. Továbbá ∫ ∞

1

e−x · xt−1dx < ∞,

mert ebben az intervallumban e−x < x−k, tetsz®leges k > 0 mellett. Parciá-

lisan integrálva azt kapjuk, hogy∫
e−x · xt−1dx = −e−x · xt−1 +

∫
e−x · (t− 1)xt−2dx,

ahol a parciális integrálásnál az alábbi függvényeket használtuk

f(x) = xt−1 → f ′(x) = (t− 1)xt−2

g′(x) = e−x → g(x) = −e−x.

Így ∫ b

0

e−x · xt−1dx = −e−x · xt−1

∣∣∣∣b
0

+ (t− 1)

∫ b

0

xt−2 · e−xdx.

Ezért b → ∞ határértéket véve:

Γ(t) = 0 + (t− 1) · Γ(t− 1).
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Ismételjük meg a számolást Γ(t− 1)-re:

Γ(t) = (t− 1) · Γ(t− 1) = (t− 1)(t− 2)Γ(t− 2).

Ha t = n természetes szám, akkor eddig jutunk:

Γ(n) = (n− 1)(n− 2) · . . .Γ(1) = (n− 1)! · Γ(1).

Γ(1)-t könnyen kiszámolhatjuk:∫ ∞

0

e−xdx = lim
b→∞

(−e−x

∣∣∣∣b
0

) = lim
b→∞

−e−b − (−e)0 = lim
b→∞

e−b + 1 = 1.

Ezért ha nϵN természetes szám, akkor

Γ(n) = (n− 1)!

A fenti Γ függvény segítségével de�niálhatjuk a t! faktoriálist abban az eset-

ben is, ha t nem feltétlenül természetes szám:

t! := Γ(t+ 1).

5.4. Integrálszámítás alkalmazásai

5.4.1. Függvény gráfjának ívhossza

5.12. De�níció. Adott f : [a, b] → IR egy folytonos függvény. Ennek gráfja

L = {(x, f(x)) : xϵ[a, b]} ⊂ IR2.

Ennek a görbe vonalnak az ívhosszát határértékként fogjuk de�niálni. Fel-

tesszük, hogy a függvény "sima", azaz di�erenciálható. Tekintsük az [a, b]

intervallum egy felosztását

Fn = {a = v0 < x1 < · · · < xn = b},
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5.5. ábra. A függvény ívhossz közelítése grá�al

ekkor a gráf görbe megfelel® pontjait jelölje P0, P1 . . .Pn

A k-adik ívdarab hosszát a Pithagorasz tétel alapján fogjuk közelíten:

sk =
√

(xk − xk−1)2 + (f(xk)− f(xk−1))2.

Így az egész ívhossz egy közelítése

s(Fn) =
n∑

k=1

sk =
n∑

k=1

√
∆x2

k +∆y2k.

Ennek határértékét tekintjük, amikor n → ∞ és

δ := max(xk − xk−1 : k = 1, . . . n) → 0.

Ez a közelít® összeg így is írható:

n∑
k=1

√
1 +

(
f(xk)− f(xk−1)

∆xk

)2

·∆xk

A Lagrange féle középérték tétel alkalmazásával belátható az alábbi formula:

5.5. Állítás. Adott f : [a, b] → IR di�erenciálható függvény. Ekkor a függ-

vény gráfjának hossza
b∫

a

√
1 + (f ′(x))2dx. (5.4)
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Példa. Számoljuk ki a láncgörbe egy darabjának hosszát.

f(x) = ch (x), xϵ[0, 1].

Ekkor

f ′(x) = sh (x), és 1 + sh 2(x) = ch 2(x).

Ezért a (5.4) képlet alapján a függvény gráfjának hossza:

s =

1∫
0

√
1 + (ch ′(x))2dx =

1∫
0

ch (x)dx,

hiszen az ívhossz mindig pozitív. Végül ezt kapjuk:

s =

[
sh (x)

]1
0

= sh (1)− sh (0) =
e+ e−1

2
.

5.4.2. Forgástest felszíne és térfogata∗

(Kiegészít® tananyag)

Tekintsünk egy f : [a, b] → IR+ sima függvényt, és forgassuk meg a függvény

gráfját az x tengely körül.

Az így kapott forgástest egy háromdimenziós test lesz. Ennek térfogatát ;s

felszínét egy-egy speciális integrállal tudjuk kiszámítani:
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5.6. Állítás. A fenti forgástest feszíne és térfogata:

S = 2π

∫ b

a

f(x)
√

1 + f ′2(x)dx, V = π ·
∫ b

a

f 2(t)dt. (5.5)

Bizonyítás∗ Azt az alapötletet használhatjuk, hogy az [a, b] intervallum egy

felosztása után a forgástestet hengerekkel közelítjük. A kis hengerek magas-

sága az osztópontok távolsága lesz. A kis hengerek térfogata és palástjainak

felszíne könnyen számolható. A felosztás �nomságát csökkentve, határérték-

ként egy-egy integrált kapunk, épp a fenti formulákat.

6.Gyakorlat. Számolja végig a fenti ötlet alapján az (5.5) formulák helyes-

ségét.
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6.1. Bevezetés

6.1.1. Egy példa

Láttuk, hogy ha

f(x) = ex, akkor f ′(x) = ex.

Általában, tetsz®leges aϵIR esetén, ha

f(x) = eax akkor f ′(x) = aeax.

Kicsit más jelöléssel azt írhatjuk, hogy ha

y = eax akkor y′ = ay.

Ez a tulajdonság megfordítva is igaz, ezt megfogalmazzuk állításként.

6.1. Állítás. Ha egy y = f(x) függvényre igaz, hogy y′ = ay, akkor y = ceax

valamely cϵIR konstans mellett.

Bizonyítás. De�niáljunk egy másik z = z(x) függvényt a következ®képpen:

z := ye−ax.

Ekkor ennek deriváltja

z′ = y′ e−ax + y (−a) e−ax = a y e−ax + y (−a) e−ax = 0.

Ha egy függvény deriváltja egy intervallumban 0, akkor az a függvény kons-

tans abban az intervallumban (ezt mondja ki az Integrálszámítás I. alapté-

tele). ezért van olyan cϵIR, melyre z ≡ c, így

ye−ax = c =⇒ y = ceax.
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6.1.2. Mit nevezünk di�erenciálegyenletnek?

6.1. De�níció. Di�erenciálegyenlet (DE) olyan egyenlet, melyben az is-

meretlen egy függvény, és az egyenletben szerepel ennek az ismeretlen függ-

vénynek valamely deriváltja is.

Legegyszer¶bb eset a primitív függvény keresés, amikor adott f(x) függvény

mellett az egyenelet:

y′ = f(x).

Ennek megoldása a határozatlan integrál, a primitív függvények halmaza:

y =

∫
f(x)dx.

A di�erenciálegyenletnek két változója van. x a független, y a függ® változó,

ahol y = y(x).

1. Példa. Legyen a di�erenciálegyenlet

y′ = 2x.

Ekkor a megoldás

y = y(x) =

∫
2xdx = x2 + c, cϵIR.

Ez a di�erenciálegyenlet általános megoldása, ami végtelen sok függvényt

jelent.

A megoldás sz¶kíthet® a következ®képpen. Azt az y megoldást keressük,

amelyre van plusz feltétel, pl y(2) = 7. Ekkor a megoldás menete:

y(2) = 7 ⇒ y(2) = 22 + c ⇒ c = 3.

Tehát a megoldás, amit partikuláris megoldásnak hívunk:

y(x) = x2 + 3.
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6.2. De�níció. Di�erenciálegyenlet rendjén az ismeretlen függvény legma-

gasabb fokú deriváltjának fokszámát értjük, ami az egyenletben szerepel.

Példa. y′ = y els®rend¶, y′′ = −y másodrend¶ di�erenciálegyenlet.

6.3. De�níció. Az els®rend¶ di�erenciálegyenlet általános alakja

y′ = f(x, y), (6.1)

ahol f(x, y) adott kétváltozós függvény.

6.4. De�níció. Cauchy feladat, vagy kezdeti érték feladat során a (6.1)

di�erenciálegyenletnek azt a megoldását keressük (ha van), melyre

y(x0) = y0,

ahol x0 és y0 adott számok.

Mivel kétváltozós függvényekkel még nem foglalkoztunk, az általános esetre

kés®bb térünk majd vissza.

2. Példa. Tekintsük az alábbi másodrend¶ di�erenciálegyenletet:

y′′ = −y. (6.2)

Láttuk, hogy ha f(x) = sin(x), akkor

f ′(x) = cos(x), f ′′(x) = − sin(x) = −f(x).

Hasonlóan, ha g(x) = cos(x), akkor

g′(x) = − sin(x), g′′(x) = − cos(x) = −g(x).

Tehát a fenti y = f(x) és y = g(x) függvények megoldásai a (6.2) di�erenciál-

egyenletnek. Továbbá, ha F (x) és G(x) megoldások, akkor
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1. F (x+ c),

2. cF (x),

3. aF (x) + bG(x),

4. F ′(x)

is megoldások. Végtelen sok megoldást fel tudunk írni tehát. Azt a konkrét

megoldást keressük, ahol

y(0) = a, és y′(0) = b (6.3)

adott értékek.

6.2. Állítás. Az (6.1)�(6.3) Cauchy feladatnak van egyértelm¶ megoldása.

Bizonyítás. El®ször belátjuk, hogy ha van megoldás, akkor az egyértelm¶.

Induljunk ki abból, hogy

y′′ + y = 0 / · 2y′,

ahonnan

2y′y′′ + 2yy′ = 0.

Ez épp két derivált négyzetösszege, azaz

(y′2)′ + (y2)′ = 0,

így azt kaptuk, hogy

(y′2 + y2)′ = 0.

Ebb®l az következik, hogy minden y megoldáshoz van egy olyan cϵIR kons-

tans, melyre

y′2(x) + y2(x) = c, ∀x. (6.4)

Tegyük fel, hogy két megoldás is van az adott kezdeti feltételhez. y1(x) és

y2(x) mindkett® megoldása a DE-nek, és kielégíti a kezdeti feltételeket.
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Ekkor

z(x) = y1(x)− y2(x)

is megoldása a DE-nek, a hozzá tartozó kezdeti értékek:

z(0) = y1(0)− y2(0) = a− a = 0,

z′(0) = y′1(0)− y′2(0) = b− b = 0.

Másrészt z(x) -re is teljesül a (6.4) azonosság, tehát

z′2(x) + z2(x) = c, ∀x.

Speciálisan x = 0 -ra is:

z′2(0) + z2(0) = c =⇒ c = 0.

Ezt visszahelyettesítve:

z′2(x) + z2(x) ≡ 0,

ami csak akkor teljesülhet, ha z(x) ≡ 0. Ezzel az egyértelm¶séget beláttuk.

A megoldás létezését úgy igazoljuk, hogy felírjuk a megoldást:

y(x) := b sin(x) + a cos(x).

Ez megoldása a di�erenciálegyenletnek, láttuk. A kezdeti feltételeket valóban

kielégíti, hiszen

y(0) = b · 0 + a · 1 = a,

y′(0) = b · 1 + a · (−0) = b.

Összefoglalva:

1. y1(x) = sin(x), y2(x) = cos(x) megoldások.
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2. Tetsz®leges megoldás felírható ezek lineáris kombinációjaként. Ez azt

jelenti, hogy ha y megoldás, akkor vannak olyan a, b valós számok,

melyekre

y(x) = ay1(x) + by2(x).

A fenti y1, és y2 az (6.1) di�erenciálegyenlet alapmegoldásai.

3. Példa. Tekintsük újra a kiinduló els®rend¶ di�erenciálegyenletet:

y′ = ay.

Ebben az esetben egyetlen alapmegoldás van:

y(x) = eax,

és minden megoldás ennek konstans-szorosa.

6.2. Speciális di�erenciálegyenletek

6.2.1. Szeparábilis di�erenciálegyenlet

Tegyük fel, hogy a (6.1) di�erenciálegyenlet jobboldalán szerepl® f(x, y) függ-

vényben szétválasztható x és y a következ®képpen:

f(x, y) =
α(x)

β(y)
, β(y) ̸= 0,

ahol α, β adott függvények. Ekkor a di�erenciálegyenlet ilyen alakú:

y′ =
α(x)

β(y)
.

Ezt szeparábilis vagy szétválasztható változójú DE-nek nevezzük.
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Ennek megoldását kerssük.

y′ = y′(x) =
dy

dx
=

α(x)

β(y)
,

ahonnan formális átszorzással azt kapjuk, hogy

” β(y)dy = α(x)dx ”.

Vezessük be az alábbi jelöléseket:

B(y) =

∫
β(y)dy, A(x) =

∫
α(x)dx,

tehát A(x) és B(y) valamely primitív függvényeket jelentenek.

Könnyen látható, hogy ha y = y(x)megoldás, akkor a két primitív függvényre

teljesül valamilyen c konstanssal:

B(y) = A(x) + c.

Ebb®l y meghatározható.

Példa. Legyen a DE

y′ =
y2

x2
,

akkor
dy

dx
=

y2

x2
,

így formálisan:

”
1

y2
dy =

1

x2
dx”.

Innen integrálással kapjuk a megoldáshoz szükséges primitív függvényeket:∫
1

y2
dy = −1

y
,

∫
1

x2
dx = −1

x
,

és innen

−1

y
= −1

x
+ c =⇒ −1

y
=

cx− 1

x
.

Az általános megoldás tehát:

y =
x

1− cx
, cϵIR.
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6.2.2. Lineáris di�erenciálegyenlet

Lineáris DE-r®l akkor beszélünk, ha az (6.1) di�erenciálegyenlet jobboldalán

szerepl® f(x, y) az y változóban lineáris, azaz

f(x, y) = a(x)y + b(x),

ahol a(x), b(x) adott függvények. Így a di�erenciálegyenlet

y′ = a(x)y + b(x).

Ha b(x) ≡ 0, akkor a DE homogén lineáris. Ha b(x) ̸≡ 0, akkor a DE

inhomogén lineáris .

Homogén LDE

Ekkor a di�erenicálegyenlet

y′ = a(x)y,

ez egyben szeparábilis. Tehát meg tudjuk már oldani, formálisan

dy

dx
= a(x)y =⇒ ′′ 1

y
dy = a(x)dx′′.

Vezessük be az alábbi jelöléseket:

A(x) =

∫
a(x)dx, B(y) =

∫
1

y
dy = ln |y|.

Ekkor

ln |y| = A(x) + C =⇒ |y| = eA(x)+C ,

ahonnan

y = ceA(x), cϵIR.

Itt c = ±eC , ezért az abszolútértéket el lehet hagyni y körül.

6.3. Állítás. A homogén lineáris DE általános megoldása:

y(x) = ceA(x).
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Speciálisan, ha

y′ = ay,

azaz a(x) ≡ a konstans, akkor

A(x) =

∫
a dx = ax+ d,

és így a megoldás

y(x) = ceax, c = ±ed.

Kezdeti érték (Cauchy) feladat. Adott egy kezdeti feltétel is,

y(x0) = y0.

A fenti általános megoldásban szerepl® c meghatározható:

y(x0) = ceA(x0) = y0 =⇒ c = y0e
−A(x0).

A Cauchy feladat megoldása tehát y(x) = y0e
A(x)−A(x0).

Konkrét számításhoz konkrét primitív függvényt használunk, éspedig legyen

A(x) =

∫ x

x0

a(t)dt.

Ekkor az általános megoldás

y(x) = ce
∫ x
x0

a(t)dt
,

és a kezdeti feladat megoldása

y(x) = y0e
∫ x
x0

a(t)dt
.

Inhomogén LDE.

Ekkor az egyenlet

y′ = ay + b
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alakú, ahol a = a(x) és b = b(x) adott függvények.

Láttuk, hogy a homogén lineáris egyenlet megoldása y = ceA(x), ahol cϵIR

tetsz®leges konstans. Az inhomogén egyenlet megoldását úgy keressük, hogy

a c konstans helyett egy függvényt írunk (c ≃ u(x)):

y = u(x)eA(x), u = u(x) =?

A DE baloldala

y′ = u′(x)eA(x) + u(x)a(x)eA(x).

A DE jobboldala

ay + b = a(x)u(x)eA(x) + b(x).

A két oldal egyenl®. Ebb®l egyszer¶sítve azt kapjuk, hogy

u′(x)eA(x) = b(x) ⇒ u′(x) = b(x)e−A(x) ⇒ u(x) =

∫
b(x)e−A(x)dx.

Az inhomogén DE általános megoldása:

y(x) = ceA(x)︸ ︷︷ ︸+ eA(x) ·
∫

b(x)e−A(x)dx︸ ︷︷ ︸, cϵIR

ahol az els�,o tag a homogén egyenlet általános megoldása, a második az,

inhomogén egyenlet egy konkrét megoldása.

Példa. Oldjuk meg az alábbi inhomogén LDE-t:

y′ = −xy − x.

A megoldás két lépcs®ben történik.

1. A homogén egyenlet megoldása. Mivel

A(x) =

∫
a(x)dx =

∫
(−x)dx =

−x2

2
,

ezért a homogén egyenlet általános megoldása:

yh(x) = c e
−x2

2 , cϵIR.
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2. Az inhomogén egyenlet megoldása.

u(x) =

∫
b(x)e−A(x)dx =

∫
(−x)e

x2

2 dx = −e
x2

2 ,

ezért az inhomogén egyenlet egy partikuláris megoldása:

yp(x) = u(x)e
−x2

2 = (−e
x2

2 )e
−x2

2 = −1.

Az általános megoldás:

y(x) = yh(x) + yp(x) = ce
−x2

2 − 1, cϵIR.

6.3. Di�erenciálegyenletek a �zikában∗

(Kiegészít® tananyag.)

Néhány egyszer¶ példán bemutatjuk, hogyan jelennek meg természetes mó-

don a �zikában a di�erenciálegyenletek.

Sugárzás er®ssége

Valamely sugárzás (pl. fény, radioaktivitás) intenzitását szeretnénk megha-

tározni. Jelölje I(x) az intenzitás mértékét x út megtétele után. A kiinduló

intenzitás legyen

I(0) = I0.

Fizikai meggondolásból tudjuk, hogy az intenzitás megváltozása I(x) és I(x+△x)

között arányos a megtett úttal, ami△x, és az intenzitás aktuális nagyságával.

Ezért az intenzitás megváltozását így közelíthetjük:

I(x+△x)− I(x) =: △I ≈ −△x · I(x).
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Az arányossági tényez®t jelölje µ > 0. Ebb®l

△I = −µ · △x · I =⇒ △I

△x
= −µI.

△x → 0 esetén:

dI

dx
= −µI =⇒ I ′(x) = −µI(x).

Tehát azt a DE-t kaptuk, hogy

I ′(x)

I(x)
= −µ.

A baloldalt integrálva ezt kapjuk:∫
I ′(x)

I(x)
dx = ln(I(x)) + c.

(Az abszolútérték elhagyható, mert pozitív �zikai mennyiségr®l van szó.)

A jobboldalt integrálva ezt kapjuk:∫
−µ dx = −µx+ c.

A kett®t összevetve

ln(I(x)) = −µx+ c.

Ebb®l:

I(x) = Ce−µx.

Speciálisan, azt a megoldást keressük, amikor az intenzitás a kezdeti pontban

(x = 0) ismert, azaz

I(0) = I0 =⇒ C = I0.

Ezért az intenzitás függvény

I(x) = I0e
−µx.
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Rezg®mozgás �zikai leírása

Rezg®mozgás �zikai leírása alatt, pl. egy rugó mozgásának matematikai jel-

lemzését értjük.

Tegyük fel, hogy m tömeg¶ részecske az x tengely mentén mozog, a kitérését

az id® függvényében szeretnénk leírni. A t id®pillanatban a kitérést jelölje

x(t). Ebben az esetben a független változó t, a függ® változó pedig x.

A mozgást a t = 0 id®pontban x(0) = x0-ból indítjuk. A pillanatnyi sebesség

nem más, mint az út-függvény a deriváltja: ẋ(t), a pillanatnyi gyorsulás ennek

második deriváltja: ẍ(t).

A rugóra ható er®k az alábbiak

1. rugóer®: −kx (a kitéréssel arányos, azzal ellentétes irányú),

2. közegellenállási er®: −rẋ (a pillanatnyi sebességgel arányos, és azzal

ellentétes irányú),

3. küls® gerjesztés: f(t) (pl. meglökjük id®nként).

A Newton-törvény szerint felírhatjuk az alábbi összefüggést az ered® er®k

összegér®l:

mẍ = −kx− rẋ+ f.

Az x(t) mozgást leíró di�erenciálegyenlet tehát:

mẍ+ rẋ+ kx = f.

Ha f ≡ 0 (ez egy szabad mozgás), akkor homogén DE-r®l beszélünk.

Ha f ̸= 0 (ez kényszermozgás), akkor inhomogén DE -t kapunk.
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A homogén DE megoldását fogjuk most meghatározni. Ez egyenlet:

mẍ+ rẋ+ kx = 0, (6.5)

x(t) =? Els® lépésben a megoldást x(t) = eλt alakban keressük. Ekkor

x(t) = eλt =⇒ ẋ(t) = λeλt =⇒ ẍ(t) = λ2eλt.

A fenti öszefüggéseket visszahelyettesítve az (6.5) egyenletbe:

mẍ+ rẋ+ kx = keλt + rλeλt +mλ2eλt =

= eλt(mλ2 + rλ+ k) = 0, ∀t ≥ 0. (6.6)

Ez a (6.6) összefüggés csak akkor teljesülhet, ha

mλ2 + rλ+ k = 0.

Ennek a másodfokú egyenletnek a megoldása

λ1,2 =
−r ±

√
r2 − 4mk

2m
.

Három esetet kell megkülönböztetni.

1. eset. Ha r2 − 4mk > 0, ekkor léteznek λ1 ̸= λ2 valós gyökök. Vegyük

észre, hogy λ1 < 0 és λ2 < 0 minden esetben.

A DE-nek két megoldása is van,

x1(t) = eλ1t, x2(t) = eλ2t,

és ezek tetsz®leges lineáris kombinációja is kielégíti az egyenletet:

x(t) = c1x1(t) + c2x2(t), c1, c2ϵIR.

Mivel λ1 < 0, λ2 < 0, a megoldás exponenciális sebességgel 0-hoz tart.
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2. eset. Ha r2 − 4mk = 0, akkor a másodfokú egyenletnek kétszeres gyöke

van, éspedig

λ0 = − r

2m
.

Ekkor láttuk, hogy

x1(t) = eλ0t

megoldás. Belátjuk, hogy egy másik megoldás lesz:

w(t) = teλ0t.

Valóban, kiszámoljuk a deriváltakat,

ẇ(t) = eλ0t + λ0te
λ0t,

ẅ(t) = λ0e
λ0t + λ0e

λ0t + λ2
0te

λ0t,

így behelyettesítve azt kapjuk, hogy

mẅ + rẇ + kw = eλ0{t(mλ2
0 + rλ0 + k) + 2mλ0 + r} ≡ 0.

Az általános megoldás ebben az esetben

x(t) = c1e
λ0t + c2te

λ0t, c1, c2ϵIR,

és mivel λ0 < 0, ezért ez is exponenciálisan lecseng 0-hoz.

Fizikai interpretáció. Ha r2 − 4mk ≥ 0, ekkor r ≥
√
4mk. Ez azt je-

lenti, hogy olyan nagy a közegellenállás, hogy a rugó kitérés exponenciálisan

csökken.

3. eset. Ha r2− 4mk < 0, akkor nincs valós gyöke a másodfokú egyenletnek.

Formálisan azt írhatjuk, hogy

λ1,2 = −µ±
√
−ν2,

ahol:

−ν2 =
r2 − 4mk

4m2
.
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6.1. ábra. Nagy a közegellenállás esetén a rugó kitérése exponenciálisan le-

cseng.

Két megoldás adódik:

v1(t) = e−µt cos(νt), v2(t) = e−µt sin(νt).

Ezek valóban megoldások. Behelyettesítéssel ellen®rizhet®.

Ha r <
√
4mk, akkor kicsi a közegellenállás, és a rugó oszcilláló mozgást fog

végezni exponenciálisan lecseng® amplitúdóval.

6.2. ábra. Kicsi a közegellenállás esetén a rugó csillapított rezg®mozgást végez

Speciális feladat. Ha r = 0,m = k akkor a már ismert

ẍ+ x = 0
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egyenletet kapjuk, ami a harmonikus rezg®mozgás egyenlete. Ezt már láttuk,

általános megoldása:

x(t) = a · cos(t) + b · sin(t),

ahol a és b a kezdeti kitérést®l és kezd®sebességt®l függ.
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Taylor polinom. Taylor sor
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7.1. Els®fokú Taylor polinom

Láttuk, hogy ha f di�erenciálható x0-ban, akkor

f(x) ≈ f(x0) + (x− x0)f
′(x0).

Itt az ≈ jel azt jelenti, hogy f(x) közelíthet® ebben az értelemben:

f(x)−
(
f(x0) + (x− x0)f

′(x0)
)

x− x0

−→ 0, ha x → x0.

7.1. De�níció. Legyen x0 az f függvény értelmezési tartományának bels®

pontja, itt di�erenciálható. Legyen

T x0
1 (x) := f(x0) + (x− x0)f

′(x0),

ez a függvény x0-hoz tartozó els®fokú Taylor polinomja.

Az egyszer¶ség kedvéért a fels® indexben lev® x0 jelölést elhagyjuk. Vegyük

észre, hogy ez éppen az (x0, f(x0)) pontban a függvény gráfjához húzott

érint® egyenes egyenlete.

7.1. Állítás.

lim
x→x0

f(x)− T1(x)

x− x0

= 0.

Ennek az állításnak pontosabb megfelel®je az alábbi Tétel, feltéve a másod-

rend¶ deriválhatóságot is.

7.1. Tétel. Adott f valós függvény és x0ϵ int(Df ). Feltesszük, hogy f kétszer

di�erenciálható x0 egy U környezetében. Ekkor ∀xϵU-hoz létezik ξ, melyre

f(x)− T1(x) =
f ′′(ξ)

2
(x− x0)

2, (7.1)

ahol ξ az x és az x0 között van:

ξϵ

{
(x0, x) ha x > x0

(x, x0) ha x < x0

.
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7.2. De�níció. Az f(x)−T1(x) különbségre vonatkozó (7.1) formulát Lagrange-

féle maradéktagnak hívjuk.

Megjegyzés.
f(x)− T1(x)

x− x0

=
f ′′(ξ)

2
(x− x0) → 0, ha x → x0.

Példa. Legyen f(x) = sin(x), x0 = 0. Mennyi lesz T1(x) =? Szükséges az

f(x0) és az f ′(x0) kiszámítása. f(x0) = sin(0) = 0, f ′(x0) = cos(0) = 1.

Ekkor T1(x) = x. Legyen x = 0.1, és sin(0.1) értékét közelítjük T1(0, 1)-el,

mennyi hibát vétünk? A különbség:

f ′′(ξ)

2
(x− x0)

2 =
− sin(ξ)

2
(0.1)2,

így ennek becslése: | sin(x)− T1(x)| ≤
1

200
. Ezért sin(0.1) ≈ 0.1± 1

200
.

7.2. n-ed fokú Taylor polinom

Tegyük fel, hogy az f függvény az x0 egy környezetében n-szer di�erenciál-

ható.

7.3. De�níció. Az f függvény n-ed rend¶ Taylor polinomja, mely az

x0-hoz tartozik:

Tn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n =

=
n∑

k=0

f (k)(x0)

k!
(x− x0)

k. (7.2)

Más elnevezés: n-ed fokú Taylor polinom. A pontosabb jelölésben ki lehet

írni az alappontot is: Tn(x, x0), mi ezt elhagyjuk.
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Magyarázat. Olyan n-ed fokú polinomot keresünk, mely x0-ban úgyanúgy

viselkedik, mint f(x). Pontosabban:

Pn(x0) = f(x0),

P ′
n(x0) = f ′(x0),

...

P
(n)
n (x0) = f (n)(x0).

(7.3)

Mivel a Pn polinom (n+ 1)-dik deriváltja 0, arra már nem lehet feltétel.

7.2. Állítás. Pontosan egy Pn(x) polinom létezik a (7.3) tulajdonságokkal.

Bizonyítás. Az egyértelm¶ség triviális. (HF).

A létezést úgy igazoljuk, hogy megadjuk a polinomot. Be fogjuk látni, hogy

Pn(x) := Tn(x) rendelkezik a (7.3) tulajdonságokkal, ez az n-ed fokú Taylor

polinom.

Tn(x) és deriváltjai az x0-ban:

Tn(x0) = f(x0) + f ′(x0)(x0 − x0) + . . .+
f (n)(x0)

n!
(x0 − x0)

n = f(x0)

T ′
n(x0) = f ′(x0)1 +

f ′′(x0)

2
2(x0 − x0) + . . .+

f (n)(x0)

n!
n(x0 − x0)

n−1 =

= f ′(x0)
...

T (k)
n (x0) =

f (k)(x0)

k!
k! + . . .+

f (n)(x0)

(n− k)!
(x0 − x0)

n−k = f (k)(x0) k ≤ n.

Megvizsgáljuk, hogy mennyire jól közelíti a Taylor polinom az eredeti függ-

vényt x0 környezetében.

7.4. De�níció. Az Ln(x) := f(x)− Tn(x) a Lagrange-féle maradéktag.
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7.2. Tétel. Tegyük fel, hogy az f függvény (n + 1)-szer di�erenciálható x0

egy U környezetében. Ekkor létezik olyan ξϵU , melyre:

Ln(x) = f(x)− Tn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

(n+1),

ahol ξ az x és x0 között van.

Példa. Legyen f(x) = ex, hogyan becsülhetjük meg e0,1 értékét? A közelítést

harmadrend¶ Taylor-polinommal végezzük, célszer¶ az x0 = 0 választás.

T3(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3.

Ismerjük a függvény deriváltjait: f ′(x) = ex = f ′′(x) = f ′′′(x). Ezért

f ′(0) = f ′′(0) = f ′′′(0) = 1 =⇒ T3 = 1 + x+
x2

2!
+

x3

3!

e0.1 ≈ 1 + 0, 1 +
0.01

2
+

0.001

6
.

A hiba nagyságrendje:

f(x)− T3(x) =
f (4)(ξ)

4!
x4, 0 < ξ < 0, 1

így |L3(x)| ≤
e0.1

24
10−4 ≤ 3

24
10−4.

7.3. Taylor polinom határértéke n → ∞

Felmerül a kérdés, hogy vajon a (7.2) formulában n → ∞ esetén mi történik?

Példa. (folytatás) Láttuk, hogy f(x) = ex n-ed fokú Taylor-polinomja x0 = 0

körül:

Tn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .

f (n)(0)

n!
xn

=
n∑

k=0

1

k!
xk.
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7.1. ábra. Az ex függvény és els® 3 Taylor polinomja x0 = 0 esetén.

Rögzített xϵIR esetén a Lagrange féle maradéktag:

ex − Tn(x) =
eξ

(n+ 1)!
ahol |ξ| ≤ |x|.

Ezzel igazoltuk, hogy ebben az esetben

lim
n→∞

Tn(x) = ex ∀xϵIR.

7.4. Taylor sor

Legyen adott egy f : (a, b) → IR függvény, mely az x0ϵ(a, b) pontban végtelen

sokszor di�erenciálható.

7.5. De�níció. Az f függvény x0 körüli Taylor sora az alábbi függvény:

T (x) :=
∞∑
k=0

f (k)(x0)

k!
· (x− x0)

k.

Megjegyzés. A Taylor sor pontos jelölelése

T (x0, x)

lenne. Az egyszer¶ség kedvéért az els® argumentumot elhagyjuk.
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Megjegyzés. Ha x0 = 0, akkor szokás a Taylor sor helyett McLaurent sorról

beszélni.

Kérdés: Milyen feltételekkel lesz igaz, hogy a Taylor sor összegeként meg-

kapjuk a kiindulási függvényt? Mit tudunk mondani az {x : f(x) = T (x)}
halmazról, ha x0ϵIR rögzített?

Láttuk, hogy az f(x) = ex függvény esetén f(x) = T (x) teljesül ∀x.

Példa. Legyen

f(x) =


e−

1
x2 ha x ̸= 0,

0 ha x = 0.

f páros függvény. Legyen x0 := 0. Könnyen igazolható, hogy itt f folytonos.

Számoljuk ki a deriváltját:

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0+

e−
1
h2

h
= lim

x→∞
x · e−x2

= 0.

Belátható hasonló módon, hogy

f (n)(0) = 0 ∀n > 1.

Ekkor tehát T (x) ≡ 0, így csak az egyetlen x0 = 0 pontban-ban állítja el®

a függvényt Taylor sora.

7.2. ábra. Az e−
1
x2 függvény a 0 közelében.
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7.3. Állítás. Adott az f : (x0−R, x0+R) → IR végtelen sokszor di�erenciál-

ható függvény. Tegyük fel, hogy ennek f (k) deriváltjai egyenletesen korlátosak,

azaz ∃K > 0:

|f (k)(x)| ≤ K, ∀xϵ(x0 −R, x0 +R), ∀k = 0, 1, 2, . . .

Ekkor a függvényt el®állítja Taylor sora:

f(x) = T (x), ∀xϵ(x0 −R, x0 +R).

Bizonyítás∗ Lagrange-féle maradéktag segítségével látjuk be a fenti állítást.

Legyen xϵ(x0 −R, x0 +R) tetsz®leges pont. Mivel

T (x) = lim
n→∞

n∑
k=0

f (k)(x0)

k!
· (x− x0)

k,

ezért

f(x)− T (x) = lim
n→∞

(
f(x)−

n∑
k=0

f (k)(x0)

k!
· (x− x0)

k

)
.

A Taylor polinomoknál tanultak alapján

f(x)−
n∑

k=0

f (k)(x0)

k!
· (x− x0)

k =
f (n+1)(ξ)

(n+ 1)!
· (x− x0)

n+1,

ahol ξ x és x0 között van. A feltétel szerint

|f (n+1)(ξ) · (x− x0)
n+1

(n+ 1)!
| ≤ |f (n+1)(ξ)| · (x− x0)

n+1

(n+ 1)!
≤ K · (R− x0)

n+1

(n+ 1)!
.

A jobboldalon lev® kifejezés x-t®l függetlenül 0-hoz tart.

7.6. De�níció. Az f függvényt az x0 pontban analitikusnak nevezzük, ha

x0-nak létezik olyan (x0 − R, x0 + R) környezete, melyben a Taylor sor kon-

vergens és f(x) = T (x), ahol T (x) az x0 körüli Taylor sor. Az f függvény

egy D tartományban analitikus, ha minden x0ϵD-ben analitikus.
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Példa. Legyen f(x) =
1

1− x
, x ̸= 1. Ekkor tudjuk, hogy x0 = 0-ban analiti-

kus, hiszen
1

1− x
=

∞∑
n=0

xn |x| < 1.

Vajon x0 = 3-ban analitikus-e a függvény?

A vaálasz: igen.

7.Gyakorlat. Ellen®rizzék le, hogy a függvény x0 = 3 körüli Taylor sora

el®állítja a függvényt, ha 1 < x < 5.

Hasonló gondolatmenettel igazolható, hogy ∀x0 ̸= 1 esetén f analitikus.
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