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2 1. FEJEZET. VALOS SZAMOK

1.1. Természetes szamok

A jegyzetben N jeloli a természetes szamok halmazat. N = {1,2,3,...}.

Az N halmaznak két fontos alaptulajdonsiga a kdvetkezd:

1. Van legkisebb elem, ez 1 (egység).

2. Mindegyik elem utan van kozvetleniil kovetkezs: n —n + 1

Megjeqyzés. Mas konyvekben néha el6fordul, hogy a természetes szamok
halmazat az n = 0 szdmmal kezdik. Itt Nj fogja jelolni a 0-val kibGvitett

természetes szamok halmazat.

1.2. Teljes indukcid

Tipikus feladat egy képlet bizonyitasa. Sokszor ezt megel6zi egy sejtés.

1.1. Allitas. (Valamely) A, tulajdonsdg igaz minden neN szimra igaz.
(Példdul: "Minden neN szam érdekes.”)

Bizonyit4ds menete:

1. Kiuindulo lépés. Belatjuk, hogy A; teljesiil.

2. Indukcios lépés. Belatjuk, hogy minden rogzitett k-ra: A, teljesiilése
esetén Ay, is igaz.
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Megjegyzés. A teljes indukciot tgy képzelhetjiik el, mintha fel kellene men-
niink egy végtelen hosszi lépcsén. Ha meg tudjuk tenni az elsG lépést, és
barmely lépcséfokrol eggyel feljebb tudunk jutni, akkor valoban barmilyen

magasra fel tudunk menni.

1.Gyakorlat.  Igazoljuk teljes indukcioval, hogy minden természetes szdm

S2€p.

Megjegyzés. A teljes indukcié nem mindig n = 1-gyel kezd6dik, hanem azzal

a legkisebb természetes szammal, ahonnan a az adott tulajdonsag érvényes.

Példa. Igazoljuk, hogy minden neN esetén

1)(2n +1
12492 g g2 Y )6<n+ ) (1.1)

Bizonyilds teljes indukcioval.
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1. 1. Kundulo lépés.

n = 1 esetén az allitas igaz, hiszen n = 1 esetén az (1.1) képlet:

2. 2. Indukcios lépése.
Tegyiik fel, hogy egy rogzitett n-re teljesiil az allitas (ez az indukcids

feltevés.) Nézziik meg, mit mondhatunk, ha n+ 1 szamot adunk Gssze:

2 _ n(n+1)(2n+1) bt 1) = (%)

P42+ 4n’+(n+1)

~ 6
Felhasznaltuk az indukcios feltevést. Egyszert algebrai atalakitasokkal
folytathatjuk:
1 1 2)(2n+3
() = (”JGF J(n(2n +1) + 6n +6) = 7T )(”2 )2n+3)

ami épp az (1.1) képlet, ha n helyére n + 1 keriil.

1.3. Valos szamok értelmezése

Az N halmazbol kiindulva egyre bévebb szamhalmazokat lehet értelmezni:
A szamfogalom felépitésének elsd lépése volt: N = {1,2,3,...}.

A természetes szamok halmazén értelmezve van két mitivelet, az Osszeadas

(+) és szorzas (-), tovabba a < rendezési relacio.

1. Egyik mivelet az N halmazon: dsszeadds. 13 + 134 = |/
Az inverz kérdés 13+ 7 = 11 megoldasaval egy b6vebb halmazt kapunk:
— egész szamok: Z = {0,+1,4+2,£3,... }.
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2. Masik miivelet az N halmazon: szorzds. 13- (—134) =/

Az inverz kérdés 13 - 7 = 11 megoldasaval egy még bévebb halmazt

kapunk:
— raciondlis szamok: Q = {r = P | p,qeZ,q # 0}.
q

3. Hogyan tovdbb?

IR-et szeretnénk megfeleltetni a szdmegyenes pontjainak, természetes mdédon.
Egyelére "lyukas" a megfelelteés. hiszen csak racionalis szamokig tudunk

eljutni.

Egyik lehetséges it a valos szamok axiomatikus értelmezése. Ennek alapjait

roviden leirjuk.

Adott egy IR halmaz, melynek elemeit valdés szdmoknak nevezziik. A
halmazban van két kitintetett elem, ezek: 0 és 1 (0 # 1).

IR-en definidlva van két miivelet, az Osszeadas (+) és a szorzas (-), valamint

egy < rendezési relacio.

A mitveletek és a rendezés tulajdonsagait AXIOMAKBAN adjuk meg. Az

axiomak trividlis alaptulajdonsdgok, melyeket bizonyitas nélkiil elfogadunk.

A pozitiv valés szamok halmazat R™ jeloli.

Jelolések

Y = MINDEN
4 = LETEZIK

El! = EGYERTELMUEN LETEZIK
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1.3.1. Axiomak*

Megadjuk a valos szamok felépitésére szolgalo egyik lehetséges axiomarendszert.

1. csoport: a miveletek alaptulajdonsdgas.

Al. Az 6sszeadas asszociativ, azaz (x +y) + 2=z + (y + 2)
A2, z40==x

A3. VzelR-hez JuelR, melyre x +u = 0. Ezc a szam ellentettje.
A4. Az Osszeadas kommutativ, azaz r +y =y +

A5. A szorzas asszociativ, azaz (- y)-z=x - (y - 2)

A6. z-1=ux, VzecR.

A7. VzelR, x # 0-hoz JvelR, melyre z - v = 1.

Ezt a szam reciprokdnak nevezziik.
A8. A szorzas kommutativ, azaz v -y =y - =, Vr, yelR.

A9. A szorzés disztributiv az 0sszeadasra, azaz

(x4y)-z=z-24y-z, Va, yelR.

2. csoport: a rendezési reldcio tulajdonsdgas.

R1. Tetszbleges = # y esetén az x < y és y < x koziil pontosan egy igaz.
R2. A rendezési relacié tranzitiv, azaz ha x < y és y < z, akkor = < z.
R3. Ha x <y, akkor x + 2 < y + 2z minden zeR esetén.

R4. Harx<yés0<z, akkorz-2<y- 2.
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3. csoport:

Elssként elkiilonitjiik R egy részhalmazat, melyet N jelol, és az alabbi tulaj-

donséagokkal rendelkezik:

— 1eN.
— Ha neN, akkor n + 1eN.
— Béarmely neN esetén n 4 1 # 1 (vagyis 1 a legels elem).

— Ha valamely S C N rendelkezik az alabbi tulajdonsagokkal:

1leS, és VneS esetén n + leS,

akkor S = N.

Ezt a részhalmazt természetes szamoknak nevezziik.

14.

15.

(Archimedeszi axioma) Barmely a, beR, a > 0 valés szamhoz létezik

neN, melyre b < na.
(Cantor axioma) Adott korlatos és zart intervallumok egy sorozata:
I = a1, b1], Is =lag,bol,... L, = [an, by, ... (1.2)
melyek egymasba skatulyazottak, azaz
LDO2LD...D1,.... (1.3)

Ekkor van kozds pont, azaz

JeelR melyre cel,, VneN.
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Megjegyzés. A Cantor axioma atfogalmazhatd a kovetkezGképp: Tegyiik fel,
hogy adottak az
a; < ax < az < <a

oS e e e > n .- -

szamok ("bal oldalak™) és a
by >by>b3>...>20,...
szamok ("jobb oldalak"), melyekre teljesiil, hogy:

an, < b, VneN.

Ekkor 1étezik celR , melyre

1.3.2. Irracionalis szAmok bevezetése
Miel6tt bevezetnénk az irracionélis szdmokat, vizsgaljuk meg két példan ke-
resztiil, hogy a Cantor axioma hasznalatdhoz milyen plusz feltételre van sziik-
ség.
Cantor-féle axioma, 1. példa

Il == [3, 4]

I, =[3.1, 3.2].

Iy = [3.14159265, 3.14159266]
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I,

13
3.14.8.15

1.1. 4bra. 1.Példa. Els6 3 intervallum

Vajon mi a kozos pont? Lathatoéan ez a szam a m, ami NEM racionélis.

Tehat a Cantor axiéma biztositja, hogy IR-ben irraciondlis szamok is vannak.

Cantor-féle axioma, 2. példa

I = [0,3].
1 1
L=[1—-,2+-]
1 1
Li=[1—= 2+-
3 [ 3’ +3]
1 1
IL,=[1-= 24 -]
n

Vajon mi a kozos pont? Lathatdéan sok-sok kozos pont van.

Els6 fontos tétel, amit az axiomak alapjan bebizonyitunk a kozos pont egy-

értelmiségérdl szol.
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I
4 : . : 3
0.5 I
} 42.5
0.67 ¢ L 233
1,
0.75 ¢ $2.25

1.2. 4bra. 2.Példa. Els6 4 intervallum

1.1. Tétel (Cantor-féle kozos-pont tétel). Legyen I} O Iy D -+ D I, ...
véges €s zdrt intervallumok sorozata, I, = [a,,b,].

Tegyiik fel, hogy Ve > 0-hoz 31, intervallum, mely az adott e-ndl révidebb,
azaz |I,| = b, — a, < ¢.

Ekkor egyértelmien létezik a ¢ kozos pont, melyre cel, minden n-re.

Bizonyitas. A Cantor-axiomébol kévetkezik, hogy létezik kozos pont. In-
direkt modon latjuk be aa egyértelmiséget. Feltessziik, hogy két kézos pont

van: c¢,del, minden n-re, és példaul ¢ < d.

1.3. 4bra. A Cantor féle kozospont-tétel bizonyitasa

Legyen ¢ = d — ¢ > 0. Ekkor a feltétel szerint dneN, amire b, — a,, < €.

Ekkor mivel
ce [&n, bn], de[am bn]7
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ezért e =d—c < b, —a, < ¢, ami ellentmondas.

1.4. A valos szamok részhalmazai

1.4.1. Infimum és supremum

1.1. Definicid. Legyen H C IR a valds szdmok halmazdnak eqy részhalmaza.

1. A H halmaz alulrdl korldtos, ha van olyan kelR, melyre

kE<zx VxeH.

2. A H halmaz feliilrél korldtos, ha van olyan KeR, melyre

< K VreH.

3. A H halmaz korldtos, ha alulrdl és feliilrdl is korldtos.

1.2. Definicid. Legyen H egy alulrol korldtos nem tres halmaz. A halmaz
legnagyobb alsd korldtjat infimumnak nevezzik. Jele inf(H).

Mids szoval, az selR szdm a H halmaz infimuma, ha teljesiilnek az alabbiak:

1. Egyrészt s also korldat, azaz

s <uw, VreH.

2. Mdsrészt ha s eqy tetszdleges also korldtja H-nak, akkor

s’ < s.

Megmutathatd, hogy az als6 korlatok kozt 1étezik legnagyobb.
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1.3. Definicid. Legyen H eqy felilrdl korldtos nem dires halmaz. A halmaz
legkisebb felsd korldtjat supremumnak nevezzik. Jele sup(H).

Mads szoval, az SeR szdam a H halmaz supremuma, ha teljesiilnek az aldbbiak:

1. Egyrészt S felsd korlat, azaz

S >z, VreH.

2. Mdsrészt ha S’ eqy tetszdleges felsd korldtja H-nak, akkor

s> S.

Megmutathato, hogy a felsé korlatok kozt van legkisebb.
1. Példa. Legyen H = [a,b] zart intervallum. Ekkor
inf(H) = a, sup(H) = b.

Megjegyzés. Ha van H elemei koziil legkisebb, akkor ez az infimum. Tehéat

ha H-ban létezik minimum, akkor
inf(H) = min(H).
Hasonlbéan, ha a halmazban van maximalis elem, akkor
sup(H) = max(H).
2. Példa. Legyen H = (a,b) nyilt intervallum. Ekkor is

inf(H) = a, sup(H) = b.

Megjegyzés. A fenti példakbol is latszik, hogy inf(H)eH vagy inf(H)¢H is
el6fordulhat.
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1

3. Példa. Legyen H = {— : neN}.
n

Ekkor nyilvan sup(H) = max(H) = 1. Legkisebb eleme nincs a halmaznak.
Belatjuk, hogy inf(H) = 0. Nyilvin 0 < 1/n minden n -re, tehat a 0 also
korlat. Legyen € > 0 tetsz?leges. Belatjuk, hogy ¢ nem lehet als6é korlat.
Valoban, legyen

1
N = [—] (egész rész).
€

Ekkor
1

i
N+1¢

>

Igazoljunk kell, hogy a fenti infimum és supremum jol definialtak.

1.2. Tétel. Minden alulrol korldtos, nem iires H halmaznak VAN infimuma.

Bizonyitas* Konstrukcioval igazoljuk az infimum létezését. Mivel H alulrél

korlatos, ezért van also korlatja. Legyen a; egy als6 korlat.
1. eset. Ha ajeH, akkor ez miniméalis elem, egyben infimum is.

2. eset. Ha a6 H, akkor legyen byeH tetszdleges, by > a;. Legyen I = [ay, bi]
+ by

szamot.

egy zart intervallum, és definidljuk a ¢; =
Kétféle folytatas lehetséges.
a) Ha ¢y also korlat, akkor legyen as := ¢1 és by := by. Ha raadasul cieH
is teljesiil, akkor minimalis elem, egyben infimum is.
b) Ha ¢; nem also korlat, akkor legyen ay := a; és by := ¢;. (Ha esetleg

c1¢ H, akkor bye H-t valasszuk meg gy, hogy as < by < ¢; legyen.)

I, = [ag, bs] intervallum hossza biztosan rovidebb (vagy egyenld), mint Iy

hosszénak fele. Ezen kiviil as alsd korlat, boe H.
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Ezt a konstrukciot folytatva vagy "ratalalunk" véges lépésben a minimumra,
vagy egy végtelen [ intervallum-sorozatot kapunk, melyre:
(1) I, = [ak7bk] zart és I C Iy,
(ii) Ixy1 hossza révidebb, mint 27|,
(iii) ay also korlat és bye H minden k-ra.
Az (i) és (ii) tulajdonsidgok miatt az intervallumsorozat teljesiti a 1.1 Té-
tel feltételeit, ezért az intervallumoknak egyértelmiienlétezik kozos pontja,

legyen ez s. Belatjuk, hogy
s = inf(H).

Ehhez egyrészt igazolni kell, hogy s alsé korlat. Ha ugyanis lenne egy olyan
heH elem, melyre h < s teljesiilne, akkor a (ii) tulajdonsag miatt talalnank
egy olyan [ intervallumot, melyre h < a; < s lenne, ami ellentmond annak,

hogy ay, als6 korlat.

Hasonloképp igazoljuk, hogy nincs s-nél nagyobb alsoé korlat. Ha ugyanis
indirekt modon feltessziik, hogy van ilyen s’ > s also korlat, akkor talalunk
egy I intervallumot, melyre s < b, < . De mivel be H minden k-ra, igy ez

sem lehetséges.

1.1. Kovetkezmény. Minden nem tires, felilrdl korldtos H halmaznak léte-

2k supremumea.

1.4.2. Topolégiai alapfogalmak

1.4. Definici6. Eqy xqy valds szam kornyezetei az
(xo —e,z0+€)

nyilt intervallumok, ahol € > 0 tetszdleges.
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1.5. Definici6. Adott H C IR tetszdleges részhalmaz.
Az xzoelR pont a H halmaz belsé pontja, ha 3 > 0, hogy

(xg —e,x0+¢) C H.
A belsd pontok halmazdt int(H) jeloli. (Az INTERIOR sz6 réviditésébdl.)

Az xoelR pont a H halmaz kiilsé pontja, ha I > 0, hogy
(o —e,x0+€)NH = 0.
A kilsd pontok halmazdt ext(H) jeloli. (Az EXTERIOR sz6 roviditésébdl.)

ro€lR a H halmaz hatdrpontja, ha se nem kiilsd, se nem belsd pontja.
Ez azt jelenti, hogy Ve > 0 mellett az (vo — €, ¢ + €) kirnyezet tartalmaz
H-beli és H-n kiviili pontokat is. A hatdrpontok halmazdt OH jeldli.

1.6. Definicié. A H halmaz nyilt, ha minden pontja belsd pont.
A H halmaz zdrt, ha minden hatdrpontjdt tartalmazza. Egy H halmaz le-

zdrdsdt gy kapjuk meg, hogy hozzdvesszik a hatdrpontokat. H = H U OH.

1. Példa. Legyen H = (a,b) egy nyilt intervallum. Bels6 pontok halmaza:

int(H) ={z:a <z <b}.

A hatéarpontok halmaza: O(H) = {a,b}. A lezaras

H = int(H)UO0H = [a,}].

2. Példa. Legyen H = {0 < x < 1: zeQ}.

1
Ebben a halmazban bels6 pont NINCS. Hiszen példaul az 3 pontnak nincs
olyan (1 —e,1 +¢) kornyezete, amire teljesiilne, hogy (1 —¢,3 +¢) C H.

Barmely kicsi intervallumban van racionélis és irraciondlis szam is, ezért nincs

olyan (% — 5,% + ¢) intervallum, melyben csak raciondlis szamok lennének.
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fgy H minden pontja hatarpont! Hasonlé6 meggondolassal igazolhato, hogy
a [0, 1] -beli irracionalis szamok is hatarpontok.

Tehat a halmaz hatarpontjai:

OH={x: 0<z<1}=10,1]. O]

1.5. Néhany alap-egyenlStlenség

1.5.1. Haromszog egyenltlenség

1.2. Allitas. Tetszéleges a,b valds szdmokra

|+ 0] < [a] + [b].

Bizonyitas. Abbol a trividlis egyenlétlenségbdl indulunk ki, hogy
+a < |al, +b < |b).
Ebbdl azt kapjuk, hogy
a+b <la| +|b], —a—b < |al + ],
és ebbdl az allitas kovetkezik.

Megjeqyzés. Az elnevezés vektorokra utal, ott valéban egy haromszoég harom
oldalanak hosszarol van szo.

1.2. Kovetkezmény. (1.2.A ltaldnos hdromszég egyenldtlenség)
Tetszdleges neN, n > 2 esetén adottak az ay,as, ..., a, valds szamok. Ekkor
lay + ... + an| < |ag| + ... + |an],

azaz

n
D
k=1

<> ag). (1.4)
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Bizonyitas. Teljes indukcioval. n = 2 esetén belattuk az allitést.

Tegyiik fel, hogy valamely n > 2-re (1.4) igaz. Vizsgaljuk n + 1-re

n+1 n

n
|Zak’ = |Zak + api1| < |Zak| + |an+1l,
=1 =1 =1

ahol a két tagi Osszegre vonatkoz6 tulajdonsagot hasznaltuk. Ezutén a jobb-

oldal els6 tagjara az indukcios feltételt alkalmazhatjuk.
>l <3 la.
k=1 k=1

1.3. Tétel. (Bernoulli eqyenlétlenség.) Tetszdleges neNy természetes szdam

€s h > —1 wvalos szdm esetén teljesiil az aldbbi dsszefiiggés:

(1+h)" > 1+ hn. (1.5)

Bizonyitas* h = 0 esetén egyenlség van.
h # 0 esetén teljes indukcioval latjuk be az allitést.

1. Ha n =1 akkor
(14+h)' =1+ h,

tehéat az allitas igaz.
2. Tegyiik fel, hogy valamely n-re igaz:
(1+h)" > 14 hn,
majd tekintsiik az egyenl6tlenség baloldalat n + 1-re:
(1+R)"=1+hr)"1+h)>(1+nh)(1+h)=
=1+ (n+1Dh+nh*>>14+ (n+1)h.

A fenti atalakitasok soran felhasznaltuk az indukcids feltevést és el-

hagytuk az nh? pozitiv tagot.
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1.5.2. Szamtani és mértani kozép

Tekintsiink két nemnegativ valos szamot, z,y > 0. Ezek szadmtani kdzepe
(szamtani atlaga)
r+y

2 )

A=

és mértani kdzepe (mértani atlaga)

G = /zy.
1.3. Allitas. Tetszdleges x,y > 0 valds szimok esetén

T4y

5 > \/xy,

és eqyenldség pontosan akkor teljesil, ha x = y.

2.Gyakorlat. A fenti allitds szemléletes modon igazolhatd a 1.4. abra alap-

jan. Igazolja.

1.4. abra. A szdmtani és mértani kozép geometriai abrézolasa

1.4. Tétel (Szamtani és mértani kozép kozti egyenlGtlenség). Legyenek ay, as, . . .

nemnegativ valds szamok. Ezek szamtani dtlaga (mds elnevezéssel szamtani

kézepe)

ai+as+...+a, 1<
A, = = — ag,
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és mértani dtlaga (vagy mértani kozepe)

G, = VJaay...a, =
Ekkor
A, > G, minden n —re,
és eqyenldség pontosan akkor teljesil, ha ay = as = ... = a,.

Kiegészitd tananyag. A fenti allitast analitikus eszkozokkel altalanos esetben
latjuk be.

A Tétel bizonyitdsahoz kezdetnek két lemmaét igazolunk.

1.1. Lemma. Legyen n > 2 adott természetes szam. Legyenek x; > 0,
k= 1,2,...n olyan szdamok, amelyek kozt van legaldbb kettd kilonbozo, és

atlaguk 1, azaz
$1+$2++$n

n

= 1.

Ekkor x1xq ... 2, < 1.

Bizonyitas. Teljes indukcioval latjuk be a lemmat.

1. Han = 2, akkor a lemma allitasa igaz, hiszen a két szam
1’1:1+t, .I'Qzl—t, t>0.
Ezekre a szdmokra

1-t(1+t)=1-1*<1.



20 1. FEJEZET. VALOS SZAMOK

2. Tegyiik fel hogy valamely rogzitett n-re igaz az allitas. Tekintsiink n—+1

db szamot, melyek szamtani atlaga 1, és ezeket irjuk az alabbi alakba:

Ty = 1+ t17

To = 1 + t27

T, = 1+ tn,
Tpyr = L4t

Ekkor a ty,...1,1 szamok kozt van pozitiv es negativ is, mert dsszegiik
0 és nem mind egyforma. Feltehetd példaul, hogy t, < 0 < t,.1.

Nézziik az n + 1 tényez6s szorzatot:
T1T2 o Ty 10Tyl = X102« Ty 1 (1 + 1) (1 4+ t,01) <

< T1T2... xn—l(]- + 1, + tn—i—l);

ahol az utolsé tényez6bdl elhagytuk a t,t,,1 < 0 tagot. A szorzat utolso
tényezGjét jelolje x7 =1+ t, 4+ t,41. Ekkor egy n tényezds szorzatunk

van, a tényezGk Osszege:
$1+$2+...+l‘n,1+1+tn+tn+1 =

=n—1)4+t...+tpy +14+t, +tpy1 =n.

Tehat adott n db szdm, x4, 2, ..., 2,1, 7, melyek atlaga 1. Ha az igy
kapott szamok egyformak, akkor szorzatuk = 1. Ha nem egyformak,

akkor az indukcios feltevés miatt szorzatuk< 1.

Ezek utan megfogalmazhatjuk az fenti lemmaét kicsit altaldnosabban:

1.2. Lemma. Legyenek xi, > 0, k =1,...n olyan szimok, amelyekre

r1+x0+...+x,
n

=1.

Ekkor

T1TX2 ...Tp < 1.
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A Tétel bizonyitasa. Ha adottak az ay,as,. .., a, szamok, akkor legyen
A= a,+as + ...+ ay,

és legyenek

Ekkor

B A
ezért

.T1+$2+"‘+In

n Y
igy alkalmazhatjuk ezekre a szamokra a 1.2. Lemméat. Tehat

T1To ... Ty < 1,

azaz

a1as ...apy
An
Ezt az egyenlGtlenséget atrendezve kapjuk a Tétel allitasat:

ﬁak < <%Zn:ak) .
k=1 k=1

<1
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2.1. Szamsorozatok

2.1.1. Alapfogalmak

2.1. Definicié. Szdmsorozat egy olyan hozzdrendelés, melyben VYneN ter-
mészetes szamhoz eqy valds szdmot rendelink. Az (a) sorozat n-dik elemét

a, jeloli, az egész sorozatot (ay)-nel jeloljik.
Az (ay,) sorozat korldtos ha IK szdim, hogy |a,| < K minden neN esetén.

Az (an) sorozat monoton névd, ha Vn < m esetén a, < an. (Nagyobb
indexhez nem kisebb elem tartozik.) Az (a,) sorozat monoton fogyd, ha

Vn < m esetén a, = a,, (nagyobb indexhez nem nagyobb elem tartozik.)

2.1.2. Hatarérték

Arra lesziink kivancsiak, hogy n novelésével mi torténik az a, szamokkal.

Példa. Egy aclR irracionalis szam esetén legyen a,, az elsé n db jegy a végtelen
tizedestort felirasaban. Ekkor a, "egyre kozelebb kerill" a-hoz. Ezt igy
jelolhetjiik: a, — a.

Miel6tt pontosan definidlnank a hatarértéket, egy-két példat tekintiink.

1
1. Példa. Legyen a, = —. Tetsz6leges ¢ > 0 mellett az (—¢, ¢) intervallumot
n

tekintjiik. Ekkor 3N kiisz6bindex, amire aye(—¢, ) éspedig legyen

N >

€

+1,

ahol [z] jeloli az x szam egész részét (az z-nél nem nagyobb egészek koziil a

legnagyobbat). Ekkor
1 1

N [/g+1=°
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s6t ¥n > N-re a,e(—¢, ), tehat a, "tart" 0-hoz. Igy jelsljiik: a, — 0.
1

2. Példa. Legyen a, = (—1)"—, azaz a sorozat tagjai
n

. 1 . 1 . 1 . 1 .

7 27 3’ 47 57 AR

Ekkor is a, — 0, mert Ve > 0-hoz dN kiiszobindex, amire teljesiil, hogy

Vn > N esetén |a,| < e.

3. Példa. Legyen

1
—  ha n =2k
2n
an =
1
— ha n=2t+1
n
A sorozat elemei
1 1 1 1
ap =1 g =75 O3 =735 G1=g5 05 =
WGI Q@ a2
1 I
0.9: :
1 1
o8l 1
1 1
1 1
071 1
1 1
1 1
O.SI |
1 1 a
4
o.s: : T
1 1 \
041 1 \
1 1
| | ® ! )
0.3 | :
! ! 1 /. a
02! ! ® 7 , 10
o | e
1 o 1
o1l ! : : ° o
1 1 I .
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.1. d4bra. A 3. példa sorozata

Nyilvan most is a,, — 0.



26 2. FEJEZET. SZAMSOROZATOK, SZAMSOROK

4. Példa. Legyen
1
n+1 n+1
Ekkor a,-nek az 1-t5l vald eltérése csokken és tart a 0-hoz. Tgy a, — 1.

an

5. Példa. Legyen p > 0 tetszGleges rogzitett szam és legyen a, = /p. Hova

tart az (a,) sorozat? Példaul p = 2 esetén a sorozat

a; =2, agzx/ﬁ, &3:\3/5,
Harom eset van:
1. eset. Hap =1, ekkor a; = as =a3=...=1, igy a, — 1.
2. eset. Ha p > 1, ekkor {/p > 1, ez felirhato Osszegként:

Vp =14 hy,
ahol h,, > 0. Igy p = (1 + h,)", és a Bernoulli egyenlétlenséget alkalmazva
p=(14+h,)" > 1+ nh,.

Ezt atrendezve

Mivel

ezért h, — 0. Igy most is p— 1.

3. eset. Ha p < 1, akkor 1/p > 1, tehat a 2. esetnél leirtak miatt

\/T
(/= —1
p
%1
p YD

is teljestil. Mivel

ezért \V]_a — 1.
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2.2. Definicié. Azt mondjuk, hogy az (a,) sorozat konvergens és hatdr-

értéke az A szam, ha ez rendelkezik a kévetkezd tulajdonsdggal:
Ve > 0-hoz AN = N(e) (egy e-tdl fiiggd N kiiszobindex), melyre

la, — Al <e ¥n> N.
Ezt igy jelolyik

lim a, = A.

n—00

2.1. Allitas. Ha egy (a,) sorozatnak van hatdrértéke, akkor a hatdrérték

eqyértelmi.

Bizonyitas* Indirekt iton. Tegyiik fel, hogy két szdm is rendelkezik a fenti

tulajdonséggal, jelolje ezeket A < B. Valasszuk meg az € szamot agy, hogy

e<

legyen. Ekkor az (A—e, A+¢) ésa (B—e, B+e¢) intervallumok

diszjunktak, (nincs kozos elemiik). Ez ellentmondas, tehat a kiindulopontunk

hibés volt, nem lehet két kiilonb6z§ hatarértéke egy sorozatnak.

6. Példa. Legyen

n®—1
a, = ——.
n?2+n+1
Ekkor
n?4+n+1—n-—2 n+2
a, = 1 1.
n2+n+1 n2+n+1
Mivel
n—+2 2n
O<rp,=———< — =

2
n2+n+1 n2 n
1.

és 1/n — 0, ezért lim (a, — 1) =0, azaz lim a, =
n—oo n—oo

2.3. Definici6. Ha (a,) nem konvergens, akkor divergensnek nevezziik.

Kétféle specialis divergenciat mutatunk be.
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2.4. Definici6. Az (a,) sorozat a +oo-be divergdl, ha VK eR korldthoz meg-
adhaté N = N(K) kiiszébindex, hogy ha n > N akkor a, > K. FEzt igy
jeloljik

lim a,, = +o00.
n—oo

Szokdsos elnevezés, hogy (a,) minden hatdron til néd.

Hasonléan, az (a,) sorozat —oo-hez divergdl, ha VK-hoz AN = N(K) kii-
szobindex, melyre ha n > N(K), akkor a, < K. Iqy jeloljik:

lim a, = —oc.
n—oo

Masik fajta gyakori divergencia, ha a sorozat elemei tébb pont koriil torlod-
nak. Példaul, ha
Ap = (_1)71’

akkor ennek a sorozatnak elemei:
—1; 1, —1; 1; —1; 1;....
Ez a sorozat nyilvan nem konvergens.

Megadjuk az (el6z6 definicio atfogalmazasat, a hatarérték altalanos definici-

6jat.) Ez a kés6bbieken lesz fontos.
Definicio. Azt mondjuk, hogy

lim a, = A,
n—oo

ha A-nak tetszdleges U kérnyezetéhez megadhato N = N(U) kiszobindez,
melyre minden n > N esetén a,eU. Ez a definici6 alkalmazhato AelR vagy

A = 400 esetén is.

Megjeqyzés. Emlékeztetiink ra, hogy a kérnyezetet definiciéja szerint véges
Amellett U =(A—¢c,A+¢), igy

anel <= la,—A|<e.
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Ha A = 400 akkor ennek a kornyezetei a U = (K, 00) alaki, jobbrol végtelen
intervallumok. Ekkor
a,ell <— a, > K.

Megjegyzés. Konvergens sorozatbol akadrhany elemet elhagyva konvergens

marad, és ugyanahhoz a szamhoz fog tartani, mint az eredeti.

2.1.3. Konvergens sorozatok tulajdonsagai

2.2. Allitas. Ha egy sorozat konvergens, akkor korldtos.

Bizonyitas* Legyen (a,) konvergens, és
lim a, = A.

n—00

Ekkor ¢ = 1-hez is AN, hogy ha n > N akkor |a, — A| < 1, azaz a,e(A —
1,A+1). Legyen

m =min{a, : n < N}, M = max{a, : n < N}.

Mas széoval, legyen m az ay el6tti elemek koziil a legkisebb, és a legnagyobb
M. Legyenek tovabba

k = min{m, A — 1}, K = max{M, A+ 1}.

Ekkor
k<a, <K, VneN.

Megjegyzés. Az allitas forditva nem igaz: ha egy sorozat korlatos, akkor még

nem feltétleniil konvergens. Példaul a,, = (—1)".

2.3. Allitas. 1. Ha (a,) monoton novd sorozat, és felilrdl korldtos, akkor

konvergens.
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2. Ha (a,) monoton foqyd és alulrdl korldtos, akkor konvergens.

Bizonyitas® Az allitas két része ekvivalens. Belatjuk az 1. részt.
Tekintsiik a kdvetkez6 halmazt:
H = {a, : neN}.

Ekkor H feliilrél korlatos, és létezik sup(H ) =: A. Ez azt jelenti, hogy Ve > 0-
ra A — ¢ nem felsé korlat. Emiatt van H-ban ennél nagyobb elem. Jeldlje
ezt példaul ay, ekkor ay > A — . A monotonitas miatt az is teljesiil, hogy
Vn > N esetén a, = ay, azaz a, > A —¢e. Mivel a,, £ A minden n-re (hiszen
A fels6 korlat), igy

A—e<a, S A<A+e¢ ha n > N.
Példa. Gyakorlatokon beldttuk azt a két Ssszefiiggést, hogy
1 n 1 n+1
(1 + —) < (1 + —) VneN,
n n+1

(1 + l) <4 VneN.
n

Ez azt jelenti, hogy az alabbi sorozat:

1 n
an:(l—i——)
n

1 n
monoton novo és feliilrsl korlatos. Ezért (1 + —) konvergens.
n

és hogy

2.5. Definicid. Az e szamot - ez az Euler-féle szdm - gy definidljuk, mint

) 1\"
e := lim (1 + —) .
n—00 n

a fenti sorozat hatdrértéke:
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(e ~ 2,718281..., egy irraciondlis szam.)

2.4. Allitas. Tettszdleges aelR esetén

lim (1 + g) = e%
n

n—oo

. 1\" 1
lm (1——) = -.
n— 00 n e

2.1.4. A hatarérték alaptulajdonsagai

Példa.

2.5. Allitas. Legyen adott két konvergens sorozat (a,) és (by), melyekre

lim a, = A, lim b, = B.

n—oo n—oo

Ekkor

1. VceR esetén (ca,) is konvergens, és lim ca, = cA.
n—oo

2. (an + by) is konvergens, és lim (a, +b,) = A+ B.

n—oo

3. (anby) is konvergens, és lim (a,b,) = AB.

n—oo
Bizonyitas*
1. Legyen € > 0 tetsz6leges. Be kell latnunk, hogy

lca, —cA| < e

teljesiil bizonyos N indextdl kezdve.

¢ = 0 esetén az allitas trivialis.

31
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Ha ¢ # 0, akkor az (a,) sorozatot tekintve |€—|—hez 3N kiiszobindex,
c
melyre
]an—A|<ﬁ Vn > N.
c
Igy ha n > N, akkor
lcan — cA| = |¢| |an — A] < |c||%’ — e

2. Tetszoleges € > 0 szam esetén /2-hez 3Ny, hogy ha n > Ny, akkor

€

n— Al < =.

an — 4] < S

Hasonloéan 3/Ns, hogy ha n > N, akkor

€

b, — B| < —=.

b= Bl < 5

Igy N = max(Ny, Ny) vélasztassal n > N esetén

£
2

|an+bn—(A+B)\g\an—A|+]bn—B\<§+ _

3.Gyakorlat. lgazolja a 3. tulajdonsagot.

Folytatjuk az alaptulajdonsagok felsorolasat:
2.6. Allitas. Adott két konvergens sorozat (ay,) és (by,), melyekre

lim a, = A, lim b, = B.

n—o0 n—0o0

Ekkor
4. lim |a,| = |A]|.
n—oo

1
5. Tegyiik fel, hogy A # 0 és a, # 0. Ekkor lim — = —.

n—oo (0, A



2.1. SZAMSOROZATOK 33

5. Az eldzd feltételekkel

lim —
n— oo an

I
|

Bizonyitas*

4.

la,| — ]A|‘ < |a, — A| alapjan trivialis.

5. Feltessziik, hogy A > 0 és a,, > 0. Az allitas igazolasahoz felhasznaljuk,
hogy

1L 1| a, — A
an, Al an-A] T

A folytatast az olvasora izzuk.

Példa. Az (a,) sorozatot rekurzivan definidljuk a kovetkezdképp. Legyen

a; = 1
2
4
1 = %I Con>1 (2.1)

A sorozat minden tagja poziiv. Konvergens-e?

El6szor belatjuk, hogy a sorozat monoton novd, azaz a, < a,1; VneN.

Val6ban, teljes indukcioval:

5
1. n=1eseténa; =1¢ésay = 1 ezért a; < as.

2. Tegyiik fel, mar belattuk, hogy a,, > a,_1. Ekkor

a2 +4 _ad_ +4
An+1 = 4 2 A = Qp,

a kozépen levs egyenlétlenség az indukcios feltétel miatt igaz.

Belatjuk azt is, hogy a sorozat korldtos: igazoljuk, hogy a,, < 2 teljesiil Vn-re.

Ezt is teljes indukcioval bizonyijuk.
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1. n=1esetén a1 =1 < 2, igy az allitas igaz.

2. Tegyiik fel hogy a,, < 2. Felhasznaljuk az indukcios feltételt:

az+4 4+4

< 2.
4 4

p4+1 =

A sorozat monoton névé és feliilrsl korlétos, ezért konvergens. Legyen

A= lim a,.
n—oo

Az eredeti (2.1) egyenletben hatarértéket véve azt kapjuk, hogy

. ai+4 A*+4
lim = ,
n—oo 4 4

ezért A2 14
_|_
A= .
4

A fenti egyenlet egyetlen megoldésa A = 2, ez a sorozat hatarrtéke.

2.1.5. Részsorozatok

Adott az (a,) sorozat. Egy index-sorozatot gy definidlunk, hogy minden

keN természetes szaimhoz hozzarendeliink egy ni-val jelolt indexet, melyekre
Ny <ng < ...< Nk <Ngg1,---
teljesiil. A részsorozat elemei a,,,, an,, an,, ... lesznek.

Pl. (ag2,) a paros indext tagokbol &llo részsorozat: asg, a4, ag, . . ..

2.1. Tétel. Minden sorozatnak van monoton részsorozata.

Bizonyitas* A sorozat egy a, elemét csticsnak nevezziik, ha

Ap > Ym > n,



2.1. SZAMSOROZATOK 35

azaz nincs nala nagyobb az utdna kovetkezd elemek kozt. Két eset lehet.

1. eset. Ha végtelen sok csiics van, melyek indexei n; < ny < ng < ..., akkor

az (ayn, ) részsorozat monoton fogyo.

2. eset. Ha csak véges sok cstics van, akkor legyen az utolsé csiics indexe n,
ha egyaltalan nincs csics, akkor n = 0. Definidljuk n,-t, mint n; := n + 1.
Ekkor, mivel a,, mar nem csdcs, ezért van nala nagyobb elem, legyen ez
Ap, > Qp,, ahol ny > n;. Hasonldéan, mivel a,, nem csics, ezért van ennél
nagyobb a,,, melyre ns > ny és a,, > an,. Igy tudunk monoton névé

részsorozatot konstrualni.
Egy alapvetd fontossagu tétel a Bolzano-Weierstrass tétel, ami a konver-
gencia és korlatossag osszefiiggésének mésik irdnyarol szo.

2.2. Tétel. Minden korldtos sorozatnak van konvergens részsorozala.

Bizonyitas. Tekintsiink egy (a,) korlatos sorozatot. A 2.1 Tétel szerint van
(an,) monoton részsorozata, amely szintén korlatos. Ezért ez a részsorozat

konvergens is.

2.7. Allitas. Az (a,) sorozat nullsorozat, ha hatdrértéke .
1. (a,) konvergens és hatdrértéke A azzal ekvivalens, hogy (b,) = (a, — A)
nullsorozat.
2. Ha (ay,) nullsorozat és (b,) korldtos, akkor (a,by,) is nullsorozat, azaz

lim a,b, = 0.
n—oo

3. Tegyiik fel, hogy (a,) divergens és lim |a,| = co. Legyen
n—oo
1
—, ha a, #0

0, ha a,=0
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Fkkor lim b, =0, azaz (b,) nullsorozat.
n—oo

4. (a,) pontosan akkor nullsorozat ha (|a,|) nullsorozat.
5. Legyen (a,) divergens sorozat, lim a, = oo. Legyen (b,) olyan alulrdl
n— o0
korldtos sorozat, melynek also korldtja pozitiv. Ekkor:
lim a,b, = oco.
n—oo
Bizonyitas*
2. Ha (b,) korlatos, akkor |b,| < K, minden n-re. Tetsz6leges € > 0 esetén
a ¢/ K-hoz létezik N:
lan| < =~ V¥n>N
an| < — n
K
Ekkor
lanbn| = |an] - |ba] < %K -
3. Legyen ¢ > 0 tetszbleges. Mivel |a,| — +oo, ezért K = 1/e-hoz
dN = N(K) kiiszobindex, hogyv Vn > N-re |a,| > K(> 0). Ekkor
1 1
byl =— < —=
bl = <& =°
5. Legyen (b,) egy porzitiv also korlatja k:

Ibu| = b, >k >0

Legyen KelR tetszsleges pozitiv szam. Ekkor K/k-hoz IN kiisz6bin-
dex, melyre ha n > N, akkor a,, > K/k. Ekkor:

K
[y A e
Unn = ¢
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2.1.6. Cauchy sorozatok

2.6. Definicid. Az (a,) sorozat eleget tesz a Cauchy feltételnek, ha Ve > 0-
hoz AN kiiszébinder, N = N(g), melyre teljesiil, hogy

la, —an| < e Vn,m > N.
Ha egy sorozat kielégiti a Cauchy feltételt, akkor ez Cauchy sorozat.

2.3. Tétel. Eqy (a,) sorozat pontosan akkor konvergens, ha Cauchy sorozat.

Bizonyitas. Az egyik iranyt igazoljuk. Tegyiik fel, hogy (a,) konvergens:
lim a, = A.
n—oo

Ve > 0 mellett az /2 szamhoz N kiiszébindex, melyre Yn,m > N esetén

€ £
n— Al < =, m— Al < =.
an— Al <5, lam — A < 5

Ekkor a haromszog egyenlGtlenség miatt

|an —am| = [(an —A) + (A —ay)| <
€ €
< lap— Al +|am — A < = 4= =¢.
< la | + |a | < 5 tg=¢
Példa. Legyen
“ 1 11 1
a=> =14+
a ;k to gt
Becsiiljiik meg az n-dik és 2n-dik tag kiilonbségét:
2n
1 1 1 1
fon — 4 Z k n+1+n—i—2jL +277,
k=n-+1
- 1 N 1 P 1 1
on " 2n T 2n 2 2
Tehat azt kaptuk, hogy
1
agn—an>§ vn.

1
Ezért € = 3 esetén nem teljesiil a Cauchy kritérium, (a,) nem konvergens.
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2.1.7. Konvergenciidk Osszehasonlitasa

2.8. Allitas. (Konvergencia monotonitdsa) Tegyiik fel, hogy az (a,) és (by,)

sorozatok konvergensek, jeldlje

lim a, = A, lim b, = B.

n—oo n—o0

Ha ANy, hogy a,, < b, teljesil ¥'n > Ny, akkor A < B.

Bizonyitas. Trivialis.

Megjegyzés. Bér a feltételben szigorti egyenlGtlenség all, a hatarértékben

egyenldség is el6fordulhat. Példaként nézziik ezeket a sorozatokat:

1 1
a, = — < b, =—.
n? n
Nyilvan
1 1
— <= Vn > 2,
n n

azaz a, < b, minden n > 1 esetén. Mégis hatarértékben

1 .1
lim — = lim — =0.
n—oo N, n—oo 1,

2.4. Tétel. (Renddr-elv) Tegyiik fel, hogy az (x,) és (yn) sorozatok egy Ny

indextdl kezdve kézrefognak egy harmadik sorozatot:
Ty < Zp < Un Vn > Np.
Tegyiik fel azt is, hogy (x,,) és (yn) konvergens sorozatok a hatdrérté:
lim z, = lim y, = 2.
n—o0 n—o0

FEkkor (z,) is konvergens, és

lim z, = z.
n—oo
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S
*
x
3
nie >0
-
wl o® @
>~ o po
o (23]
(X ]
L 2]
o
e
)
L
oD
-
-
-

Bizonyitas. Legyen ¢ > 0 tetszéleges. Ekkor 4N; és 3N,, melyekre
|z, —z| <e han> Ny, |y, — 2] <& han> N,
Ekkor n > max(Ny, N1, N2) esetén
z2—e< <2y Sy < 24e¢,
amibdl a konvergencia kovetkezik.

Példa. TLegyen a, = /n. Belatjuk, hogy lim a, = 1. Azt tudjuk, hogy
n—oo
1 < a,, minden n > 1-re. Ekkor

| <a, - Q/ﬁ.\/ﬁ.1,,,.1g\/ﬁ+\/ﬁ+1"'+1:
n

2yn n—2 2 n-—2 2
=—+ =—+ —<—
Az els6 sorban a szamtani és mértani kozép kozti egyenlGséget hasznaltuk.
Azt kaptuk, hogy

+ 1.

2
l1<a, < —=+1.
n

\/_
Legyen: b, = 1 (minden eleme 1) és ¢, = 2/y/n + 1. Mindkét sorozat

hatarértéke 1, és b, < a, < ¢, minden n-re. Ekkor lim b, =1, lim ¢, =1,

n—oo n—oo
. . 1
ezért lim a, = 1. Hasonl6éan belathat6: Lim
n— o0 n—oo /M

=1.

Példa. (Az el6z6 példa kovetkezménye.) Legyen p > 0 tetszbleges, a, := /p,
lattuk, hogy lim {/p = 1, most masképp is belatjuk. Tetszsleges p > 0 esetén
n—oo
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igaz, az 1/n < p < n bizonyos N utan (azaz 3N index, hogy 1/n < p < n,
minden n > N esetén). Ekkor:

1
vi<{*/13<{1/ﬁ,
n

és emiatt
1< lim ¢/p <1

n—oo

2.9. Allitas. (Osszehasonlito kritériumok)

1. (Majordns kritérium) Tegyik fel, hogy (a,) nullsorozat, és (b,) olyan
sorozat, melyre |b,| < |a,| minden n-re (vagy rigzitett N mellett min-
den n > N-re). Ekkor lim b, =0

n—oo

2. (Minordns kritérium) Tegytk fel, hogy (a,) +oo-be divergdl, azaz

lim a,, = +o00.
n—oo

Teqgyiik fel azt is, hogy van olyan N index, melyre b, > a,, han > N.
Ekkor lim b,, = +o0.

n—oo

Figyekelem! A lim a,b, =7 + 0o - 0" tipust hatarérték barmi lehet.

n—oo

4.Gyakorlat. Vajon lehet-e —oo is egy felnti tipust hatarérték?
0

Emlékeztetiink arra, hogy

0, ha [p| <1
N 1, ha p =
lim p" =
n—00 00, ha p>1

divergens, ha p < —1
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1. Példa. Legyen a, = np™. Belatjuk, hogy ha 0 < p < 1, akkor

lim np™ = 0.
n—oo

Atirjuk a sorozat elemeit ilyen alakba:
a0 = " = (/)"

Mivel /n tart az 1-hez és 1/p > 1, ezért AN kiiszobindex, hogy ha n > N,
akkor {/n < 1/p. Ezekre az n-ekre

]{L/ﬁp|<%p:1, Vn > N.
Tehat 1étezik 0 < ¢ < 1, melyre
Unp < q < 1.
Ezért 0 < a, < ¢", han > N, igy a rendérelv alapjan nh_)rgo a, = 0.

1.7 Példa. Legyen keN tetszoleges rogzitett természetes szam, és tekintsiik

az alabbi sorozatot valamely 0 < p < 1 paraméterrel:
a, =n"p".

Ekkor lim a, = 0.

n—00

Bizonyitas* Az el6z6 esethez hasonléan a, = (VnFp)". Mivel /n — 1,
ezért Vn* — 1, és emiatt vVn* < 1/p, ha n > N. A bizonyitas ugyanigy
megy, mint a k = 1 esetben.

n

3
2. Példa. Legyen a, = —- Belatjuk, hogy lim a, = 0.
n: n—00

Legyen n > 3. Ekkor

ay, = - — (222
1-2-3-...-n 1-2-3-...-n 12374

3" 3-3-3-...-3 333.3 3
n
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2.7 Példa. Legyen aelR tetszéleges. Ekkor az

a™
ap = I
n:

sorozatra lim a, = 0 most is igaz.
n—oo

2.1.8. Szamtani atlag-sorozatok”

(Kiegészitd tananyag)

Tetsz6leges (ay,) sorozatbél konstrualhatunk egy szdmtani dtlag sorozatot a

kévetkezSképpen:
a+...+ay

n
tehat az 1j sorozat n-dik eleme az eredeti sorozat elsé n elemének szamtani

A, =

atlaga. Ennek konvergenciajat vizsgaljuk ebben a fejezetben.

Els6ként nézziik meg mit allithatunk, ha a kiindul6 sorozat nullsorozat.

2.10. Allitas. Adott (a,) nullsorozat. Legyen

n

coida, 1
An:u:_z%

n n
k=1

Ekkor lim A, = 0.
n—o0

Bizonyitas. Az (a,) nullsorozat korlatos, |a,| < K fels6 korlat. A harom-

sz0g egyenlGtlenség miatt:

1 — 1 —
Aa = —1> < =3 fal
k=1 k=1

Legyen € > 0 tetszGleges. e/2-hoz létezik N kiiszébindex, hogy ha n > N,
akkor |a,| < /2. Ezekre az n indexekre

la1| + ...+ |an| + lans1| + -« + |an] <

Ay <
n
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N N N
S R AR AR Al N
n 2 n n 2

Szeretnénk elegend@en nagy n-et valasztani, melyre az is teljesiil, hogy

Ng <€
n = 2
Kis atalakitassal azt kapjuk, hogy ez valoban igy lesz, ha
2NK
€

Azt kaptuk tehat, hogy ha n > max(N, N;), akkor

n 2>

= N;.

19 9
An<_ 5 <
| \_2—|—2 €

ezzel az Allitast belattuk.

Megjegyzés. Az allitas megforditasa nem igaz!

A, —0 #F= a,—0.

Ellenpélda: Ha a, = (—1)", akkor

0, ha n=2k
An = 1 )
——, ha n=2k+1
n

tehat A, — 0, bar az eredeti sorozat divergens volt.

2.1. Kovetkezmény. Legyen (a,) konvergens sorozat, melynek hatdrértéke
A. Ekkor a szdmtani dtlag sorozat is konvergens, és hatdrértéke ugyanaz:

lim A, = A.

n—oo

Bizonyitas. Tudjuk, hogy lim a, = A azzal ekvivalens, hogy (a, — A)
nullsorozat. Legyen most b, :ngon — A. Ennek a sorozatnak a szamtani atlag
sorozata

byt +by a—A+...a,—A a+---+

Bn: =
n n n

U _A— A, — A
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Az el6z6 tétel alapjan
lim B, =0,

n—o0

ahonnan azonnal kdvetkezik, hogy

lim A, = A.

n—o0

2.11. Allitas. Legyen (a,) pozitiv tagi sorozat, ennek mértani dtlag sorozata:
G, = a,...a,
Tegyiik fel, hogy (a,) nullsorozat, ekkor

lim G,, = 0.

n—oo

Bizonyitas. A szamtani-mértani kézép kozti egyenlStlenség miatt
0<Gn <Ay,

és mivel (A,) nullsorozat, ezért (G,,) is az.

2.1.9. Torl6édasi pont

2.7. Definicid. A telR szam torléddsi pontja (a,) sorozatnak, ha t barmely

kérnyezetében végtelen sok tagja van a sorozatnak.

Mas szavakkal a t torlodasi pont, ha Ve > 0 esetén a (t — e, t+¢) intervallum-
ban a sorozatnak végtelen sok tagja van. Lényeges kiilonbség a hatarértékhez
képest, hogy a hatarérték tetszdlges kornyezetén kiviil csak véges sok tagja

lehet a sorozatnak.

Példa. Tekintsiik az a,, = (—1)" sorozatot. Ennek két torlodasi pontja van,
tlzléStQZ—l.
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Példa. "Osszefésiilt sorozatok". Legyen

n
n+1

1
ap = —, bn =
n
Definialjunk egy harmadik sorozatot a kovetkezGképpen:

a, ha n=2%k
Cp =

b, ha n=2k+1

A (¢,) sorozatnak két torlodasi pontja van, 0 és 1. Ez a sorozat nem konver-

gens.

2.12. Allitas. Ha az (ay,) sorozat konvergens, akkor egyetlen torléddsi pontja

van, ami eqyben a hatdrértéke is.

Megjegyzés. A fenti allitds megforditasa nem igaz. Az a sorozat, aminek
egyetlen torlodési pontja van, nem feltétleniil konvergens. Példa erre a ko-

vetkezd sorozat

1
-, ha n=2k+1
n

(=1)™?n ha n =2k

A sorozat elemei tehét

1 1
1, =2, =, 4, =, —6,...
3 5
A sorozatnak egyetlen torlodasi pontja van, a 0, de nyilvan nem konvergens,

hiszen nem korlatos.

Definicio* Ha a torléddsi pontok halmaza felilrél korldtos, akkor ezek a
legkisebb felsd korldtjdt limes superiornak nevezzik. (A torldddsi pontok

supremuma.) Jeldlése:

lim sup(a,) = lim(a,).
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Ha a torloddsi pontok halmaza alulrol korldtos, akkor ezek a legnagyobb also

korldtjdt limes inferiornak nevezziik, ennek jeldlése:

liminf(a,) = lim(a,).

Példa. Jogos kérdés, vajon van-e olyan szamsorozat, aminek végtelen sok

torlodasi pontja van? Egy "egyszerd" példat mutatunk:
1, 1,2, 1,2,3, 1,2,3,4, ...

Ennek a sorozatnak minden neN torlodési pontja lesz.

2.2. Végtelen sorok

Emlékeztetiink ré&, hogy sorozat valés szdmok rendezett halmaza. Sor alatt

valos szamok Osszegét értjiik, ahol az dsszeadandok szdma végtelen:

ap+as+az+...+a,....

Formaélisan, végtelen sor alatt egy végtelen dsszeget értiink, ami ilyen alaki:

)
E Ay, .
n=1

Kérdés, hogy milyen értelmet tulajdonithatunk egy ilyen végtelen 6sszegnek.

ZENO paradozon. (Az okori gordg gondolkodok hagyték rank ezt az érdekes

paradoxont.) A sétaloé ember az ajtotol szeretne eljutni a falig.

A sétalo elmegy e tav feléig. Ezutan a maradék tav feléig, és igy tovabb.

Végtelen sok lépés, és soha nem ér oda... Valoban?

Persze TUDJUK, hogy eléri a falat - ha akarja. A paradoxon feloldasa az a

tény, hogy végtelen sok szdm Gsszege lehet véges.
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fﬁhsfn

2.2. 4bra. A Zeno paradoxon.
2.2.1. Végtelen sor konvergenciija

2.8. Definici6. A végtelen sor jelolése: (Z a,). A végtelen sor konver-

gens, ha a részletésszegek sorozata

n
Sy = g ar, neN
k=1

konvergens. FEkkor azt mondjuk, hogy a sor O0sszege

(0]

E a, = lim s,.
n—oo

n=1

1
Példa. Legyen a,, = o ekkor a végtelen sor

Ll
sty tgto

Teljes indukcioval belathato (HF), hogy

RS SN PR
8”_2 1Tt = o

Tehat (s,) konvergens és 1-hez tart, ezért

=1

n=1
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Példa. Legyen a, = (—1)" , ekkor a végtelen sor
—1+1-14+1-14+1—-1+....

A részletosszegek sorozata:

0 ha n=2k,
Sp =
—1 ha n=2k+1.

Mivel az (s,) sorozat nem konvergens, a végtelen sor tsszege nem létezik.

2.9. Definicid. Ha a részletisszegek (s,) sorozata nem konvergens, akkor

azt mondjuk, hogy a végtelen sor divergens.

o0

Példa. Legyen a, = ¢"'. A Z ¢" ! végtelen sor elnevezése mértani sor.

n=1
Kérdés, mikor konvergens a sor, és mennyi az alabbi 0sszeg:

l+q+¢+...=?

Az els6 n tag Osszege

1 — g™
sn:1+q+q2+...+q”_1:1_qq, ha g # 1.
Tgy
(L 1
m— <
dm s =90 400 ha ¢>1,
A  ha ¢<-—1.

2.13. Allitas. Ha (Z a,) konvergens, akkor (a,) nullsorozat.
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Bizonyitas. Tekintsiik az alabbi részletdsszegeket n > 2 esetén:

-1

n
Sn = E a, SnZE Q.
k=1

k=1

3

Tudjuk, hogy
lim s, =95, lim S, =5,

n—oo n—oo
ezért

lim a, = lim (s, — S,) =0.

A fenti allitas masik oldalrél megfogalmazva a Divergencia teszt:
Divergencia teszt. Ha (a,) nem nullsorozat, akkor (Z a,) divergens.

Megjegyzés. Az allitds megforditasa nem igaz. Ha (a,) nullsorozat, akkor
(3" a,) lehet divergens is.

1 1
Példa. Tekintsiik a,, = — valasztassal a (Z —) végtelen sort. A sor Ossze-
n n

adandoi 0-hoz tartanak. A részletosszegek sorozata
n
1
Sp — Z %
k=1
Err6l mér belattuk, hogy nem konvergens, lim s, = 400.
n—o0

Példa.

oo

1
2ty

n=1
Elemi tortekre bontva az O0sszeadandokat

n

-
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ezért

lim s, = 1.
n—oo

A sorozatoknal tanultakbol kovetkezik, hogy a végtelen sor pontosan akkor

konvergens ha (s,,) teljesiti a Cauchy feltételt.
Cauchy feltétel sorokra. A (> a,) végtelen sor teljesiti a Cauchy feltételt,

ha ¥e > 0-hoz AN = N(¢) kiiszébindex, melyre ¥Yn > m > N esetén

n
(amer - an =] >l <e
k=m+1

Ez azt jelenti, hogy a IV kiiszobindex utan barmennyi elemet adunk 0Ossze,

az Osszeg kisebb lesz, mint €.

2.2.2. Osszehasonlité kritériumok

Az alabbi két tétel azonnal kiovetkezik a sorozatokra igazolt Osszehasonlito

kritériumokboél.

2.5. Tétel. 1. (Majordans kritérium) Tegyiik fel, hogy adott két sor, mely-
re ANeN:
0<y, <a, Vn> N

Ha (> ay) sor konvergens, akkor (D> b,,) is konvergens.
2. (Minordns kritérium) Tegyiik fel, hogy ANeN:
b, > a, Vn > N
Ha (> a,) divergens és
5= e
n=1

akkor (3_by,) is divergens, és Y>> b, = +o0.
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=1
Példa. Konvergens-e E —7
n
n=1

Felhasznaljuk azt a becslést, hogy

1 1
e Wn>2
n? n(n—1)

Ekkor alkalmazhatjuk a majorans kritériumot, hiszen a
>
“—~n(n—1)

sor konvergens. Tehéat belattuk, hogy

1
D<o
n=1
Megjegyzés. Lattuk, hogy
=1 =1
— = +00, — < 00.

A késGbbiek soran igazolni fogjuk, hogy a

=1

sor akkor konvergens, ha a > 1.

Példa. Végtelen tizedestiortek értelmezése. Egy végtelen tizedestort a (0, 1)

intervallumban igy irhato:
[ee]
0,a1a0a3... = Zaklo’k, 0<aqap<9.
k=1

A fenti sort majoralni tudjuk, a

9 i 107% < 0
k=1
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mértani sorral, tehat konvergens.

Példa. Képezziink sokszoget egy szabdlyos, a oldala, T teriileti haromszog-

b6l a kovetkezd rekurziv eljarassal:

1. Osszunk minden oldalt 3 egyenl6 részre.
2. Minden kozéps6 oldal szakaszra illessziink szabalyos haromszoget.

3. Ismételjiik meg az el6z8 lépéseket.

Az igy kapott végtelen oldalu sokszdg az ugynevezett Koch-gérbe. Mennyi

az igy kapott alakzat keriilete és teriilete?

EAES

2.3. dbra. A Koch gorbe konstrukciojanak 2. 3. és 4. 1épése.

Megoldas:

1. A Koch-gorbe keriiletét egy sorozat hatarértékeként kapjuk. Minden
lépésben minden oldal hossza — -szorosara nd, mivel minden oldal ko-

zépsé harmadat néla kétszer hosszabbra cseréltiik. A keriilet tehat:

4 n
K, = 3a lim (§) =00

n—o0

2. A Koch-gorbe teriilete geometriai sor hatarértékeként all els. Az egyes
lépésekben Gjonnan illesztett haromszogek szdma az oldalszammal egyen-

16 (azaz lépésenként 4-szeresére né), melyek terilete az el6z6 haromszo-

gek teriiletének §—szerese. E két tényez§ figyelembevételével a teriilet
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hatarértékére felirhaté geometriai sor:

T T T
To=T+3=+3=4+3=16+... =
+35 +3 A+ 35516+

T I /4\" T 1 3T 8T
— T+ 3 lim = Z) =74+ = — T4 =22
* ninéogz(g) M T A

Megjegyzés. Erdekes belegondolni abba a ténybe, hogy a kapott alakzat
véges teriiletét onmaga kicsinyitett masaibol el6allo végtelen hosszi gorbe

hatarolja. A Koch-gorbe tipikus példaja az énhasonl6 fraktaloknak.

2.2.3. Abszolat konvergens sorok

2.10. Definicié. A (> a,) végtelen sor abszolit konvergens, ha az abszo-

litértékekbdl dllo (D |a,|) sor konvergens.

2.14. Allitas. Ha (> a,) abszolit konvergens, akkor konvergens is.

Bizonyitas. Belatjuk a Cauchy kritérium teljesiilesét. A haromszog egyen-

I6tlenség miatt

n n
D al < Y fal,
k=m+1 k=m+1

és a jobboldal tetszGlegesen kicsi lehet elegendGen nagy m < n esetén az

abszolut konvergencia miatt.

Az allitds megforditasa nem igaz, latunk majd ra ellenpéldat.

2.11. Definicié. A (> a,) végtelen sor feltételesen konvergens, ha kon-

vergens, de nem abszolit konvergens.
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2.2.4. Hanyados-kritérium

2.6. Tétel. (D’Alemert féle hanyadoskritérium)

1. Tegyiik fel, hogy Jqe(0, 1), melyre

Qp+1
G,

<g<l

teljesiil minden neN-re. Akkor a sor abszolit konvergens.

2. Tegyiik fel, hogy

a
nrL >, vn.
aTL
Akkor a sor divergens.
Bizonyitas.
1. A feltétel szerint
a a a
=l<q |2 <q <y
aq a Qp,

Ezeket Gsszeszorozva azt kapjuk, hogy

An+1
3]

<q"

— Y

n

azaz |any1| < |ay| - ¢ Igy a majordns kritérium szerint az abszolif-

értékekbdl 4llo sor konvergens.

2. Ha
an+1

Qn

> 1

bl

akkor |a,41| > |anl, tehéat (a,) nem lehet nullsorozat. (Példaul € = |a4|-
hez mér nincs olyan N kiiszobindex, hogy |a,| < ¢ teljesiilne n > N
mellett.)
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Megjegyzés. FElegendd a fenti tételben, hogy a feltételek fix NeN mellett

minden n > N esetén teljesiilnek.

Megjegyzés. A tétel els6 részéhez fontos a g < 1 szam létezése, nem lenne

elegend§ azt mondani, hogy

Ap+1

Mutatunk ra ellenpéldat.

Példa. Legyen a, = 1/n. Ekkor

[e.9]

1

és itt az egymast kovets elemek hanyadosara mindig teljesiil, hogy

a n
n+1 _ < 1’
an, n+1

de nem tudunk koz6s ¢ < 1 fels6 korlatot mondani. A sor nem is konvergens,

mint mar lattuk.

2.7. Tétel. (Hanyados-kritérium gyengitett vdltozata.) Tegyiik fel, hogy lé-

tezik az aldabbi hatdrértek:

. An+1
lim

n—oo

= A.

Qn

Ekkor

1. ha A <1, akkor a sor abszolit konvergens,
2. ha A > 1, akkor a sor divergens,

3. ha A =1, akkor a sor lehet konvergens és divergens is.

Bizonyitas* Visszavezetjiik az el6z6 tételre.
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1. Tegyiik fel, hogy A < 1. Ekkor az ¢ = %—hoz is AN index, melyre
minden n > N esetén:

a
| TL+1|_A‘<€’
a

n

azaz, A1
il g 200
an, 2
2. Tegyiik fel, hogy A > 1. Ekkor 4N,
fntl) >,
Qn

minden n > N esetén.

3. Tegyiik fel, hogy A = 1. Mindkét lehetséges esetre mutatunk példat.
Legyen a, = 1/n, ekkor

. An+1
lim

=1,
n—oo a/n
és -
Z Ay, = 00.
n—1
Legyen a, = 1/n?, ekkor
lim 22—
n—o0 a/TL
és -
S, < oo
n—1
Példa. Legyen
1
ap = —.
n!
Ekkor a végtelen sor
1 1 1 1
+ 51 + 5 + 1 + ...
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A hanyados kritérium szerint

1
Gyt (n+1)! 1 1
= = < =-<1
ap 1 n+1l 2 ’
n!

igy a sor konvergens.

2.2.5. Gyokkritérium

A korabbi fejezetben szereplé héanyadoskritérium helyett hasznéalhatjuk az
a.n. gyokkritériumot. Az alabbi tételek bizonyitasa teljesen hasonlo a hanya-
doskritériumra vonatkoz6 megfelels tételek bizonyitédsahoz, igy nagyrészt el-

hagyjuk.

2.8. Tétel. (Cauchy féle gyokkritérium) Adott az (a,) sorozat.

1. Tegyiik fel, hogy létezik olyan 0 < q < 1 szam, melyre

Vlan| < q

teljestil minden neN-re. FEkkor a () a,) sor abszolit konvergens.

2. Tegyiik fel, hogy {/|an| > 1, minden neN-re. Ekkor a (>_ a,) sor di-

vergens.
Bizonyitas.

1. A feltétel szerint {/|a,| < ¢, ahol 0 < ¢ < 1, igy igaz az is, hogy
lan| < q", VneN.

Mivel

o
Zq” < o0
n=1
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ezért a majorans kritérium alkalmazéasaval ebbdl kovetkezik, hogy
[o.@]
> lan| < oo
n=1

2. Mivel {/|a,| > 1, igy emiatt |a,| > 1, azaz (a,) nem nullsorozat, tehat
a <Z an) sor nem lehet konvergens.

2.9. Tétel. (Gyengitett gyokkritérium) Adott a (> ay) sor. Tegyiik fel, hogy
létezik az aldbbi hatdrérték:

lim {/|a,| = A.
n—oo

Ekkor

1. Ha A < 1, akkor a (> ay,) sor abszolit konvergens,
2. Ha A > 1, akkor a (3 a,) sor divergens,
3. Ha A =1, akkor a kritérium alapjdin nem donthetd el a sor konvergen-

cidja.

2.2.6. Leibniz sorok

2.12. Definicié. (> a,) Leibniz sor, ha az (a,) sorozat rendelkezik az

aldbbi hdrom tulajdonsdggal.

1. Viltakozo eldjeltd, azaz ana,1 <0,
2. (lan|) monoton fogyd,

3. (an) nullsorozat.
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Alternativ definici6é. Adott egy (b,) pozitiiv tagi szamsorozat, mely mo-

noton foqyd nullsorozat. Ekkor a

o0 [e.e]

Z(—l)"bn, Z(_l)n+lbn

n=1 n=1

alaki sorok Leibniz tipusiak.

2.10. Tétel. Minden Leibniz sor konvergens.

Bizonyitas.

2.4. abra. A Leibniz sor konvergencia bizonyitasanak alapotlete.

Feltehet6, hogy az els§ tagra a; > 0. Ekkor a paratlan indext tagokra

asnt1 > 0, a paros indexd tagokra as, < 0 teljesiil. Képezziik az alabbi

sorozatokat:
ap i=a1+a
! ! ? = a1 < B
51 = ax
Q9 :=ai +ag+as+a
2 1 2 3 4 = <
62 =a1+ag+as

Az (a,) sorozat abszolutértékének monotonitésa miatt

o < g < ... 51>52>...
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A Cantor féle kozospont tételt fogjuk alkalmazni az I} = [ay, 5], [ =

[ag, Pa], ... intervallum sorozatra. Kénnyen lathato, hogy

- I,41 C I, egymasba skatulyazott zart intervallumok,
- az intervallumok hossza: |I1| = |as|, |I2] = |a4| ..., ezért
lim |I,| = 0.
n—»00
Mivel a Cantor tétel feltételei teljesiilnek, ezért 1étezik egyetlen kozos pont,

s, melyre

s = lim o, = lim 3,
n—oo n—oo

ami egyben a kiindulé sor Osszege is lesz.

Példa. Tekintsiik az alabbi végtelen sort:

1 1 1 N
2 3 4
Lathato, hogy ez Leibniz-tipust, ezért konvergens. Létezik a részletosszegek
hatarértéke:
1 1 1 - 1
l—=4=-=—=-4+...= 1" < oo
> 371" nz:} L <

De tagok abszolut értékeinek Gsszege méar nem véges! Hiszen

[e.e] 001
) R

n=1 n=1

1
—1)ntiz
(=)~

ahogy korabban mar belattuk. Tehat ez a sor feltételesen konvergens.

2.15. Allitas. (Osszeadds sorrendje és a sor sszege)

1. Abszolit konvergens sor esetén a sor dsszege fiiggetlen az dsszeadanddk

sorrendjétol.
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2. (Riemann-féle dtrendezési tétel.) Feltételesen konvergens sor esetén a

sor dtrendezésével az dsszeq barma lehet.

A fenti Allitast itt nem bizonyitjuk.

Megjegyzés: Mivel a

Syt

n=1

sor feltételesen konvergens, igy az Osszeg fiigg az Osszeadés sorrendjétdl.
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3.1. Bevezetés

3.1.1. Alaptulajdonsagok

Adott két halmaz X és Y, valamint egy f : X — Y leképezés. Ez azt jelenti,
hogy VzeX elemhez hozzarendeliink az Y halmazbol egyetlen y elemet, és ezt
igy jeloljiik:

y = f(x).

Szokasos még az x — y jelolés is.

3.1. abra. Fiiggvény, egy hozzarendelés.

A fliggvény értelmezési tartomanyat D, jeloli (ha kiilon hangsalyozzuk,
melyik fiiggvényrsl van sz6). A fiiggvény értékkészlete mindazon yeY ele-

mek halmaza, melyek elGallnak képként, azaz
Ry ={yeY : 3FzeX, y= f(x)}.
3.1. Definici6. Az [ fiigguény injektiv, ha f(x1) # f(x2) bdrmely x, #

xoeDy esetén. A figguény sziirjektiv, ha minden yeY - hoz létezik x, melyre
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y = f(x). A figgvény bigektiv, ha injektiv és sziirjektiv, azaz a hozzdrendelés
kélcsonosen eqyértelmi X és'Y kézotl.

3.2. Definicié. Adott két figguény, f: X —Y ésqg:Y — Z. Az dsszetett
fliggvény X — Z tipusi hozzdrendelés lesz, melyre v — g(f(x)). Jele: gof,

ahol g a kiilsé fiigguény, f a belsé figguény. Ertelmezési tartomdnya

Dyos ={z: zeDy, f(x)eD,}.

Példa. f(x) = 2%, g(x) = sin(x). Ekkor fog és go f is értelmezhetd:

fogla) =sin’(z),  gof(z)=sin(z?).

Ha a fiiggvény bijektiv, akkor létezik inverz fliggvény
iy = X,

melyre

' (f(x) ==, VreX.

Illetve hasonloképpen

FU W)=y, VyeY.

Megjegyzés. A fiiggvények esetén az f~! jelolés nem jelent reciprokot!

Egészen mast jelent, mint az — fiiggvény.

f
A fenti definiciok tetszGleges X és Y halmazok esetén értelmezhetGek.
Egyelére a csak valés fliggvényekkel foglalkozunk, tehat feltessziik, hogy

X CRR, Y CR.

3.3. Definici6. Adott D C IR és f: D — R eqy valds fiigguény. A fliggvény

grafijdt igy értelmezzik:

{(z, f(x)) : zeD} C R2
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Megjegyzés. Valos fiiggvények esetén szemléletesen az inverz fliggvény grafjat
ugy kapjuk, hogy az = és y tengelyeket felcseréljiik. Fgy fiiggvény akkor
invertalhat6, ha barmely x tengellyel parhuzamos egyenes legfeljebb csak
egy pontban metszi a grafot.

y e F } I
s

Y L3l mememmmm -
1'2 | “/ E
Lyl - : & !
%2 £ e ;
1 : f" ; :
Y b=* A 1
: £ H i

‘.'" /'-’ 0 y’ yz y3 y

3.2. 4bra. Fiiggvény és inverze.

3.4. Definici6. Az f figgvény alulrol (felilrdl) korldtos, ha Ry alulrol (fe-
lilrél) korldtos. Az f figguény korldtos, ha Ry korldtos.

Megjegyzés. Masképp fogalmazva, az f fliggvény korlatos, ha 3K, hogy
|f(z)| < K, VxeDy.

3.5. Definicio. Az f fiigguény pdros, ha

1. Dy szimmetrikus, azaz veDy esetén —xeDy is teljesiil,

2. f(=z) = f(z), YxeDy.

Az f figguény pdratlan, ha Dy szimmetrikus és f(—x) = —f(x), VzeDy.

Példa. Az f(z) = 2? fiiggvény péros, az f(z) = 2° fiiggvény paratlan.
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3.6. Definicié. Az f fiiggvény monoton nové, ha Vr,, xeeDy esetén
1 < T9 —— f(l'l) < f(l’g)
f szigorian monoton nové, ha minden x1,x2eDy esetén

T < Ty — f(.%'l) < f(l'g)

Az f figguény monoton fogyd, ha Vx,,x.eDy esetén
T <xy = f(z1) > f(22).

f szigorian monoton fogyo, ha Vx,,x.eDy esetén
T <xy = f(r1) > f(22).

3.7. Definicio. Az f fiiggvény periodikus p periddussal, ha
flx+p) = flx) Y,z + peDy.

Megjegyzés. Ha egy fiiggvény periodikus p periddussal, akkor p tetszéleges
egész szamu tObbszorose is periddusa lesz.

3.1.2. Elemi fiiggvények*

(Kiegészitd anyag)

Felsoroljuk az elemi fliggvények néhany alaptipusat, melyek méar részben is-

merdsek lehetnek.

1. Raciondlis fiigguények. Fzek olyan fiiggvények, melyeket az y = x fiigg-
vénybdl elemi algebrai miiveletekkel kaphatunk meg.

Polinomok. Altalanos alakjuk a kivetkezs:

p(z) = apa™ + ... + ax® + a1z + ag D, =RR.
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Példaul n = 1 esetén l(z) = ax + b linedris fiiggvény, n = 2 esetén

q(x) = az® + bx + ¢ kvadratikus fiiggvény.

Racionalis tortfigguények. Fzek a fiiggvények két polinom hanyadosa-

ként allnak els:

ag+a1x+ ...+ az"
= ) ) N, n bm 0.
At wery nprmumerny e LU an - b 7

Ha a nevezd zérushelyeit H jeloli, akkor Dy = R\ H. Példaul:

fe)== = Dy=R\{0}

2. Algebrai fiigguények. Ezek a racionalis tort fiiggvények inverzei. Példaul

az f(x) = 2" fiiggvény IRT-re vett leszifkitését tekintjiik. Ennek inverze:

Az inverzfiiggvény értelmezési tartomanya Dy-1—= RT = {z : z > 0}. Han

paratlan, akkor a fenti inverz fiiggvény ET-a kiterjeszthet6 a negativ z-ekre.

3.3. 4bra. Példa algebrai fiiggvényre.

3. Trigonometrikus fiiggvények. A szogfliggvények geometriai értelmezését

kozépiskolabol ismertnek tételezziik fel: Az alabbi geometriai definicio6 sin(«)
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ctg(a)

o8] cos(a)

02 sin(a)
a

0.2 04 06 08 12 14 16 18

3.4. dbra. A trigonometrikus fliggvények geometriai értelmezése.

¢és cos(a) fiiggvényekre 0 < a < 27 esetén, a tg («)-re ae(—g, g) esetén,

illetve ctg (a)-ra ae(0, ) esetén alkalmazhato.

A fent definialt fliggvényeket 27 szerint periodikusan terjesztjiik ki. Példaul:

x — sin(x)

3.5. abra. A sin(x) fiiggvény grafja.

Megjegyzés. Ne felejtsiik el, hogy a szogeket radidnban mérjiik, nem fokban.

4. Exponencidlis és logaritmus fiigguények. Ha a > 0, akkor y = a” egyelére

csak xe() esetén van értelmezve.
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x — cos(x)

0
1N\‘/: : .‘vm 7 :'\\-‘l/

3.6. abra. A cos(z) fiiggvény gréfja.

3.2. Folytonossag, hatarérték

3.2.1. A folytonossag értelmezése

Heurisztikusan, egy fiiggvény xzy pontbeli folytonossaga azt jelenti, hogy ha
xo-ban picit valtoztatunk, akkor a fiiggvényérték is picit valtozik, nincs ugras

ebben a pontban.

3.8. Definicid. Adott eqy f : D — R fiiggvény és eqy xoeD. Azt mondjuk,
hogy f az xo-ban folytonos, ha Ve > 0 hoz 36 > 0, melyre teljesiil, hogy

VzeD, |z —xo] <6 = |f(x)— flxg)] <e.

Szemléletesen igy képzelhetjiik el a folytonossédgot egy xo pontban. Legyen
az. ro-hoz tartozo fiiggvényérték f(xg) = yo. Az yo koril tekintiink egy
(Yo — &,y0 + €) kozti vizszintes savot. Ekkor megadhato az z, koriil egy
(xo—0,x0+0) (fliggbleges) sav, melyre a fiiggvény grafikonja az (yo—¢, yo+¢)

és (zo — 0, g + 0) savok metszetébe esik.

Definicio dtfogalmazdsa: Az f fiiggvény folytonos az zoeD; pontban, ha
f(xg) tetszdleges U kornyezetéhez létezik az xg-nak olyan V' kornyezete, a-

melyre minden zeV/, xeDy esetén f(z)elU.
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f(xp)+€ ~~
SN /
£ (x0) N /
f(xo)-¢€ \\/
X0
Xg-0 ) Xo+S

3.7. abra. A folytonossag geometriai értelmezése.

Példa. Tekintsiink egy linearis fiiggvényt, legyen f(z) = bz + 3 és zoelR
tetsz6leges pont. Ekkor

[f(2) = f(xo)| = [(57 +3) = (5o + 3) = [5(x — o).
Adott € > 0. Kérdés: |f(x) — f(xo)| < € mikor teljesiil?

J = % valasztassal, ha |© — x| < €/5, akkor

f(x) — f(zo)| < 5% —

Megjegyzés. Szokas akkor is szakadasi helyrSl beszélni, ha onsz, de van
zo-nak olyan U = (zg — €, xo + ¢) alaku kornyezete, melyre U \ {zo} C Dy.

Példa. ElGjel fliggvény. Ennek szokasos jel6lése sgn(x).

1 ha >0
f(x)=sgn(z)=¢ 0 ha z=0 .
—1 ha <0
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N
N>

3.8. abra. A sgn(z) fliggvény grafja.

Ertelmezési tartoménya Dy = IR. f-nek a O-ban szakadésa van. f(0) =

1
0, és ha példaul ¢ = 3 akkor #(—0,0) intervallum a 0 koriil, melyben a
1
fiiggvényértékek abszolit értéke kisebb lesz mint —.

3.9. Definicidé. Az f fiigguény értelmezési tartomdnydnak eqy xo pontjdiban
sorozatfolytonos, ha V(x,) C Dy sorozatra, melyre

lim z, = zo
n—oo

teljesil, hogy lim f(x,) = f(xo).
n—oo

3.1. Tétel. Az [ fiiggvény az xo-ban pontosan akkor folytonos, ha sorozat-
folytonos.

Bizonyitas* Két részbdl all a bizonyitas, két iranyt kell belatni.

1. Tegyiik fel, hogy f az xg-ban folytonos.

Legyen (x,) C Dy olyan sorozat, melyre z,, — xo. Igazolni kell, hogy
f(zn) = f(zo). Legyen € > 0 tetszdleges. A folytonossag miatt ehhez
az e-hoz létezik olyan 6 > 0, melyre

|z — x| <6 = |f(x) — f(z0)| <e.
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Az (z,,) sorozat konvergencidja miatt ehhez a d-hoz létezik N (¢) kiiszo-

bindex, hogy ha n > N, akkor |z, — z¢| < 0. gy ezekre az indexekre
|f(z) — f(x0)] < € teljesiil.

2. 'Tegyiik fel, hogy f az xg-ban sorozatfolytonos. Indirekt moédon tegyiik
fel, hogy f nem folytonos z¢-ban. Ez azt jelenti, hogy van olyan ¢ > 0,

melyre "V0 rossz":
V§ > 0 hoz JzeDy 1 |z — x| <, mégis | f(z) — f(zo)] > €.

1
Ekkor VneN esetén 6 = —-hez is dx,,, melyre
n

[tn — w0l <0 & [f(zn) = flzo)| Z &

Tekintsiik ezt az (x,) sorozatot. Ez a kovetkezd tulajdonsaga: (x,) C

Dy, lim z,, = x¢ és mivel |f(z,) — f(zo)| > € Vn-re, ezért f(x,) nem
n—oo

tart f(zo)-hoz, ez ellentmondés. Igy az indirekt feltevésiink nem helyes,

tehat f az xo-ban folytonos.

Példa. Dirichlet figgvény. Legyen f :[0,1] — IR, melynek definicioja:

1, ha r  racionalis,

0, ha x  irraciondlis.

Ez a fliggvény sehol nem folytonos. Valoban, ha zy€lR racionalis, akkor legyen

V2

Ty = To + )
n
x, irracionndlis szam. Erre a sorozatra

lim z, = o, f(z,) =0.
n—oo
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Masrészt f(xg) = 1, igy nem teljesiil a sorozatfolytonossag. Ha zq irraciona-
lis, akkor a sorozat n-dik tagja legyen x( végtelen tizedestort felirdsaban az

elsG n tagot tartalmazoé szam, ez racionalis. Ekkor

lim z, = o, lim f(x,) =1%# f(x9) =0,
n—oo

n—oo

a fliggvény itt sem folytonos.

Megjeqyzés. Kozvetleniil is igazolhat6, hogy a Dirichlet fiiggvény nem foly-
tonos, példaul € = 0.5-re sem talalhatunk megfelel6 § > 0-t.

3.2.2. Hatarérték

3.10. Definicié. Adott f : D — R fiigguény és xoelR. Tegyiik fel, hogy
AU = (xg —r,x0 + 1) kornyezet, melyre VoeU \ {xq}esetén xeDy. (Itt esetleg
az 2o¢ D is eldfordulhat). Az f fligguény hatdrértéke xy-ban o, ha Ve > 0-
hoz létezik 30 > 0, melyre ha

0 < |z — x| <9, reD = |f(x)—al<e.
Ezt igy jelolyik:
lim f(z) = a.

T—T0

c e,

jatszik szerepet.

3.11. Definicié. (Altaldnos definicic) Azt mondjuk, hogy f hatdrértéke az
ro€elR-ben aelR, ha az o szam YU kérnyezetéhez xo-nak AV kornyezete, melyre
VreV, x # xy esetén f(x)el.

3.12. Definicidé. Azt mondjuk, hogy f jobboldali hatdrértéke az xqy pont-
ban aelR, ha minden € > 0-hoz létezik 6 > 0, melyre ha

zeDy, ro<r<zo+d = |f(zr)—al<e.
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Ezt igy jelolyik:
lim f(x)=«a.

T—xo+

Azt mondjuk, hogy f baloldali hatdrértéke xy-ban aelR, ha minden € > 0-
hoz létezik 6 > 0, melyre ha

xeDy, ro—0<zx<zy = |f(2)—0a|<e.

Ezt igy jelolyik:
lim f(z)=«a.

T—T0—

A jobb- és baloldali hatarértékre hasznalatos még az alabbi jelolés:

lim f(z) = f(zo+0), lim f(z) = f(zo —0).

T—T0+ T—T0—

3.1. Allitas.

lim f(z) =« = lim f(zx)=a és lim f(z)=a
T—TQ T—To+ T—x0—

A hatarérték-fogalmat kiterjesztjiik arra az esetre, amikor zq = o0 és/vagy

a = F00 lesz.
3.13. Definici6. ("rg = oo és aelR")

lim f(x) = «,

T—r00

ha minden ¢ > 0-hoz létezik KelR, melyre minden xeDy, x > K esetén
|f(x) —al < e teljestil.

Hasonléan,
lim f(z)=q,

T——00
ha minden ¢ > 0-hoz létezik KelR, melyre minden xeDy, v < K esetén
|f(x) — of < e teljesiil.
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a+e

0 D e e

a—¢ :

&
-

K

3.9. 4bra. Végtelenben a fliggvény hatarértéke véges.

Példa. Legyen

flz) = ;o Dp=RA\{-1}.
Belatjuk hogy lim f(x) = 1.

Legyen ¢ > 0 tetszéleges. Ekkor a

x
-1 <e
r+1 ‘
feltétel azt jelenti, hogy
x 1 -
— — £
r+1 r+1
Igy tetszéleges e > 0 valasztas esetén
1
x>g—1:K =  |f(z)—1] <e.

3.14. Definici6. (a = too, zoelR)

lim f(z) = 400,

T—T0
ha minden KeR-hez létezik 6 > 0, melyre minden |x — xo| < §, x # xo eseén

f(z) > K teljesiil. Hasonldan,

lim f(x) = —o0,

T—TQ
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ha minden KeR-hez létezik olyan § > 0, melyre minden |z — x| < 0, x # o
esetén f(x) < K teljesil.

1

Példa. Legyen f(x) = m
x

, Dy = R\ {0} . Belatjuk, hogy
ili% f(x) = +o0.

Ehhez igazolni kell, hogy minden KelR-hez létezik 0, melyre 0 < |z| < §
esetén teljestil, hogy f(x) > K. Legyen K tetszbleges. Ekkor |z| < 1/K

1
esetén — > K | azaz f(x) > K. Tehat 6 = 1/K jo valasztas.

]

5= 1/K

1
3.10. abra. f(x) = —. Véges pontban a fiiggvény hatarértéke végtelen.

|

3.15. Definicié. (xg = 400 és a = +0)

lim f(z) = +oo,
ha minden KelR-hez létezik LelR, melyre minden x > L, veDy esetén f(x) >
K. Hasonléan,

lim f(z)= —o0,

z——00
ha minden KelR-hez létezik olyan LelR, hogy minden x < L, xeDj esetén
flz) < K.
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Példa. Legyen f(z) = 22, D; = R. Ekkor lim 2* = cc.

T—00

Valoban, legyen KelR tetszGleges. Ha > VK = L, akkor 22 > K.

Megjeqyzés. Hasonloan értelmezhets, hogy a jobb- illetve baloldali hatarérték
a véges roelR-ben +oo illetve —oo:

lim f(z) =00, lim f(z)=oc.

T—To+ T—x0—

3.2.3. Atviteli elv

3.2. Allitas. (Figguény hatdrérték és sorozal hatdrérték kozotti kapesolat)

1. lim f(x) = « akkor és csak akkor, ha minden (z,) C Dy sorozatra,
Tr—xT0

melyre

lim z, = g, Tp F# Xg
n—oo

teljesil, hogy lim f(x,) = a.
n—oo

2. lim+f(x) = « akkor és csak akkor ha minden (x,) C Dy sorozatra,
Tr—xT0

melyre

T, > X, nh_)rrgo T, = Xo

teljesil, hogy lim f(x,) = a.
n—oo

3. lim f(z) = a akkor és csak akkor, ha minden (x,) C Dy sorozatra,
Tr—To—

melyre

T, < X, nh_)rrgo T, = Xo

teljesil, hogy lim f(x,) = a.
n—oo

Példa. Legyen

fl@) = — Dy =R\ {1}.
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Meghatéarozzuk a lirr% f(z) hatarértéket az atviteli elv alkalmazaséval.
z—

Legyen (z,) olyan sorozat, melyre =, # 1, és lim z,, = 1. Ebben az esetben
n—oo

f(z,) =z, + 1, igy a hatarérték:
lim f(z,) = lim (z,+1) = 2.

n—oo n—o0

Megjegyzés. Az atviteli elvek xo = £oo és/vagy a = +oo esetre is atfogal-

mazhatok.

3.2.4. A hatarérték tulajdonsagai
3.3. Allitas. Tegyiik fel, hogy lim f(z) = o, lim g(z) = 3. Ekkor
T—T0 T—T0

1. lim ¢f(x) = ca, ceR.

2. lim (f(2) + 9(x)) = a+ 5.
5. lim (F(@)g(a)) = of.

A fenti tulajdonsagok az atviteli elv alkalmazasadval a sorozatokra igazolt

tulajdonsagokbol kévetkeznek.

3.4. Allitas. (Kompozicid hatdrértéke.) Legyenek f,g olyan fiigguények,
melyekre

lim g(x) = «, liin f(z) =5,

T—T0

ahol o, B, xg véges szamok. Ekkor

lim f(g(x)) = 5.

T—T0
Bizonyitas* Atviteli elv segitségével szinte trivialis.
Legyen (z,) sorozat, melyre

lim x, = zg.
n—oo
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Mivel
lim g(z) =a = lim g(z,) = a.

T—T0 n—oo

Hasonlb6an, mivel

lim f(z)=f, = lim f(g(z,)) = B,

T—Q n—oo

ezzel az allitast belattuk.

Példa. Legyen

1
) = —, _D — R 0 .
f@)= 55 Dr=R\{)
A jobboldali hatarérték
lim f(z) = li 1

kiszadmitasara a kompoziciora vonatkozo tulajdonsagokat hasznaljuk. Mivel

ezért

Hasonléan szamolhato a baloldali hatarérték:

1 1
lim -~ =—-00 = lim 2> =0, = lim F=1
r—0— 1 r—0— r—0— 1 + 2%

Tehat f(0+0) # f(0—0), ezért lir% f(z) nem létezik.
T—

Példa. Legyen
f(x) =sin (é) : Dy =R\ {0}.

Belatjuk, hogy nem létezik az alabbi hatarérték:

.. ( 1 )
limsin | — | .
x—0 €T
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‘—/:
0.6

0.4

0.2

2 -18 -16 -14 -12 -1 -08 -06 -04 -02 0 02 04 06 08 1 12 14 16 18 2
-0.2

x

1
3.11. dbra. Az f(z) = Y fiiggvény grafikonja a 0 pont koriil.
pr

Tekintsiik ugyanis (x,,) és (y,) sorozatokat, melyekre:

1 ™ 1 3T
— = — 4+ 2nm, — = — 4 2nm.
Ln 2 Yn 2

Ekkor lim z, = lim y, =0, és
n—oo n—oo

Fla) =1 = lim fz) =1,

n—oo

flyn) = -1 = 7lh%n(f)lof(yn) = —1.

1
S6t, minden «e[—1, 1]-hez létezik (z,) sorozat, hogy z, — 0 és sin (—) — a.

Zn
1
sm| —
x
04 035 03 025 02 VOw \}@b U \7 01/{7/ 035 04

3.12. dbra. Az f(z) = sin (

8~

) fiiggvény a 0 kozelében.
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3.5. Allitas. (A hatdrérték monotonitdsa.) Legyenek f : Dy — R és
g : Dy — R adott figgvények, melyeknek létezik hatdrértéke az xo pontban.
Teqyiik fel, hogy az x¢ pont valamely U kérnyezetében igaz, hogy

flz) < glx)  VaeU\{zo}.

Ekkor lim f(z) < lim g(z).

Tr—xQ T—T0
Megjegyzés. Ha az allitasban a feltétel igy szerepel:

flz) < g(z)  VoeU\ {zo},
akkor is konkliazié hatarértékben valtozatlan:

lim f(z) < lim g(x).

T—rT0 T—rT0

Hatarértékben a két fiiggvény "Gsszeérhet".

3.6. Allitas. (Renddr-elv) Adottak az f, g és h fiigguények. Feltessziik, hogy
az xg eqy U kdrnyezetében teljesiil, hogy

flz) < g(x) < h(z), xel, x # xy.
Feltessziik azt is, hogy a két szélsd fiigguénynek van hatdrértéke, és
lim f(z) = lim h(z) = a.
T—T0 T—TQ

Ekkor a kozépsd fiigguény hatdrértéke is létezik, és:

lim g(z) = a.
T—T0

Példa. Legyen
1
f(x)::p-sin; Dy =R\ {0}.

1
Hatarozzuk meg az lim z - sin — hatarértéket.
z—0 T
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3.13. abra. Rend6r-elv szemléletesen.

1
Mivel —1 < sin— < 1, ezért
T

1
—r < x-sin— < x.
T

Alkalmazzuk a fenti rendér-elvet. Igy

N0 < < T o —
lim(—x) O_ill)r(l) f(z) _ill)r(l)x 0,

x—0
ezért
limz - sin — = 0.
x—0 €T
Példa. Legyen
sin(x)
fla) =" D =R (o).
Belatjuk, hogy
li S22) _
x—0 €T

Mivel f(x) paros fiiggvény, azaz f(z) = f(—=x), igy csak a jobboldali hatar-
értéket vizsgaljuk.
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0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

01

-0.1

-0.2

1
3.14. abra. Az f(z) = xsin — fliggvény a 0 kozelében.
x

Tegyiik fel tehat, hogy x > 0, és elegendé a x < 7 intervallumot tekinteni.
Itt felhasznaljuk az alabbi trivialis becsléseket (1d. a 3.15 abrat):

sin(z) < =, tg () > x.

sin(x)

Emiatt egyrészt < 1, méasrészt

sin(x) . sin(x)

tg (z) = cos(@) > > cos(z).
Osszesitve: in(r)
sin(x T
1> — > cos(z), xe(0, 5)
Hatarértéket véve
sin(x)

1> lim > lim cos(z) = 1.

z—0+ X z—0+
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tg(z)

3.15. dbra. Az sin(z) < x < tg (x) Osszefliggés szemléletes jelentése.

3.7. Allitas. Az f figguény pontosan akkor folytonos az xe intD; belsé
pontban, ha létezik a xh—g:lo f(z) hatdrérték, és

xllrgo f(z) = f(xo).
3.16. Definicié. Ha [ az értelmezési tartomany egqy xo pontjiban nem foly-
tonos, akkor itt szakaddst helye van.
zotD; akkor is szakaddsi hely, ha valamaly 6 > 0 esetén (xg — 6,79 +0) \
{xo} C Dy.

A szakadasi helyek fajtai:

1. Els6fajt szakadas van xp-ban, ha léteznek a

lim f(x)= f(zo+0) < o0, lim f(z)= f(xzog—0) < o0

T—x0+ T—To—

jobb- és baloldali hatarértékek.

Speciélis esetben zp-ban megsziintethetd szakadas van, ha ezek a
jobb- és baloldali hatarértékek megegyeznek, de

lim f(@) # f(a0)
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Példa: f(z) = sgn(z) fiiggvény, melynek ax zq = 0-ban els6fajt, nem

megsziintethets szakadésa van.

2. Masodfaji a szakadas, ha nem els6faju.

y T T~

-0.5 0 0.5 1 1.5 2 25 3 3.5 4 4.5

3.16. abra. Els6faju szakadasok tipusai

3.2.5. Folytonos fiiggvények tulajdonsagai

3.8. Allitas. Tegyiik fel, hogy f folytonos az xge int(Dy) belsd pontban és
f(zo) > 0. Ekkor létezik U kornyezete xo-nak, melyre

f(z) >0, VzeU N Dy.

Bizonyitas. Legyen 0 < ¢ < f(zg). A folytonossag miatt létezik § > 0,
melyre ha |z — x| < 0 akkor |f(z) — f(x0)| < €. Ezen x pontokra tehat

flzo) —e < f(x) < flwo) +¢.
Mivel 0 < f(xg) — ¢, ezért Vae(zo — J, 20 + ) N Dy esetén f(z) > 0.

3.17. Definicié. Legyen f : Dy — IR adott figgvény. Azt mondjuk, hogy f

folytonos a Dy-en, ha minden xoeDg-re folytonos xy-ban.
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Megjegyzés. Ha Dy = [a, b] zart intervallum, akkor f folytonos [a,b]-ben,
ha az (a,b) intervallumon lim f(x) = f(xo), és a végpontokban:
T—T0

lim f(z) = f(a), lim f(z) = f(b).

r—a+ z——b

3.2. Tétel. Adott f : [a,b] — R folytonos figguény. Tegyiik fel, hogy f(a) <
0 < f(b). Ekkor létezik olyan £e(a,b) pont az intervallum belsejében, melyre
f(&)=0.

f(a)

3.17. abra. A Bolzano tétel szemléletesen.

Bizonyitas. Meghatarozunk egy alkalmas & pontot.

1. Legyen a; = a és by = b.
a; + bl

2. Legyen & = . Ha f(&) = 0, akkor készen vagyunk.

Ha f(&) > 0, akkor legyen as := aq, by 1= ¢;.
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Ha f(&) < 0, akkor legyen as := ¢1, by 1= b;.

Ekkor az [ag, by] C [a, b] intervallum éppen fele hossziisagu, és

flag) <0, f(b2) > 0.

. b
Ujra 'probalkozunk’: legyen & = a2;_ 2,

Ha f(&) = 0, akkor készen vagyunk.

Ha f(&) # 0, akkor megkonstrualjuk az [as, bs] intervallumot tugy, hogy
flas) <0 és f(bs) > 0 teljesiiljon, mint az elGbb.

Es igy tovabb. Ekkor két eset lehetséges:

(i)

(1)

vagy véges sok lépésben vége van az iterdcionak, ekkor megkapjuk a

kivant & pontot.

vagy "nincs vége", ekkor az intervallumok végpontjaibél all6 soroza-
tokra teljesiil, hogy

(an) = flan) <0

(bn): fby) >0

Ezen kiviil [ay,b1] D [ag,ba] D ..., és az intervallumok hossza nulldhoz
tart. Ekkor a Cantor-féle kdzospont-tétel szerint egyértelmten létezik
a & kozos pont, £e(a,b). Vegyiik észre, hogy

lim a, =&, lim b, = €.
n— o0 n—oo

Mivel f folytonos £-ben ezért minden (x,) sorozatra, melyre

lim x, =& — lim f(x,) = f(),

n—o0 n—o0

tehat
lim f(a,) = f(€), lim f(b,) = f(§).

n—o0 n—oo

Emiatt (&) <0és f(§) >0, ezért f(&) =0.
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3.1. Kovetkezmény (Bolzano-tétel). Tegyiik fel, hogy f folytonos az [a,b]

intervallumban, f(a) < f(b). Ha c tetszdleges szam, melyre f(a) < ¢ < f(b),
akkor létezik olyan Ee(a,b), melyre f(&) = c.

f(b)

f(a)

3.18. 4bra. A Bolzano tétel altaldnos esetben

3.2. Kovetkezmény. Ha f pdratlan fokid polinom, akkor van wvalds gyoke.

3.2.6. Inverz fiiggvény

3.18. Definici6. Tegyiik fel, hogy f : [a,b] — R szigorian nivd, folytonos
figgvény. FEkkor minden ce[f(a), f(b)] szdmhoz egyértelmiien létezik ela,b],
melyre f(§) = c. Ez a ¢ — & leképezés az inverz fligguény:

f7 2 [f(a), f(B)] = [a,b].

3.9. Allitas. A fent definidlt inverz fiigguény is folytonos lesz.
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3.3. Kovetkezmény. Ha f : D — IR szigorian monoton és folytonos fiigg-

vény, akkor invertdlhato és az inverz fligguény is folytonos.

Példa. Legyen f(z) = e*. Mivel f : IR — IR" szigortian monoton névs az

egész IR-en, ezért létezik az inverze:

()t =log,z =:Inuz, In: R" — IR.

3.19. dbra. Az exponencidlis fliggvény és inverze.

Trigonometrikus fliiggvények inverzei

f(z) = sin(x)

A fiiggvény periodikus, ezért csak alkalmas megszoritésa lehet invertalhato.
. . . ™ T, .
Tudjuk, hogy a sin fiiggvény a [——, =] intervallumban szigorian monoton

nove. Itt mar van inverze, ezt arcsin(z) jeloli.

arcsin : [—1,1] — [—g, g]
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f() = cos(x)

Hasonléan, ha z¢€[0, 7], akkor ezen a szakaszon a cos fiiggvény szigorian mo-
noton fogyo, tehét invertalhatd. Az inverz fiiggvényt arccos(z) jeloli. Mivel

most cos : [0, 7] — [—1, 1], ezért inverze:

arccos : [—1,1] — [0, 7].

1
-
‘
\
2
\‘
arccos(z) s,
1N
A
\
[}
2 1 2 3
-1
arcsin(x)
-2

3.20. abra. A sin(x) és cos(z) fiiggvény inverze.

f(z) = tg (z)

T
Atg: (—5, 5) — IR lesztikitését tekintjiik, itt a fliggvény szigortian monoton

novs. Ezért létezik inverze, melyet arctan(z) jelol.

arctan : R — (—g, g)
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f(x) = ctg (z)

Az f(z) = ctg (z) fliggvény megszoritasat tekintjik a (0,7) intervallumra,
ahol szigortian fogy6. Ekkor f invertalhato, és ezt igy jeloljiik f~! = arcctg .

arcctg : IR — (0, ).

v

R
- — ‘:T--
arccot{r) S
Y
l«?‘a,
XL N
~,
‘l--l-l-.._._____
— —
‘ . . ; x
-4 -3 -2 -1 1 2 34 4
- P
arctaniaT) 2!

3.21. dbra. A tg (z) és ctg (x) fiiggvény inverze.

3.2.7. Hiperbolikus fiiggvények

3.19. Definicié. A sinus hiperbolikus fiiggvény sh : IR — IR, melyet igy

értelmezink:
et —e ™t

sh (z) := — zelR.

Ez szigortian monoton nove, paratlan fiiggvény.

3.20. Definicié. A cosinus hiperbolikus figguény ch : IR — R™, melyet
igy értelmeziink:
e’ +e’ "
h =
ch (2) =

Ez paros fiiggvény, ami szigorfian monoton névs IR -n.
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3.21. Definici6. A tangens hiperbolikus figguényt igy definidljuk:

_ sh (z) e Dy —R.

h =
th () ch () e*4e®’

y=shx

3.22. dbra. Az sh (z), ch (z) és th (z) fiiggvények
3.10. Allitas. A ch () éssh (x) egyik alaptulajdonsdga:

ch *(r) —sh *(z) =1, Vo —re.

Bizonyitas. A definiciok alapjan:

sh ?(z) = 1
2z —2x 2
h Q(x) _ ¢ + 64 + ’

ahonnan az allitas kovetkezik.

3.2.8. Korlatos és zart halmazon folytonos fliggvények

Fontos specialis eset, amikor a fiiggvény értelmezési tartomanya Dy = [a, b]

korlatos és zart (= kompakt) halmaz.
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3.3. Tétel. (Weierstrass I. tétele) Legyen f : [a,b] — IR folytonos figgvény.
Ekkor f korldtos.

Bizonyitas* Indirekt moédon tegyiik fel példaul, hogy a fiiggvény feliilrél
nem korlatos. Ez azt jelenti, hogy minden n-hez létezik x,€[a,b], melyre
f(z,) > n. Tekintsiik ezt az (z,,) sorozatot. Mivel a < x,, < b, ezért a sorozat
korlatos, tehat létezik (x,, ) konvergens részsorozata a Bolzano-Weierstrass

tétel miatt. Ennek a sorozatnak a hatarértéke legyen:

lim z,, =¢.
Nj—>00

Mivel az [a,b] zart intervallum, ezért Eela,b]. f folytonos &-ben, tehat soro-

zatfolytonos is. Ezért

Jim f(n,) = F(0)

de a konstrukci6 szerint f(x,,) > ni, ami ellentmondas.

3.4. Tétel. (Weierstrass I1. tétele) Legyen f : [a,b] — R folytonos figguény.

Ekkor f felveszi minimumdt és mazimumdt [a,b]-n.

Bizonyitas® Belatjuk példaul a maximum létezését. Legyen

H={f(z): zela,b]}.

Az el676 tétel szerint ez a halmaz korlatos. Legyen § = sup(H) < co. Ez

azt jelenti, hogy minden n-re létezik x,€la, b], melyre a fiiggvényérték

f— < () < B

Erre a sorozatra (z,) C [a,b], ezért korlatos, igy létezik konvergens (zy,)

részsorozata. A részsorozat hatarértéke:

lim (z,,) = &ela, b].

N —>00
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A sorozatfolytonossag miatt egyrészt

lim f(xn,) = f(£),

N —>00

masrészt |
B <fn) B = B=f)
Ezért feH, tehat valoban 8 = max(H).

3.2.9. Nevezetes hatarértékek

Ebben a fejezetben olyan fiiggvény hatarértékeket gyiijtottiink 6ssze, melyek
részben a szamsorozatok hatarértékének altalanositasai, és a jov6ben hasz-

nosak lesznek.

1. Példa.

) 1
lim z= = 1.
r—r00

Igazolni kell, hogy minden ¢ > 0-hoz létezik K, hogy ha = > K, akkor
l—e<ar <l+e.
x > 1 esetén nyilvan
1<z
Legyen n = [z], ahol [z] az x valos szam egész része, ami az x-nél nem
nagyobb egészek kozt a legnagyobb. Ekkor

n<xr<n+l1,

ezért,

T < (n—l—l)% < Vn+1.

Mivel
lim vn+1=1,

n—oo
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ezért létezik N, melyre ha n > N, akkor

vn+1l<l+e.
Igy ha [z] > N, akkor

x%<1+5.

2. Példa.

1
Tekintsiik az f(z) = 08 % fiiggvényt, ¢ > 1 mellett.
x

Ennek hatarértéke +oo-ben:

log,.x

1
lim = lim —log,z = lim logc(a:%) =
T—00 €T T—00 I T—00

= log, (lim CC%> =log.1=0.

T—00

Megjegyzés. 0 < ¢ < 1 esetén trivialisan teljesiil, hogy

log, x

lim
T—00 €T

::O’
hiszen ekkor lim log.z = 0.

T—r00

3. Példa. Lattuk, hogy az e szdm az alabbi sorozat hatarértéke:

1 n
e = lim (1+—) .
n— 00 n

Belatjuk, hogy a hatarértéket tekinthetjiik a valds szamokon keresztiil is,

1 x
e = lim (1+—> )
T—>00 x

Valoban, példaul az als6 becslés

(o) = () < (o) = (o) 0)

azZaz
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z [z]
lim 1—1—1 < lim 1+i 1—1—i =e.

Hasonléan, a —oo-beli hatarérték:

. 1\* ) 1\ . 1 1
lim (14+—-) =lim (1—— zhm—lz—:e
T——00 x U—00 u U—00 (1 — —)“ 6_1

u

Ezért

3.7 Példa. Ugyanigy igazolhato, hogy tetsz6leges aclR esetén:

X
a
lim (1 + —) = e°.
T—00 €T
3.7 Példa. Az e szam fenti elgallitasait hasznalva:

lim(1 +z)* =e.
z—0

4. Példa. Belatjuk, hogy

lim z sin— = 1.
T—r00 xr
Valoban,
) o1 . sint
lim z sin— = lim — = 1.
T—00 €T t—0+ ¢

5. Példa. Az el6z6 példabeli fliggvény hatarértékét a 0-ban nézziik:

lim x - sin — =0,
x—0 €T

mert

1
x-sm—‘ < |x|.
T

6. Példa. Legyen f(z) = 2%, x > 0. Ertelmezni szeretnénk a 0° értéket a

fiiggvény hatarértékeként. u = 1/ helyettesitéssel azt kapjuk, hogy

1\ = 1
lim 2% = lim <—> = lim—lzl

x—0+ U—>00 U
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9. Példa. Legyen
" —xf
flz) = %

r — 29

ahol xy régzitett szam, neN, Dy = R\{z,}. Ekkor

-1 n—2 n—1
. . T—xo)(x" "+ g+ ...+ _
lim = lim ( I o) = nay !
T—=zo T — X T—xQ T — T

n n

Kozben felhasznaltuk, hogy lim g(x) = g(z), ha g folytonos.

T—T0

3.2.10. Egyenletes folytonossag*

(Kiegészitd tananyag.)

Emlékeztetiink arra, hogy xoeD; esetén f folytonossaga zo-ban egy lokalis
tulajdonsag: Ve > 0-hoz 36 = d(e, xo) az ismert feltételekkel.

Van-e olyan fiiggvény, mely barmely € esetén minden zoeDs-re "kozos" d-val
rendelkezik, 6 = 0(e, 2¢)?

Példa. Legyen f(z) = a® + 1, a Dy = [1,2] értelmezési tartoméanyon. Ha

e > 0 tetszoleges, akkor van hozza univerzalis 6-t.

(x — xo)(x + x0)| < |z — 20| - 4,

‘f(ﬂ«") - f(ao)

x2+1—x3—1‘:

hiszen |z 4 xo| < 4 teljesiilVz, zoe[1, 2].
Ezért adott e esetén minden x¢-ra jo a § = £/4 valasztas.

3.22. Definicio. Az f : D — R fiigguény egyenletesen folytonos D-ben,

ha minden € > 0-hoz létezik 6 = §(g), melyre minden x1, x9eD esetén

< E.

’1’1 — 1'2‘ <) = ‘f(l‘l) — f(l’g)
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3.4. Kovetkezmény. Ha f egyenletes folytonos D-n, akkor VxoeD-re xo-ban
folytonos.

Példa. Legyen f(z) = 2% + 1, D = [0, +00). Belatjuk, hogy f nem egyenle-
tesen folytonos. Megmutatjuk, hogy van olyan e, melyre minden 0 "rossz".
Valéban, legyen ¢ = 2. Ekkor tetszéleges 6 > 0-hoz létezik n, melyre 1 < 0.
Legyen ekkor "

T =n, To=n+—, = |r3— 12| <6
n
Mégis

‘f(:m) .

Példa. Legyen
f(z) = sin(x), zelR.

Belatjuk, hogy egyenletesen folytonos az egész IR-en. Ehhez felhasznaljuk,

hogy
sin(z) — sin(zg) = 2sin (x _2%) Cos (w —;xo) :

sin .
2

|z — 2]
2
Felhasznéltuk, hogy |sin(a)| < || és | cos(5)| < 1. Ebben az esetben a § = ¢

valasztas jo xg-t0l fliggetleniil, tehat a fiiggvény egyenletesen folytonos.

Ezért

| sin(x) — sin(zg)| < 2

<2 1 =|x— x|

Példa. f(x) =1/xz, D = (0,1). Belatjuk, hogy f nem egyenletesen folytonos.
Legyen 0 > 0 tetszéleges, ekkor létezik olyan n, melyre
1 1

n n—+1
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Valasszuk a koévetkezd két alappontot:

1 1
T = —, Ty= .
1 na 2 n+ 1
Ekkor
|ZL’1 — .272| < 5,
és mégis

|f(z1) = flza) = In—(n+1)]=1
Tehat tetszéleges d-hoz megadhatd két olyan pont, mely kézelebb van, mint

J, viszont a fliggvényértékek eltérése nagyobb, mint példaul 1/2.

3.5. Tétel. (Heine tétel) Tegyiik fel, hogy az f figgvény értelmezési tar-
tomdnya korldtos és zdrt intervallum. Ha f : [a,b] — R folytonos, akkor

egyenletesen is folytonos.

Bizonyitas. Indirekt modon latjuk be az allitast. Feltessziik, hogy van
olyan € > 0, melyre nincs minden xg-ra kdzdsen j6 6, azaz minden § > 0
"rossz". Ezért példaul 6 = 1/n sem jo. Ez azt jelenti, hogy vannak olyan
Tn, Yn€la, b] szamok, melyekre
1
|xn - yn| <,
n
és mégis
| f(zn) = fyn) | > €. (3.1)
Tekintsiik az (z,,) sorozatot. Ez korlatos, tehat létezik konvergens részsoro-
zata: (). Hasonloan, az (y,,, ) sorozat korlatos, tehat létezik konvergens
részsorozata: (yn, ). Ezek hatarértéke:
nlgnoo T, = T0, mlkigloo Yme = Yo-
Mivel |z, — yn| < l, ezért a részsorozatok hatarértékei egyenlsk: xy = yq.
Ebben a pontban is folytonos a fliggvény, tehat sorozatfolytonos is. Ezért

Hm f(z,) = f(zo) = lim f(ym,) = f(0).

N —>00 mp—r00
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Ez ellentmondas a (3.1) egyenl6tlenségel.

1

Megjegyzés. f(x) = — megszoritasa a [0, 1], (0 < § < 1) halmazra egyenlete-
x

sen folytonos a Heine tétel miatt. Hasonloképpen f(x) = x? megszoritisa a

[0, K] intervallumra (K > 0) is egyenletesen folytonos.

Példa. f(z) = 2° 4+ 42® + 3, Dy = (0,1]. Egyenletesen folytonos-e? Igen,
hiszen a [0, 1] intervallumon egyenletesen folytonos, ezért annak tetszéleges

részhalmazan is egyenletesen folytonos.

3.6. Tétel. (Elégséges feltétel egyenletes folytonossdigra) Legyen f folytonos

figgvény, [ : [a,00) — R. Tegyiik fel, hogy lim f(xz) = A véges. Ekkor f
Tr—00

egyenletesen folytonos.
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4.1. Differencialhanyados, derivalt

Ertelmezni fogjuk egy fiiggvény graf valamely P = (o, f(20)) pontjahoz

tartozd érints egyenesét.

Az érint6t szelGvel kozelitjiik, aminek meredekségét (= iranytangensét) adjuk

meg. Legyen @ = (z, f(x)) a graf egy tetszéleges mdsik pontja.

¥4

X

4.1. abra. A szel6k kozelitik az érintét

Ekkor a P és () pontokat 6sszekotd szel6 meredeksége:

m(z) = tg &(x)—z::ycz, Yo = f(x0), y = f(2).

Ha z — x esetén létezik a fenti tg a(z) hatarértéke, akkor az érint6 egyenes

létezik, meredeksége a kapott hatarérték.

4.1. Definicidé. Az f figguény P = (xo,yo) ponthoz tartozé érintdje olyan

egyenes, ami

e dtmegy a ponton,

. Y=Y
e meredeksége m = lim
T—=x0 L — X
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Példa. Hatéarozzuk meg az y = x* parabola P(1,1) pontjahoz hizott érint6
egyenes egyenletét.
Megoldas: Most zg = 1, f(x) = 2°. A meredekség:

flo)—f@) . 2®—1

(i L e

Az (z9,y0) = (1,1) ponton atmend és m = 2 meredekségii egyenes:

y—1=2(x—1) azaz y=2zr-—1

4.2. dbra. y = x? és egyik érintGje

4.2. Definicié. Adott egy f: D — R fiigguény és xoe intD az ET egy rig-
zitett belsd pontja. Az x ponthoz tartozo differenciahdnyados (kilonbségi
hanyados) a szeld meredeksége:

f(@) — (o)

r — T

, zeD.

A fliggvény differencidlhato xo-ban, ha létezik és véges ez a hatdrérték:

i @) = fzo)
) T — Xg
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Ennek a hatdrértéknek elnevezése: derivdlt, vagy differencidlhdnyados.

Jele: Af(z) if
T »
Ax %(xo)

f'(xg) =7 lim

Vezessiik be a h = © — x¢ jelolést. Ekkor x — zy azzal ekvivalens, hogy

«, 0,

o) = i L0 T = f20)

Példa. Gorbe mentén mozgo pont x id6 alatt y = f(x) utat tesz meg. Az
[zo, T + h] idGintervallumban az dtlagsebesség
f(@o +h) = f(xo)
. :
Egyre kisebb h, s6t h — 0 esetén: pillanatny: sebességet kapunk:

lim f(zo+h) — f(xo)
h—0 h

= f/(l"o)-

Ez a derivalt (egyik) fizikai jelentése. Szokés még a fizikdban az f(x) jelolés
is (azaz vesszd helyett egy pont keriil f folé).

4.3. Definici6. Adott egy f figgvény és xpe intDy. A fiigguény jobboldal

deriwdltja xy-ban:

F(0) = tim LB S0 @+ R) = o)

T—x0+ T — Xo h—0+ h ’

ha ez a hatdrérték létezik és véges. A fiigguény baloldalt derivdltja xq-ban:

f/_(lﬁo) = lim M = lim f(£E0 + h) B f(350>

T—T0— T — T h—0— h

I

ha ez a hatarérték létezik €s véges.

4.1. Allitas. [ differencidlhatésiga xo-ban azzal ekvivalens, hogy létezik

fi(xo) és f(xg), €s ezek megegyeznek:

f'(wo) = fi(wo) = f. (o).
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4.4. Definicié. f: (a,b) — R differencidlhatd, ha VYroe(a,b)-ban differenci-
dlhato.

1. Példa. f(x) = c konstans fiiggvény. Minden zoelR belsé pontja D-nek.
Ez a fiiggvény differencialhato:

cC—¢C

f'(xg) = lim

T—z0 T — T

=0 VCL’(]EIR,.

2. Példa. f(x) =z A fiiggvény differencialhato, és derivaltja:

T — 2o

f'(zg) = lim

T—zo T — T

=1 VzoelR.

3. Példa. f(x) =2", n > 1, neN. A fliggvény differencialhato és derivaltja:

n n

lim = lim (2" " + 22" 2+ ...+ a2l ) = naf
r—xr0 X — ,IO T—T0

ezt mar lattuk. Tehat (z")" = na" 1.

4. Példa. f(x) = sin(x). Egy trigonometrikus azonossagot hasznalunk:

sin(x) — sin(zg) = 2sin <x _2:130) cos (a: —;%).

Igy hatarértékben a differenciahanyados:

. T — X T+ Xg
2 sin CcoS
. . 2 2
lim = lim =
T—T0 xr — xo T—TQ T — :L'O

sin(x) — sin(xz)

. [T — Zo
sin 5 o
= lim ————~ - lim cos (T()) = 1-cos(xp).

T—T0 T — T T—T(

2
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Az utolso lépéshen igy alakitottuk az elsé limest:

sin (a: — %)
2 5 sin(h) L

T—T0 T — Zo h—0 h

2

Tehat azt kaptuk, hogy sin’(x) = cos(z).

5. Példa. f(x)=|z|, Dy = R. Ha zy > 0, akkor

hiszen a lim-ben is x > 0 teljesiil, ha x mér elegend&en kozel keriilt zy-hoz.

Hasonléan, ha zy < 0, akkor

O e L T o
lim —— = lim — = —1.
r—zo T — T =z T — T

De 2y = O-ban a hatarérték nem létezik:

Alim [#[ 0

x—0 :L'—O

Y

ezért az f(z) = |z| fliggvény nem derivalhatoé az xy = 0 pontban.

/ 1

4.3. dbra. Az f(x) = |z| figgvény és derivaltja

A fenti dbran lathato, hogy a derivalhatosag azt jelenti, hogy a fiiggvény

grafja sima.
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6. Példa. f(x) =+/z, x > 0. Legyen x5 >0

f(f)—f(%)_ \/_—\/Eo

T — T (Vz — V) (Ve + )
Ezért hatarértéket véve

fl@) = fxo) _ . 1 1

lim lim

r—xQ T — X _xﬁxo\/z_’_\/iozz\/io.

Tehét az f fiiggvény a (0, 00) intervallumban derivalhato és f'(z) = ——=.

Folytonossag és derivalhatosag kapcsolata

Lattuk, hogy f xg-beli folytonossagabol még nem kovetkezik a differenciél-

hatosag. Példaul f(z) = |z| folytonos zo = 0-ban, de nem derivalhato.
Forditva azonban méar igaz az aldbbi tulajdonsag:

4.2. Allitas. Ha f differencidlhatd xo-ban, akkor ott folytonos is.

Bizonyitas* Mivel
lim f(l') — f(.%'g) _ f/(x0)7
T—T0 T — .’L'O

ezért ha | — o] elegendGen kicsi, akkor

f(@) — f(@o)

L <K = (@) = f@)] < K|z~

példaul K = |f'(x)|+1.. Ebbdl a sorozatfolytonossag trividlisan kovetkezik.

4.2. Differencialasi szabalyok

4.5. Definicié. Az f : D — R fiigguény differencidlhato D-ben, ha minden

xoeD pontban differencidlhato.
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A derivalast tekinthetjiik dgy, mint egy hozzarendelést: mely egy differenci-
alhato fiiggvényhez hozzérendeli derivaltfiiggvényét:

[ f
Definialjuk az alabbi fiiggvény-halmazokat:
X:={f:f(a,b) = R, f differencidlhato}, Y :={f: f(a,b) - R}.
Ekkor a differencialas mivelete egy
Dif: X — Y
operdtor, amely egy fiiggvényhez masik fiiggvényt rendel.
4.1. Tétel. (Differencidlasi szabdalyok) Legyenek f és g differencidlhato fiigg-
vények. Ekkor
L (f+9)(x) = f(x) +g'(x).
2. (cf)(z)=cf'(x), ceR.
3. (f9)(x) = f'(x)g(x) + f(x)d (x).
4. Tegyik fel, hogy g(x) # 0, ekkor
<L)' At
g(x) g*(x)
5. Tegyiik fel, hogy g(x) # 0, ekkor
(£ ) _ P@)el) — f@)d (@)

g()

6. Lancszabdly

Bizonyitas.
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3. Szorzat deriwdldsi szabdly:

(fg)(zy) = lim f(x)g(z) — f(w0)g(z0) _

T—T0 T — X

= lim (f(w)w) + g(x0) lim fz) = flzo)

T—T0 T — To =T T — Xy

ahonnan felhasznélva f folytonossagat kdvetkezik az allitas.

4. Reciprok derwdldsi szabdly:

BN 9(xo) — g(x)
LY g 9@ gwo) _ o g(x)glme)
(9(330)) B :rlﬁrro T — X zlﬁxo T — T

- (o)) Ly

==z \ g(x)g(wo) & — g

6. Ldncszabdly:

(fog) (xo) = lim 1g(x)) = flg(zo)) _

_ i JW@) — flg(w0)) g(z) — g(20)
w=wo g(x) = g(2o) -z

Figyelem! Szorzat derivdltja nem egyenlé a derivdltak szorzatdval!

1. Péda. f(z) = tg () = S2&)

=) T ik, k=0,+1,42. ...
cos(r) 2

A tg (z) fiiggvényben a szamlalo és nevezd derivaltja:
sin’(x) = cos(x), cos'(x) = —sin(z).
Ezért a hanyados-fiiggvény derivaltja

_ cos(z) cos(x) — (—sin(z))sin(z)  cos?(z) + sin’(z) 1

tg '(«) cos?(x) B cos?() N cos?(z)’

Masképp felirva

tg '(2) = ... = 0082(282*(;“ (@) 14 te2(a).
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2. Példa. f(z)= (2> +1)Va2+5
Az els6 tényez6 derivaltja (2 + 1) = 2x + 0. A masodik tényezd dsszetett

1
fiiggvény, a kiils6 figgvény: g(z) = x, ¢'(x) = F, a belsé fliggvény:
x
h(z) = 2® +5, ' (z) = 22 + 0. Igy

1
oh)(z) = ———=2x.
(90h)(@) = s

Tehat a szorzat-fiiggvény derivaltja:

Fl(z) = 22vVa2 + 5 + (2 + 1)\/%%.

Az f'(xo) derivalt definicidja az (xq, f(zo)) ponthoz huzott érintGegyenes

meredeksége volt. Ebbdl kovetkezik, hogy ha f differencialhato xp-ban, akkor

Itt az = jel azt jelenti, hogy f(x) kozelitheté ebben az értelemben:

f(@) = (f (o) + (z — x0) f'(w0))

r — 2o

— 0, ha x — z.

4.6. Definicié. Legyen x¢ az f fligguény értelmezési tartomdnydnak belsd
pontja, itt differencidlhato. Ekkor a fiigguény xo-hoz tartozo linedris érintd

egyenese

y = f(xo) + (x — o) f'(20).



4.2. DIFFERENCIALASI SZABALYOK

/

Példa. f(x) = +/x + 3. Ennek linearis kozelités xy = 1-ben:

y=f1)+ f(x—-1)

A fiiggvényérték f(1) =2. A derivalt

(Vet3) = (@ +3)7) =5

1
T+

1
Tehat f/(1) = 7 ezért az érinté egyenlete

1 7T x
— 2t (z—1)=- 4=,
y=2+7@-1) =7 +7
A linearis kozelités az (1,2) pont koriil:
7
Vr+3= Z + %

gy peldaul
0.98

7 .
V3.98 = 1 + o - 1.995.

w
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Magasabb rendii derivaltak

4.7. Definicié. Ha az f : D — R fiigguény derivdlhato xqy eqy kirnyezetében,
és az [’ fligguény derivdlhaté xo-ban, akkor ez az eredeti figguény mdsodik
derivdltja:
f//(x()) — lim f’(:L‘) - f/(mo).
T—T0 T — X
Hasonloképpen értelmezziik a magasabb rendd derivdltakat is. Az n-ed rendd

derivdltat igy jeloljik: ) (x).

Példa. f(x) = e® fliggvény derivaltja, zoelR tetszéleges. Ekkor

et —e*0 € =1
= € —_—,
T — Zo T — Xo
ezert
. et —e' 20 1: eh —1
lim = e"° lim
T—=T0 T — Lo h—0

Ez utobbi hatarértéket szamoljuk ki:

e -1 . t—1 ) Y
lim =lim— = lim ————,
h—0  h t—1 Int y—0 In(1 + y)

ahol a t = e" és y =t — 1 helyettesitéseket végeztiik el. Ennek reciproka

In(1
lim —n( +y)

lim ; :}Jg%ln(l—ky)y =1In (i%(1+y)y) =1Ine=1.

(n)

Ezért (e*) = e®, a fiiggvény derivaltja 6nmaga, st (e*)'™ = e* minden n > 1

esetén is.

Hiperbolikus fiiggvények derivaltja

A sinus hiperbolikus fiiggvény sh (z) :=
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Derivaltja:

T _ (e=®) (1] T —x

sh'(a:)—e (=) _efte =ch ()
2 2
. . . . et +e "
A cosinus hiperbolikus fiiggvény ch (z) := — zelR.
Derivaltja:
, et — e~
ch '(z) = 5 = sh (x)

Ezek a fliggvények erésen emlékeztetnek a trigonometrikus fliggvényekre, hi-
szen

sh '(z) = ch (2), ch '(z) = sh (z).

4.3. Inverz fiiggvény derivaltja

4.2. Tétel. Teqyiik fel, hogy f szigorian monoton, differencidlhaté fligguény,
melyre f'(x) # 0, xeDy mellett. Ekkor f~' is differencidlhatd, és

—1\/ o 1
U)W = w0

Masik feliras, ahol az f(z) = y jelolést hasznaljuk:

Y - L
() U@ = F

Bizonyitas. (Vazlat) A differencialhatoségot bizonyitas nélkiil elfogadjuk.
Induljunk ki az

fH(f@) ==
azonossagbol, és derivaljuk az Osszetett fliggvény derivalési szabélyat alkal-

mazva. Ekkor

() (f@) - f(2) =1,
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ahonnan a tétel allitdsa kovetkezik.
Példa. Lattuk, hogy az f(x) = e fiiggvény derivéaltja 6nmaga, f'(x) = e”.
Az inverz fiiggvénye In : R — IR. Ennek derivéltja
1 1
In'(x) = =—.

o elna: T

Példa. (Altalanos exponencialis fiiggvény). Legyen a > 0, f(z) = a®. Mivel

at = e — ezlna’

ezért f(z) = e®"? ¢és gy
f'(x) =e"™Ina = a"Ina.

Az inverze

) =loger,  (FY (@)= o =

a“%*lnag zlna’

4.3.1. Trigonometrikus inverz-fiiggvények derivaltja

1. f(x) = sin(x)

Az inverz fiiggvény arcsin @ [—1,1] — [—g, g] A derivalt ze(—1,1) esetén:

1 B 1 o
cos(arcsin(z)) /1 — sin®(arcsin(z)) VI

mivel sin?(z) + cos?(z) = 1, és igy cos(z) = /1 — sin®(z).

arcsin’(z) =

2. f(x) = cos(z).

Az inverze arccos : [—1,1] — [0, 7] . A derivaltja xe(—1,1) esetén:

1 1 1
arccos' (r) = - _

— sin(arccos(z)) /1 — cos?(arccos(z)) VI— a2t
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3. f(x) = tg (x)-

fff:R— (—g, g) A tg fiiggvény derivaltja tg '(x) = 1+ tg %(x), ezért az
inverz fliggvényre

1 1
1 +tg 2(arctan(z)) 14 22

(f ) (2)

4. f(x) = ctg ().

Az inverz fiiggvény arcctg : IR — (0, 7). Az eredeti fiiggvény derivaltja:
1

sin?(z)

ctg '(x) = —1 — ctg () = —

Az inverz fiiggvény derivaltja

1 —1
~ —1 —ctg %(arcctg (z)) 1+a22

(f ) (@)

4.4. Differenciadlszamitas alkalmazasai

4.4.1. Lokalis szélsGérték

4.8. Definici6. [ tetszdleges valds figguény, xoeDy. Ez az v lokdlis ma-

rimuma f-nek, ha létezik eqy U kornyezete xo-nak, melyre:
f(z) < f(xo) VzeU N Dy.

xg lokdlis minimuma f-nek, ha létezik eqy U kornyezete xg-nak, melyre:
f(z) > f(xo) VzeU N Dy.

A lokdlis minimum és mazimum kozos neve lokdlis szélséérték.
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4.9. Definici6. x( globdlis maximum, ha VreDy esetén

f(x) < flxo).

xo globdlis minimum, ha VxeD; esetén

f(x) = f(xo).

4.3. Tétel. (Szikséges feltétel lokdlis széldértékre) Legyen f : Dy — IR,
zo€ int(Dy) belsd pont. Tegyik fel, hogy f-nek xo-ban lokdlis szélsdértéke van

és xo-ban differencidlhato. Ekkor

f/(ZE()) = 0

Bizonyitas. (Lokalis maximum esetén) A derivalt definicidja szerint

£(@) = f(zo)

T—XTQ Tr — xo

A lokalis maximum tulajdonsidga miatt 3¢ > 0, hogy ha xe(xy — €, 29 + €),

akkor () < f(zo). lay ze(zo — &, 10) esetén L (32 - i (S”“"O) Ei 8; ezért
f'(zo) > 0. (4.1)
Hasonloan, ha e (o, 7o + <), akkor 2 <32 - i S’CO) g 0;, ezért
F'(z0) < 0. (4.2)

(4.1)-t és (4.2)-t Gsszevetve f'(zo) = 0.

Megjegyzés. A tétel megforditdsa nem igaz. Ha példaul f(x) = 23, akkor

ro = 0 nem lokdlis szélsGeérték. Mégis, derivaltja f'(x) = 322, és f'(0) = 0.

Definicié. f: D — IR differencidlhato fiigguény. Azokat az xoeD pontokat,

melyekre f'(xo) = 0, staciondrius pontnak nevezzik.
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4.4.2. Kozépérték tételek

4.4. Tétel. (Rolle tétel) Legyen f : [a,b] — R. Tegyiik fel, hogy f

1. folytonos |a,b]-n és differencidlhato (a,b)-n,

2. fla) = f(b).

Ekkor létezik Ee(a,b), melyre f'(€) = 0.

4.4. dbra. A Rolle tétel geometriai jelentése.

Bizonyitas. Mivel az f : [a,b] — IR folytonos fliggvény, ezért Weierstrass
II. tétele miatt létezik maximuma (M) és minimuma (m). Ha M = m =

f(a) = f(b), akkor a fiiggvény konstans, és trivialisan igaz a Tétel allitésa.

Ha m < M, akkor van olyan £e(a,b) belsd pont, melyre m = f(&) vagy
M = f(§). Ebben a £ pontban lokalis szélsGérték van. Ekkor az el6zd tétel
miatt f'(£) = 0.

4.5. Tétel. (Lagrange-féle kizépérték tétel) Legyen f : [a,b] — R. Tegyiik
fel, hogy f

- folytonos [a,b]-n és differencidlhato (a,b)-n.



120

Ekkor létezik olyan Ee(a,b), melyre: f'(§) =
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4.5. abra. A Lagrange tétel geometriai jelentése.

f(0) — f(a)
b—a

Bizonyitas* Az (a, f(a)) és (b, f(b)) pontokat Gsszekotd egyenes egyenlete

Legyen

A Rolle tételt alkalmazva g-re megkapjuk, hogy 3¢e(a,b), melyre ¢'(£)

£() = f(a)

J(©) =W(e) ===

4.6. Tétel. (Cauchy-féle kozépérték tétel) Legyenek f, g : [a,b] — R diffe-
rencidlhatd figgvények. Tegyik fel, hogy g(b) # g(a), és ¢'(x) # 0 minden

ze(a,b) esetén. Ekkor létezik Ee(a,b), melyre

fb) = fla)  f(§)
g(b) —gla) g
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Megjegyzés. A Cauchy-féle kozépérték tétel specialis eseteként g(x) = x
valasztassal a Lagrange tételt kapjuk.

4.7. Tétel. Legyen f : [a,b] — R differencidlhato figgvény. Tegyik fel, hogy

f'(x) = 0 minden xe(a,b) esetén. Ekkor f(x) = c valamilyen c-re.

Megjegyzés. Eddig a fenti allitas forditottjat lattuk: ha f(z) = ¢ minden
xe(a,b)-re, akkor f'(x) = 0. Most azt latjuk majd be, hogy csak a konstans

fiiggvény derivaltja lehet azonosan 0.

Bizonyitas. Legyenek xy, z9¢la, b] és x1 < xo. Tekintsiik f megszoritasat az

[x1, x9] intervallumra. A 4.5 Tétel alapjan 3¢e(xq, x5), melyre:

f(x2) — f(21)

To2 — X1

= f'(©).
Mivel f/(§) = 0 (hiszen a derivalt mindeniitt 0), ezért

f(z2) — f(z1)

To — X1

=0 = f(x2) = f(m).

4.1. Kovetkezmény. (Integrdlszamitds I. alaptétele) Legyen f,g: (a,b) —

R olyan differencidlhato fiigguények, melyekre f'(x) = ¢'(x) teljesil minden
ze(a,b)-re. Ekkor 3celR, melyre

flz) =g(x) + ¢, Vze(a,b).

A derivalt kiszamitasahoz hatarérték meghatarozasa kellett. Most forditott

eset lesz: kritikus hatdrérték meghatarozasahoz derivalast haszndlunk majd.

4.8. Tétel. (L’Hopital szabdly) Legyenek f és g differencidlhatéak zo eqy
kérnyezetében. Teqyiik fel, hogy

lim f(z) = lim g(z) =0.

T—TQ T—xQ
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Ekkor, ha létezik az alabbi hatdrérték:

i @)

=0 g ()

Y

akkor
lim @ = A.

=0 g(z)

Itt A = +o00 és/vagy o = +00 is lehet.

Bizonyitas* (Vazlat) Azt az esetet tekintjiik, amikor zpelR. Mivel

ezért hasznaljuk a Cauchy-féle kozépérték tételt az [zo, 2] (ill. az [z,x0))

intervallumon. Eszerint létezik £ az x és xg pontok kdzott, melyre

Megjegyzés. A tipust hatarértékre is igaz a L’Hopital szabaly.

” 9
(0.¢}

1. Példa. A mér ismert hatarértéket tjra kiszamolhatjuk:

lim S _ gy, 8@
=0 T z—0 1
2. Példa. lim — = lim & = oo,
Tr—00 U T—00 1

Megjegyzés. A L'Hopital szabaly ismételhets, ha lim f'(z) = lim ¢'(z) to-

T—rT0 T—T0
vabbra is kritikus hatarértéket adna hanyadosként.

3. Példa.

z—o0 et z—oo er r—oo ¥
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4.4.3. Monoton fliggvények jellemzése

4.9. Tétel. (Monoton figgvények jellemzése) Legyen f egy I intervallumon
értelmezett differencidlhato fligguény. Ekkor

1. f monoton névd I-ben <= f'(z) > 0, Vrel.

2. f monoton fogyo I-ben <= f'(x) <0, Vrel.

Bizonyitas. A két allitas ekvivalens. Legyen példaul f monoton nové az [
intervallumban. Vizsgaljuk meg a differenciahanyados elGjelét xy kornyeze-
tében. Ha x < x¢, akkor az
f(@) — f(xo)
Tr — 2o
tort nevezGje negativ, szamlaloja negativ vagy 0, ezért a tort nemnegativ.

Ha z > x(, akkor ugyanennek a tortnek szdmlaloja nemnegativ és nevezGje

pozitiv, ezért a tort most is nemnegativ.
Emiatt a hatarértékre f'(zq) > 0 lesz.
4.2. Kovetkezmény. Ha f'(x) > 0 Vze(a,b), akkor a fiigguény szigorian

monoton névd az (a,b) intervallumban.

Megforditva, szigorian monoton nové fiiggvény esetén nem feltétleniil igaz,
hogy f/'(x) > 0 teljesiil Vz esetén. Példaul f(x) = z® mindeniitt szigortian

monoton névs, mégis f/(0) = 0.
4.10. Tétel. (Flégséges feltétel lokdlis széldértékre) Tegyiik fel, hogy az f
fliggvény xo-ban kétszer folytonosan differencidlhato, és f'(xo) = 0 (stacio-

ndrius pont). Akkor f"(xo) # 0 esetén xo-ban lokdlis szélséérték van. Sét,

1. ha f"(x9) > 0, akkor xq lokdlis minimum,
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2. ha f"(x¢) <0, akkor xo lokdlis mazimum,

Ha f"(z9) = 0, akkor ebbsl még nem eldontehetd, vajon xo-ban szélsdértéke

van-e a fligguénynek.

Bizonyitas. Tegyiik fel, hogy f”(z¢) > 0. Ekkor f”(z) > 0 az xy valamely
kérnyezetében is, ezért f’'(z) szigoruan monoton névekedd ebben a kirnye-
zetben. Mivel f'(zg) = 0, ezért © < xy esetén f'(x) < 0, tehat a fiiggvény
itt szigorian monoton fogy. Hasonloan x > xq esetén f'(z) > 0, ezért f itt

szigorian monoton névekedd.

T < Tg Zo T > Ty
A + +
roo 0 +

f N, lok. minimum 7

4.4.4. Konvex és konkav fiiggvények

4.10. Definicié. f: [a,b] — R konvez, ha minden x, < xa€fa,b] esetén
FUT =)z +txs) < (1 —1t)f(xy) + tf(x2), tel0, 1].

A fiigguény konkdv az I intervallumban, ha —f konvex.

Szemléletesen, ha a fiiggvény grafjanak barmely két pontjat 6sszekots egyenes

a graf folott van, akkor a fiiggvény konvex.

4.11. Definicié. Az xoeDy inflexids pont, ha ebben a pontban a fiigguény

konvexrbdl vdlt konkdvba, vagy konkdvbol konvexbe valt dt.

4.11. Tétel. Legyen f : [a,b] — R differencidlhato fiiggvény. Ekkor:

1. f konvez [a,b]-n <= f" monoton névd,
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4.6. abra. Konvex fiiggvény derivaltjanak monotonitasa.

2. [ konkdv [a,b]-n <= f' monoton csokkend.

Differencialhato fiiggvény esetén az érinté egyenes helyzetébdsl megéllapithato

a konvexitas.

1. Ha a fiiggvény gréafja mindeniitt az érint6 egyenes f6lott van, akkor a

fiiggvény konvex.

2. Ha a fiiggvény grafja mindeniitt az érint6 egyenes alatt van, akkor a

fiiggvény konkav.

3. Szemléletesen az inflexiés pontban a fiiggvény érintGje "atdofi" a fiigg-

vény grafikonjat.

Példa. Tekintsiik az f(z) = 2® fiiggvényt. Ekkor az x = 0-ban az érinté
egyenes y = 0, ami 4tdofi a grafot. A fliggvény konvex, ha = > 0, és konkav,

ha z <0, az x = 0 pontban inflexioja van.

4.12. Tétel. Teqyiik fel, hogy az [ fiigguény xo eqy kérnyezetében kétszer
folytonosan differencidlhato. Ekkor
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1. f"(x9) > 0 esetén f konvex xo kirnyezetében,

2. f"(xo) <0 esetén f konkdv xo kérnyezetében.

4.3. Kovetkezmény. Ha f kétszer folytonosan differencidlhato xo eqy kor-

nyezetében és xo-ban inflexids pontja van, akkor f"(xq) = 0.
4.3. Allitas. Legyen f kétszer folytonosan differencidlhato xo eqy kérnyeze-
tében. Tegyik fel, hogy f"(xo) = 0.

1. Ha [" eldjelet vdlt xo-ban, akkor xq inflexids pont.

2. Tegyiik fel, hogy f hdromszor derivdlhatd, és f"(xo) # 0. Ekkor xg

inflexids pont.
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5.1. Hatarozatlan integral

5.1.1. Primitiv fliggvény és hatarozatlan integral
Hatarozatlan integral meghatarozasa primitiv fiiggvény keresését jelenti. En-
nek soran a differencialas operatornak (melyre f — f’), az inverzét keressiik.

5.1. Definicié. Adott eqy f: I — R fiiggvény, ahol I C IR intervallum. A
F: I — 1R figgvény a f fligguény primativ fiiggvénye, ha

F'(z) = f(2), Vael.

Példa. Legyen f(x) = sin(z) cos(z). Mi a primitiv fiiggvénye? Felhasznaljuk,
hogy sin(2z) = 2sin(x) cos(z), és ezért f(x) = sin(2z)/2. Ebbdl

cos(2x)
4

F(z)=—

De egy masik primitiv fiiggvényt is felirhatunk, hiszen f(x) = sin(z) sin’(z),

_ sin®(z)

G(z) = 5

Nyilvan F'(z) = G'(z) = f(x). Lathato, hogy a primitiv fiiggvény - ha

létezik - akkor nem egyértelmd.

5.1. Tétel. Ha az f figguény két primitiv figgvénye F(x) és G(x), akkor

létezik eqy ceIR konstans, melyre

F(z)=G(z)+¢c minden el -re.

Bizonyitas. Ez az Integralszamitas 1. alaptétele, 1d. 4.1 Tétel.

Megjegyzés. Van olyan fiiggvény, melynek nincs primitiv fiiggvénye. (Ki tud
ilyent?)
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5.2. Definicié. ha Adott f : I — R fiiggvény primitiv fliigguényeinek halma-

zdt hatdrozatlan integrdlnak nevezzik, és igy jeloljik:

/f(x)dx {H:I—R| H()=f@)}={F+c: cR},
ahol F': I — R tetszdleges régzitett promitiv figguény.
Példa. Legyen f(x) = x. Ekkor

2
/f(:z:)dac = % +c,  ceR.

Megjegyzés. A fenti hatarozatlan integralt csak intervallumon értelmezett

fiiggvényekre definidljuk. Példaul

1
/—dx:
x

Bizonyos esetekben — ha az intervallumro6l nem rogzitjiik konkrétan, hogy a

In(z)+¢ ha I C(0,00),
In(—z)+c¢ hal C (—o0,0).

(—00,0) vagy a (0,00) része, — hasznaljuk az alabbi jeldlést:

1
/—dx =In|z| +c. (5.1)
T

Alaptulajdonsagok

5.1. Allitas. A hatdrozatlan integrdlnak az aldbbi tulajdonsdgai vannak:
1. /(f—f—g)(x)dx = /f(x)dx—l—/g(x)dx.
2. /c~f(x)d$:c'/f(a:)d:l;.

2 / F(p(x)) - ¢ (@)de = f(p(x)) +c.
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Bizonyitas.

1. Trivialis.

2. Trivialis

3. Lancszabalyt alkalmazva azt kapjuk, hogy (f(¢(x))) = f'(p(z))-¢'(x).

A 8. tulajdonsidgnak néhany specidlis esetét tekintjiik.

8/a. Mivel (f*(x)) = a- fo () - f'(x), ezért

_ fa—&—l(x)
 a+1

l/P@%f@Mm fe ad-l

3/b. Az o = —1 esetben:

f,(x) = 1n xXr C
[ Fitas = i@+ e

Itt az abszolut érték csak jeldlés, ahogy korabban a (5.1) egyenletben
mar szerepelt.

3/c. Mivel (e/@) = /@ . f'(z), ezért

1. Példa.
_ _ sin?(z)
/sm(x) -cos(z)dr = 5 + c.
Itt f(z) = sin(x), f'(z) = cos(x), a = 1.
2. Példa.
(14 e)°

/(1+em)5-exd$:—+c.
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5.2. Riemann integral

5.2.1. Riemann integral, mint teriilet

A Riemann integral szemléletes jelentése nemnegativ fliggvények esetén a

fiiggvény grafikonja és az x tengely kozti teriilet mértéke.

f(x)

Altalanos esetben "elGjeles" teriiletet jelent majd az integral: az z tengely

alatti teriilet negativ elGjelet kap.
f(x)
_l_

\_/\T

A fiiggvény grafja és az x tengely kozotti teriiletet egyelére kozelitjilk. Fiig-

gbleges téglalapokat irunk be, melyek teriilete ismert.

5.3. Definicid. Az [a,b] intervallum egy felosztdsa néhdny osztopontot je-
lent. Nevezetesen:

F={xp=a<z <<z, =0}
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A felosztds finomsdga a leghosszabb részintervallum hossza:

O(F)=max{ry —xp_1: k=1,...,n}.

Legyen F egy rogzitett felosztésa az [a, b] intervallumnak. A felosztas k-dik
részintervallumat jelolje

Axk =T — Tk—-1-
A szemléletesség miatt most feltessziik hogy a fliggvény nemnegativ. Adott
egy f:[a,b] = R* korlatos fiiggvény.

5.4. Definicié. Az F felosztdishoz tartozo alsé kézelité 6sszeg s(F):
s(F) = ka(xk—xk_l) = ka-Axk itt my, = inf {f(z) : ve[xp_1, x|} .
k=1 k=1

Az F felosztdshoz tartozo felsd kézelité dsszeg S(F):

S(F) := Z My(rp—xK-1) = Z My.-Axy itt My = sup{ f(z) : xe[zy_1,x1]}.
k=1 k=1

Az als6 kozelits Osszeg azoknak a téglalapoknak az Ossz-teriiletét adjak meg,
amik még "épp beférnek" a fiiggvény grafja ala. A téglalapok alapjanak

hosszat a felosztas osztopontjai adjak meg.

A fels6 kozelits osszeg azoknak a téglalapoknak az Gssz-teriiletét adja meg,
amelyek feliilr6l "épp érintik" a fiiggvény grafjat. Itt is a téglalapok alapjanak

hosszat a felosztas osztopontjai adjak meg.

A kovetkez6 abran egy konkrét feloszahoz tartozo also- és felsd felosztasok
lathatoak:

Ezek a kozelit osszegek eleget tesznek az alabbi tulajdonsagoknak:
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VA

5.1. abra. A filiggvény alatti teriilet als6 és fels6 kozelitése.

5.2. Allitas. 1. Tetszdleges F felosztds esetén

s(F) < S(F).

2. Tegyiik fel, hogy az F' felosztds annyiban kilonbozik az F felosztdstdl,

hogy egyetlen 1y osztopontot vesziink hozzd. Ekkor

s(F) < s(F) < S(F) < S(F).

3. Tetszdleges F és F' felosztdspdrra

s(F) < S(F).

Bizonyitas*

1. Trivialis.

2. Belatjuk példaul az als6 kozelité Osszegekre vonatkozd Osszefiiggést.

Tegyiik fel, hogy az 0j x* osztépont a k-dik részintervallumban van:

Tp_1 < T° < !
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A két részintervallumon a filiggvény infimuméat jelolje my; ill.  myo.
Ekkor

S(F) = s(F) = mpy (z* — wp—1) + mp2(zp — %) — my (2 — 2p-1) =

= (Mg — my) (2" — 2p—1) + (Mr2 — my) (2 — %) > 0,

hiszen az intervallum sziikitésével az infimum értéke csak néhet.

3. Az F és F' felosztasok oszopontjainak egyesitésével kapott felosztast

jelolje Fy. Ekkor az 1. és 2. pont szerint

Az Osszes lehetséges felosztasok halmazat jelolje F. Legyenek
s :=sup{s(F) : FeF}, S :=inf{S(F) : FeF}.

A fenti 5.2. Allitas kovetkeztében s < S.

5.5. Definicié. Azt mondjuk, hogy az f : [a,0] — R korldtos figguény

Riemann-integrdlhato az [a,b] intervallumon, ha
sup{s(F) : FeF} =inf{S(F) : FelF}.

Ekkor a figguény Riemann integrdlja [a,b]-n a fenti érték, ezt igy jeloljik:

/bf(x)dx =s=2.

Ebben az esetben roviden csak azt fogjuk mondani, hogy f integrdlhatd.

Példa. Ha f(x) = c konstans fiiggvény, akkor integralhaté. Az integral

b

/f(x)dx =c-(b—a).

a
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Példa. Nem integralhato, korlatos fiiggvény a Dirichlet fliggvény.

definidltunk:

1 ha zeQ,
f:0,1] =R, ¢é f(z):=
0 ha z{Q.

Ez nem integralhatd, hiszen tetszéleges F felosztas esetén

5.6. Definicié. Az F felosztdshoz tartozo oszcilldcios 6sszeg

n

o(F) = (My — my,)Axy.

k=1

A felosztdshoz tartozo egyik Riemann 6sszeg
o(F) =) f(&) A,
k=1

ahol pe[ry_1, xk] tetszdleges pont az intervallumban.

135

Bzt igy

Megjegyzés. Figyeljiink arra, hogy itt két kiilonb6z6 betii szerepel; o (kis o)

az oszcillacios Osszeg jelolésére, és o (szigma) a Riemann Osszeg jellésére.

Ezekre a mennyiségekre minden felosztas esetén teljesiilnek az alabbi Gssze-

fiiggések:

s(F) <o(F) < S(F), o(F) > 0.

Megjegyzés. Mivel minden F és F' felosztasparra

s(F) < 5(F),

ezért az integralhatdsaghoz elegendd belatni, hogy létezik olyan (F,,) felosztas

sorozat, melyre §(F,) — 0 és

lim s(F,) = lim S(F,),

n—oo n—oo
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azaz lim o(F,) = 0.
n—oo

Ezzel belattuk a koévetkezd tételt:

5.2. Tétel. Ha [ integrdlhato, akkor minden olyan (F,) felosztds sorozatra,
melyre 6(F,) — 0:

n—oo

lim o(F,) = /  Hayde

Mds szoval: ha f integrdlhato fiiggvény, akkor minden felosztdssorozat men-
tén - melynek finomsdga 0-hoz tart - a Riemann-dsszegek hatdrértéke mindig

a Riemann integrdl értéke.

5.3. Tétel. (El6z6 Tétel megforditasa) Tegyiik fel, hogy létezik olyan (F,)
felosztds sorozat, amire 6(F,) — 0 és

lim o(F,) =Z,

n—oQ

ahol a hatdrérték fliggetlen a & pontok vdlasztdsdtol. Akkor f integrdlhato.

Elegendé feltételek integralhatésagra*

(Kiegészitd tananyag)

Ebben a fejezetben néhany olyan kritériumot fogalmazunk meg, amelyek

elegenddek az integralhatosaghoz. A bizonyitasok alapja ez a lemma lesz:

5.1. Lemma. Legyen [ : [a,b] — R korldtos figguény. Ekkor az integrdl-

hatdsag azzal ekvivalens, hogy Ve > 0-hoz létezik olyan F felosztds, melyre
o(F) < e,

tehdt az oszcilldcios 6sszeq tetszdlegesen kicsi lehet.

A kovetkezG Tételek bizonyitasa azon alapul, hogy a 5.1 Lemma feltételét
igazoljuk.
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5.4. Tétel. Tegyiik fel, hogy f : [a,b] — R korldtos és monoton. Ekkor f

integrdlhato.

5.5. Tétel. Tegyik fel, hogy f : [a,b] — R folytonos figgvény. Ekkor f

integrdlhato.

5.6. Tétel. Legyen [ : [a,b] — R korlditos, mely véges sok szakaddsi
helytdl eltekintve folytonos. Ekkor f integrdalhato.

N

-1 05 0 05 1 15 2 25 3 35 4 45 5

5.2. dbra. Szakadasos fiiggvény integralja

5.2.2. Az integral kiszamitasa

A Riemann integral kozelité Gsszegek hatarértékének meghatarozasat jelen-
tette. A gyakorlatban ezt nem hasznalhatd az integrél értékének kiszamita-
sara. Ebben a fejezetben "Gsszeér" a hatarozatlan és hatarozatlan integral,

ezzel tudjuk a Riemann integral értékét kiszamolni.

A kovetkezd Tétel az integrélszamitas egyik legfontosabb alappillére.

5.7. Tétel. (Newton-Leibniz formula) Legyen f : [a,b] — TR integrdlhaté
fugguény. Tegyiik fel, hogy létezik F primitiv figguénye f-nek, azaz van olyan
F :a,b] = R differencidlhato fiiggvény, melyre

F'(z) = f(z) Vae(a,b).
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Ekkor ,
/ f(z)dx = F(b) — F(a).

Bizonyitas® Tekintsiink egy tetszoleges felosztést:
F={a=xy<... <z, =b}.

Vizsgaljuk F' megszoritasat egy részintervallumon, F' : [x;_1, 2] — R. Mi-
vel F' differenciadlhato, ezért a Lagrange-féle kozépérték tétel alkalmazhato.
Eszerint létezik olyan &e(xg_1, xg), melyre

F(.I‘k) — F(l’kfl)

T — Tk—1

F'(&) = = f(&)- (5.2)

b

Az f(z)dz integral kozelitésére Riemann Gsszeget alkalmazunk ezekkel a

&—kai és felhasznaljuk a fenti (5.2) Osszefiiggést:

n

o(F) = 3 JE o — ) =3 P S E e

T — T
P k— Th-1

n

= Y (Flox) = Flax)) = F(wa) — F(ag) = F(b) = Fla).

k=1

Tekintsiink most egy felosztas sorozatot: (F,), melyre 6(F,) — 0. A fenti

konstrukcidval valasztva a Riemann-6sszeg alappontjait, azt kapjuk, hogy
o(Fn) = F(b) — F(a) vn.
adodik. Mivel ,
lim o(F,) :/ f(z)dz,
n—o0 a

ezzel a tételt belattuk. O
A fenti tételhez kapcsoloddan az alabi jelolést fogjuk hasznalni:

- 7] )

a

[ swie = ria)
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Felmeriilhet az a kérdés, hogy a Newton-Leibniz-formulaban melyik primitiv
fiiggvényt valasszuk? Legyenek F és G primitiv fiiggvényei f-nek. Ekkor
tudjuk, hogy

teh&t barmelyik primitiv fiiggvényt valaszthatjuk.

Példa. Az f(x) = sin(x) egyik primitiv fiiggvénye F'(x) = — cos(z), ezért

27
= —cos(2m) + cos(0) = —-14+1=0,
0

/:Tr sin(x)dx = — cos(z)

= — cos(m) + cos(0) = 2.
0

/07T sin(x)dx = — cos(z)

5.7. Definici6. Ha b > a, akkor legyen

/ba f(z)dx = —/abf(x)dx.

/a " f@)dz = 0.

Ezért

A definiciobol azonnal kovetkezik az alabbi allitas.
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5.3. Allitas. A hatdrozott integrdl tulajdonsdgai:

1. Tegyiik fel, hogy f : [a,b] — R integrdlhato és f : [b,c] — R is integ-
rdlhatd, akkor f : |a,c] — R is integralhatd, és:

/acf(x)dx = /abf(x)dm + /bc f(z)dx.

2. Ha f,g: |a,b] = R integralhatdak, akkor (f + g) is integrdlhatd, és
b b b
/ (f + 9)(@)dz _/ f(x)de +/ g(z)da.

3. Ha f:[a,b] = R integrdlhato , akkor cf : [a,b] — IR is integrdlhatd és

e flx)dz = c- b f(x)dz.
/ /

4. Ha f és g két integrdlhato figguény, melyekre f(x) < g(x) teljesiil

minden xzela, b] pontban, akkor

/bf(:c)dazg/abg(x)dx.

5. Ha [ integrdlhato, akkor |f| is integrdlhatd, és

b

/f(x)dx S/ab!f(x)ldx.

a
Bizonyitas.

1.-4. trividlis kovetkezménye a definicionak.

5. A 4. tulajdonsagbol kovetkezik, felhasznalva azt az Osszefiiggést, hogy

—[f(@)] < fz) < |f(2)].
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Megjegyzés. Az 5. tulajdonsag megforditasa nem feltétleniil igaz. Ha |f]
integralhat6, abbo6l még nem kovetkezik, hogy f is integralhaté. Erre példa:
legyen f :[0,1] — IR az alabbi fiiggvény:

1 ha zeQ,
flx) =
—1 ha x¢Q.

Ekkor f nem integralhato, pedig |f| = 1, integralhato.

Bevezetjiik az alabbi jeltlést:
Rla,b] = {f : [a,b] = R, f integralhato}.

Nyilvan R]a, b] linearis tér, azaz vektortér.

5.2.3. Integralkozép

Emlékeztetiink arra, hogy az ay, ..., a, valos szdmok szamtani kdzepét gy

definialtuk, mint
ay+...ay,

n
Ennek altalanositasaként természetes modon adoédik az integralokra vonat-

/ f(@)dz

a

b
/ 1dx

5.8. Definicio. Az f : [a,b] — R integrdlhatd fiigguény integrdlkézepe az

/ F(@)da

a

b—a

kozo6 integralkozép:

aldbbi k (kappa) szdm:

R =
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f(x)

5.3. dbra. Integralkozép szemléletesen

5.4. Allitas. Tegyiik fel, hogy az f integrdlhatd figgvényre teljesil, hogy
m < f(x) <M Vaxela, b].
Ekkor az integrdlkozépre is fenndll:
m<x <M.

5.8. Tétel. (Integrdl kozépérték tétel) Tegyiik fel, hogy f folytonos |a,b]-n.
FEkkor létezik olyan Eela, b], melyre

Bizonyitas* Legyen a fliggvény minimuma m, maximuma M. Ekkor a Wei-
erstrass II. tétel szerint 1éteznek &, &s¢fa, b] szamok, melyekre f(&) = m,
f(&) = M. Mivel az el6z6 allitas értelmében m < k < M, ezért a tétel

allitdsa a Bolzano tételbdl kovetkezik.

5.2.4. Parcialis integralas

Emlékeztet6iil irjuk fel a szorzat fiiggvény derivalasarol szolo képletet:

(f9)'(x) = ['(z)g(x) + f(z)g'(2).
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Mindkét oldal primitiv fiiggvényét véve megkapjuk az alabbi szabélyt.

5.9. Tétel. (Parcidlis integrdlds) Legyenek f,g : [a,b] — R derivdlhato
figguények. Ekkor

1. (Hatdrozatlan alak)
[ F@gtyis = f@ga) - [ ria)g @)

2. (Hatdrozolt alak)

1. Példa.

/:Eexdx =7

Alkalmazzuk a parcialis integralasi szabalyt a kévetkezd "szereposztassal':

Ekkor

tehat azt kapjuk, hogy

/xewdx =ze® — /emdx =(z—1)"+c.

Ugyanez az eljarast hasznéljuk, ha a kiszamitand6 integral alakja:

/polinom -efdx.

2. Peélda.
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/xcos(:z:)da: =7

Alkalmazzuk a parcidlis integrélasi szabalyt a kovetkezd szereposztassal:

f'(w) = cos(x), g(z) = .

Ekkor
flz) =sin(z),  ¢'(z)=1.
Tehat azt kapjuk, hogy

/ 2 cos(z)dx = o sin(z) — / sin(z)dz = 7 sin(z) + cos(z) + c.

Hasonl6 tipusi integralok, amiket igy szamolunk:

)

polinom, - cos(z) dx.
/ >
)

3. Példa.
/e“x sin(bz)dz =7, a, belR

Alkalmazzuk a parcidlis integrélasi szabalyt a kovetkezd szereposztassal:
flz)=e", ¢(x)=sin(bx).

Ekkor

fla)=ae, gla) = =,

tehat azt kapjuk, hogy
. 1 a
/eax sin(bx)dx = —Eeax cos(bx) + 7 / e cos(bx)dx = ()
Itt 1jabb parcialis integralast végziink:

1
(xx) = —Ee‘” cos(bx) + .

b—Qe‘” sin(bzr) — — /e‘” sin(bz)dzx.
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Az egyenlet kiindul6 alakjat és végsd alakjat Gsszehasonlitva az ismeretlen

integralra egy Osszefiiggést kapunk, ahonnan

ea:p

/e‘” sin(bx)dr = pERE (—bcos(bx) + asin(bx)) + c.

Teljesen hasonloan szdmolhaté az alabbi integral is:

/ec“D cos(bx)dz.

/ In(z)dz =?

Alkalmazzuk a parcidlis integralasi szabalyt a kovetkezd szereposztassal:

4. Példa.

Ekkor

tehat azt kapjuk, hogy

/ln(x)dx — zln(z) + / L de = 2mn(z) + / ldz = 2(In(z) + 1) + c.

X

Hasonléan szamolhatok az aldbbi integralok, ahol a szorzat méasodik ténye-

z6jének derivaltja egy polinom reciproka:

In(x)

t
/polz’nom- arctg, () dx.
arcctg (x)
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5.2.5. Helyettesités integralban

Emlékeztet6iil felirjuk a lancszabdlyt, mely az Gsszetett fiiggvény derivalasara

vonatkoz6 képlet:

Ennek az 6sszefiiggésnek a megfelelGje az integralszamitasban a helyettesités integralban.

5.10. Tétel. Legyen f : [a,b] — R integrdlhatd figguény. Legyen tovdbbd

¢ |a, B] = [a,b] szigorian monoton, differencidlhato figgvény, melyre

(Az x vdltozd helyére a ¢(t) figgvényt irjuk majd az integrdlban.) FEkkor a

helyettesitéses integrdl alapformuldja:

1. (Hatdrozott alak)

b B ¢~ (b)
[ t@ae= [ rowowi= [ rowns o

¢~ 1(a)

2. (Hatdrozatlan alak)

[ otans @iz = [ aa

t=¢(z)

Megjegyzés. Lényegében itt is a korabban emlitett formularol van szé

[ t@ae= [ s)i0,

ahol ¢ = ¢(t) egy fiiggvény. Formalisan konnyen megjegyezheté a fenti

formula, éspedig a kovetkezGképpen:

sy =" dge) = eyar
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Példa. Szamoljuk ki az alabbi integralt:
1
/ V1 —a2dx =7
0

Végezziik el a kovetkezd helyettesitést:

x = sin(t).
T
Ekkor ze[0,1] <= te [0, 5} .
Igy a helyettesités:
1 w/2 /2
/\/1 —x?dx = / \/1 —sin*(t) cos(t) dt = /COSQ(t)dt =
0 0 0
w/2
1
_ / +COS(2t>dt _
2
0
_ T sin(2t) |/ oo
4 4 ], 4

5.2.6. Integralfiiggvény

Legyen f : [a,b] — IR integralhato fiiggvény.

5.9. Definicié. Az f fligguény integrdlfiiggvényét igy definidljuk:

F:lab >R,  F(z)= / F(t)dt

Az integralasi tartomany egyik végpontjat rogzitjiik, és a masik végpont lesz

az integralfiiggvény valtozoja.
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F(z)

5.4. abra. Az integralfiiggvény szemléletesen

A kovetkez6 tételre szokas tgy is hivatkozni, mint "Az integrdlszdmitds I1.

alaptétele"

5.11. Tétel. Az integrdlfiiggvény rendelkezik az aldbbi tulajdonsdgokkal:

1. F folytonos |a,b]-n.

2. Ha f folytonos az xoe(a,b) pont egy kiérnyezetében, akkor xg-ban F
differencidlhato, és

F'(0) = f(wo)-

Példa. Az alabbi fliiggvény zart alakban nem irhato fel:

Mégis, ismerjiik derivaltjait:
2

F'(z) =e™", F'(z) = —2ze™™

Ezek alapjan a fiiggvény viselkedésardl mér sokat tudhatunk.

A kovetkezd fejezetben épp ilyen helyezettel talalkozunk.
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—

42
et

5.3. Improprius integral

5.3.1. Az improprius integral definicidja
Eddig olyan fiiggvényekkel foglalkoztunk, melyek értelmezési tartomanya kor-
latos intervallum, és értékkészlete is korlatos.

Az intergalfogalmat kiterjesztjiik arra az esetre, amikor ezek valamelyike nem

teljesiil.
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Legyen f : (a, ) — IR tetszsleges fiiggvény, ahol esetleg o = —o0 és/vagy
f = oo is el6fordulhat. Bevezetjiik az I = (a, ) jelolést.

5.10. Definicié. Az f fiigguény lokdlisan integrdlhato I-ben, ha minden
[a,b] C I korldtos és zdrt intervallum esetén f’[a . integralhato. Ezt a tulaj-

donsdgot igy jeloljik:

feRrRMe(1).
Példa. Az
f(l’) = i? ZEE(O, 1)

fliggvény lokalisan integralhato, bar nem korlatos az adott intervallumon.

Példa. Az |
f(.flf) = 3;3’ .flfG(l, OO)
fiiggvény lokéalisan integralhato, bar nem korlatos az értelmezési tartomany.

Vezessiik be ennek integralfiiggvényét:

Mivel 1tlim F(t) = 1, természetes modon definidlhatjuk az integralt (1, oc0)
—00

tartomanyon:
t

/—d:z: = lim —d:c = 1.

t—>oo [L‘

5.11. Definicié. Az feR!¢(I) fiigguény improprius értelemben integrdl-
hato, ha

b B
lim [ f(x)de=: | f(x)dx
(e / /

hatdrérték létezik és véges.
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Megjegyzés. Ha feR|a, B], akkor improprius értelemben is integralhato.

Ha f impropriusan integralhato [a, oo)-n, akkor elegendd az egyik hatarérték:
o0 b
/ f(z)dz = lim [ f(x)dx.
a b—oo [,
Megjegyzés. Az integral eddigi tulajdonsagai megmaradnak:

1. linearitas (Osszeg és skalarszoros integralja)

2. monotonitas

3. Newton-Leibniz formula; ha a primitiv fliggvény hatarértéke létezik.
Ha I = (a, 8), ahol a végpontok nem feltétleniil végesek, hasznalni fogjuk az

alabbi jelolést is
B

/f(x)dx:/f(x)dx.

00 1 . b 1
dr = lim dz.
o 1+ a2 b—oo Jy 1+ 2?2

Példa.

A véges intervallumon vett integralt ki tudjuk szamolni a Newton-Leibniz

formula alapjan

b
= arctan(b) — arctan(0),

b
/ dx = arctan(x)
0

14 22 0
ezért -
/0 . sz dx = bli_}rgo arctan(b) = g
Emiatt

*° 1
/ dr = .
U
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5.3.2. Hatvanyfiiggvény integralja

Példa. Milyen o > 0 esetén létezik az alabbi improprius integral:

1
1
—dz?
0o T
A fiiggvény nem korlatos 0 kornyezetében, de lokalisan integralhato (0,1)-

ben. Az improprius integrél definicidja szerint - ha létezik - igy szamolhato:

—dm = lim —dx
e—0+ T

A primitiv fliggvényt ismerjuk:

In|jz|, ha a=1,
1
—dzr = .
x -
f . ha a#l.
Tehat a # 1 esetén:
1 1—a |1 1-«
1 1—
—dr = | =
. X I —al, l-«

Ezért e — 0+ hataratmenettel ezt kapjuk:

1
ha o<1,
1 =gl 11—«
lim —— =
e—=0+ 1 —
00 ha a>1
o = 1 esetén
1q 1
/ —dr =Inz Ine lim (—Ine) = 00
c €T . e—0+
Osszefoglalva:
- - <oo ha ax<l1
—dzx =
0o x¢
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Példa. Hasonloképpen vizsgaljuk meg az

improprius integralt, a > 0 esetén. Ekkor

® 1 b1
/ —dx = lim —dx.
1 xr< b—oo Jq T

a # 1 esetén:

b 1—a | l1—a
1 b -1
—dx:aj = s
. x“ I —al l-«a
és ekkor
00, ha 1—a>0,
. bl—a_l
lim — =
bsoo 1 — « 1
, ha 1—a<O.
a—1

o = 1 esetén:

b
=1Inb, lim (Inb) = oc.

b
1
/ —dr =Inx
1T

Osszefoglalva

<oo, ha a>1.

impropriusan nem integralhato.



154 5. FEJEZET. INTEGRALSZAMITAS

5.3.3. Kritériumok improprius integralokra

5.12. Tétel. 1. (Majordns kritérium) Adottak az f,g : I — R lokdlisan
wntegrdalhato fiigguények. Tegyiik fel, hogy
0<[f(o) <g(z),  wel

Ekkor
/g(x)dx <oo = /f(x)dx < 00.
T

1

2. (Minordns kritérium) Legyenek f,g : I — R adott figgvények, ahol
I = (o, B). Tegyiik fel, hogy f(x) < g(x) minden xel-re. Ekkor

[romme = [

A majorans kritériumot hasznéljuk fel arra, hogy egy fliggvényt egy meg-
felel6 hatvanyfiiggvénnyel Gsszehasonlitva igazoljuk az improprius integrél
létezését.

5.13. Tétel. Legyena > 0 és f : [a,00) — R lokdlisan integralhatd figguény.
Tegyiik fel, hogy valamilyen o > 1 és ceRR™ mellett:

f(z)| <c-x7°, Vo > a.

Ekkor az / f(z)dx improprius integrdl létezik.
Szokas a fenti nagysagrendre vonatkozé tulajdonsagot igy jel6lni

fz) ~ O(—), T — 00.

ma

Példa. (Dirichlet integral) Tekintsiik az alabbi improprius integralt:

/ sin(z) de.
0 x
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Bzt két részre bontjuk

0o - 1 . 0o -+
/ sm(:):)dx :/ Sm(x)dx—i—/ sm(x)dx'
0 z o T 1 z

sin(z)

Az f(z) =

integral véges. A masik integralt becsiilni fogjuk.
o0 - b .
12:/ Sm(x)dx: lim/ Sm(m)dm.
1 xT b—oo Jq €T
b .
Az / Sm(m)dw—t parcialisan integralva:
1

/bMdz’:—Mb

i T

fiiggvény [0, 1]-re vett megszoritasa folytonos, tehat az elsé

ahol a parcialis integralast igy végeztiik:

1 1
g (z) =sin(z) — g(x) = —cos(z).
Mivel
, < cos(x) b)
lim | — =0+ cos(1),
b—o00 x 1
és
0< Cosgx) < iz’
x x

hasznalhatjuk a majorans kritériumot, majorédnsként

>~ 1
—dx < 0.
2P

Tehat I, < oo, a Dirichlet-integral véges.

5.Gyakorlat. Beldthato, hogy

(Nem konnyt, s6t!)
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5.14. Tétel. (Cauchy feltétel improprius integrdlra) Legyen I = («, 3), ahol
a végpontok esetleg nem végesek Tekintsink eqy f : I — R figguényt. Ekkor

/j f(z)dz

integrdl pontosan akkor konvergens, ha minden € > 0-hoz léteznek olyan U(«)

és U(B) kornyezetei a-nak és B-nak, melyekre

Vaq, agel(a) : / f(z)dx| < &,

B2
V1, BeU(B) : f(x)dz| < e.

B81

A fenti tétel egy fontos kovetkezménye [ = (—o00,00) = IR esetén az alabbi
allitas:

5.1. Kovetkezmény. Tegyiik fel, hogy
/ f(z)dr < oo.

Ekkor minden € > 0 szamhoz létezik olyan K > 0 szdm, melyre

/Kf(m)dx+/: fla)da| < e.

Improprius integralok esetén is végezhetiink helyettesitést, az ismert szaba-
lyok betartasaval. A helyettesités néha egyszersit, és az improprius integ-

ralbol kozonséges integral lesz.

Példa.

/1 1 w/2 1 ( ) w/2 .
—dx:/ —~costdt:/ 1dt = —.

0o V1-—ua? 0 /1 —sin®(t) 0 2

Az x = sin(t) helyettesitést végeztiik el, igy dz = cos(t)dt. Az integralasi
hatarok x = sin(¢)e[0, 1] miatt te|0, g] lett.
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5.3.4. AT fiiggvény*

(Kiegészitd tananyag.)

AT:R" — R (gamma) fiiggvényt igy definidljuk:
I'(t) = / e at t>0.
0

Eloszér belatjuk, hogy a fenti improprius integral véges, azaz a I fiiggvény

jol definialt. Valoban, két részre bontva az integralasi tartomanyt,

1
/ et dr < 0.
0
T t—1

Ez csak 0 < t < 1 esetén nem trivialis, de ekkor is e™* - """ < 7%, ahol
0 < a < 1. Tovabba -
et ldr < oo,
1

mert ebben az intervallumban e™* < 27%, tetszéleges k > 0 mellett. Parcia-

lisan integralva azt kapjuk, hogy

/em st e = —e7 " 2t £ /6‘” (t—1)2"%dx,
ahol a parcialis integralasnél az alabbi fiiggvényeket hasznaltuk

fo) =at > fla) = (- Dot

J@)=c* = gla)=—c,

Igy
b

b b
/ et de = —e" 2t (- 1)/ 7% e d.
0 0

0
Ezért b — oo hatarértéket véve:

T(t) =0+ (t—1)-T(t—1).
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Ismételjiik meg a szamolast I'(t — 1)-re:
Ft)y=>t—-1)-T{t—-1)=(t—1)(t—2)I'(t —2).

Ha t = n természetes szam, akkor eddig jutunk:
'n)=n—-1)n-2)-...I'1) = (n—1)!-T(1).

['(1)-t konnyen kiszamolhatjuk:

00 b
/ e dr = lim(—e™| )= lim —e*— (=)’ =lime " +1=1
0 b—o0 0 b—ro0 b—o0

Ezért ha neN természetes szam, akkor
L(n)=(n—1)!

A fenti I" fliggvény segitségével definialhatjuk a t! faktorialist abban az eset-

ben is, ha ¢t nem feltétleniil természetes szam:

th:=T(t+1).

5.4. Integralszamitas alkalmazasai

5.4.1. Fuggvény grafjanak ivhossza

5.12. Definicié. Adott f : [a,b] = R egy folytonos figguény. Ennek grifja
L={(z, f(x)) : ze[a,b]} C R
Ennek a gorbe vonalnak az ivhosszat hatarértékként fogjuk definidlni. Fel-

tessziik, hogy a fiiggvény "sima'", azaz differencialhato. Tekintsiik az [a, b]

intervallum egy felosztasat

Fn:{a:’l)0<x1<"'<$n:b}a
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=y

5.5. dbra. A fiiggvény ivhossz kozelitése graffal

ekkor a graf gorbe megfelel§ pontjait jelolje Py, Py ... P,

A k-adik ivdarab hosszat a Pithagorasz tétel alapjan fogjuk kozeliten:
sk = V(o — xp1)? + (f(ax) — fap-1))%

Igy az egész ivhossz egy kozelitése

n n

s(Fn) = Z Sk = \/ Az + Ay

k=1 k=1

Ennek hatarértékét tekintjiik, amikor n — oo és

d:=max(zy —xp—1 : k=1,...n) — 0.

Ez a kozelitG Osszeg igy is {rhato:

5 o (L) s,

A Lagrange féle kozépérték tétel alkalmazasaval belathato az alabbi formula:

5.5. Allitas. Adott f : [a,b] — R differencidlhato fiigguény. Ekkor a fiigg-

vény grdafjanak hossza
b

/ I+ (F(@)da. (5.4)

a
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Példa. Szamoljuk ki a lancgdrbe egy darabjanak hosszat.

f(z) =ch (x), zel0, 1].

Ekkor
f'(z) =sh (z), és 1 +sh *(x) = ch *(z).

Ezért a (5.4) képlet alapjan a fiiggvény grafjanak hossza:

1 1
:/\/1+(c ))2dx = /ch
0 0

hiszen az ivhossz mindig pozitiv. Végiil ezt kapjuk:

- {sh (I)I —sh (1) — sh (0) = & +2€_1.

5.4.2. Forgastest felszine és térfogata*

(Kiegészits tananyag)

Tekintsiink egy f : [a,b] — R* sima fiiggvényt, és forgassuk meg a fiiggvény
grafjat az x tengely koriil.

Va

(l'

Az igy kapott forgastest egy haromdimenzios test lesz. Ennek térfogatat ;s

felszinét egy-egy specialis integrallal tudjuk kiszamitani:
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5.6. Allitas. A fenti forgdstest feszine és térfogata:

Szzﬁ/ F@VI T F(a)dz, V:7r~/ £wd. (5.5)

Bizonyitas* Azt az alapotletet hasznalhatjuk, hogy az [a, b] intervallum egy
felosztésa utan a forgastestet hengerekkel kozelitjiik. A kis hengerek magas-
sdga az osztopontok tavolsaga lesz. A kis hengerek térfogata és palastjainak
felszine konnyen szamolhat6. A felosztas finomsagat csokkentve, hatarérték-

ként egy-egy integralt kapunk, épp a fenti formulakat.

6.Gyakorlat. Szamolja végig a fenti tlet alapjan az (5.5) formulak helyes-

ségét.
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6.1. Bevezetés

6.1.1. Egy példa

Lattuk, hogy ha
f(z) =¢€", akkor  f'(z) =¢€".
Altalaban, tetszéleges aclR esetén, ha
f(x)=e"  akkor  f'(z)= ae™.
Kicsit més jeloléssel azt irhatjuk, hogy ha
y=e* akkor Yy = ay.
Ez a tulajdonsag megforditva is igaz, ezt megfogalmazzuk allitasként.

6.1. Allitas. Ha egy y = f(x) fiigguényre igaz, hogy v = ay, akkor y = ce®®

valamely celR konstans mellett.
Bizonyitas. Definidljunk egy méasik z = z(z) fiiggvényt a kovetkezSképpen:
z = ye .
Ekkor ennek derivaltja
Y=y e +y(—a)e ™ =aye ®+y(—a)e ™ =0.

Ha egy fiiggvény derivaltja egy intervallumban 0, akkor az a fliggvény kons-
tans abban az intervallumban (ezt mondja ki az Integralszamitas I. alapté-

tele). ezért van olyan celR, melyre z = ¢, igy

ax

ye ¥ =c¢ = Yy =ce
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6.1.2. Mit neveziink differenciidlegyenletnek?

6.1. Definicié. Differencidlegyenlet (DE) olyan egyenlet, melyben az is-
meretlen eqy fiigguény, és az eqyenletben szerepel ennek az ismeretlen fiigg-

vénynek valamely derivdltja is.

Legegyszeriibb eset a primitiv fiiggvény keresés, amikor adott f(z) fiiggvény

mellett az egyenelet:
y' = flx).
Ennek megoldasa a hatarozatlan integral, a primitiv fliggvények halmaza:

yz/f@ﬂ%

A differencialegyenletnek két valtozoja van. z a fliggetlen, y a fiiggd valtozo,

ahol y = y(z).
1. Példa. Legyen a differencidlegyenlet

/

Yy = 2.
Ekkor a megoldas
y=vy(r) = /Qxdx =2+, ceR.

Ez a differencidlegyenlet dltalAnos megoldasa, ami végtelen sok fiiggvényt

jelent.

A megoldas szikithetd a kovetkezSképpen. Azt az y megoldast keressiik,

amelyre van plusz feltétel, pl y(2) = 7. Ekkor a megoldas menete:
y(2)=7 = y@2)=2>+c = c=3.
Tehat a megoldas, amit partikularis megoldasnak hivunk:

y(r) = 2° + 3.
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6.2. Definici6. Differencidlegyenlet rendjén az ismeretlen fligguény legma-

gasabb foku derivdltjanak fokszdamdt értjik, ami az egyenletben szerepel.

Példa. iy = y els6rendti, 3y’ = —y mésodrendii differencidlegyenlet.
6.3. Definici6. Az elsdrendi differencidlegyenlet dltaldnos alakja

y' = fz,y), (6.1)
ahol f(x,y) adott kétvdltozos figguény.

6.4. Definici6. Cauchy feladat, vagy kezdeti érték feladat sordn a (6.1)

differencidlegyenletnek azt a megolddsdt keressiik (ha van), melyre

y(fo) = Yo,

ahol xq €s yy adott szamok.

Mivel kétvaltozos fiiggvényekkel még nem foglalkoztunk, az altaldnos esetre

kés6bb tériink majd vissza.

2. Példa. Tekintsiik az alabbi masodrendi differencidlegyenletet:

y' = —y. (6.2)
Lattuk, hogy ha f(z) = sin(z), akkor
f(@) =cos(z),  [f'(z) = —sin(z) = —f(z).
Hasonléan, ha g(x) = cos(z), akkor
g (z) = —sin(z),  ¢"(x) = —cos(z) = —g(x).

Tehat a fenti y = f(x) és y = g(x) fiiggvények megoldasai a (6.2) differencial-
egyenletnek. Tovabba, ha F'(z) és G(z) megoldasok, akkor
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1. F(z +c¢),

2. cF(z),

3. aF(z) 4+ bG(x),
4. F'(z)

is megoldasok. Végtelen sok megoldast fel tudunk irni tehat. Azt a konkrét

megoldést keressiik, ahol
y(0) = a, és y'(0) =b (6.3)
adott értékek.

6.2. Allitas. Az (6.1)-(6.3) Cauchy feladatnak van egyértelmi megolddsa.

Bizonyitas. El6szor belatjuk, hogy ha van megoldas, akkor az egyértelmd.
Induljunk ki abbdl, hogy

y'+y=0 /-2y,

ahonnan

2¢"y" + 2yy’ = 0.
Ez épp két derivalt négyzetdsszege, azaz

(y/Q)/ + (yQ)/ — 0’
igy azt kaptuk, hogy

(W + 17 =0,

Ebbdl az kdvetkezik, hogy minden y megoldashoz van egy olyan celR kons-

tans, melyre
y*(z) +y*(z) = ¢, V. (6.4)

Tegyiik fel, hogy két megoldas is van az adott kezdeti feltételhez. y(x) és
y2(z) mindkettd megoldasa a DE-nek, és kielégiti a kezdeti feltételeket.
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Ekkor
z(z) = yi(x) — y2()

is megoldasa a DE-nek, a hozza tartozd kezdeti értékek:

2(0) = 11(0) — y2(0) =a —a =0,

Masrészt z(x) -re is teljesiil a (6.4) azonosséag, tehat
2% (x) + 2(x) =¢, Va.
Specidlisan x = 0 -ra is:
2%(0) + 22(0) = ¢ — c=0.

Ezt visszahelyettesitve:
2?(z) + 2*(x) = 0,

ami csak akkor teljesiilhet, ha z(x) = 0. Ezzel az egyértelmiiséget belattuk.
A megoldas 1étezését ugy igazoljuk, hogy felirjuk a megoldast:
y(x) := bsin(z) + a cos(x).

Ez megoldasa a differencidlegyenletnek, lattuk. A kezdeti feltételeket valoban
kielégiti, hiszen
y(0)=b-0+a-1=a,

y(0)=0b-14+a-(-0)=0.

Osszefoglalva:

1. yi(x) = sin(z), yo(z) = cos(x) megoldasok.
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2. Tetsz6leges megoldas felithato ezek linearis kombinaciojaként. Fz azt
jelenti, hogy ha y megoldas, akkor vannak olyan a,b valés szamok,

melyekre
y(x) = ayi(z) + bya().

A fenti yy, és yo az (6.1) differencidlegyenlet alapmegoldasai.

3. Példa. Tekintsiik djra a kiindulo elsérendi differencialegyenletet:

y = ay.

Ebben az esetben egyetlen alapmegoldas van:

y(z) =™,

és minden megoldas ennek konstans-szorosa.

6.2. Specialis differencidlegyenletek

6.2.1. Szeparabilis differencidlegyenlet

Tegyiik fel, hogy a (6.1) differencidlegyenlet jobboldalan szerepl f(z,y) fiige-
vényben szétvalaszthatd x és y a kovetkezGképpen:

a(x)
f T,Y) = 5 6 Yy 07
(z,y) 3) (y) #
ahol «, 8 adott fiiggvények. Ekkor a differencidlegyenlet ilyen alaki:
,_ ()
Bly)

Ezt szeparabilis vagy szétvalaszthaté valtozdju DE-nek nevezziik.
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Ennek megoldasat kerssiik.
dy _ a(z)
/
Yy =y)=—-— =777,
@)= % Bly)
ahonnan formaélis atszorzassal azt kapjuk, hogy

" Bly)dy = a(x)dx 7.

Vezessiik be az alabbi jeloléseket:

2/6(y)dy, A(:U)I/Oé(x)d%

tehat A(x) és B(y) valamely primitiv fiiggvényeket jelentenek.

Ko6nnyen lathato, hogy ha y = y(z) megoldas, akkor a két primitiv fiiggvényre

teljesiil valamilyen ¢ konstanssal:

Ebbél y meghatarozhato.

Példa. Legyen a DE

Y
V=3
akkor
dy ¢
dr  x?
igy formalisan: . .
”Edy = ﬁdx”.

Innen integralassal kapjuk a megoldashoz sziikséges primitiv fiiggvényeket:

1 1
/—Qdy:——, /—dx———
Y Y

1 1 1 cx—-1
—— = ——+4c e —_— = .
Y 4 Y Z

Az altalanos megoldas tehat:

és innen
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6.2.2. Lineéaris differenciidlegyenlet

Linearis DE-16] akkor beszéliink, ha az (6.1) differencidlegyenlet jobboldalan

szerepld f(x,y) az y valtozoban linearis, azaz

fla,y) = alz)y + b(z),

ahol a(x), b(z) adott fiiggvények. Igy a differencialegyenlet

Y = ale)y + b().

Ha b(z) = 0, akkor a DE homogén linearis. Ha b(z) # 0, akkor a DE

inhomogén lineéaris .

Homogén LDE

Ekkor a differenicalegyenlet
y = a(x)y,
ez egyben szeparabilis. Tehat meg tudjuk méar oldani, formalisan

dy _

//1 _ "

Vezessiik be az alabbi jeldléseket:

Ekkor

ahonnan
y = ce®, celR.

Itt ¢ = £e%, ezért az abszolutértéket el lehet hagyni y koriil.

6.3. Allitas. A homogén linedris DE dltaldnos megolddsa:

y(z) = e,
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Specialisan, ha
y' = ay,

azaz a(x) = a konstans, akkor
A(z) :/a dxr = ax + d,

és igy a megoldas

axr

y(x) = ce™, c = +et.
Kezdeti érték (Cauchy) feladat. Adott egy kezdeti feltétel is,

y(xo) = o
A fenti altalanos megoldasban szereplé ¢ meghatarozhato:

A(zo) Alzo)

y(xg) = ce = Yo = c = yoe~

A Cauchy feladat megoldasa tehat y(x) = yoeA @ —Awo),

Konkrét szamitashoz konkrét primitiv fliiggvényt hasznélunk, éspedig legyen

Ekkor az altalanos megoldas

y(z) = cel O,

és a kezdeti feladat megoldéasa

y(2) = goelo O

Inhomogén LDE.

Ekkor az egyenlet
y =ay+b
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alakt, ahol a = a(z) és b = b(z) adott fliggvények.

Lattuk, hogy a homogén linearis egyenlet megoldasa y = ce*®), ahol ceR
tetszGleges konstans. Az inhomogén egyenlet megoldéasat tgy keressiik, hogy

a ¢ konstans helyett egy fiiggvényt frunk (c ~ u(x)):

A DE baloldala
y = (x)e® 4+ u(z)a(z)et™.

A DE jobboldala
ay + b = a(z)u(z)e™@ + b(x).

A két oldal egyenls. Ebbdl egyszertisitve azt kapjuk, hogy
u'(2)e® =b(z) = W (z)=b)e M = wulx)= /b(w)e‘A(””)dx.
Az inhomogén DE &altalanos megoldéasa:

y(2) = ceh@) 4 AW / ba)eADdz, R

(. J/
-~

ahol az els;o tag a homogén egyenlet altalanos megoldasa, a masodik az,

inhomogén egyenlet egy konkrét megoldésa.

Példa. Oldjuk meg az aldbbi inhomogén LDE-t:

y = —xy— .
A megoldas két 1épcsében torténik.

1. A homogén egyenlet megolddsa. Mivel

yp(x) =ce 2, celR.
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2. Az inhomogén egyenlet megolddsa.
2 2

u(z) = /b(m)eA(’“")dx = /(—x)egda: = —e7,

ezért az inhomogén egyenlet egy partikularis megoldésa:

2 2 2

—x x —x

ho(a) = ul@)e T = (~eF)eT = -1

Az altalanos megoldas:

6.3. Differencidlegyenletek a fizikAban*

(Kiegészitd tananyag.)

Néhéany egyszeri példan bemutatjuk, hogyan jelennek meg természetes mo-

don a fizikdban a differencidlegyenletek.

Sugarzas erdssége

Valamely sugarzas (pl. fény, radioaktivitas) intenzitasat szeretnénk megha-
tarozni. Jelolje I(x) az intenzitds mértékét x ut megtétele utan. A kiindulé

intenzitas legyen

Fizikai meggondolasbol tudjuk, hogy az intenzitas megvéltozasa I(x) és I(z + Ax)
koz6tt aranyos a megtett tttal, ami Az, és az intenzitas aktualis nagysagaval.

Ezért az intenzitas megvaltozasat igy kozelithetjiik:

I(z+ Az) — I(z) = A = —Az - I(z).
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Az arényossagi tényez6t jelolje p > 0. Ebbél

yavi
ANl =—p-DNr- I = — =—ul.
Ax

Az — 0 esetén:

dr

o= —ul = I'(z)=—pl(x).

Tehat azt a DE-t kaptuk, hogy

A baloldalt integralva ezt kapjuk:

]/(x) = In x &
/I(x)d:c_l (I(z)) +c.

(Az abszolutérték elhagyhato, mert pozitiv fizikai mennyiségrél van sz0.)

A jobboldalt integralva ezt kapjuk:

/—,u dr = —px + c.
A kettst Gsszevetve
In(I(z)) = —pz + c.

Ebbél:
I(z) = Ce™"*.

Specidlisan, azt a megoldast keressiik, amikor az intenzitas a kezdeti pontban
(x = 0) ismert, azaz

Ezért az intenzitas fiiggvény

I(z) = Ipe M.



176 6. FEJEZET. DIFFERENCIALEGYENLETEK
Rezgémozgas fizikai leirasa

Rezgémozgas fizikai leirdsa alatt, pl. egy rugd mozgiasdnak matematikai jel-
lemzését értjiik.

Tegyiik fel, hogy m tomegi részecske az = tengely mentén mozog, a kitérését
az id§ fliggvényében szeretnénk leirni. A ¢ idGpillanatban a kitérést jelolje

z(t). Ebben az esetben a fliggetlen valtozo t, a fiiggd valtozo pedig .

A mozgast a t = 0 id6pontban z(0) = zo-bdl inditjuk. A pillanatnyi sebesség
nem mas, mint az ut-fliggvény a derivaltja: 2(t), a pillanatnyi gyorsulas ennek

masodik derivaltja: Z(t).

A rugoéra hato erck az alabbiak

1. rugoerd: —kz (a kitéréssel aranyos, azzal ellentétes iranyt),

2. kozegellenallasi er6: —ri (a pillanatnyi sebességgel aranyos, és azzal

ellentétes iranyn),
3. kiilsg gerjesztés: f(t) (pl. meglokjiik idonként).
A Newton-torvény szerint felirhatjuk az alabbi Osszefiiggést az ered6 erdk

Osszegérol:

mi = —kx —rz + f.

Az z(t) mozgast leird differencidlegyenlet tehat:

mi +ri+ kx = f.

Ha f =0 (ez egy szabad mozgas), akkor homogén DE-rél beszéliink.

Ha f # 0 (ez kényszermozgas), akkor inhomogén DE-t kapunk.
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A homogén DE megoldasat fogjuk most meghatarozni. Ez egyenlet:
mi +ri+ kr =0, (6.5)
x(t) =? Els6 lépésben a megoldast x(t) = e alakban keressiik. Ekkor
z(t) =eM = i(t) =AM = i(t) = \%eM.
A fenti oszefiiggeseket visszahelyettesitve az (6.5) egyenletbe:

mi+ri+kr = ket 4+ rieM + mA\ZeM =

= eMmA2+rA+k)=0, Vt>0. (6.6)
Ez a (6.6) Osszefliggés csak akkor teljesiilhet, ha

mA +r\A+k=0.

Ennek a masodfoku egyenletnek a megoldésa

VT dmk

2m

Ao =

Harom esetet kell megkiilonboztetni.

1. eset. Ha r? —4mk > 0, ekkor léteznek \; # )\ valos gyokok. Vegyiik
észre, hogy Ay < 0 és Ay < 0 minden esetben.

A DE-nek két megoldasa is van,

és ezek tetszoleges linearis kombinécidja is kielégiti az egyenletet:
x(t) = i (t) + cara(t), 1, caelR.

Mivel A\; < 0, A2 < 0, a megoldas exponenciélis sebességgel 0-hoz tart.
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2. eset. Ha r? — 4mk = 0, akkor a mésodfokii egyenletnek kétszeres gyoke

van, éspedig

r
Ao =——.
0 2m

Ekkor lattuk, hogy
z1(t) = e

megoldés. Belatjuk, hogy egy masik megoldés lesz:

w(t) = tet

Valoban, kiszamoljuk a derivaltakat,
w(t) = e 4 \te?,
W(t) = Nt 4 Nt 4 Nt
igy behelyettesitve azt kapjuk, hogy
mai + i + kw = e {t(mA] + rXo + k) + 2mAg + 1} = 0.
Az altalanos megoldas ebben az esetben
z(t) = ¢ 4 cote, c1, celR,
és mivel \g < 0, ezért ez is exponencialisan lecseng 0-hoz.

Fizikai interpretacié. Ha r? — 4mk > 0, ekkor r > v4mk. Ez azt je-
lenti, hogy olyan nagy a kozegellendllas, hogy a rugé kitérés exponencialisan

csokken.

3. eset. Ha r? —4mk < 0, akkor nincs valds gydke a masodfoki egyenletnek.

Formaélisan azt irhatjuk, hogy
)\1,2 = —p V-1

ahol:
, 1P —dmk

—v
4m?2
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6.1. abra. Nagy a kozegellenallas esetén a rugd kitérése exponencidlisan le-

cseng.

Két megoldas adodik:
vy (t) = e " cos(vt), va(t) = e M sin(vt).

Ezek valoban megoldasok. Behelyettesitéssel ellenérizhetd.

Ha r < v4mk, akkor kicsi a kozegellenallés, és a rugd oszcillalo mozgast fog

végezni exponencidlisan lecsengd amplitadoval.

6.2. dbra. Kicsi a kozegellenallas esetén a rugo csillapitott rezgémozgast végez

Specidlis feladat. Ha r = 0, m = k akkor a mar ismert

rT4+x=0
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egyenletet kapjuk, ami a harmonikus rezgémozgés egyenlete. Ezt mar lattuk,

altalanos megoldésa:
z(t) = a - cos(t) + b - sin(t),

ahol a és b a kezdeti kitéréstdl és kezdGsebességtdl fiigg.



7. fejezet

Taylor polinom. Taylor sor

181
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7.1. Els6foka Taylor polinom

Lattuk, hogy ha f differencidlhato zg-ban, akkor

f(@) = f(zo) + (x — 20) f' (o).
Itt az ~ jel azt jelenti, hogy f(x) kozelithetd ebben az értelemben:
f(@) = (f(xo) + (& — x0) f'(w0))

T — 2o

— 0, ha x— x.

7.1. Definicié. Legyen xo az [ fiigguény értelmezési tartomdnydnak belsd

pontja, itt differencidlhato. Legyen

T (z) == f(xo) + (x — x0) f'(20),

ez a fligguény xo-hoz tartozo elséfokiu Taylor polinomja.

Az egyszer(iség kedvéért a fels§ indexben levs xq jelolést elhagyjuk. Vegyiik
észre, hogy ez éppen az (xg, f(xo)) pontban a fiiggvény grafjahoz huzott

érint6 egyenes egyenlete.

7.1. Allitas. -
L f@) = Ti)

T—rx0 €Tr — 'TO

=0.

Ennek az allitidsnak pontosabb megfelelGje az alabbi Tétel, feltéve a masod-

rendid derivalhatosigot is.

7.1. Tétel. Adott f valds fiigguény és xoe int(Dy). Feltessziik, hogy f kétszer
differencidlhato xq eqy U kornyezetében. Ekkor YxeU-hoz létezik £, melyre

_ f//(f)
2

f(x) = Th(x) (z — o), (7.1)

ahol & az x és az xqg kozott van:

fe{ (xo,z) ha x> xg

(x,z9) hax < xg
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7.2. Definici6. Az f(x)—T:(x) kilonbségre vonatkozo (7.1) formulat Lagrange-
féle maradéktagnak hivjuk.

(x —x9) = 0, ha x — xo.

Megjegyzés. f(z) — Th(=) _ fHQ(f)

T — 2o

Példa. Legyen f(z) = sin(z), o = 0. Mennyi lesz T)(z) =? Sziikséges az
f(xzo) és az f'(xo) kiszamitasa. f(z¢) = sin(0) = 0, f'(xo) = cos(0) = 1.
Ekkor Ti(z) = z. Legyen x = 0.1, és sin(0.1) értékét kozelitjiik 77(0, 1)-el,
mennyi hibat vétiink? A kiilénbség:

f"(€) 2 _ —sin(€)

1 1
igy ennek becslése: |sin(x) — T3 (z)| < 200° Ezért sin(0.1) ~ 0.1 + 200"

7.2. n-ed foku Taylor polinom

Tegyiik fel, hogy az f fiiggvény az xy egy kornyezetében n-szer differencial-
hato.

7.3. Definicié. Az f fiiggvény n-ed rendd Taylor polinomja, mely az

ro-hoz tartozik:

" Zo ) (n) T .
n f(k)(l’o
- 25 L—— (7.2)

Mas elnevezés: n-ed foku Taylor polinom. A pontosabb jeldlésben ki lehet

irni az alappontot is: T, (z,xo), mi ezt elhagyjuk.
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Magyardzat. Olyan n-ed fokd polinomot keresiink, mely x-ban dgyanigy
viselkedik, mint f(z). Pontosabban:

Po(xo) = f(m0),
P! (x9) = f'(w0), (7.3)
P (a0) = F(ay).

Mivel a P, polinom (n + 1)-dik derivaltja 0, arra mar nem lehet feltétel.

7.2. Allitas. Pontosan egy P,(x) polinom létezik a (7.3) tulajdonsdgokkal.

Bizonyitas. Az egyértelmiiség trivialis. (HF).

A létezést tgy igazoljuk, hogy megadjuk a polinomot. Be fogjuk latni, hogy
P, (z) := T,(x) rendelkezik a (7.3) tulajdonsagokkal, ez az n-ed foku Taylor

polinom.

T, (z) és derivaltjai az x¢-ban:

(n)
To(eo) = Flao) + fo)ao — ) + oo+ T gy = (o)
aes (n) T
T (xg) = [fl(xo)l+ / (2 0)2(1:0 — o)+ ...+ / n(! O)N(aro — )" =
= f'(xo)
o () (2
T®) () = f k(' Dpr g+ {n—(k()))' (w0 — 20)"* = f®)(zg) k<n

Megvizsgaljuk, hogy mennyire jol kozeliti a Taylor polinom az eredeti fiigg-

vényt o kornyezetében.

7.4. Definicié. Az L,(z) := f(x) — T,(x) a Lagrange-féle maradéktag.
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7.2. Tétel. Tegyik fel, hogy az f fiiggvény (n + 1)-szer differencidlhato x
eqy U kdérnyezetében. Ekkor létezik olyan £eU, melyre:

(n+1)
S
(n+1)!

ahol & az x és xq kézdtt van.

Példa. Legyen f(x) = €*, hogyan becsiilhetjiik meg e¥! értékét? A kozelitést

harmadrendd Taylor-polinommal végezziik, célszerii az xo = 0 valasztas.

Tg(l’) — f(O) + f,(O){B + f”(o)xZ + f”/(o)xi’:‘

2! 3!
Ismerjiik a fiiggvény derivaltjait: f'(z) = e* = f"(x) = f"(z). Ezért
2 a
JO=0)=f"0)=1 = Ty=l+r+5+5
0.01 0.001
140,14+ —— + ——.
2 6
A hiba nagysagrendje:
4
f(x)—T3(:1:):f4—‘(£)x4, 0<¢<0,1
60‘1 3
igy |L < —107" < =107

7.3. Taylor polinom hatarértéke n — oo

Felmeriil a kérdés, hogy vajon a (7.2) formulaban n — oo esetén mi torténik?

Példa. (folytatés) Lattuk, hogy f(x) = e” n-ed foka Taylor-polinomja xy = 0
koril:

" (n
T.(x) = f(0)+ f(0)x+ f2—@$2 +... %x"

zk.

x>
g
==
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7.1. abra. Az e® fliggvény és els6 3 Taylor polinomja zy = 0 esetén.

Rogzitett xelR esetén a Lagrange féle maradéktag:

3
. e
e’ —Tu(x) = CES] ahol |£] < |z|.

Ezzel igazoltuk, hogy ebben az esetben

lim 7,,(z) = €® VreR.

7.4. Taylor sor

Legyen adott egy f : (a,b) — IR fliggvény, mely az xoe(a, b) pontban végtelen
sokszor differencialhato.

7.5. Definicié. Az f fiiggvény xo korili Taylor sora az aldbbi fiigguény:

> 0 (2,
T(x) ;:Zf k<! )

(= z0)".

Megjegyzés. A Taylor sor pontos jelolelése
T(xo, )

lenne. Az egyszeriiség kedvéért az els§ argumentumot elhagyjuk.
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Megjegyzés. Ha xy = 0, akkor szokas a Taylor sor helyett McLaurent sorrél

beszélni.

Kérdés: Milyen feltételekkel lesz igaz, hogy a Taylor sor 0sszegeként meg-
kapjuk a kiindulasi fiiggvényt? Mit tudunk mondani az {x : f(z) = T(x)}
halmazrol, ha xpelR rogzitett?

Lattuk, hogy az f(x) = e” fiiggvény esetén f(x) = T'(x) teljesiil Vz.

Példa. Legyen

e ha z # 0,
flz) =
0 ha x=0.
f paros fiiggvény. Legyen x( := 0. Konnyen igazolhato, hogy itt f folytonos.
Szamoljuk ki a derivaltjat:

o) =t SO SO e e

h—0 h h—0+ T—00

Belathat6é hasonlé médon, hogy
f™O0)y=0  Vn>1.

Ekkor tehat T'(z) = 0, igy csak az egyetlen zy = 0 pontban-ban allitja els

a fiiggvényt Taylor sora.

0.5

-0.5

7.2. abra. Az e 3 fiiggvény a 0 kozelében.



188 7. FEJEZET. TAYLOR POLINOM. TAYLOR SOR

7.3. Allitas. Adott az f : (zvo— R, zo+ R) — IR véglelen sokszor differencidl-
hato figguény. Tegyiik fel, hogy ennek %) derivdltjai eqyenletesen korldtosak,
azaz 3K > 0:

|f®(z)| < K,  Vae(wo— R,mo+R), Vk=0,1,2,...
Ekkor a fiigguényt elddllitja Taylor sora:
f(z) =T(v), Vae(zg — R, 20 + R).

Bizonyitas* Lagrange-féle maradéktag segitségével 1atjuk be a fenti allitast.

Legyen xe(xg — R, zo + R) tetsz6leges pont. Mivel

®)
f g)_@

T(x) = i — x0)F
@)7gigg - z0)",

ezért

" F0) (g
fl@) = T(x) = lim (f(fv)— = ’-<x—xo>k>.

n—00
k=0

A Taylor polinomoknal tanultak alapjan

n ) (2 (n+1) 1
1) = SIS e = L

ahol £ x és xq kozott van. A feltétel szerint

n+1

gy T

(n+D!|§me(me_%w+ (R — o)™

m+1)! — 7 (n+1)

A jobboldalon levé kifejezés x-t6l fiiggetleniil O-hoz tart.

7.6. Definicié. Az f fiiggvényt az xo pontban analitikusnak nevezzik, ha
xo-nak létezik olyan (xo — R, xo + R) kirnyezete, melyben a Taylor sor kon-
vergens és f(x) = T'(x), ahol T(x) az xo korili Taylor sor. Az f figguény

eqy D tartomdnyban analitikus, ha minden xqeD-ben analitikus.
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Példa. Legyen f(x) =

kus, hiszen

7 , x # 1. Ekkor tudjuk, hogy x¢y = 0-ban analiti-
—x

1 = .
1_$:Zx lz| < 1.
n=0

Vajon xy = 3-ban analitikus-e a fiiggvény?

A vaalasz: igen.

7.Gyakorlat.  Ellendrizzék le, hogy a fliggvény xq = 3 koriili Taylor sora
elgallitja a fiiggvényt, ha 1 < x < 5.

Hasonlé gondolatmenettel igazolhat6, hogy Vxg # 1 esetén f analitikus.
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